machine_kexec_64.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /*
  2. * PPC64 code to handle Linux booting another kernel.
  3. *
  4. * Copyright (C) 2004-2005, IBM Corp.
  5. *
  6. * Created by: Milton D Miller II
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. */
  11. #include <linux/kexec.h>
  12. #include <linux/smp.h>
  13. #include <linux/thread_info.h>
  14. #include <linux/init_task.h>
  15. #include <linux/errno.h>
  16. #include <linux/kernel.h>
  17. #include <linux/cpu.h>
  18. #include <asm/page.h>
  19. #include <asm/current.h>
  20. #include <asm/machdep.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/paca.h>
  23. #include <asm/mmu.h>
  24. #include <asm/sections.h> /* _end */
  25. #include <asm/prom.h>
  26. #include <asm/smp.h>
  27. #include <asm/hw_breakpoint.h>
  28. int default_machine_kexec_prepare(struct kimage *image)
  29. {
  30. int i;
  31. unsigned long begin, end; /* limits of segment */
  32. unsigned long low, high; /* limits of blocked memory range */
  33. struct device_node *node;
  34. const unsigned long *basep;
  35. const unsigned int *sizep;
  36. if (!ppc_md.hpte_clear_all)
  37. return -ENOENT;
  38. /*
  39. * Since we use the kernel fault handlers and paging code to
  40. * handle the virtual mode, we must make sure no destination
  41. * overlaps kernel static data or bss.
  42. */
  43. for (i = 0; i < image->nr_segments; i++)
  44. if (image->segment[i].mem < __pa(_end))
  45. return -ETXTBSY;
  46. /*
  47. * For non-LPAR, we absolutely can not overwrite the mmu hash
  48. * table, since we are still using the bolted entries in it to
  49. * do the copy. Check that here.
  50. *
  51. * It is safe if the end is below the start of the blocked
  52. * region (end <= low), or if the beginning is after the
  53. * end of the blocked region (begin >= high). Use the
  54. * boolean identity !(a || b) === (!a && !b).
  55. */
  56. if (htab_address) {
  57. low = __pa(htab_address);
  58. high = low + htab_size_bytes;
  59. for (i = 0; i < image->nr_segments; i++) {
  60. begin = image->segment[i].mem;
  61. end = begin + image->segment[i].memsz;
  62. if ((begin < high) && (end > low))
  63. return -ETXTBSY;
  64. }
  65. }
  66. /* We also should not overwrite the tce tables */
  67. for_each_node_by_type(node, "pci") {
  68. basep = of_get_property(node, "linux,tce-base", NULL);
  69. sizep = of_get_property(node, "linux,tce-size", NULL);
  70. if (basep == NULL || sizep == NULL)
  71. continue;
  72. low = *basep;
  73. high = low + (*sizep);
  74. for (i = 0; i < image->nr_segments; i++) {
  75. begin = image->segment[i].mem;
  76. end = begin + image->segment[i].memsz;
  77. if ((begin < high) && (end > low))
  78. return -ETXTBSY;
  79. }
  80. }
  81. return 0;
  82. }
  83. #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
  84. static void copy_segments(unsigned long ind)
  85. {
  86. unsigned long entry;
  87. unsigned long *ptr;
  88. void *dest;
  89. void *addr;
  90. /*
  91. * We rely on kexec_load to create a lists that properly
  92. * initializes these pointers before they are used.
  93. * We will still crash if the list is wrong, but at least
  94. * the compiler will be quiet.
  95. */
  96. ptr = NULL;
  97. dest = NULL;
  98. for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
  99. addr = __va(entry & PAGE_MASK);
  100. switch (entry & IND_FLAGS) {
  101. case IND_DESTINATION:
  102. dest = addr;
  103. break;
  104. case IND_INDIRECTION:
  105. ptr = addr;
  106. break;
  107. case IND_SOURCE:
  108. copy_page(dest, addr);
  109. dest += PAGE_SIZE;
  110. }
  111. }
  112. }
  113. void kexec_copy_flush(struct kimage *image)
  114. {
  115. long i, nr_segments = image->nr_segments;
  116. struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
  117. /* save the ranges on the stack to efficiently flush the icache */
  118. memcpy(ranges, image->segment, sizeof(ranges));
  119. /*
  120. * After this call we may not use anything allocated in dynamic
  121. * memory, including *image.
  122. *
  123. * Only globals and the stack are allowed.
  124. */
  125. copy_segments(image->head);
  126. /*
  127. * we need to clear the icache for all dest pages sometime,
  128. * including ones that were in place on the original copy
  129. */
  130. for (i = 0; i < nr_segments; i++)
  131. flush_icache_range((unsigned long)__va(ranges[i].mem),
  132. (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
  133. }
  134. #ifdef CONFIG_SMP
  135. static int kexec_all_irq_disabled = 0;
  136. static void kexec_smp_down(void *arg)
  137. {
  138. local_irq_disable();
  139. mb(); /* make sure our irqs are disabled before we say they are */
  140. get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
  141. while(kexec_all_irq_disabled == 0)
  142. cpu_relax();
  143. mb(); /* make sure all irqs are disabled before this */
  144. hw_breakpoint_disable();
  145. /*
  146. * Now every CPU has IRQs off, we can clear out any pending
  147. * IPIs and be sure that no more will come in after this.
  148. */
  149. if (ppc_md.kexec_cpu_down)
  150. ppc_md.kexec_cpu_down(0, 1);
  151. kexec_smp_wait();
  152. /* NOTREACHED */
  153. }
  154. static void kexec_prepare_cpus_wait(int wait_state)
  155. {
  156. int my_cpu, i, notified=-1;
  157. hw_breakpoint_disable();
  158. my_cpu = get_cpu();
  159. /* Make sure each CPU has at least made it to the state we need.
  160. *
  161. * FIXME: There is a (slim) chance of a problem if not all of the CPUs
  162. * are correctly onlined. If somehow we start a CPU on boot with RTAS
  163. * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
  164. * time, the boot CPU will timeout. If it does eventually execute
  165. * stuff, the secondary will start up (paca[].cpu_start was written) and
  166. * get into a peculiar state. If the platform supports
  167. * smp_ops->take_timebase(), the secondary CPU will probably be spinning
  168. * in there. If not (i.e. pseries), the secondary will continue on and
  169. * try to online itself/idle/etc. If it survives that, we need to find
  170. * these possible-but-not-online-but-should-be CPUs and chaperone them
  171. * into kexec_smp_wait().
  172. */
  173. for_each_online_cpu(i) {
  174. if (i == my_cpu)
  175. continue;
  176. while (paca[i].kexec_state < wait_state) {
  177. barrier();
  178. if (i != notified) {
  179. printk(KERN_INFO "kexec: waiting for cpu %d "
  180. "(physical %d) to enter %i state\n",
  181. i, paca[i].hw_cpu_id, wait_state);
  182. notified = i;
  183. }
  184. }
  185. }
  186. mb();
  187. }
  188. /*
  189. * We need to make sure each present CPU is online. The next kernel will scan
  190. * the device tree and assume primary threads are online and query secondary
  191. * threads via RTAS to online them if required. If we don't online primary
  192. * threads, they will be stuck. However, we also online secondary threads as we
  193. * may be using 'cede offline'. In this case RTAS doesn't see the secondary
  194. * threads as offline -- and again, these CPUs will be stuck.
  195. *
  196. * So, we online all CPUs that should be running, including secondary threads.
  197. */
  198. static void wake_offline_cpus(void)
  199. {
  200. int cpu = 0;
  201. for_each_present_cpu(cpu) {
  202. if (!cpu_online(cpu)) {
  203. printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
  204. cpu);
  205. cpu_up(cpu);
  206. }
  207. }
  208. }
  209. static void kexec_prepare_cpus(void)
  210. {
  211. wake_offline_cpus();
  212. smp_call_function(kexec_smp_down, NULL, /* wait */0);
  213. local_irq_disable();
  214. mb(); /* make sure IRQs are disabled before we say they are */
  215. get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
  216. kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
  217. /* we are sure every CPU has IRQs off at this point */
  218. kexec_all_irq_disabled = 1;
  219. /* after we tell the others to go down */
  220. if (ppc_md.kexec_cpu_down)
  221. ppc_md.kexec_cpu_down(0, 0);
  222. /*
  223. * Before removing MMU mappings make sure all CPUs have entered real
  224. * mode:
  225. */
  226. kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
  227. put_cpu();
  228. }
  229. #else /* ! SMP */
  230. static void kexec_prepare_cpus(void)
  231. {
  232. /*
  233. * move the secondarys to us so that we can copy
  234. * the new kernel 0-0x100 safely
  235. *
  236. * do this if kexec in setup.c ?
  237. *
  238. * We need to release the cpus if we are ever going from an
  239. * UP to an SMP kernel.
  240. */
  241. smp_release_cpus();
  242. if (ppc_md.kexec_cpu_down)
  243. ppc_md.kexec_cpu_down(0, 0);
  244. local_irq_disable();
  245. }
  246. #endif /* SMP */
  247. /*
  248. * kexec thread structure and stack.
  249. *
  250. * We need to make sure that this is 16384-byte aligned due to the
  251. * way process stacks are handled. It also must be statically allocated
  252. * or allocated as part of the kimage, because everything else may be
  253. * overwritten when we copy the kexec image. We piggyback on the
  254. * "init_task" linker section here to statically allocate a stack.
  255. *
  256. * We could use a smaller stack if we don't care about anything using
  257. * current, but that audit has not been performed.
  258. */
  259. static union thread_union kexec_stack __init_task_data =
  260. { };
  261. /*
  262. * For similar reasons to the stack above, the kexecing CPU needs to be on a
  263. * static PACA; we switch to kexec_paca.
  264. */
  265. struct paca_struct kexec_paca;
  266. /* Our assembly helper, in kexec_stub.S */
  267. extern void kexec_sequence(void *newstack, unsigned long start,
  268. void *image, void *control,
  269. void (*clear_all)(void)) __noreturn;
  270. /* too late to fail here */
  271. void default_machine_kexec(struct kimage *image)
  272. {
  273. /* prepare control code if any */
  274. /*
  275. * If the kexec boot is the normal one, need to shutdown other cpus
  276. * into our wait loop and quiesce interrupts.
  277. * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
  278. * stopping other CPUs and collecting their pt_regs is done before
  279. * using debugger IPI.
  280. */
  281. if (crashing_cpu == -1)
  282. kexec_prepare_cpus();
  283. pr_debug("kexec: Starting switchover sequence.\n");
  284. /* switch to a staticly allocated stack. Based on irq stack code.
  285. * XXX: the task struct will likely be invalid once we do the copy!
  286. */
  287. kexec_stack.thread_info.task = current_thread_info()->task;
  288. kexec_stack.thread_info.flags = 0;
  289. /* We need a static PACA, too; copy this CPU's PACA over and switch to
  290. * it. Also poison per_cpu_offset to catch anyone using non-static
  291. * data.
  292. */
  293. memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
  294. kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
  295. paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
  296. kexec_paca.paca_index;
  297. setup_paca(&kexec_paca);
  298. /* XXX: If anyone does 'dynamic lppacas' this will also need to be
  299. * switched to a static version!
  300. */
  301. /* Some things are best done in assembly. Finding globals with
  302. * a toc is easier in C, so pass in what we can.
  303. */
  304. kexec_sequence(&kexec_stack, image->start, image,
  305. page_address(image->control_code_page),
  306. ppc_md.hpte_clear_all);
  307. /* NOTREACHED */
  308. }
  309. /* Values we need to export to the second kernel via the device tree. */
  310. static unsigned long htab_base;
  311. static struct property htab_base_prop = {
  312. .name = "linux,htab-base",
  313. .length = sizeof(unsigned long),
  314. .value = &htab_base,
  315. };
  316. static struct property htab_size_prop = {
  317. .name = "linux,htab-size",
  318. .length = sizeof(unsigned long),
  319. .value = &htab_size_bytes,
  320. };
  321. static int __init export_htab_values(void)
  322. {
  323. struct device_node *node;
  324. struct property *prop;
  325. /* On machines with no htab htab_address is NULL */
  326. if (!htab_address)
  327. return -ENODEV;
  328. node = of_find_node_by_path("/chosen");
  329. if (!node)
  330. return -ENODEV;
  331. /* remove any stale propertys so ours can be found */
  332. prop = of_find_property(node, htab_base_prop.name, NULL);
  333. if (prop)
  334. prom_remove_property(node, prop);
  335. prop = of_find_property(node, htab_size_prop.name, NULL);
  336. if (prop)
  337. prom_remove_property(node, prop);
  338. htab_base = __pa(htab_address);
  339. prom_add_property(node, &htab_base_prop);
  340. prom_add_property(node, &htab_size_prop);
  341. of_node_put(node);
  342. return 0;
  343. }
  344. late_initcall(export_htab_values);