common.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/debugreg.h>
  21. #include <asm/sections.h>
  22. #include <linux/topology.h>
  23. #include <linux/cpumask.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/atomic.h>
  26. #include <asm/proto.h>
  27. #include <asm/setup.h>
  28. #include <asm/apic.h>
  29. #include <asm/desc.h>
  30. #include <asm/i387.h>
  31. #include <asm/fpu-internal.h>
  32. #include <asm/mtrr.h>
  33. #include <linux/numa.h>
  34. #include <asm/asm.h>
  35. #include <asm/cpu.h>
  36. #include <asm/mce.h>
  37. #include <asm/msr.h>
  38. #include <asm/pat.h>
  39. #ifdef CONFIG_X86_LOCAL_APIC
  40. #include <asm/uv/uv.h>
  41. #endif
  42. #include "cpu.h"
  43. /* all of these masks are initialized in setup_cpu_local_masks() */
  44. cpumask_var_t cpu_initialized_mask;
  45. cpumask_var_t cpu_callout_mask;
  46. cpumask_var_t cpu_callin_mask;
  47. /* representing cpus for which sibling maps can be computed */
  48. cpumask_var_t cpu_sibling_setup_mask;
  49. /* correctly size the local cpu masks */
  50. void __init setup_cpu_local_masks(void)
  51. {
  52. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  53. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  54. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  55. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  56. }
  57. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  58. {
  59. #ifdef CONFIG_X86_64
  60. cpu_detect_cache_sizes(c);
  61. #else
  62. /* Not much we can do here... */
  63. /* Check if at least it has cpuid */
  64. if (c->cpuid_level == -1) {
  65. /* No cpuid. It must be an ancient CPU */
  66. if (c->x86 == 4)
  67. strcpy(c->x86_model_id, "486");
  68. else if (c->x86 == 3)
  69. strcpy(c->x86_model_id, "386");
  70. }
  71. #endif
  72. }
  73. static const struct cpu_dev __cpuinitconst default_cpu = {
  74. .c_init = default_init,
  75. .c_vendor = "Unknown",
  76. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  77. };
  78. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  79. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  80. #ifdef CONFIG_X86_64
  81. /*
  82. * We need valid kernel segments for data and code in long mode too
  83. * IRET will check the segment types kkeil 2000/10/28
  84. * Also sysret mandates a special GDT layout
  85. *
  86. * TLS descriptors are currently at a different place compared to i386.
  87. * Hopefully nobody expects them at a fixed place (Wine?)
  88. */
  89. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  90. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  91. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  92. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  93. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  94. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  95. #else
  96. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  97. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  98. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  99. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  100. /*
  101. * Segments used for calling PnP BIOS have byte granularity.
  102. * They code segments and data segments have fixed 64k limits,
  103. * the transfer segment sizes are set at run time.
  104. */
  105. /* 32-bit code */
  106. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  107. /* 16-bit code */
  108. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  109. /* 16-bit data */
  110. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  111. /* 16-bit data */
  112. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  113. /* 16-bit data */
  114. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  115. /*
  116. * The APM segments have byte granularity and their bases
  117. * are set at run time. All have 64k limits.
  118. */
  119. /* 32-bit code */
  120. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  121. /* 16-bit code */
  122. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  123. /* data */
  124. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  125. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  126. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  127. GDT_STACK_CANARY_INIT
  128. #endif
  129. } };
  130. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  131. static int __init x86_xsave_setup(char *s)
  132. {
  133. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  134. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  135. return 1;
  136. }
  137. __setup("noxsave", x86_xsave_setup);
  138. static int __init x86_xsaveopt_setup(char *s)
  139. {
  140. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  141. return 1;
  142. }
  143. __setup("noxsaveopt", x86_xsaveopt_setup);
  144. #ifdef CONFIG_X86_32
  145. static int cachesize_override __cpuinitdata = -1;
  146. static int disable_x86_serial_nr __cpuinitdata = 1;
  147. static int __init cachesize_setup(char *str)
  148. {
  149. get_option(&str, &cachesize_override);
  150. return 1;
  151. }
  152. __setup("cachesize=", cachesize_setup);
  153. static int __init x86_fxsr_setup(char *s)
  154. {
  155. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  156. setup_clear_cpu_cap(X86_FEATURE_XMM);
  157. return 1;
  158. }
  159. __setup("nofxsr", x86_fxsr_setup);
  160. static int __init x86_sep_setup(char *s)
  161. {
  162. setup_clear_cpu_cap(X86_FEATURE_SEP);
  163. return 1;
  164. }
  165. __setup("nosep", x86_sep_setup);
  166. /* Standard macro to see if a specific flag is changeable */
  167. static inline int flag_is_changeable_p(u32 flag)
  168. {
  169. u32 f1, f2;
  170. /*
  171. * Cyrix and IDT cpus allow disabling of CPUID
  172. * so the code below may return different results
  173. * when it is executed before and after enabling
  174. * the CPUID. Add "volatile" to not allow gcc to
  175. * optimize the subsequent calls to this function.
  176. */
  177. asm volatile ("pushfl \n\t"
  178. "pushfl \n\t"
  179. "popl %0 \n\t"
  180. "movl %0, %1 \n\t"
  181. "xorl %2, %0 \n\t"
  182. "pushl %0 \n\t"
  183. "popfl \n\t"
  184. "pushfl \n\t"
  185. "popl %0 \n\t"
  186. "popfl \n\t"
  187. : "=&r" (f1), "=&r" (f2)
  188. : "ir" (flag));
  189. return ((f1^f2) & flag) != 0;
  190. }
  191. /* Probe for the CPUID instruction */
  192. static int __cpuinit have_cpuid_p(void)
  193. {
  194. return flag_is_changeable_p(X86_EFLAGS_ID);
  195. }
  196. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  197. {
  198. unsigned long lo, hi;
  199. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  200. return;
  201. /* Disable processor serial number: */
  202. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  203. lo |= 0x200000;
  204. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  205. printk(KERN_NOTICE "CPU serial number disabled.\n");
  206. clear_cpu_cap(c, X86_FEATURE_PN);
  207. /* Disabling the serial number may affect the cpuid level */
  208. c->cpuid_level = cpuid_eax(0);
  209. }
  210. static int __init x86_serial_nr_setup(char *s)
  211. {
  212. disable_x86_serial_nr = 0;
  213. return 1;
  214. }
  215. __setup("serialnumber", x86_serial_nr_setup);
  216. #else
  217. static inline int flag_is_changeable_p(u32 flag)
  218. {
  219. return 1;
  220. }
  221. /* Probe for the CPUID instruction */
  222. static inline int have_cpuid_p(void)
  223. {
  224. return 1;
  225. }
  226. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  227. {
  228. }
  229. #endif
  230. static int disable_smep __cpuinitdata;
  231. static __init int setup_disable_smep(char *arg)
  232. {
  233. disable_smep = 1;
  234. return 1;
  235. }
  236. __setup("nosmep", setup_disable_smep);
  237. static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
  238. {
  239. if (cpu_has(c, X86_FEATURE_SMEP)) {
  240. if (unlikely(disable_smep)) {
  241. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  242. clear_in_cr4(X86_CR4_SMEP);
  243. } else
  244. set_in_cr4(X86_CR4_SMEP);
  245. }
  246. }
  247. /*
  248. * Some CPU features depend on higher CPUID levels, which may not always
  249. * be available due to CPUID level capping or broken virtualization
  250. * software. Add those features to this table to auto-disable them.
  251. */
  252. struct cpuid_dependent_feature {
  253. u32 feature;
  254. u32 level;
  255. };
  256. static const struct cpuid_dependent_feature __cpuinitconst
  257. cpuid_dependent_features[] = {
  258. { X86_FEATURE_MWAIT, 0x00000005 },
  259. { X86_FEATURE_DCA, 0x00000009 },
  260. { X86_FEATURE_XSAVE, 0x0000000d },
  261. { 0, 0 }
  262. };
  263. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  264. {
  265. const struct cpuid_dependent_feature *df;
  266. for (df = cpuid_dependent_features; df->feature; df++) {
  267. if (!cpu_has(c, df->feature))
  268. continue;
  269. /*
  270. * Note: cpuid_level is set to -1 if unavailable, but
  271. * extended_extended_level is set to 0 if unavailable
  272. * and the legitimate extended levels are all negative
  273. * when signed; hence the weird messing around with
  274. * signs here...
  275. */
  276. if (!((s32)df->level < 0 ?
  277. (u32)df->level > (u32)c->extended_cpuid_level :
  278. (s32)df->level > (s32)c->cpuid_level))
  279. continue;
  280. clear_cpu_cap(c, df->feature);
  281. if (!warn)
  282. continue;
  283. printk(KERN_WARNING
  284. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  285. x86_cap_flags[df->feature], df->level);
  286. }
  287. }
  288. /*
  289. * Naming convention should be: <Name> [(<Codename>)]
  290. * This table only is used unless init_<vendor>() below doesn't set it;
  291. * in particular, if CPUID levels 0x80000002..4 are supported, this
  292. * isn't used
  293. */
  294. /* Look up CPU names by table lookup. */
  295. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  296. {
  297. const struct cpu_model_info *info;
  298. if (c->x86_model >= 16)
  299. return NULL; /* Range check */
  300. if (!this_cpu)
  301. return NULL;
  302. info = this_cpu->c_models;
  303. while (info && info->family) {
  304. if (info->family == c->x86)
  305. return info->model_names[c->x86_model];
  306. info++;
  307. }
  308. return NULL; /* Not found */
  309. }
  310. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  311. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  312. void load_percpu_segment(int cpu)
  313. {
  314. #ifdef CONFIG_X86_32
  315. loadsegment(fs, __KERNEL_PERCPU);
  316. #else
  317. loadsegment(gs, 0);
  318. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  319. #endif
  320. load_stack_canary_segment();
  321. }
  322. /*
  323. * Current gdt points %fs at the "master" per-cpu area: after this,
  324. * it's on the real one.
  325. */
  326. void switch_to_new_gdt(int cpu)
  327. {
  328. struct desc_ptr gdt_descr;
  329. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  330. gdt_descr.size = GDT_SIZE - 1;
  331. load_gdt(&gdt_descr);
  332. /* Reload the per-cpu base */
  333. load_percpu_segment(cpu);
  334. }
  335. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  336. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  337. {
  338. unsigned int *v;
  339. char *p, *q;
  340. if (c->extended_cpuid_level < 0x80000004)
  341. return;
  342. v = (unsigned int *)c->x86_model_id;
  343. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  344. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  345. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  346. c->x86_model_id[48] = 0;
  347. /*
  348. * Intel chips right-justify this string for some dumb reason;
  349. * undo that brain damage:
  350. */
  351. p = q = &c->x86_model_id[0];
  352. while (*p == ' ')
  353. p++;
  354. if (p != q) {
  355. while (*p)
  356. *q++ = *p++;
  357. while (q <= &c->x86_model_id[48])
  358. *q++ = '\0'; /* Zero-pad the rest */
  359. }
  360. }
  361. void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  362. {
  363. unsigned int n, dummy, ebx, ecx, edx, l2size;
  364. n = c->extended_cpuid_level;
  365. if (n >= 0x80000005) {
  366. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  367. c->x86_cache_size = (ecx>>24) + (edx>>24);
  368. #ifdef CONFIG_X86_64
  369. /* On K8 L1 TLB is inclusive, so don't count it */
  370. c->x86_tlbsize = 0;
  371. #endif
  372. }
  373. if (n < 0x80000006) /* Some chips just has a large L1. */
  374. return;
  375. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  376. l2size = ecx >> 16;
  377. #ifdef CONFIG_X86_64
  378. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  379. #else
  380. /* do processor-specific cache resizing */
  381. if (this_cpu->c_size_cache)
  382. l2size = this_cpu->c_size_cache(c, l2size);
  383. /* Allow user to override all this if necessary. */
  384. if (cachesize_override != -1)
  385. l2size = cachesize_override;
  386. if (l2size == 0)
  387. return; /* Again, no L2 cache is possible */
  388. #endif
  389. c->x86_cache_size = l2size;
  390. }
  391. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  392. {
  393. #ifdef CONFIG_X86_HT
  394. u32 eax, ebx, ecx, edx;
  395. int index_msb, core_bits;
  396. static bool printed;
  397. if (!cpu_has(c, X86_FEATURE_HT))
  398. return;
  399. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  400. goto out;
  401. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  402. return;
  403. cpuid(1, &eax, &ebx, &ecx, &edx);
  404. smp_num_siblings = (ebx & 0xff0000) >> 16;
  405. if (smp_num_siblings == 1) {
  406. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  407. goto out;
  408. }
  409. if (smp_num_siblings <= 1)
  410. goto out;
  411. index_msb = get_count_order(smp_num_siblings);
  412. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  413. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  414. index_msb = get_count_order(smp_num_siblings);
  415. core_bits = get_count_order(c->x86_max_cores);
  416. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  417. ((1 << core_bits) - 1);
  418. out:
  419. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  420. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  421. c->phys_proc_id);
  422. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  423. c->cpu_core_id);
  424. printed = 1;
  425. }
  426. #endif
  427. }
  428. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  429. {
  430. char *v = c->x86_vendor_id;
  431. int i;
  432. for (i = 0; i < X86_VENDOR_NUM; i++) {
  433. if (!cpu_devs[i])
  434. break;
  435. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  436. (cpu_devs[i]->c_ident[1] &&
  437. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  438. this_cpu = cpu_devs[i];
  439. c->x86_vendor = this_cpu->c_x86_vendor;
  440. return;
  441. }
  442. }
  443. printk_once(KERN_ERR
  444. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  445. "CPU: Your system may be unstable.\n", v);
  446. c->x86_vendor = X86_VENDOR_UNKNOWN;
  447. this_cpu = &default_cpu;
  448. }
  449. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  450. {
  451. /* Get vendor name */
  452. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  453. (unsigned int *)&c->x86_vendor_id[0],
  454. (unsigned int *)&c->x86_vendor_id[8],
  455. (unsigned int *)&c->x86_vendor_id[4]);
  456. c->x86 = 4;
  457. /* Intel-defined flags: level 0x00000001 */
  458. if (c->cpuid_level >= 0x00000001) {
  459. u32 junk, tfms, cap0, misc;
  460. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  461. c->x86 = (tfms >> 8) & 0xf;
  462. c->x86_model = (tfms >> 4) & 0xf;
  463. c->x86_mask = tfms & 0xf;
  464. if (c->x86 == 0xf)
  465. c->x86 += (tfms >> 20) & 0xff;
  466. if (c->x86 >= 0x6)
  467. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  468. if (cap0 & (1<<19)) {
  469. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  470. c->x86_cache_alignment = c->x86_clflush_size;
  471. }
  472. }
  473. }
  474. void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  475. {
  476. u32 tfms, xlvl;
  477. u32 ebx;
  478. /* Intel-defined flags: level 0x00000001 */
  479. if (c->cpuid_level >= 0x00000001) {
  480. u32 capability, excap;
  481. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  482. c->x86_capability[0] = capability;
  483. c->x86_capability[4] = excap;
  484. }
  485. /* Additional Intel-defined flags: level 0x00000007 */
  486. if (c->cpuid_level >= 0x00000007) {
  487. u32 eax, ebx, ecx, edx;
  488. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  489. c->x86_capability[9] = ebx;
  490. }
  491. /* AMD-defined flags: level 0x80000001 */
  492. xlvl = cpuid_eax(0x80000000);
  493. c->extended_cpuid_level = xlvl;
  494. if ((xlvl & 0xffff0000) == 0x80000000) {
  495. if (xlvl >= 0x80000001) {
  496. c->x86_capability[1] = cpuid_edx(0x80000001);
  497. c->x86_capability[6] = cpuid_ecx(0x80000001);
  498. }
  499. }
  500. if (c->extended_cpuid_level >= 0x80000008) {
  501. u32 eax = cpuid_eax(0x80000008);
  502. c->x86_virt_bits = (eax >> 8) & 0xff;
  503. c->x86_phys_bits = eax & 0xff;
  504. }
  505. #ifdef CONFIG_X86_32
  506. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  507. c->x86_phys_bits = 36;
  508. #endif
  509. if (c->extended_cpuid_level >= 0x80000007)
  510. c->x86_power = cpuid_edx(0x80000007);
  511. init_scattered_cpuid_features(c);
  512. }
  513. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  514. {
  515. #ifdef CONFIG_X86_32
  516. int i;
  517. /*
  518. * First of all, decide if this is a 486 or higher
  519. * It's a 486 if we can modify the AC flag
  520. */
  521. if (flag_is_changeable_p(X86_EFLAGS_AC))
  522. c->x86 = 4;
  523. else
  524. c->x86 = 3;
  525. for (i = 0; i < X86_VENDOR_NUM; i++)
  526. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  527. c->x86_vendor_id[0] = 0;
  528. cpu_devs[i]->c_identify(c);
  529. if (c->x86_vendor_id[0]) {
  530. get_cpu_vendor(c);
  531. break;
  532. }
  533. }
  534. #endif
  535. }
  536. /*
  537. * Do minimum CPU detection early.
  538. * Fields really needed: vendor, cpuid_level, family, model, mask,
  539. * cache alignment.
  540. * The others are not touched to avoid unwanted side effects.
  541. *
  542. * WARNING: this function is only called on the BP. Don't add code here
  543. * that is supposed to run on all CPUs.
  544. */
  545. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  546. {
  547. #ifdef CONFIG_X86_64
  548. c->x86_clflush_size = 64;
  549. c->x86_phys_bits = 36;
  550. c->x86_virt_bits = 48;
  551. #else
  552. c->x86_clflush_size = 32;
  553. c->x86_phys_bits = 32;
  554. c->x86_virt_bits = 32;
  555. #endif
  556. c->x86_cache_alignment = c->x86_clflush_size;
  557. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  558. c->extended_cpuid_level = 0;
  559. if (!have_cpuid_p())
  560. identify_cpu_without_cpuid(c);
  561. /* cyrix could have cpuid enabled via c_identify()*/
  562. if (!have_cpuid_p())
  563. return;
  564. cpu_detect(c);
  565. get_cpu_vendor(c);
  566. get_cpu_cap(c);
  567. if (this_cpu->c_early_init)
  568. this_cpu->c_early_init(c);
  569. c->cpu_index = 0;
  570. filter_cpuid_features(c, false);
  571. setup_smep(c);
  572. if (this_cpu->c_bsp_init)
  573. this_cpu->c_bsp_init(c);
  574. }
  575. void __init early_cpu_init(void)
  576. {
  577. const struct cpu_dev *const *cdev;
  578. int count = 0;
  579. #ifdef CONFIG_PROCESSOR_SELECT
  580. printk(KERN_INFO "KERNEL supported cpus:\n");
  581. #endif
  582. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  583. const struct cpu_dev *cpudev = *cdev;
  584. if (count >= X86_VENDOR_NUM)
  585. break;
  586. cpu_devs[count] = cpudev;
  587. count++;
  588. #ifdef CONFIG_PROCESSOR_SELECT
  589. {
  590. unsigned int j;
  591. for (j = 0; j < 2; j++) {
  592. if (!cpudev->c_ident[j])
  593. continue;
  594. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  595. cpudev->c_ident[j]);
  596. }
  597. }
  598. #endif
  599. }
  600. early_identify_cpu(&boot_cpu_data);
  601. }
  602. /*
  603. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  604. * unfortunately, that's not true in practice because of early VIA
  605. * chips and (more importantly) broken virtualizers that are not easy
  606. * to detect. In the latter case it doesn't even *fail* reliably, so
  607. * probing for it doesn't even work. Disable it completely on 32-bit
  608. * unless we can find a reliable way to detect all the broken cases.
  609. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  610. */
  611. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  612. {
  613. #ifdef CONFIG_X86_32
  614. clear_cpu_cap(c, X86_FEATURE_NOPL);
  615. #else
  616. set_cpu_cap(c, X86_FEATURE_NOPL);
  617. #endif
  618. }
  619. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  620. {
  621. c->extended_cpuid_level = 0;
  622. if (!have_cpuid_p())
  623. identify_cpu_without_cpuid(c);
  624. /* cyrix could have cpuid enabled via c_identify()*/
  625. if (!have_cpuid_p())
  626. return;
  627. cpu_detect(c);
  628. get_cpu_vendor(c);
  629. get_cpu_cap(c);
  630. if (c->cpuid_level >= 0x00000001) {
  631. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  632. #ifdef CONFIG_X86_32
  633. # ifdef CONFIG_X86_HT
  634. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  635. # else
  636. c->apicid = c->initial_apicid;
  637. # endif
  638. #endif
  639. c->phys_proc_id = c->initial_apicid;
  640. }
  641. setup_smep(c);
  642. get_model_name(c); /* Default name */
  643. detect_nopl(c);
  644. }
  645. /*
  646. * This does the hard work of actually picking apart the CPU stuff...
  647. */
  648. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  649. {
  650. int i;
  651. c->loops_per_jiffy = loops_per_jiffy;
  652. c->x86_cache_size = -1;
  653. c->x86_vendor = X86_VENDOR_UNKNOWN;
  654. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  655. c->x86_vendor_id[0] = '\0'; /* Unset */
  656. c->x86_model_id[0] = '\0'; /* Unset */
  657. c->x86_max_cores = 1;
  658. c->x86_coreid_bits = 0;
  659. #ifdef CONFIG_X86_64
  660. c->x86_clflush_size = 64;
  661. c->x86_phys_bits = 36;
  662. c->x86_virt_bits = 48;
  663. #else
  664. c->cpuid_level = -1; /* CPUID not detected */
  665. c->x86_clflush_size = 32;
  666. c->x86_phys_bits = 32;
  667. c->x86_virt_bits = 32;
  668. #endif
  669. c->x86_cache_alignment = c->x86_clflush_size;
  670. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  671. generic_identify(c);
  672. if (this_cpu->c_identify)
  673. this_cpu->c_identify(c);
  674. /* Clear/Set all flags overriden by options, after probe */
  675. for (i = 0; i < NCAPINTS; i++) {
  676. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  677. c->x86_capability[i] |= cpu_caps_set[i];
  678. }
  679. #ifdef CONFIG_X86_64
  680. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  681. #endif
  682. /*
  683. * Vendor-specific initialization. In this section we
  684. * canonicalize the feature flags, meaning if there are
  685. * features a certain CPU supports which CPUID doesn't
  686. * tell us, CPUID claiming incorrect flags, or other bugs,
  687. * we handle them here.
  688. *
  689. * At the end of this section, c->x86_capability better
  690. * indicate the features this CPU genuinely supports!
  691. */
  692. if (this_cpu->c_init)
  693. this_cpu->c_init(c);
  694. /* Disable the PN if appropriate */
  695. squash_the_stupid_serial_number(c);
  696. /*
  697. * The vendor-specific functions might have changed features.
  698. * Now we do "generic changes."
  699. */
  700. /* Filter out anything that depends on CPUID levels we don't have */
  701. filter_cpuid_features(c, true);
  702. /* If the model name is still unset, do table lookup. */
  703. if (!c->x86_model_id[0]) {
  704. const char *p;
  705. p = table_lookup_model(c);
  706. if (p)
  707. strcpy(c->x86_model_id, p);
  708. else
  709. /* Last resort... */
  710. sprintf(c->x86_model_id, "%02x/%02x",
  711. c->x86, c->x86_model);
  712. }
  713. #ifdef CONFIG_X86_64
  714. detect_ht(c);
  715. #endif
  716. init_hypervisor(c);
  717. x86_init_rdrand(c);
  718. /*
  719. * Clear/Set all flags overriden by options, need do it
  720. * before following smp all cpus cap AND.
  721. */
  722. for (i = 0; i < NCAPINTS; i++) {
  723. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  724. c->x86_capability[i] |= cpu_caps_set[i];
  725. }
  726. /*
  727. * On SMP, boot_cpu_data holds the common feature set between
  728. * all CPUs; so make sure that we indicate which features are
  729. * common between the CPUs. The first time this routine gets
  730. * executed, c == &boot_cpu_data.
  731. */
  732. if (c != &boot_cpu_data) {
  733. /* AND the already accumulated flags with these */
  734. for (i = 0; i < NCAPINTS; i++)
  735. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  736. }
  737. /* Init Machine Check Exception if available. */
  738. mcheck_cpu_init(c);
  739. select_idle_routine(c);
  740. #ifdef CONFIG_NUMA
  741. numa_add_cpu(smp_processor_id());
  742. #endif
  743. }
  744. #ifdef CONFIG_X86_64
  745. static void vgetcpu_set_mode(void)
  746. {
  747. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  748. vgetcpu_mode = VGETCPU_RDTSCP;
  749. else
  750. vgetcpu_mode = VGETCPU_LSL;
  751. }
  752. #endif
  753. void __init identify_boot_cpu(void)
  754. {
  755. identify_cpu(&boot_cpu_data);
  756. init_amd_e400_c1e_mask();
  757. #ifdef CONFIG_X86_32
  758. sysenter_setup();
  759. enable_sep_cpu();
  760. #else
  761. vgetcpu_set_mode();
  762. #endif
  763. }
  764. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  765. {
  766. BUG_ON(c == &boot_cpu_data);
  767. identify_cpu(c);
  768. #ifdef CONFIG_X86_32
  769. enable_sep_cpu();
  770. #endif
  771. mtrr_ap_init();
  772. }
  773. struct msr_range {
  774. unsigned min;
  775. unsigned max;
  776. };
  777. static const struct msr_range msr_range_array[] __cpuinitconst = {
  778. { 0x00000000, 0x00000418},
  779. { 0xc0000000, 0xc000040b},
  780. { 0xc0010000, 0xc0010142},
  781. { 0xc0011000, 0xc001103b},
  782. };
  783. static void __cpuinit __print_cpu_msr(void)
  784. {
  785. unsigned index_min, index_max;
  786. unsigned index;
  787. u64 val;
  788. int i;
  789. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  790. index_min = msr_range_array[i].min;
  791. index_max = msr_range_array[i].max;
  792. for (index = index_min; index < index_max; index++) {
  793. if (rdmsrl_amd_safe(index, &val))
  794. continue;
  795. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  796. }
  797. }
  798. }
  799. static int show_msr __cpuinitdata;
  800. static __init int setup_show_msr(char *arg)
  801. {
  802. int num;
  803. get_option(&arg, &num);
  804. if (num > 0)
  805. show_msr = num;
  806. return 1;
  807. }
  808. __setup("show_msr=", setup_show_msr);
  809. static __init int setup_noclflush(char *arg)
  810. {
  811. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  812. return 1;
  813. }
  814. __setup("noclflush", setup_noclflush);
  815. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  816. {
  817. const char *vendor = NULL;
  818. if (c->x86_vendor < X86_VENDOR_NUM) {
  819. vendor = this_cpu->c_vendor;
  820. } else {
  821. if (c->cpuid_level >= 0)
  822. vendor = c->x86_vendor_id;
  823. }
  824. if (vendor && !strstr(c->x86_model_id, vendor))
  825. printk(KERN_CONT "%s ", vendor);
  826. if (c->x86_model_id[0])
  827. printk(KERN_CONT "%s", c->x86_model_id);
  828. else
  829. printk(KERN_CONT "%d86", c->x86);
  830. if (c->x86_mask || c->cpuid_level >= 0)
  831. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  832. else
  833. printk(KERN_CONT "\n");
  834. print_cpu_msr(c);
  835. }
  836. void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
  837. {
  838. if (c->cpu_index < show_msr)
  839. __print_cpu_msr();
  840. }
  841. static __init int setup_disablecpuid(char *arg)
  842. {
  843. int bit;
  844. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  845. setup_clear_cpu_cap(bit);
  846. else
  847. return 0;
  848. return 1;
  849. }
  850. __setup("clearcpuid=", setup_disablecpuid);
  851. #ifdef CONFIG_X86_64
  852. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  853. struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
  854. (unsigned long) nmi_idt_table };
  855. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  856. irq_stack_union) __aligned(PAGE_SIZE);
  857. /*
  858. * The following four percpu variables are hot. Align current_task to
  859. * cacheline size such that all four fall in the same cacheline.
  860. */
  861. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  862. &init_task;
  863. EXPORT_PER_CPU_SYMBOL(current_task);
  864. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  865. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  866. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  867. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  868. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  869. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  870. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  871. /*
  872. * Special IST stacks which the CPU switches to when it calls
  873. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  874. * limit), all of them are 4K, except the debug stack which
  875. * is 8K.
  876. */
  877. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  878. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  879. [DEBUG_STACK - 1] = DEBUG_STKSZ
  880. };
  881. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  882. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  883. /* May not be marked __init: used by software suspend */
  884. void syscall_init(void)
  885. {
  886. /*
  887. * LSTAR and STAR live in a bit strange symbiosis.
  888. * They both write to the same internal register. STAR allows to
  889. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  890. */
  891. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  892. wrmsrl(MSR_LSTAR, system_call);
  893. wrmsrl(MSR_CSTAR, ignore_sysret);
  894. #ifdef CONFIG_IA32_EMULATION
  895. syscall32_cpu_init();
  896. #endif
  897. /* Flags to clear on syscall */
  898. wrmsrl(MSR_SYSCALL_MASK,
  899. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  900. }
  901. unsigned long kernel_eflags;
  902. /*
  903. * Copies of the original ist values from the tss are only accessed during
  904. * debugging, no special alignment required.
  905. */
  906. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  907. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  908. DEFINE_PER_CPU(int, debug_stack_usage);
  909. int is_debug_stack(unsigned long addr)
  910. {
  911. return __get_cpu_var(debug_stack_usage) ||
  912. (addr <= __get_cpu_var(debug_stack_addr) &&
  913. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  914. }
  915. void debug_stack_set_zero(void)
  916. {
  917. load_idt((const struct desc_ptr *)&nmi_idt_descr);
  918. }
  919. void debug_stack_reset(void)
  920. {
  921. load_idt((const struct desc_ptr *)&idt_descr);
  922. }
  923. #else /* CONFIG_X86_64 */
  924. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  925. EXPORT_PER_CPU_SYMBOL(current_task);
  926. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  927. #ifdef CONFIG_CC_STACKPROTECTOR
  928. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  929. #endif
  930. /* Make sure %fs and %gs are initialized properly in idle threads */
  931. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  932. {
  933. memset(regs, 0, sizeof(struct pt_regs));
  934. regs->fs = __KERNEL_PERCPU;
  935. regs->gs = __KERNEL_STACK_CANARY;
  936. return regs;
  937. }
  938. #endif /* CONFIG_X86_64 */
  939. /*
  940. * Clear all 6 debug registers:
  941. */
  942. static void clear_all_debug_regs(void)
  943. {
  944. int i;
  945. for (i = 0; i < 8; i++) {
  946. /* Ignore db4, db5 */
  947. if ((i == 4) || (i == 5))
  948. continue;
  949. set_debugreg(0, i);
  950. }
  951. }
  952. #ifdef CONFIG_KGDB
  953. /*
  954. * Restore debug regs if using kgdbwait and you have a kernel debugger
  955. * connection established.
  956. */
  957. static void dbg_restore_debug_regs(void)
  958. {
  959. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  960. arch_kgdb_ops.correct_hw_break();
  961. }
  962. #else /* ! CONFIG_KGDB */
  963. #define dbg_restore_debug_regs()
  964. #endif /* ! CONFIG_KGDB */
  965. /*
  966. * Prints an error where the NUMA and configured core-number mismatch and the
  967. * platform didn't override this to fix it up
  968. */
  969. void __cpuinit x86_default_fixup_cpu_id(struct cpuinfo_x86 *c, int node)
  970. {
  971. pr_err("NUMA core number %d differs from configured core number %d\n", node, c->phys_proc_id);
  972. }
  973. /*
  974. * cpu_init() initializes state that is per-CPU. Some data is already
  975. * initialized (naturally) in the bootstrap process, such as the GDT
  976. * and IDT. We reload them nevertheless, this function acts as a
  977. * 'CPU state barrier', nothing should get across.
  978. * A lot of state is already set up in PDA init for 64 bit
  979. */
  980. #ifdef CONFIG_X86_64
  981. void __cpuinit cpu_init(void)
  982. {
  983. struct orig_ist *oist;
  984. struct task_struct *me;
  985. struct tss_struct *t;
  986. unsigned long v;
  987. int cpu;
  988. int i;
  989. cpu = stack_smp_processor_id();
  990. t = &per_cpu(init_tss, cpu);
  991. oist = &per_cpu(orig_ist, cpu);
  992. #ifdef CONFIG_NUMA
  993. if (cpu != 0 && percpu_read(numa_node) == 0 &&
  994. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  995. set_numa_node(early_cpu_to_node(cpu));
  996. #endif
  997. me = current;
  998. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  999. panic("CPU#%d already initialized!\n", cpu);
  1000. pr_debug("Initializing CPU#%d\n", cpu);
  1001. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1002. /*
  1003. * Initialize the per-CPU GDT with the boot GDT,
  1004. * and set up the GDT descriptor:
  1005. */
  1006. switch_to_new_gdt(cpu);
  1007. loadsegment(fs, 0);
  1008. load_idt((const struct desc_ptr *)&idt_descr);
  1009. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1010. syscall_init();
  1011. wrmsrl(MSR_FS_BASE, 0);
  1012. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1013. barrier();
  1014. x86_configure_nx();
  1015. if (cpu != 0)
  1016. enable_x2apic();
  1017. /*
  1018. * set up and load the per-CPU TSS
  1019. */
  1020. if (!oist->ist[0]) {
  1021. char *estacks = per_cpu(exception_stacks, cpu);
  1022. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1023. estacks += exception_stack_sizes[v];
  1024. oist->ist[v] = t->x86_tss.ist[v] =
  1025. (unsigned long)estacks;
  1026. if (v == DEBUG_STACK-1)
  1027. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1028. }
  1029. }
  1030. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1031. /*
  1032. * <= is required because the CPU will access up to
  1033. * 8 bits beyond the end of the IO permission bitmap.
  1034. */
  1035. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1036. t->io_bitmap[i] = ~0UL;
  1037. atomic_inc(&init_mm.mm_count);
  1038. me->active_mm = &init_mm;
  1039. BUG_ON(me->mm);
  1040. enter_lazy_tlb(&init_mm, me);
  1041. load_sp0(t, &current->thread);
  1042. set_tss_desc(cpu, t);
  1043. load_TR_desc();
  1044. load_LDT(&init_mm.context);
  1045. clear_all_debug_regs();
  1046. dbg_restore_debug_regs();
  1047. fpu_init();
  1048. xsave_init();
  1049. raw_local_save_flags(kernel_eflags);
  1050. if (is_uv_system())
  1051. uv_cpu_init();
  1052. }
  1053. #else
  1054. void __cpuinit cpu_init(void)
  1055. {
  1056. int cpu = smp_processor_id();
  1057. struct task_struct *curr = current;
  1058. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1059. struct thread_struct *thread = &curr->thread;
  1060. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1061. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1062. for (;;)
  1063. local_irq_enable();
  1064. }
  1065. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1066. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1067. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1068. load_idt(&idt_descr);
  1069. switch_to_new_gdt(cpu);
  1070. /*
  1071. * Set up and load the per-CPU TSS and LDT
  1072. */
  1073. atomic_inc(&init_mm.mm_count);
  1074. curr->active_mm = &init_mm;
  1075. BUG_ON(curr->mm);
  1076. enter_lazy_tlb(&init_mm, curr);
  1077. load_sp0(t, thread);
  1078. set_tss_desc(cpu, t);
  1079. load_TR_desc();
  1080. load_LDT(&init_mm.context);
  1081. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1082. #ifdef CONFIG_DOUBLEFAULT
  1083. /* Set up doublefault TSS pointer in the GDT */
  1084. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1085. #endif
  1086. clear_all_debug_regs();
  1087. dbg_restore_debug_regs();
  1088. fpu_init();
  1089. xsave_init();
  1090. }
  1091. #endif