pci_sun4v.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/export.h>
  15. #include <linux/log2.h>
  16. #include <linux/of_device.h>
  17. #include <asm/iommu.h>
  18. #include <asm/irq.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/prom.h>
  21. #include "pci_impl.h"
  22. #include "iommu_common.h"
  23. #include "pci_sun4v.h"
  24. #define DRIVER_NAME "pci_sun4v"
  25. #define PFX DRIVER_NAME ": "
  26. static unsigned long vpci_major = 1;
  27. static unsigned long vpci_minor = 1;
  28. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  29. struct iommu_batch {
  30. struct device *dev; /* Device mapping is for. */
  31. unsigned long prot; /* IOMMU page protections */
  32. unsigned long entry; /* Index into IOTSB. */
  33. u64 *pglist; /* List of physical pages */
  34. unsigned long npages; /* Number of pages in list. */
  35. };
  36. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  37. static int iommu_batch_initialized;
  38. /* Interrupts must be disabled. */
  39. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  40. {
  41. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  42. p->dev = dev;
  43. p->prot = prot;
  44. p->entry = entry;
  45. p->npages = 0;
  46. }
  47. /* Interrupts must be disabled. */
  48. static long iommu_batch_flush(struct iommu_batch *p)
  49. {
  50. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  51. unsigned long devhandle = pbm->devhandle;
  52. unsigned long prot = p->prot;
  53. unsigned long entry = p->entry;
  54. u64 *pglist = p->pglist;
  55. unsigned long npages = p->npages;
  56. while (npages != 0) {
  57. long num;
  58. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  59. npages, prot, __pa(pglist));
  60. if (unlikely(num < 0)) {
  61. if (printk_ratelimit())
  62. printk("iommu_batch_flush: IOMMU map of "
  63. "[%08lx:%08llx:%lx:%lx:%lx] failed with "
  64. "status %ld\n",
  65. devhandle, HV_PCI_TSBID(0, entry),
  66. npages, prot, __pa(pglist), num);
  67. return -1;
  68. }
  69. entry += num;
  70. npages -= num;
  71. pglist += num;
  72. }
  73. p->entry = entry;
  74. p->npages = 0;
  75. return 0;
  76. }
  77. static inline void iommu_batch_new_entry(unsigned long entry)
  78. {
  79. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  80. if (p->entry + p->npages == entry)
  81. return;
  82. if (p->entry != ~0UL)
  83. iommu_batch_flush(p);
  84. p->entry = entry;
  85. }
  86. /* Interrupts must be disabled. */
  87. static inline long iommu_batch_add(u64 phys_page)
  88. {
  89. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  90. BUG_ON(p->npages >= PGLIST_NENTS);
  91. p->pglist[p->npages++] = phys_page;
  92. if (p->npages == PGLIST_NENTS)
  93. return iommu_batch_flush(p);
  94. return 0;
  95. }
  96. /* Interrupts must be disabled. */
  97. static inline long iommu_batch_end(void)
  98. {
  99. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  100. BUG_ON(p->npages >= PGLIST_NENTS);
  101. return iommu_batch_flush(p);
  102. }
  103. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  104. dma_addr_t *dma_addrp, gfp_t gfp)
  105. {
  106. unsigned long flags, order, first_page, npages, n;
  107. struct iommu *iommu;
  108. struct page *page;
  109. void *ret;
  110. long entry;
  111. int nid;
  112. size = IO_PAGE_ALIGN(size);
  113. order = get_order(size);
  114. if (unlikely(order >= MAX_ORDER))
  115. return NULL;
  116. npages = size >> IO_PAGE_SHIFT;
  117. nid = dev->archdata.numa_node;
  118. page = alloc_pages_node(nid, gfp, order);
  119. if (unlikely(!page))
  120. return NULL;
  121. first_page = (unsigned long) page_address(page);
  122. memset((char *)first_page, 0, PAGE_SIZE << order);
  123. iommu = dev->archdata.iommu;
  124. spin_lock_irqsave(&iommu->lock, flags);
  125. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  126. spin_unlock_irqrestore(&iommu->lock, flags);
  127. if (unlikely(entry == DMA_ERROR_CODE))
  128. goto range_alloc_fail;
  129. *dma_addrp = (iommu->page_table_map_base +
  130. (entry << IO_PAGE_SHIFT));
  131. ret = (void *) first_page;
  132. first_page = __pa(first_page);
  133. local_irq_save(flags);
  134. iommu_batch_start(dev,
  135. (HV_PCI_MAP_ATTR_READ |
  136. HV_PCI_MAP_ATTR_WRITE),
  137. entry);
  138. for (n = 0; n < npages; n++) {
  139. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  140. if (unlikely(err < 0L))
  141. goto iommu_map_fail;
  142. }
  143. if (unlikely(iommu_batch_end() < 0L))
  144. goto iommu_map_fail;
  145. local_irq_restore(flags);
  146. return ret;
  147. iommu_map_fail:
  148. /* Interrupts are disabled. */
  149. spin_lock(&iommu->lock);
  150. iommu_range_free(iommu, *dma_addrp, npages);
  151. spin_unlock_irqrestore(&iommu->lock, flags);
  152. range_alloc_fail:
  153. free_pages(first_page, order);
  154. return NULL;
  155. }
  156. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  157. dma_addr_t dvma)
  158. {
  159. struct pci_pbm_info *pbm;
  160. struct iommu *iommu;
  161. unsigned long flags, order, npages, entry;
  162. u32 devhandle;
  163. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  164. iommu = dev->archdata.iommu;
  165. pbm = dev->archdata.host_controller;
  166. devhandle = pbm->devhandle;
  167. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  168. spin_lock_irqsave(&iommu->lock, flags);
  169. iommu_range_free(iommu, dvma, npages);
  170. do {
  171. unsigned long num;
  172. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  173. npages);
  174. entry += num;
  175. npages -= num;
  176. } while (npages != 0);
  177. spin_unlock_irqrestore(&iommu->lock, flags);
  178. order = get_order(size);
  179. if (order < 10)
  180. free_pages((unsigned long)cpu, order);
  181. }
  182. static dma_addr_t dma_4v_map_page(struct device *dev, struct page *page,
  183. unsigned long offset, size_t sz,
  184. enum dma_data_direction direction,
  185. struct dma_attrs *attrs)
  186. {
  187. struct iommu *iommu;
  188. unsigned long flags, npages, oaddr;
  189. unsigned long i, base_paddr;
  190. u32 bus_addr, ret;
  191. unsigned long prot;
  192. long entry;
  193. iommu = dev->archdata.iommu;
  194. if (unlikely(direction == DMA_NONE))
  195. goto bad;
  196. oaddr = (unsigned long)(page_address(page) + offset);
  197. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  198. npages >>= IO_PAGE_SHIFT;
  199. spin_lock_irqsave(&iommu->lock, flags);
  200. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  201. spin_unlock_irqrestore(&iommu->lock, flags);
  202. if (unlikely(entry == DMA_ERROR_CODE))
  203. goto bad;
  204. bus_addr = (iommu->page_table_map_base +
  205. (entry << IO_PAGE_SHIFT));
  206. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  207. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  208. prot = HV_PCI_MAP_ATTR_READ;
  209. if (direction != DMA_TO_DEVICE)
  210. prot |= HV_PCI_MAP_ATTR_WRITE;
  211. local_irq_save(flags);
  212. iommu_batch_start(dev, prot, entry);
  213. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  214. long err = iommu_batch_add(base_paddr);
  215. if (unlikely(err < 0L))
  216. goto iommu_map_fail;
  217. }
  218. if (unlikely(iommu_batch_end() < 0L))
  219. goto iommu_map_fail;
  220. local_irq_restore(flags);
  221. return ret;
  222. bad:
  223. if (printk_ratelimit())
  224. WARN_ON(1);
  225. return DMA_ERROR_CODE;
  226. iommu_map_fail:
  227. /* Interrupts are disabled. */
  228. spin_lock(&iommu->lock);
  229. iommu_range_free(iommu, bus_addr, npages);
  230. spin_unlock_irqrestore(&iommu->lock, flags);
  231. return DMA_ERROR_CODE;
  232. }
  233. static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr,
  234. size_t sz, enum dma_data_direction direction,
  235. struct dma_attrs *attrs)
  236. {
  237. struct pci_pbm_info *pbm;
  238. struct iommu *iommu;
  239. unsigned long flags, npages;
  240. long entry;
  241. u32 devhandle;
  242. if (unlikely(direction == DMA_NONE)) {
  243. if (printk_ratelimit())
  244. WARN_ON(1);
  245. return;
  246. }
  247. iommu = dev->archdata.iommu;
  248. pbm = dev->archdata.host_controller;
  249. devhandle = pbm->devhandle;
  250. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  251. npages >>= IO_PAGE_SHIFT;
  252. bus_addr &= IO_PAGE_MASK;
  253. spin_lock_irqsave(&iommu->lock, flags);
  254. iommu_range_free(iommu, bus_addr, npages);
  255. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  256. do {
  257. unsigned long num;
  258. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  259. npages);
  260. entry += num;
  261. npages -= num;
  262. } while (npages != 0);
  263. spin_unlock_irqrestore(&iommu->lock, flags);
  264. }
  265. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  266. int nelems, enum dma_data_direction direction,
  267. struct dma_attrs *attrs)
  268. {
  269. struct scatterlist *s, *outs, *segstart;
  270. unsigned long flags, handle, prot;
  271. dma_addr_t dma_next = 0, dma_addr;
  272. unsigned int max_seg_size;
  273. unsigned long seg_boundary_size;
  274. int outcount, incount, i;
  275. struct iommu *iommu;
  276. unsigned long base_shift;
  277. long err;
  278. BUG_ON(direction == DMA_NONE);
  279. iommu = dev->archdata.iommu;
  280. if (nelems == 0 || !iommu)
  281. return 0;
  282. prot = HV_PCI_MAP_ATTR_READ;
  283. if (direction != DMA_TO_DEVICE)
  284. prot |= HV_PCI_MAP_ATTR_WRITE;
  285. outs = s = segstart = &sglist[0];
  286. outcount = 1;
  287. incount = nelems;
  288. handle = 0;
  289. /* Init first segment length for backout at failure */
  290. outs->dma_length = 0;
  291. spin_lock_irqsave(&iommu->lock, flags);
  292. iommu_batch_start(dev, prot, ~0UL);
  293. max_seg_size = dma_get_max_seg_size(dev);
  294. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  295. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  296. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  297. for_each_sg(sglist, s, nelems, i) {
  298. unsigned long paddr, npages, entry, out_entry = 0, slen;
  299. slen = s->length;
  300. /* Sanity check */
  301. if (slen == 0) {
  302. dma_next = 0;
  303. continue;
  304. }
  305. /* Allocate iommu entries for that segment */
  306. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  307. npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
  308. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  309. /* Handle failure */
  310. if (unlikely(entry == DMA_ERROR_CODE)) {
  311. if (printk_ratelimit())
  312. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  313. " npages %lx\n", iommu, paddr, npages);
  314. goto iommu_map_failed;
  315. }
  316. iommu_batch_new_entry(entry);
  317. /* Convert entry to a dma_addr_t */
  318. dma_addr = iommu->page_table_map_base +
  319. (entry << IO_PAGE_SHIFT);
  320. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  321. /* Insert into HW table */
  322. paddr &= IO_PAGE_MASK;
  323. while (npages--) {
  324. err = iommu_batch_add(paddr);
  325. if (unlikely(err < 0L))
  326. goto iommu_map_failed;
  327. paddr += IO_PAGE_SIZE;
  328. }
  329. /* If we are in an open segment, try merging */
  330. if (segstart != s) {
  331. /* We cannot merge if:
  332. * - allocated dma_addr isn't contiguous to previous allocation
  333. */
  334. if ((dma_addr != dma_next) ||
  335. (outs->dma_length + s->length > max_seg_size) ||
  336. (is_span_boundary(out_entry, base_shift,
  337. seg_boundary_size, outs, s))) {
  338. /* Can't merge: create a new segment */
  339. segstart = s;
  340. outcount++;
  341. outs = sg_next(outs);
  342. } else {
  343. outs->dma_length += s->length;
  344. }
  345. }
  346. if (segstart == s) {
  347. /* This is a new segment, fill entries */
  348. outs->dma_address = dma_addr;
  349. outs->dma_length = slen;
  350. out_entry = entry;
  351. }
  352. /* Calculate next page pointer for contiguous check */
  353. dma_next = dma_addr + slen;
  354. }
  355. err = iommu_batch_end();
  356. if (unlikely(err < 0L))
  357. goto iommu_map_failed;
  358. spin_unlock_irqrestore(&iommu->lock, flags);
  359. if (outcount < incount) {
  360. outs = sg_next(outs);
  361. outs->dma_address = DMA_ERROR_CODE;
  362. outs->dma_length = 0;
  363. }
  364. return outcount;
  365. iommu_map_failed:
  366. for_each_sg(sglist, s, nelems, i) {
  367. if (s->dma_length != 0) {
  368. unsigned long vaddr, npages;
  369. vaddr = s->dma_address & IO_PAGE_MASK;
  370. npages = iommu_num_pages(s->dma_address, s->dma_length,
  371. IO_PAGE_SIZE);
  372. iommu_range_free(iommu, vaddr, npages);
  373. /* XXX demap? XXX */
  374. s->dma_address = DMA_ERROR_CODE;
  375. s->dma_length = 0;
  376. }
  377. if (s == outs)
  378. break;
  379. }
  380. spin_unlock_irqrestore(&iommu->lock, flags);
  381. return 0;
  382. }
  383. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  384. int nelems, enum dma_data_direction direction,
  385. struct dma_attrs *attrs)
  386. {
  387. struct pci_pbm_info *pbm;
  388. struct scatterlist *sg;
  389. struct iommu *iommu;
  390. unsigned long flags;
  391. u32 devhandle;
  392. BUG_ON(direction == DMA_NONE);
  393. iommu = dev->archdata.iommu;
  394. pbm = dev->archdata.host_controller;
  395. devhandle = pbm->devhandle;
  396. spin_lock_irqsave(&iommu->lock, flags);
  397. sg = sglist;
  398. while (nelems--) {
  399. dma_addr_t dma_handle = sg->dma_address;
  400. unsigned int len = sg->dma_length;
  401. unsigned long npages, entry;
  402. if (!len)
  403. break;
  404. npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
  405. iommu_range_free(iommu, dma_handle, npages);
  406. entry = ((dma_handle - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  407. while (npages) {
  408. unsigned long num;
  409. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  410. npages);
  411. entry += num;
  412. npages -= num;
  413. }
  414. sg = sg_next(sg);
  415. }
  416. spin_unlock_irqrestore(&iommu->lock, flags);
  417. }
  418. static struct dma_map_ops sun4v_dma_ops = {
  419. .alloc_coherent = dma_4v_alloc_coherent,
  420. .free_coherent = dma_4v_free_coherent,
  421. .map_page = dma_4v_map_page,
  422. .unmap_page = dma_4v_unmap_page,
  423. .map_sg = dma_4v_map_sg,
  424. .unmap_sg = dma_4v_unmap_sg,
  425. };
  426. static void __devinit pci_sun4v_scan_bus(struct pci_pbm_info *pbm,
  427. struct device *parent)
  428. {
  429. struct property *prop;
  430. struct device_node *dp;
  431. dp = pbm->op->dev.of_node;
  432. prop = of_find_property(dp, "66mhz-capable", NULL);
  433. pbm->is_66mhz_capable = (prop != NULL);
  434. pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
  435. /* XXX register error interrupt handlers XXX */
  436. }
  437. static unsigned long __devinit probe_existing_entries(struct pci_pbm_info *pbm,
  438. struct iommu *iommu)
  439. {
  440. struct iommu_arena *arena = &iommu->arena;
  441. unsigned long i, cnt = 0;
  442. u32 devhandle;
  443. devhandle = pbm->devhandle;
  444. for (i = 0; i < arena->limit; i++) {
  445. unsigned long ret, io_attrs, ra;
  446. ret = pci_sun4v_iommu_getmap(devhandle,
  447. HV_PCI_TSBID(0, i),
  448. &io_attrs, &ra);
  449. if (ret == HV_EOK) {
  450. if (page_in_phys_avail(ra)) {
  451. pci_sun4v_iommu_demap(devhandle,
  452. HV_PCI_TSBID(0, i), 1);
  453. } else {
  454. cnt++;
  455. __set_bit(i, arena->map);
  456. }
  457. }
  458. }
  459. return cnt;
  460. }
  461. static int __devinit pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  462. {
  463. static const u32 vdma_default[] = { 0x80000000, 0x80000000 };
  464. struct iommu *iommu = pbm->iommu;
  465. unsigned long num_tsb_entries, sz;
  466. u32 dma_mask, dma_offset;
  467. const u32 *vdma;
  468. vdma = of_get_property(pbm->op->dev.of_node, "virtual-dma", NULL);
  469. if (!vdma)
  470. vdma = vdma_default;
  471. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  472. printk(KERN_ERR PFX "Strange virtual-dma[%08x:%08x].\n",
  473. vdma[0], vdma[1]);
  474. return -EINVAL;
  475. };
  476. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  477. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  478. dma_offset = vdma[0];
  479. /* Setup initial software IOMMU state. */
  480. spin_lock_init(&iommu->lock);
  481. iommu->ctx_lowest_free = 1;
  482. iommu->page_table_map_base = dma_offset;
  483. iommu->dma_addr_mask = dma_mask;
  484. /* Allocate and initialize the free area map. */
  485. sz = (num_tsb_entries + 7) / 8;
  486. sz = (sz + 7UL) & ~7UL;
  487. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  488. if (!iommu->arena.map) {
  489. printk(KERN_ERR PFX "Error, kmalloc(arena.map) failed.\n");
  490. return -ENOMEM;
  491. }
  492. iommu->arena.limit = num_tsb_entries;
  493. sz = probe_existing_entries(pbm, iommu);
  494. if (sz)
  495. printk("%s: Imported %lu TSB entries from OBP\n",
  496. pbm->name, sz);
  497. return 0;
  498. }
  499. #ifdef CONFIG_PCI_MSI
  500. struct pci_sun4v_msiq_entry {
  501. u64 version_type;
  502. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  503. #define MSIQ_VERSION_SHIFT 32
  504. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  505. #define MSIQ_TYPE_SHIFT 0
  506. #define MSIQ_TYPE_NONE 0x00
  507. #define MSIQ_TYPE_MSG 0x01
  508. #define MSIQ_TYPE_MSI32 0x02
  509. #define MSIQ_TYPE_MSI64 0x03
  510. #define MSIQ_TYPE_INTX 0x08
  511. #define MSIQ_TYPE_NONE2 0xff
  512. u64 intx_sysino;
  513. u64 reserved1;
  514. u64 stick;
  515. u64 req_id; /* bus/device/func */
  516. #define MSIQ_REQID_BUS_MASK 0xff00UL
  517. #define MSIQ_REQID_BUS_SHIFT 8
  518. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  519. #define MSIQ_REQID_DEVICE_SHIFT 3
  520. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  521. #define MSIQ_REQID_FUNC_SHIFT 0
  522. u64 msi_address;
  523. /* The format of this value is message type dependent.
  524. * For MSI bits 15:0 are the data from the MSI packet.
  525. * For MSI-X bits 31:0 are the data from the MSI packet.
  526. * For MSG, the message code and message routing code where:
  527. * bits 39:32 is the bus/device/fn of the msg target-id
  528. * bits 18:16 is the message routing code
  529. * bits 7:0 is the message code
  530. * For INTx the low order 2-bits are:
  531. * 00 - INTA
  532. * 01 - INTB
  533. * 10 - INTC
  534. * 11 - INTD
  535. */
  536. u64 msi_data;
  537. u64 reserved2;
  538. };
  539. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  540. unsigned long *head)
  541. {
  542. unsigned long err, limit;
  543. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  544. if (unlikely(err))
  545. return -ENXIO;
  546. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  547. if (unlikely(*head >= limit))
  548. return -EFBIG;
  549. return 0;
  550. }
  551. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  552. unsigned long msiqid, unsigned long *head,
  553. unsigned long *msi)
  554. {
  555. struct pci_sun4v_msiq_entry *ep;
  556. unsigned long err, type;
  557. /* Note: void pointer arithmetic, 'head' is a byte offset */
  558. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  559. (pbm->msiq_ent_count *
  560. sizeof(struct pci_sun4v_msiq_entry))) +
  561. *head);
  562. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  563. return 0;
  564. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  565. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  566. type != MSIQ_TYPE_MSI64))
  567. return -EINVAL;
  568. *msi = ep->msi_data;
  569. err = pci_sun4v_msi_setstate(pbm->devhandle,
  570. ep->msi_data /* msi_num */,
  571. HV_MSISTATE_IDLE);
  572. if (unlikely(err))
  573. return -ENXIO;
  574. /* Clear the entry. */
  575. ep->version_type &= ~MSIQ_TYPE_MASK;
  576. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  577. if (*head >=
  578. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  579. *head = 0;
  580. return 1;
  581. }
  582. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  583. unsigned long head)
  584. {
  585. unsigned long err;
  586. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  587. if (unlikely(err))
  588. return -EINVAL;
  589. return 0;
  590. }
  591. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  592. unsigned long msi, int is_msi64)
  593. {
  594. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  595. (is_msi64 ?
  596. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  597. return -ENXIO;
  598. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  599. return -ENXIO;
  600. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  601. return -ENXIO;
  602. return 0;
  603. }
  604. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  605. {
  606. unsigned long err, msiqid;
  607. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  608. if (err)
  609. return -ENXIO;
  610. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  611. return 0;
  612. }
  613. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  614. {
  615. unsigned long q_size, alloc_size, pages, order;
  616. int i;
  617. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  618. alloc_size = (pbm->msiq_num * q_size);
  619. order = get_order(alloc_size);
  620. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  621. if (pages == 0UL) {
  622. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  623. order);
  624. return -ENOMEM;
  625. }
  626. memset((char *)pages, 0, PAGE_SIZE << order);
  627. pbm->msi_queues = (void *) pages;
  628. for (i = 0; i < pbm->msiq_num; i++) {
  629. unsigned long err, base = __pa(pages + (i * q_size));
  630. unsigned long ret1, ret2;
  631. err = pci_sun4v_msiq_conf(pbm->devhandle,
  632. pbm->msiq_first + i,
  633. base, pbm->msiq_ent_count);
  634. if (err) {
  635. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  636. err);
  637. goto h_error;
  638. }
  639. err = pci_sun4v_msiq_info(pbm->devhandle,
  640. pbm->msiq_first + i,
  641. &ret1, &ret2);
  642. if (err) {
  643. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  644. err);
  645. goto h_error;
  646. }
  647. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  648. printk(KERN_ERR "MSI: Bogus qconf "
  649. "expected[%lx:%x] got[%lx:%lx]\n",
  650. base, pbm->msiq_ent_count,
  651. ret1, ret2);
  652. goto h_error;
  653. }
  654. }
  655. return 0;
  656. h_error:
  657. free_pages(pages, order);
  658. return -EINVAL;
  659. }
  660. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  661. {
  662. unsigned long q_size, alloc_size, pages, order;
  663. int i;
  664. for (i = 0; i < pbm->msiq_num; i++) {
  665. unsigned long msiqid = pbm->msiq_first + i;
  666. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  667. }
  668. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  669. alloc_size = (pbm->msiq_num * q_size);
  670. order = get_order(alloc_size);
  671. pages = (unsigned long) pbm->msi_queues;
  672. free_pages(pages, order);
  673. pbm->msi_queues = NULL;
  674. }
  675. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  676. unsigned long msiqid,
  677. unsigned long devino)
  678. {
  679. unsigned int irq = sun4v_build_irq(pbm->devhandle, devino);
  680. if (!irq)
  681. return -ENOMEM;
  682. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  683. return -EINVAL;
  684. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  685. return -EINVAL;
  686. return irq;
  687. }
  688. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  689. .get_head = pci_sun4v_get_head,
  690. .dequeue_msi = pci_sun4v_dequeue_msi,
  691. .set_head = pci_sun4v_set_head,
  692. .msi_setup = pci_sun4v_msi_setup,
  693. .msi_teardown = pci_sun4v_msi_teardown,
  694. .msiq_alloc = pci_sun4v_msiq_alloc,
  695. .msiq_free = pci_sun4v_msiq_free,
  696. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  697. };
  698. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  699. {
  700. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  701. }
  702. #else /* CONFIG_PCI_MSI */
  703. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  704. {
  705. }
  706. #endif /* !(CONFIG_PCI_MSI) */
  707. static int __devinit pci_sun4v_pbm_init(struct pci_pbm_info *pbm,
  708. struct platform_device *op, u32 devhandle)
  709. {
  710. struct device_node *dp = op->dev.of_node;
  711. int err;
  712. pbm->numa_node = of_node_to_nid(dp);
  713. pbm->pci_ops = &sun4v_pci_ops;
  714. pbm->config_space_reg_bits = 12;
  715. pbm->index = pci_num_pbms++;
  716. pbm->op = op;
  717. pbm->devhandle = devhandle;
  718. pbm->name = dp->full_name;
  719. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  720. printk("%s: On NUMA node %d\n", pbm->name, pbm->numa_node);
  721. pci_determine_mem_io_space(pbm);
  722. pci_get_pbm_props(pbm);
  723. err = pci_sun4v_iommu_init(pbm);
  724. if (err)
  725. return err;
  726. pci_sun4v_msi_init(pbm);
  727. pci_sun4v_scan_bus(pbm, &op->dev);
  728. pbm->next = pci_pbm_root;
  729. pci_pbm_root = pbm;
  730. return 0;
  731. }
  732. static int __devinit pci_sun4v_probe(struct platform_device *op)
  733. {
  734. const struct linux_prom64_registers *regs;
  735. static int hvapi_negotiated = 0;
  736. struct pci_pbm_info *pbm;
  737. struct device_node *dp;
  738. struct iommu *iommu;
  739. u32 devhandle;
  740. int i, err;
  741. dp = op->dev.of_node;
  742. if (!hvapi_negotiated++) {
  743. err = sun4v_hvapi_register(HV_GRP_PCI,
  744. vpci_major,
  745. &vpci_minor);
  746. if (err) {
  747. printk(KERN_ERR PFX "Could not register hvapi, "
  748. "err=%d\n", err);
  749. return err;
  750. }
  751. printk(KERN_INFO PFX "Registered hvapi major[%lu] minor[%lu]\n",
  752. vpci_major, vpci_minor);
  753. dma_ops = &sun4v_dma_ops;
  754. }
  755. regs = of_get_property(dp, "reg", NULL);
  756. err = -ENODEV;
  757. if (!regs) {
  758. printk(KERN_ERR PFX "Could not find config registers\n");
  759. goto out_err;
  760. }
  761. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  762. err = -ENOMEM;
  763. if (!iommu_batch_initialized) {
  764. for_each_possible_cpu(i) {
  765. unsigned long page = get_zeroed_page(GFP_KERNEL);
  766. if (!page)
  767. goto out_err;
  768. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  769. }
  770. iommu_batch_initialized = 1;
  771. }
  772. pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
  773. if (!pbm) {
  774. printk(KERN_ERR PFX "Could not allocate pci_pbm_info\n");
  775. goto out_err;
  776. }
  777. iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL);
  778. if (!iommu) {
  779. printk(KERN_ERR PFX "Could not allocate pbm iommu\n");
  780. goto out_free_controller;
  781. }
  782. pbm->iommu = iommu;
  783. err = pci_sun4v_pbm_init(pbm, op, devhandle);
  784. if (err)
  785. goto out_free_iommu;
  786. dev_set_drvdata(&op->dev, pbm);
  787. return 0;
  788. out_free_iommu:
  789. kfree(pbm->iommu);
  790. out_free_controller:
  791. kfree(pbm);
  792. out_err:
  793. return err;
  794. }
  795. static const struct of_device_id pci_sun4v_match[] = {
  796. {
  797. .name = "pci",
  798. .compatible = "SUNW,sun4v-pci",
  799. },
  800. {},
  801. };
  802. static struct platform_driver pci_sun4v_driver = {
  803. .driver = {
  804. .name = DRIVER_NAME,
  805. .owner = THIS_MODULE,
  806. .of_match_table = pci_sun4v_match,
  807. },
  808. .probe = pci_sun4v_probe,
  809. };
  810. static int __init pci_sun4v_init(void)
  811. {
  812. return platform_driver_register(&pci_sun4v_driver);
  813. }
  814. subsys_initcall(pci_sun4v_init);