lparcfg.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718
  1. /*
  2. * PowerPC64 LPAR Configuration Information Driver
  3. *
  4. * Dave Engebretsen engebret@us.ibm.com
  5. * Copyright (c) 2003 Dave Engebretsen
  6. * Will Schmidt willschm@us.ibm.com
  7. * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
  8. * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
  9. * Nathan Lynch nathanl@austin.ibm.com
  10. * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. *
  17. * This driver creates a proc file at /proc/ppc64/lparcfg which contains
  18. * keyword - value pairs that specify the configuration of the partition.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/types.h>
  22. #include <linux/errno.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/init.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/slab.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/lppaca.h>
  29. #include <asm/hvcall.h>
  30. #include <asm/firmware.h>
  31. #include <asm/rtas.h>
  32. #include <asm/time.h>
  33. #include <asm/prom.h>
  34. #include <asm/vdso_datapage.h>
  35. #include <asm/vio.h>
  36. #include <asm/mmu.h>
  37. #define MODULE_VERS "1.9"
  38. #define MODULE_NAME "lparcfg"
  39. /* #define LPARCFG_DEBUG */
  40. static struct proc_dir_entry *proc_ppc64_lparcfg;
  41. /*
  42. * Track sum of all purrs across all processors. This is used to further
  43. * calculate usage values by different applications
  44. */
  45. static unsigned long get_purr(void)
  46. {
  47. unsigned long sum_purr = 0;
  48. int cpu;
  49. for_each_possible_cpu(cpu) {
  50. struct cpu_usage *cu;
  51. cu = &per_cpu(cpu_usage_array, cpu);
  52. sum_purr += cu->current_tb;
  53. }
  54. return sum_purr;
  55. }
  56. /*
  57. * Methods used to fetch LPAR data when running on a pSeries platform.
  58. */
  59. struct hvcall_ppp_data {
  60. u64 entitlement;
  61. u64 unallocated_entitlement;
  62. u16 group_num;
  63. u16 pool_num;
  64. u8 capped;
  65. u8 weight;
  66. u8 unallocated_weight;
  67. u16 active_procs_in_pool;
  68. u16 active_system_procs;
  69. u16 phys_platform_procs;
  70. u32 max_proc_cap_avail;
  71. u32 entitled_proc_cap_avail;
  72. };
  73. /*
  74. * H_GET_PPP hcall returns info in 4 parms.
  75. * entitled_capacity,unallocated_capacity,
  76. * aggregation, resource_capability).
  77. *
  78. * R4 = Entitled Processor Capacity Percentage.
  79. * R5 = Unallocated Processor Capacity Percentage.
  80. * R6 (AABBCCDDEEFFGGHH).
  81. * XXXX - reserved (0)
  82. * XXXX - reserved (0)
  83. * XXXX - Group Number
  84. * XXXX - Pool Number.
  85. * R7 (IIJJKKLLMMNNOOPP).
  86. * XX - reserved. (0)
  87. * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
  88. * XX - variable processor Capacity Weight
  89. * XX - Unallocated Variable Processor Capacity Weight.
  90. * XXXX - Active processors in Physical Processor Pool.
  91. * XXXX - Processors active on platform.
  92. * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
  93. * XXXX - Physical platform procs allocated to virtualization.
  94. * XXXXXX - Max procs capacity % available to the partitions pool.
  95. * XXXXXX - Entitled procs capacity % available to the
  96. * partitions pool.
  97. */
  98. static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
  99. {
  100. unsigned long rc;
  101. unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
  102. rc = plpar_hcall9(H_GET_PPP, retbuf);
  103. ppp_data->entitlement = retbuf[0];
  104. ppp_data->unallocated_entitlement = retbuf[1];
  105. ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
  106. ppp_data->pool_num = retbuf[2] & 0xffff;
  107. ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
  108. ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
  109. ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
  110. ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
  111. ppp_data->active_system_procs = retbuf[3] & 0xffff;
  112. ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
  113. ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
  114. ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
  115. return rc;
  116. }
  117. static unsigned h_pic(unsigned long *pool_idle_time,
  118. unsigned long *num_procs)
  119. {
  120. unsigned long rc;
  121. unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
  122. rc = plpar_hcall(H_PIC, retbuf);
  123. *pool_idle_time = retbuf[0];
  124. *num_procs = retbuf[1];
  125. return rc;
  126. }
  127. /*
  128. * parse_ppp_data
  129. * Parse out the data returned from h_get_ppp and h_pic
  130. */
  131. static void parse_ppp_data(struct seq_file *m)
  132. {
  133. struct hvcall_ppp_data ppp_data;
  134. struct device_node *root;
  135. const int *perf_level;
  136. int rc;
  137. rc = h_get_ppp(&ppp_data);
  138. if (rc)
  139. return;
  140. seq_printf(m, "partition_entitled_capacity=%lld\n",
  141. ppp_data.entitlement);
  142. seq_printf(m, "group=%d\n", ppp_data.group_num);
  143. seq_printf(m, "system_active_processors=%d\n",
  144. ppp_data.active_system_procs);
  145. /* pool related entries are appropriate for shared configs */
  146. if (lppaca_of(0).shared_proc) {
  147. unsigned long pool_idle_time, pool_procs;
  148. seq_printf(m, "pool=%d\n", ppp_data.pool_num);
  149. /* report pool_capacity in percentage */
  150. seq_printf(m, "pool_capacity=%d\n",
  151. ppp_data.active_procs_in_pool * 100);
  152. h_pic(&pool_idle_time, &pool_procs);
  153. seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
  154. seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
  155. }
  156. seq_printf(m, "unallocated_capacity_weight=%d\n",
  157. ppp_data.unallocated_weight);
  158. seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
  159. seq_printf(m, "capped=%d\n", ppp_data.capped);
  160. seq_printf(m, "unallocated_capacity=%lld\n",
  161. ppp_data.unallocated_entitlement);
  162. /* The last bits of information returned from h_get_ppp are only
  163. * valid if the ibm,partition-performance-parameters-level
  164. * property is >= 1.
  165. */
  166. root = of_find_node_by_path("/");
  167. if (root) {
  168. perf_level = of_get_property(root,
  169. "ibm,partition-performance-parameters-level",
  170. NULL);
  171. if (perf_level && (*perf_level >= 1)) {
  172. seq_printf(m,
  173. "physical_procs_allocated_to_virtualization=%d\n",
  174. ppp_data.phys_platform_procs);
  175. seq_printf(m, "max_proc_capacity_available=%d\n",
  176. ppp_data.max_proc_cap_avail);
  177. seq_printf(m, "entitled_proc_capacity_available=%d\n",
  178. ppp_data.entitled_proc_cap_avail);
  179. }
  180. of_node_put(root);
  181. }
  182. }
  183. /**
  184. * parse_mpp_data
  185. * Parse out data returned from h_get_mpp
  186. */
  187. static void parse_mpp_data(struct seq_file *m)
  188. {
  189. struct hvcall_mpp_data mpp_data;
  190. int rc;
  191. rc = h_get_mpp(&mpp_data);
  192. if (rc)
  193. return;
  194. seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
  195. if (mpp_data.mapped_mem != -1)
  196. seq_printf(m, "mapped_entitled_memory=%ld\n",
  197. mpp_data.mapped_mem);
  198. seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
  199. seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
  200. seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
  201. seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
  202. mpp_data.unallocated_mem_weight);
  203. seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
  204. mpp_data.unallocated_entitlement);
  205. if (mpp_data.pool_size != -1)
  206. seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
  207. mpp_data.pool_size);
  208. seq_printf(m, "entitled_memory_loan_request=%ld\n",
  209. mpp_data.loan_request);
  210. seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
  211. }
  212. /**
  213. * parse_mpp_x_data
  214. * Parse out data returned from h_get_mpp_x
  215. */
  216. static void parse_mpp_x_data(struct seq_file *m)
  217. {
  218. struct hvcall_mpp_x_data mpp_x_data;
  219. if (!firmware_has_feature(FW_FEATURE_XCMO))
  220. return;
  221. if (h_get_mpp_x(&mpp_x_data))
  222. return;
  223. seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
  224. if (mpp_x_data.pool_coalesced_bytes)
  225. seq_printf(m, "pool_coalesced_bytes=%ld\n",
  226. mpp_x_data.pool_coalesced_bytes);
  227. if (mpp_x_data.pool_purr_cycles)
  228. seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
  229. if (mpp_x_data.pool_spurr_cycles)
  230. seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
  231. }
  232. #define SPLPAR_CHARACTERISTICS_TOKEN 20
  233. #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
  234. /*
  235. * parse_system_parameter_string()
  236. * Retrieve the potential_processors, max_entitled_capacity and friends
  237. * through the get-system-parameter rtas call. Replace keyword strings as
  238. * necessary.
  239. */
  240. static void parse_system_parameter_string(struct seq_file *m)
  241. {
  242. int call_status;
  243. unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
  244. if (!local_buffer) {
  245. printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
  246. __FILE__, __func__, __LINE__);
  247. return;
  248. }
  249. spin_lock(&rtas_data_buf_lock);
  250. memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
  251. call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
  252. NULL,
  253. SPLPAR_CHARACTERISTICS_TOKEN,
  254. __pa(rtas_data_buf),
  255. RTAS_DATA_BUF_SIZE);
  256. memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
  257. spin_unlock(&rtas_data_buf_lock);
  258. if (call_status != 0) {
  259. printk(KERN_INFO
  260. "%s %s Error calling get-system-parameter (0x%x)\n",
  261. __FILE__, __func__, call_status);
  262. } else {
  263. int splpar_strlen;
  264. int idx, w_idx;
  265. char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
  266. if (!workbuffer) {
  267. printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
  268. __FILE__, __func__, __LINE__);
  269. kfree(local_buffer);
  270. return;
  271. }
  272. #ifdef LPARCFG_DEBUG
  273. printk(KERN_INFO "success calling get-system-parameter\n");
  274. #endif
  275. splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
  276. local_buffer += 2; /* step over strlen value */
  277. w_idx = 0;
  278. idx = 0;
  279. while ((*local_buffer) && (idx < splpar_strlen)) {
  280. workbuffer[w_idx++] = local_buffer[idx++];
  281. if ((local_buffer[idx] == ',')
  282. || (local_buffer[idx] == '\0')) {
  283. workbuffer[w_idx] = '\0';
  284. if (w_idx) {
  285. /* avoid the empty string */
  286. seq_printf(m, "%s\n", workbuffer);
  287. }
  288. memset(workbuffer, 0, SPLPAR_MAXLENGTH);
  289. idx++; /* skip the comma */
  290. w_idx = 0;
  291. } else if (local_buffer[idx] == '=') {
  292. /* code here to replace workbuffer contents
  293. with different keyword strings */
  294. if (0 == strcmp(workbuffer, "MaxEntCap")) {
  295. strcpy(workbuffer,
  296. "partition_max_entitled_capacity");
  297. w_idx = strlen(workbuffer);
  298. }
  299. if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
  300. strcpy(workbuffer,
  301. "system_potential_processors");
  302. w_idx = strlen(workbuffer);
  303. }
  304. }
  305. }
  306. kfree(workbuffer);
  307. local_buffer -= 2; /* back up over strlen value */
  308. }
  309. kfree(local_buffer);
  310. }
  311. /* Return the number of processors in the system.
  312. * This function reads through the device tree and counts
  313. * the virtual processors, this does not include threads.
  314. */
  315. static int lparcfg_count_active_processors(void)
  316. {
  317. struct device_node *cpus_dn = NULL;
  318. int count = 0;
  319. while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
  320. #ifdef LPARCFG_DEBUG
  321. printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
  322. #endif
  323. count++;
  324. }
  325. return count;
  326. }
  327. static void pseries_cmo_data(struct seq_file *m)
  328. {
  329. int cpu;
  330. unsigned long cmo_faults = 0;
  331. unsigned long cmo_fault_time = 0;
  332. seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
  333. if (!firmware_has_feature(FW_FEATURE_CMO))
  334. return;
  335. for_each_possible_cpu(cpu) {
  336. cmo_faults += lppaca_of(cpu).cmo_faults;
  337. cmo_fault_time += lppaca_of(cpu).cmo_fault_time;
  338. }
  339. seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
  340. seq_printf(m, "cmo_fault_time_usec=%lu\n",
  341. cmo_fault_time / tb_ticks_per_usec);
  342. seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
  343. seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
  344. seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
  345. }
  346. static void splpar_dispatch_data(struct seq_file *m)
  347. {
  348. int cpu;
  349. unsigned long dispatches = 0;
  350. unsigned long dispatch_dispersions = 0;
  351. for_each_possible_cpu(cpu) {
  352. dispatches += lppaca_of(cpu).yield_count;
  353. dispatch_dispersions += lppaca_of(cpu).dispersion_count;
  354. }
  355. seq_printf(m, "dispatches=%lu\n", dispatches);
  356. seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
  357. }
  358. static void parse_em_data(struct seq_file *m)
  359. {
  360. unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
  361. if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
  362. seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
  363. }
  364. static int pseries_lparcfg_data(struct seq_file *m, void *v)
  365. {
  366. int partition_potential_processors;
  367. int partition_active_processors;
  368. struct device_node *rtas_node;
  369. const int *lrdrp = NULL;
  370. rtas_node = of_find_node_by_path("/rtas");
  371. if (rtas_node)
  372. lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
  373. if (lrdrp == NULL) {
  374. partition_potential_processors = vdso_data->processorCount;
  375. } else {
  376. partition_potential_processors = *(lrdrp + 4);
  377. }
  378. of_node_put(rtas_node);
  379. partition_active_processors = lparcfg_count_active_processors();
  380. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  381. /* this call handles the ibm,get-system-parameter contents */
  382. parse_system_parameter_string(m);
  383. parse_ppp_data(m);
  384. parse_mpp_data(m);
  385. parse_mpp_x_data(m);
  386. pseries_cmo_data(m);
  387. splpar_dispatch_data(m);
  388. seq_printf(m, "purr=%ld\n", get_purr());
  389. } else { /* non SPLPAR case */
  390. seq_printf(m, "system_active_processors=%d\n",
  391. partition_potential_processors);
  392. seq_printf(m, "system_potential_processors=%d\n",
  393. partition_potential_processors);
  394. seq_printf(m, "partition_max_entitled_capacity=%d\n",
  395. partition_potential_processors * 100);
  396. seq_printf(m, "partition_entitled_capacity=%d\n",
  397. partition_active_processors * 100);
  398. }
  399. seq_printf(m, "partition_active_processors=%d\n",
  400. partition_active_processors);
  401. seq_printf(m, "partition_potential_processors=%d\n",
  402. partition_potential_processors);
  403. seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc);
  404. seq_printf(m, "slb_size=%d\n", mmu_slb_size);
  405. parse_em_data(m);
  406. return 0;
  407. }
  408. static ssize_t update_ppp(u64 *entitlement, u8 *weight)
  409. {
  410. struct hvcall_ppp_data ppp_data;
  411. u8 new_weight;
  412. u64 new_entitled;
  413. ssize_t retval;
  414. /* Get our current parameters */
  415. retval = h_get_ppp(&ppp_data);
  416. if (retval)
  417. return retval;
  418. if (entitlement) {
  419. new_weight = ppp_data.weight;
  420. new_entitled = *entitlement;
  421. } else if (weight) {
  422. new_weight = *weight;
  423. new_entitled = ppp_data.entitlement;
  424. } else
  425. return -EINVAL;
  426. pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
  427. __func__, ppp_data.entitlement, ppp_data.weight);
  428. pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
  429. __func__, new_entitled, new_weight);
  430. retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
  431. return retval;
  432. }
  433. /**
  434. * update_mpp
  435. *
  436. * Update the memory entitlement and weight for the partition. Caller must
  437. * specify either a new entitlement or weight, not both, to be updated
  438. * since the h_set_mpp call takes both entitlement and weight as parameters.
  439. */
  440. static ssize_t update_mpp(u64 *entitlement, u8 *weight)
  441. {
  442. struct hvcall_mpp_data mpp_data;
  443. u64 new_entitled;
  444. u8 new_weight;
  445. ssize_t rc;
  446. if (entitlement) {
  447. /* Check with vio to ensure the new memory entitlement
  448. * can be handled.
  449. */
  450. rc = vio_cmo_entitlement_update(*entitlement);
  451. if (rc)
  452. return rc;
  453. }
  454. rc = h_get_mpp(&mpp_data);
  455. if (rc)
  456. return rc;
  457. if (entitlement) {
  458. new_weight = mpp_data.mem_weight;
  459. new_entitled = *entitlement;
  460. } else if (weight) {
  461. new_weight = *weight;
  462. new_entitled = mpp_data.entitled_mem;
  463. } else
  464. return -EINVAL;
  465. pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
  466. __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
  467. pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
  468. __func__, new_entitled, new_weight);
  469. rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
  470. return rc;
  471. }
  472. /*
  473. * Interface for changing system parameters (variable capacity weight
  474. * and entitled capacity). Format of input is "param_name=value";
  475. * anything after value is ignored. Valid parameters at this time are
  476. * "partition_entitled_capacity" and "capacity_weight". We use
  477. * H_SET_PPP to alter parameters.
  478. *
  479. * This function should be invoked only on systems with
  480. * FW_FEATURE_SPLPAR.
  481. */
  482. static ssize_t lparcfg_write(struct file *file, const char __user * buf,
  483. size_t count, loff_t * off)
  484. {
  485. int kbuf_sz = 64;
  486. char kbuf[kbuf_sz];
  487. char *tmp;
  488. u64 new_entitled, *new_entitled_ptr = &new_entitled;
  489. u8 new_weight, *new_weight_ptr = &new_weight;
  490. ssize_t retval;
  491. if (!firmware_has_feature(FW_FEATURE_SPLPAR))
  492. return -EINVAL;
  493. if (count > kbuf_sz)
  494. return -EINVAL;
  495. if (copy_from_user(kbuf, buf, count))
  496. return -EFAULT;
  497. kbuf[count - 1] = '\0';
  498. tmp = strchr(kbuf, '=');
  499. if (!tmp)
  500. return -EINVAL;
  501. *tmp++ = '\0';
  502. if (!strcmp(kbuf, "partition_entitled_capacity")) {
  503. char *endp;
  504. *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
  505. if (endp == tmp)
  506. return -EINVAL;
  507. retval = update_ppp(new_entitled_ptr, NULL);
  508. } else if (!strcmp(kbuf, "capacity_weight")) {
  509. char *endp;
  510. *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
  511. if (endp == tmp)
  512. return -EINVAL;
  513. retval = update_ppp(NULL, new_weight_ptr);
  514. } else if (!strcmp(kbuf, "entitled_memory")) {
  515. char *endp;
  516. *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
  517. if (endp == tmp)
  518. return -EINVAL;
  519. retval = update_mpp(new_entitled_ptr, NULL);
  520. } else if (!strcmp(kbuf, "entitled_memory_weight")) {
  521. char *endp;
  522. *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
  523. if (endp == tmp)
  524. return -EINVAL;
  525. retval = update_mpp(NULL, new_weight_ptr);
  526. } else
  527. return -EINVAL;
  528. if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
  529. retval = count;
  530. } else if (retval == H_BUSY) {
  531. retval = -EBUSY;
  532. } else if (retval == H_HARDWARE) {
  533. retval = -EIO;
  534. } else if (retval == H_PARAMETER) {
  535. retval = -EINVAL;
  536. }
  537. return retval;
  538. }
  539. static int lparcfg_data(struct seq_file *m, void *v)
  540. {
  541. struct device_node *rootdn;
  542. const char *model = "";
  543. const char *system_id = "";
  544. const char *tmp;
  545. const unsigned int *lp_index_ptr;
  546. unsigned int lp_index = 0;
  547. seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
  548. rootdn = of_find_node_by_path("/");
  549. if (rootdn) {
  550. tmp = of_get_property(rootdn, "model", NULL);
  551. if (tmp)
  552. model = tmp;
  553. tmp = of_get_property(rootdn, "system-id", NULL);
  554. if (tmp)
  555. system_id = tmp;
  556. lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
  557. NULL);
  558. if (lp_index_ptr)
  559. lp_index = *lp_index_ptr;
  560. of_node_put(rootdn);
  561. }
  562. seq_printf(m, "serial_number=%s\n", system_id);
  563. seq_printf(m, "system_type=%s\n", model);
  564. seq_printf(m, "partition_id=%d\n", (int)lp_index);
  565. return pseries_lparcfg_data(m, v);
  566. }
  567. static int lparcfg_open(struct inode *inode, struct file *file)
  568. {
  569. return single_open(file, lparcfg_data, NULL);
  570. }
  571. static const struct file_operations lparcfg_fops = {
  572. .owner = THIS_MODULE,
  573. .read = seq_read,
  574. .write = lparcfg_write,
  575. .open = lparcfg_open,
  576. .release = single_release,
  577. .llseek = seq_lseek,
  578. };
  579. static int __init lparcfg_init(void)
  580. {
  581. struct proc_dir_entry *ent;
  582. umode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
  583. /* Allow writing if we have FW_FEATURE_SPLPAR */
  584. if (firmware_has_feature(FW_FEATURE_SPLPAR))
  585. mode |= S_IWUSR;
  586. ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
  587. if (!ent) {
  588. printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
  589. return -EIO;
  590. }
  591. proc_ppc64_lparcfg = ent;
  592. return 0;
  593. }
  594. static void __exit lparcfg_cleanup(void)
  595. {
  596. if (proc_ppc64_lparcfg)
  597. remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
  598. }
  599. module_init(lparcfg_init);
  600. module_exit(lparcfg_cleanup);
  601. MODULE_DESCRIPTION("Interface for LPAR configuration data");
  602. MODULE_AUTHOR("Dave Engebretsen");
  603. MODULE_LICENSE("GPL");