fault_32.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /*
  2. * fault.c: Page fault handlers for the Sparc.
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <asm/head.h>
  9. #include <linux/string.h>
  10. #include <linux/types.h>
  11. #include <linux/sched.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/mman.h>
  14. #include <linux/threads.h>
  15. #include <linux/kernel.h>
  16. #include <linux/signal.h>
  17. #include <linux/mm.h>
  18. #include <linux/smp.h>
  19. #include <linux/perf_event.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/kdebug.h>
  22. #include <asm/page.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/memreg.h>
  25. #include <asm/openprom.h>
  26. #include <asm/oplib.h>
  27. #include <asm/smp.h>
  28. #include <asm/traps.h>
  29. #include <asm/uaccess.h>
  30. extern int prom_node_root;
  31. int show_unhandled_signals = 1;
  32. /* At boot time we determine these two values necessary for setting
  33. * up the segment maps and page table entries (pte's).
  34. */
  35. int num_segmaps, num_contexts;
  36. int invalid_segment;
  37. /* various Virtual Address Cache parameters we find at boot time... */
  38. int vac_size, vac_linesize, vac_do_hw_vac_flushes;
  39. int vac_entries_per_context, vac_entries_per_segment;
  40. int vac_entries_per_page;
  41. /* Return how much physical memory we have. */
  42. unsigned long probe_memory(void)
  43. {
  44. unsigned long total = 0;
  45. int i;
  46. for (i = 0; sp_banks[i].num_bytes; i++)
  47. total += sp_banks[i].num_bytes;
  48. return total;
  49. }
  50. extern void sun4c_complete_all_stores(void);
  51. /* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
  52. asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
  53. unsigned long svaddr, unsigned long aerr,
  54. unsigned long avaddr)
  55. {
  56. sun4c_complete_all_stores();
  57. printk("FAULT: NMI received\n");
  58. printk("SREGS: Synchronous Error %08lx\n", serr);
  59. printk(" Synchronous Vaddr %08lx\n", svaddr);
  60. printk(" Asynchronous Error %08lx\n", aerr);
  61. printk(" Asynchronous Vaddr %08lx\n", avaddr);
  62. if (sun4c_memerr_reg)
  63. printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg);
  64. printk("REGISTER DUMP:\n");
  65. show_regs(regs);
  66. prom_halt();
  67. }
  68. static void unhandled_fault(unsigned long, struct task_struct *,
  69. struct pt_regs *) __attribute__ ((noreturn));
  70. static void unhandled_fault(unsigned long address, struct task_struct *tsk,
  71. struct pt_regs *regs)
  72. {
  73. if((unsigned long) address < PAGE_SIZE) {
  74. printk(KERN_ALERT
  75. "Unable to handle kernel NULL pointer dereference\n");
  76. } else {
  77. printk(KERN_ALERT "Unable to handle kernel paging request "
  78. "at virtual address %08lx\n", address);
  79. }
  80. printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
  81. (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
  82. printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
  83. (tsk->mm ? (unsigned long) tsk->mm->pgd :
  84. (unsigned long) tsk->active_mm->pgd));
  85. die_if_kernel("Oops", regs);
  86. }
  87. asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
  88. unsigned long address)
  89. {
  90. struct pt_regs regs;
  91. unsigned long g2;
  92. unsigned int insn;
  93. int i;
  94. i = search_extables_range(ret_pc, &g2);
  95. switch (i) {
  96. case 3:
  97. /* load & store will be handled by fixup */
  98. return 3;
  99. case 1:
  100. /* store will be handled by fixup, load will bump out */
  101. /* for _to_ macros */
  102. insn = *((unsigned int *) pc);
  103. if ((insn >> 21) & 1)
  104. return 1;
  105. break;
  106. case 2:
  107. /* load will be handled by fixup, store will bump out */
  108. /* for _from_ macros */
  109. insn = *((unsigned int *) pc);
  110. if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
  111. return 2;
  112. break;
  113. default:
  114. break;
  115. }
  116. memset(&regs, 0, sizeof (regs));
  117. regs.pc = pc;
  118. regs.npc = pc + 4;
  119. __asm__ __volatile__(
  120. "rd %%psr, %0\n\t"
  121. "nop\n\t"
  122. "nop\n\t"
  123. "nop\n" : "=r" (regs.psr));
  124. unhandled_fault(address, current, &regs);
  125. /* Not reached */
  126. return 0;
  127. }
  128. static inline void
  129. show_signal_msg(struct pt_regs *regs, int sig, int code,
  130. unsigned long address, struct task_struct *tsk)
  131. {
  132. if (!unhandled_signal(tsk, sig))
  133. return;
  134. if (!printk_ratelimit())
  135. return;
  136. printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
  137. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  138. tsk->comm, task_pid_nr(tsk), address,
  139. (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
  140. (void *)regs->u_regs[UREG_FP], code);
  141. print_vma_addr(KERN_CONT " in ", regs->pc);
  142. printk(KERN_CONT "\n");
  143. }
  144. static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  145. unsigned long addr)
  146. {
  147. siginfo_t info;
  148. info.si_signo = sig;
  149. info.si_code = code;
  150. info.si_errno = 0;
  151. info.si_addr = (void __user *) addr;
  152. info.si_trapno = 0;
  153. if (unlikely(show_unhandled_signals))
  154. show_signal_msg(regs, sig, info.si_code,
  155. addr, current);
  156. force_sig_info (sig, &info, current);
  157. }
  158. extern unsigned long safe_compute_effective_address(struct pt_regs *,
  159. unsigned int);
  160. static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
  161. {
  162. unsigned int insn;
  163. if (text_fault)
  164. return regs->pc;
  165. if (regs->psr & PSR_PS) {
  166. insn = *(unsigned int *) regs->pc;
  167. } else {
  168. __get_user(insn, (unsigned int *) regs->pc);
  169. }
  170. return safe_compute_effective_address(regs, insn);
  171. }
  172. static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  173. int text_fault)
  174. {
  175. unsigned long addr = compute_si_addr(regs, text_fault);
  176. __do_fault_siginfo(code, sig, regs, addr);
  177. }
  178. asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
  179. unsigned long address)
  180. {
  181. struct vm_area_struct *vma;
  182. struct task_struct *tsk = current;
  183. struct mm_struct *mm = tsk->mm;
  184. unsigned int fixup;
  185. unsigned long g2;
  186. int from_user = !(regs->psr & PSR_PS);
  187. int fault, code;
  188. if(text_fault)
  189. address = regs->pc;
  190. /*
  191. * We fault-in kernel-space virtual memory on-demand. The
  192. * 'reference' page table is init_mm.pgd.
  193. *
  194. * NOTE! We MUST NOT take any locks for this case. We may
  195. * be in an interrupt or a critical region, and should
  196. * only copy the information from the master page table,
  197. * nothing more.
  198. */
  199. code = SEGV_MAPERR;
  200. if (!ARCH_SUN4C && address >= TASK_SIZE)
  201. goto vmalloc_fault;
  202. /*
  203. * If we're in an interrupt or have no user
  204. * context, we must not take the fault..
  205. */
  206. if (in_atomic() || !mm)
  207. goto no_context;
  208. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  209. down_read(&mm->mmap_sem);
  210. /*
  211. * The kernel referencing a bad kernel pointer can lock up
  212. * a sun4c machine completely, so we must attempt recovery.
  213. */
  214. if(!from_user && address >= PAGE_OFFSET)
  215. goto bad_area;
  216. vma = find_vma(mm, address);
  217. if(!vma)
  218. goto bad_area;
  219. if(vma->vm_start <= address)
  220. goto good_area;
  221. if(!(vma->vm_flags & VM_GROWSDOWN))
  222. goto bad_area;
  223. if(expand_stack(vma, address))
  224. goto bad_area;
  225. /*
  226. * Ok, we have a good vm_area for this memory access, so
  227. * we can handle it..
  228. */
  229. good_area:
  230. code = SEGV_ACCERR;
  231. if(write) {
  232. if(!(vma->vm_flags & VM_WRITE))
  233. goto bad_area;
  234. } else {
  235. /* Allow reads even for write-only mappings */
  236. if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
  237. goto bad_area;
  238. }
  239. /*
  240. * If for any reason at all we couldn't handle the fault,
  241. * make sure we exit gracefully rather than endlessly redo
  242. * the fault.
  243. */
  244. fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
  245. if (unlikely(fault & VM_FAULT_ERROR)) {
  246. if (fault & VM_FAULT_OOM)
  247. goto out_of_memory;
  248. else if (fault & VM_FAULT_SIGBUS)
  249. goto do_sigbus;
  250. BUG();
  251. }
  252. if (fault & VM_FAULT_MAJOR) {
  253. current->maj_flt++;
  254. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
  255. } else {
  256. current->min_flt++;
  257. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
  258. }
  259. up_read(&mm->mmap_sem);
  260. return;
  261. /*
  262. * Something tried to access memory that isn't in our memory map..
  263. * Fix it, but check if it's kernel or user first..
  264. */
  265. bad_area:
  266. up_read(&mm->mmap_sem);
  267. bad_area_nosemaphore:
  268. /* User mode accesses just cause a SIGSEGV */
  269. if (from_user) {
  270. do_fault_siginfo(code, SIGSEGV, regs, text_fault);
  271. return;
  272. }
  273. /* Is this in ex_table? */
  274. no_context:
  275. g2 = regs->u_regs[UREG_G2];
  276. if (!from_user) {
  277. fixup = search_extables_range(regs->pc, &g2);
  278. if (fixup > 10) { /* Values below are reserved for other things */
  279. extern const unsigned __memset_start[];
  280. extern const unsigned __memset_end[];
  281. extern const unsigned __csum_partial_copy_start[];
  282. extern const unsigned __csum_partial_copy_end[];
  283. #ifdef DEBUG_EXCEPTIONS
  284. printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
  285. printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
  286. regs->pc, fixup, g2);
  287. #endif
  288. if ((regs->pc >= (unsigned long)__memset_start &&
  289. regs->pc < (unsigned long)__memset_end) ||
  290. (regs->pc >= (unsigned long)__csum_partial_copy_start &&
  291. regs->pc < (unsigned long)__csum_partial_copy_end)) {
  292. regs->u_regs[UREG_I4] = address;
  293. regs->u_regs[UREG_I5] = regs->pc;
  294. }
  295. regs->u_regs[UREG_G2] = g2;
  296. regs->pc = fixup;
  297. regs->npc = regs->pc + 4;
  298. return;
  299. }
  300. }
  301. unhandled_fault (address, tsk, regs);
  302. do_exit(SIGKILL);
  303. /*
  304. * We ran out of memory, or some other thing happened to us that made
  305. * us unable to handle the page fault gracefully.
  306. */
  307. out_of_memory:
  308. up_read(&mm->mmap_sem);
  309. if (from_user) {
  310. pagefault_out_of_memory();
  311. return;
  312. }
  313. goto no_context;
  314. do_sigbus:
  315. up_read(&mm->mmap_sem);
  316. do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
  317. if (!from_user)
  318. goto no_context;
  319. vmalloc_fault:
  320. {
  321. /*
  322. * Synchronize this task's top level page-table
  323. * with the 'reference' page table.
  324. */
  325. int offset = pgd_index(address);
  326. pgd_t *pgd, *pgd_k;
  327. pmd_t *pmd, *pmd_k;
  328. pgd = tsk->active_mm->pgd + offset;
  329. pgd_k = init_mm.pgd + offset;
  330. if (!pgd_present(*pgd)) {
  331. if (!pgd_present(*pgd_k))
  332. goto bad_area_nosemaphore;
  333. pgd_val(*pgd) = pgd_val(*pgd_k);
  334. return;
  335. }
  336. pmd = pmd_offset(pgd, address);
  337. pmd_k = pmd_offset(pgd_k, address);
  338. if (pmd_present(*pmd) || !pmd_present(*pmd_k))
  339. goto bad_area_nosemaphore;
  340. *pmd = *pmd_k;
  341. return;
  342. }
  343. }
  344. asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
  345. unsigned long address)
  346. {
  347. extern void sun4c_update_mmu_cache(struct vm_area_struct *,
  348. unsigned long,pte_t *);
  349. extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
  350. struct task_struct *tsk = current;
  351. struct mm_struct *mm = tsk->mm;
  352. pgd_t *pgdp;
  353. pte_t *ptep;
  354. if (text_fault) {
  355. address = regs->pc;
  356. } else if (!write &&
  357. !(regs->psr & PSR_PS)) {
  358. unsigned int insn, __user *ip;
  359. ip = (unsigned int __user *)regs->pc;
  360. if (!get_user(insn, ip)) {
  361. if ((insn & 0xc1680000) == 0xc0680000)
  362. write = 1;
  363. }
  364. }
  365. if (!mm) {
  366. /* We are oopsing. */
  367. do_sparc_fault(regs, text_fault, write, address);
  368. BUG(); /* P3 Oops already, you bitch */
  369. }
  370. pgdp = pgd_offset(mm, address);
  371. ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
  372. if (pgd_val(*pgdp)) {
  373. if (write) {
  374. if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
  375. == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
  376. unsigned long flags;
  377. *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
  378. _SUN4C_PAGE_MODIFIED |
  379. _SUN4C_PAGE_VALID |
  380. _SUN4C_PAGE_DIRTY);
  381. local_irq_save(flags);
  382. if (sun4c_get_segmap(address) != invalid_segment) {
  383. sun4c_put_pte(address, pte_val(*ptep));
  384. local_irq_restore(flags);
  385. return;
  386. }
  387. local_irq_restore(flags);
  388. }
  389. } else {
  390. if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
  391. == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
  392. unsigned long flags;
  393. *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
  394. _SUN4C_PAGE_VALID);
  395. local_irq_save(flags);
  396. if (sun4c_get_segmap(address) != invalid_segment) {
  397. sun4c_put_pte(address, pte_val(*ptep));
  398. local_irq_restore(flags);
  399. return;
  400. }
  401. local_irq_restore(flags);
  402. }
  403. }
  404. }
  405. /* This conditional is 'interesting'. */
  406. if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
  407. && (pte_val(*ptep) & _SUN4C_PAGE_VALID))
  408. /* Note: It is safe to not grab the MMAP semaphore here because
  409. * we know that update_mmu_cache() will not sleep for
  410. * any reason (at least not in the current implementation)
  411. * and therefore there is no danger of another thread getting
  412. * on the CPU and doing a shrink_mmap() on this vma.
  413. */
  414. sun4c_update_mmu_cache (find_vma(current->mm, address), address,
  415. ptep);
  416. else
  417. do_sparc_fault(regs, text_fault, write, address);
  418. }
  419. /* This always deals with user addresses. */
  420. static void force_user_fault(unsigned long address, int write)
  421. {
  422. struct vm_area_struct *vma;
  423. struct task_struct *tsk = current;
  424. struct mm_struct *mm = tsk->mm;
  425. int code;
  426. code = SEGV_MAPERR;
  427. down_read(&mm->mmap_sem);
  428. vma = find_vma(mm, address);
  429. if(!vma)
  430. goto bad_area;
  431. if(vma->vm_start <= address)
  432. goto good_area;
  433. if(!(vma->vm_flags & VM_GROWSDOWN))
  434. goto bad_area;
  435. if(expand_stack(vma, address))
  436. goto bad_area;
  437. good_area:
  438. code = SEGV_ACCERR;
  439. if(write) {
  440. if(!(vma->vm_flags & VM_WRITE))
  441. goto bad_area;
  442. } else {
  443. if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
  444. goto bad_area;
  445. }
  446. switch (handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0)) {
  447. case VM_FAULT_SIGBUS:
  448. case VM_FAULT_OOM:
  449. goto do_sigbus;
  450. }
  451. up_read(&mm->mmap_sem);
  452. return;
  453. bad_area:
  454. up_read(&mm->mmap_sem);
  455. __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
  456. return;
  457. do_sigbus:
  458. up_read(&mm->mmap_sem);
  459. __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
  460. }
  461. static void check_stack_aligned(unsigned long sp)
  462. {
  463. if (sp & 0x7UL)
  464. force_sig(SIGILL, current);
  465. }
  466. void window_overflow_fault(void)
  467. {
  468. unsigned long sp;
  469. sp = current_thread_info()->rwbuf_stkptrs[0];
  470. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  471. force_user_fault(sp + 0x38, 1);
  472. force_user_fault(sp, 1);
  473. check_stack_aligned(sp);
  474. }
  475. void window_underflow_fault(unsigned long sp)
  476. {
  477. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  478. force_user_fault(sp + 0x38, 0);
  479. force_user_fault(sp, 0);
  480. check_stack_aligned(sp);
  481. }
  482. void window_ret_fault(struct pt_regs *regs)
  483. {
  484. unsigned long sp;
  485. sp = regs->u_regs[UREG_FP];
  486. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  487. force_user_fault(sp + 0x38, 0);
  488. force_user_fault(sp, 0);
  489. check_stack_aligned(sp);
  490. }