db1000.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /*
  2. * DBAu1000/1500/1100 board support
  3. *
  4. * Copyright 2000, 2008 MontaVista Software Inc.
  5. * Author: MontaVista Software, Inc. <source@mvista.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <linux/dma-mapping.h>
  22. #include <linux/gpio.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/leds.h>
  26. #include <linux/mmc/host.h>
  27. #include <linux/module.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/pm.h>
  30. #include <linux/spi/spi.h>
  31. #include <linux/spi/spi_gpio.h>
  32. #include <linux/spi/ads7846.h>
  33. #include <asm/mach-au1x00/au1000.h>
  34. #include <asm/mach-au1x00/au1000_dma.h>
  35. #include <asm/mach-au1x00/au1100_mmc.h>
  36. #include <asm/mach-db1x00/bcsr.h>
  37. #include <asm/reboot.h>
  38. #include <prom.h>
  39. #include "platform.h"
  40. #define F_SWAPPED (bcsr_read(BCSR_STATUS) & BCSR_STATUS_DB1000_SWAPBOOT)
  41. struct pci_dev;
  42. static const char *board_type_str(void)
  43. {
  44. switch (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI))) {
  45. case BCSR_WHOAMI_DB1000:
  46. return "DB1000";
  47. case BCSR_WHOAMI_DB1500:
  48. return "DB1500";
  49. case BCSR_WHOAMI_DB1100:
  50. return "DB1100";
  51. default:
  52. return "(unknown)";
  53. }
  54. }
  55. const char *get_system_type(void)
  56. {
  57. return board_type_str();
  58. }
  59. void __init board_setup(void)
  60. {
  61. /* initialize board register space */
  62. bcsr_init(DB1000_BCSR_PHYS_ADDR,
  63. DB1000_BCSR_PHYS_ADDR + DB1000_BCSR_HEXLED_OFS);
  64. printk(KERN_INFO "AMD Alchemy %s Board\n", board_type_str());
  65. }
  66. static int db1500_map_pci_irq(const struct pci_dev *d, u8 slot, u8 pin)
  67. {
  68. if ((slot < 12) || (slot > 13) || pin == 0)
  69. return -1;
  70. if (slot == 12)
  71. return (pin == 1) ? AU1500_PCI_INTA : 0xff;
  72. if (slot == 13) {
  73. switch (pin) {
  74. case 1: return AU1500_PCI_INTA;
  75. case 2: return AU1500_PCI_INTB;
  76. case 3: return AU1500_PCI_INTC;
  77. case 4: return AU1500_PCI_INTD;
  78. }
  79. }
  80. return -1;
  81. }
  82. static struct resource alchemy_pci_host_res[] = {
  83. [0] = {
  84. .start = AU1500_PCI_PHYS_ADDR,
  85. .end = AU1500_PCI_PHYS_ADDR + 0xfff,
  86. .flags = IORESOURCE_MEM,
  87. },
  88. };
  89. static struct alchemy_pci_platdata db1500_pci_pd = {
  90. .board_map_irq = db1500_map_pci_irq,
  91. };
  92. static struct platform_device db1500_pci_host_dev = {
  93. .dev.platform_data = &db1500_pci_pd,
  94. .name = "alchemy-pci",
  95. .id = 0,
  96. .num_resources = ARRAY_SIZE(alchemy_pci_host_res),
  97. .resource = alchemy_pci_host_res,
  98. };
  99. static int __init db1500_pci_init(void)
  100. {
  101. if (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI)) == BCSR_WHOAMI_DB1500)
  102. return platform_device_register(&db1500_pci_host_dev);
  103. return 0;
  104. }
  105. /* must be arch_initcall; MIPS PCI scans busses in a subsys_initcall */
  106. arch_initcall(db1500_pci_init);
  107. static struct resource au1100_lcd_resources[] = {
  108. [0] = {
  109. .start = AU1100_LCD_PHYS_ADDR,
  110. .end = AU1100_LCD_PHYS_ADDR + 0x800 - 1,
  111. .flags = IORESOURCE_MEM,
  112. },
  113. [1] = {
  114. .start = AU1100_LCD_INT,
  115. .end = AU1100_LCD_INT,
  116. .flags = IORESOURCE_IRQ,
  117. }
  118. };
  119. static u64 au1100_lcd_dmamask = DMA_BIT_MASK(32);
  120. static struct platform_device au1100_lcd_device = {
  121. .name = "au1100-lcd",
  122. .id = 0,
  123. .dev = {
  124. .dma_mask = &au1100_lcd_dmamask,
  125. .coherent_dma_mask = DMA_BIT_MASK(32),
  126. },
  127. .num_resources = ARRAY_SIZE(au1100_lcd_resources),
  128. .resource = au1100_lcd_resources,
  129. };
  130. static struct resource alchemy_ac97c_res[] = {
  131. [0] = {
  132. .start = AU1000_AC97_PHYS_ADDR,
  133. .end = AU1000_AC97_PHYS_ADDR + 0xfff,
  134. .flags = IORESOURCE_MEM,
  135. },
  136. [1] = {
  137. .start = DMA_ID_AC97C_TX,
  138. .end = DMA_ID_AC97C_TX,
  139. .flags = IORESOURCE_DMA,
  140. },
  141. [2] = {
  142. .start = DMA_ID_AC97C_RX,
  143. .end = DMA_ID_AC97C_RX,
  144. .flags = IORESOURCE_DMA,
  145. },
  146. };
  147. static struct platform_device alchemy_ac97c_dev = {
  148. .name = "alchemy-ac97c",
  149. .id = -1,
  150. .resource = alchemy_ac97c_res,
  151. .num_resources = ARRAY_SIZE(alchemy_ac97c_res),
  152. };
  153. static struct platform_device alchemy_ac97c_dma_dev = {
  154. .name = "alchemy-pcm-dma",
  155. .id = 0,
  156. };
  157. static struct platform_device db1x00_codec_dev = {
  158. .name = "ac97-codec",
  159. .id = -1,
  160. };
  161. static struct platform_device db1x00_audio_dev = {
  162. .name = "db1000-audio",
  163. };
  164. /******************************************************************************/
  165. static irqreturn_t db1100_mmc_cd(int irq, void *ptr)
  166. {
  167. void (*mmc_cd)(struct mmc_host *, unsigned long);
  168. /* link against CONFIG_MMC=m */
  169. mmc_cd = symbol_get(mmc_detect_change);
  170. mmc_cd(ptr, msecs_to_jiffies(500));
  171. symbol_put(mmc_detect_change);
  172. return IRQ_HANDLED;
  173. }
  174. static int db1100_mmc_cd_setup(void *mmc_host, int en)
  175. {
  176. int ret = 0;
  177. if (en) {
  178. irq_set_irq_type(AU1100_GPIO19_INT, IRQ_TYPE_EDGE_BOTH);
  179. ret = request_irq(AU1100_GPIO19_INT, db1100_mmc_cd, 0,
  180. "sd0_cd", mmc_host);
  181. } else
  182. free_irq(AU1100_GPIO19_INT, mmc_host);
  183. return ret;
  184. }
  185. static int db1100_mmc1_cd_setup(void *mmc_host, int en)
  186. {
  187. int ret = 0;
  188. if (en) {
  189. irq_set_irq_type(AU1100_GPIO20_INT, IRQ_TYPE_EDGE_BOTH);
  190. ret = request_irq(AU1100_GPIO20_INT, db1100_mmc_cd, 0,
  191. "sd1_cd", mmc_host);
  192. } else
  193. free_irq(AU1100_GPIO20_INT, mmc_host);
  194. return ret;
  195. }
  196. static int db1100_mmc_card_readonly(void *mmc_host)
  197. {
  198. /* testing suggests that this bit is inverted */
  199. return (bcsr_read(BCSR_STATUS) & BCSR_STATUS_SD0WP) ? 0 : 1;
  200. }
  201. static int db1100_mmc_card_inserted(void *mmc_host)
  202. {
  203. return !alchemy_gpio_get_value(19);
  204. }
  205. static void db1100_mmc_set_power(void *mmc_host, int state)
  206. {
  207. if (state) {
  208. bcsr_mod(BCSR_BOARD, 0, BCSR_BOARD_SD0PWR);
  209. msleep(400); /* stabilization time */
  210. } else
  211. bcsr_mod(BCSR_BOARD, BCSR_BOARD_SD0PWR, 0);
  212. }
  213. static void db1100_mmcled_set(struct led_classdev *led, enum led_brightness b)
  214. {
  215. if (b != LED_OFF)
  216. bcsr_mod(BCSR_LEDS, BCSR_LEDS_LED0, 0);
  217. else
  218. bcsr_mod(BCSR_LEDS, 0, BCSR_LEDS_LED0);
  219. }
  220. static struct led_classdev db1100_mmc_led = {
  221. .brightness_set = db1100_mmcled_set,
  222. };
  223. static int db1100_mmc1_card_readonly(void *mmc_host)
  224. {
  225. return (bcsr_read(BCSR_BOARD) & BCSR_BOARD_SD1WP) ? 1 : 0;
  226. }
  227. static int db1100_mmc1_card_inserted(void *mmc_host)
  228. {
  229. return !alchemy_gpio_get_value(20);
  230. }
  231. static void db1100_mmc1_set_power(void *mmc_host, int state)
  232. {
  233. if (state) {
  234. bcsr_mod(BCSR_BOARD, 0, BCSR_BOARD_SD1PWR);
  235. msleep(400); /* stabilization time */
  236. } else
  237. bcsr_mod(BCSR_BOARD, BCSR_BOARD_SD1PWR, 0);
  238. }
  239. static void db1100_mmc1led_set(struct led_classdev *led, enum led_brightness b)
  240. {
  241. if (b != LED_OFF)
  242. bcsr_mod(BCSR_LEDS, BCSR_LEDS_LED1, 0);
  243. else
  244. bcsr_mod(BCSR_LEDS, 0, BCSR_LEDS_LED1);
  245. }
  246. static struct led_classdev db1100_mmc1_led = {
  247. .brightness_set = db1100_mmc1led_set,
  248. };
  249. static struct au1xmmc_platform_data db1100_mmc_platdata[2] = {
  250. [0] = {
  251. .cd_setup = db1100_mmc_cd_setup,
  252. .set_power = db1100_mmc_set_power,
  253. .card_inserted = db1100_mmc_card_inserted,
  254. .card_readonly = db1100_mmc_card_readonly,
  255. .led = &db1100_mmc_led,
  256. },
  257. [1] = {
  258. .cd_setup = db1100_mmc1_cd_setup,
  259. .set_power = db1100_mmc1_set_power,
  260. .card_inserted = db1100_mmc1_card_inserted,
  261. .card_readonly = db1100_mmc1_card_readonly,
  262. .led = &db1100_mmc1_led,
  263. },
  264. };
  265. static struct resource au1100_mmc0_resources[] = {
  266. [0] = {
  267. .start = AU1100_SD0_PHYS_ADDR,
  268. .end = AU1100_SD0_PHYS_ADDR + 0xfff,
  269. .flags = IORESOURCE_MEM,
  270. },
  271. [1] = {
  272. .start = AU1100_SD_INT,
  273. .end = AU1100_SD_INT,
  274. .flags = IORESOURCE_IRQ,
  275. },
  276. [2] = {
  277. .start = DMA_ID_SD0_TX,
  278. .end = DMA_ID_SD0_TX,
  279. .flags = IORESOURCE_DMA,
  280. },
  281. [3] = {
  282. .start = DMA_ID_SD0_RX,
  283. .end = DMA_ID_SD0_RX,
  284. .flags = IORESOURCE_DMA,
  285. }
  286. };
  287. static u64 au1xxx_mmc_dmamask = DMA_BIT_MASK(32);
  288. static struct platform_device db1100_mmc0_dev = {
  289. .name = "au1xxx-mmc",
  290. .id = 0,
  291. .dev = {
  292. .dma_mask = &au1xxx_mmc_dmamask,
  293. .coherent_dma_mask = DMA_BIT_MASK(32),
  294. .platform_data = &db1100_mmc_platdata[0],
  295. },
  296. .num_resources = ARRAY_SIZE(au1100_mmc0_resources),
  297. .resource = au1100_mmc0_resources,
  298. };
  299. static struct resource au1100_mmc1_res[] = {
  300. [0] = {
  301. .start = AU1100_SD1_PHYS_ADDR,
  302. .end = AU1100_SD1_PHYS_ADDR + 0xfff,
  303. .flags = IORESOURCE_MEM,
  304. },
  305. [1] = {
  306. .start = AU1100_SD_INT,
  307. .end = AU1100_SD_INT,
  308. .flags = IORESOURCE_IRQ,
  309. },
  310. [2] = {
  311. .start = DMA_ID_SD1_TX,
  312. .end = DMA_ID_SD1_TX,
  313. .flags = IORESOURCE_DMA,
  314. },
  315. [3] = {
  316. .start = DMA_ID_SD1_RX,
  317. .end = DMA_ID_SD1_RX,
  318. .flags = IORESOURCE_DMA,
  319. }
  320. };
  321. static struct platform_device db1100_mmc1_dev = {
  322. .name = "au1xxx-mmc",
  323. .id = 1,
  324. .dev = {
  325. .dma_mask = &au1xxx_mmc_dmamask,
  326. .coherent_dma_mask = DMA_BIT_MASK(32),
  327. .platform_data = &db1100_mmc_platdata[1],
  328. },
  329. .num_resources = ARRAY_SIZE(au1100_mmc1_res),
  330. .resource = au1100_mmc1_res,
  331. };
  332. /******************************************************************************/
  333. static void db1000_irda_set_phy_mode(int mode)
  334. {
  335. unsigned short mask = BCSR_RESETS_IRDA_MODE_MASK | BCSR_RESETS_FIR_SEL;
  336. switch (mode) {
  337. case AU1000_IRDA_PHY_MODE_OFF:
  338. bcsr_mod(BCSR_RESETS, mask, BCSR_RESETS_IRDA_MODE_OFF);
  339. break;
  340. case AU1000_IRDA_PHY_MODE_SIR:
  341. bcsr_mod(BCSR_RESETS, mask, BCSR_RESETS_IRDA_MODE_FULL);
  342. break;
  343. case AU1000_IRDA_PHY_MODE_FIR:
  344. bcsr_mod(BCSR_RESETS, mask, BCSR_RESETS_IRDA_MODE_FULL |
  345. BCSR_RESETS_FIR_SEL);
  346. break;
  347. }
  348. }
  349. static struct au1k_irda_platform_data db1000_irda_platdata = {
  350. .set_phy_mode = db1000_irda_set_phy_mode,
  351. };
  352. static struct resource au1000_irda_res[] = {
  353. [0] = {
  354. .start = AU1000_IRDA_PHYS_ADDR,
  355. .end = AU1000_IRDA_PHYS_ADDR + 0x0fff,
  356. .flags = IORESOURCE_MEM,
  357. },
  358. [1] = {
  359. .start = AU1000_IRDA_TX_INT,
  360. .end = AU1000_IRDA_TX_INT,
  361. .flags = IORESOURCE_IRQ,
  362. },
  363. [2] = {
  364. .start = AU1000_IRDA_RX_INT,
  365. .end = AU1000_IRDA_RX_INT,
  366. .flags = IORESOURCE_IRQ,
  367. },
  368. };
  369. static struct platform_device db1000_irda_dev = {
  370. .name = "au1000-irda",
  371. .id = -1,
  372. .dev = {
  373. .platform_data = &db1000_irda_platdata,
  374. },
  375. .resource = au1000_irda_res,
  376. .num_resources = ARRAY_SIZE(au1000_irda_res),
  377. };
  378. /******************************************************************************/
  379. static struct ads7846_platform_data db1100_touch_pd = {
  380. .model = 7846,
  381. .vref_mv = 3300,
  382. .gpio_pendown = 21,
  383. };
  384. static struct spi_gpio_platform_data db1100_spictl_pd = {
  385. .sck = 209,
  386. .mosi = 208,
  387. .miso = 207,
  388. .num_chipselect = 1,
  389. };
  390. static struct spi_board_info db1100_spi_info[] __initdata = {
  391. [0] = {
  392. .modalias = "ads7846",
  393. .max_speed_hz = 3250000,
  394. .bus_num = 0,
  395. .chip_select = 0,
  396. .mode = 0,
  397. .irq = AU1100_GPIO21_INT,
  398. .platform_data = &db1100_touch_pd,
  399. .controller_data = (void *)210, /* for spi_gpio: CS# GPIO210 */
  400. },
  401. };
  402. static struct platform_device db1100_spi_dev = {
  403. .name = "spi_gpio",
  404. .id = 0,
  405. .dev = {
  406. .platform_data = &db1100_spictl_pd,
  407. },
  408. };
  409. static struct platform_device *db1x00_devs[] = {
  410. &db1x00_codec_dev,
  411. &alchemy_ac97c_dma_dev,
  412. &alchemy_ac97c_dev,
  413. &db1x00_audio_dev,
  414. };
  415. static struct platform_device *db1000_devs[] = {
  416. &db1000_irda_dev,
  417. };
  418. static struct platform_device *db1100_devs[] = {
  419. &au1100_lcd_device,
  420. &db1100_mmc0_dev,
  421. &db1100_mmc1_dev,
  422. &db1000_irda_dev,
  423. &db1100_spi_dev,
  424. };
  425. static int __init db1000_dev_init(void)
  426. {
  427. int board = BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI));
  428. int c0, c1, d0, d1, s0, s1;
  429. unsigned long pfc;
  430. if (board == BCSR_WHOAMI_DB1500) {
  431. c0 = AU1500_GPIO2_INT;
  432. c1 = AU1500_GPIO5_INT;
  433. d0 = AU1500_GPIO0_INT;
  434. d1 = AU1500_GPIO3_INT;
  435. s0 = AU1500_GPIO1_INT;
  436. s1 = AU1500_GPIO4_INT;
  437. } else if (board == BCSR_WHOAMI_DB1100) {
  438. c0 = AU1100_GPIO2_INT;
  439. c1 = AU1100_GPIO5_INT;
  440. d0 = AU1100_GPIO0_INT;
  441. d1 = AU1100_GPIO3_INT;
  442. s0 = AU1100_GPIO1_INT;
  443. s1 = AU1100_GPIO4_INT;
  444. gpio_direction_input(19); /* sd0 cd# */
  445. gpio_direction_input(20); /* sd1 cd# */
  446. gpio_direction_input(21); /* touch pendown# */
  447. gpio_direction_input(207); /* SPI MISO */
  448. gpio_direction_output(208, 0); /* SPI MOSI */
  449. gpio_direction_output(209, 1); /* SPI SCK */
  450. gpio_direction_output(210, 1); /* SPI CS# */
  451. /* spi_gpio on SSI0 pins */
  452. pfc = __raw_readl((void __iomem *)SYS_PINFUNC);
  453. pfc |= (1 << 0); /* SSI0 pins as GPIOs */
  454. __raw_writel(pfc, (void __iomem *)SYS_PINFUNC);
  455. wmb();
  456. spi_register_board_info(db1100_spi_info,
  457. ARRAY_SIZE(db1100_spi_info));
  458. platform_add_devices(db1100_devs, ARRAY_SIZE(db1100_devs));
  459. } else if (board == BCSR_WHOAMI_DB1000) {
  460. c0 = AU1000_GPIO2_INT;
  461. c1 = AU1000_GPIO5_INT;
  462. d0 = AU1000_GPIO0_INT;
  463. d1 = AU1000_GPIO3_INT;
  464. s0 = AU1000_GPIO1_INT;
  465. s1 = AU1000_GPIO4_INT;
  466. platform_add_devices(db1000_devs, ARRAY_SIZE(db1000_devs));
  467. } else
  468. return 0; /* unknown board, no further dev setup to do */
  469. irq_set_irq_type(d0, IRQ_TYPE_EDGE_BOTH);
  470. irq_set_irq_type(d1, IRQ_TYPE_EDGE_BOTH);
  471. irq_set_irq_type(c0, IRQ_TYPE_LEVEL_LOW);
  472. irq_set_irq_type(c1, IRQ_TYPE_LEVEL_LOW);
  473. irq_set_irq_type(s0, IRQ_TYPE_LEVEL_LOW);
  474. irq_set_irq_type(s1, IRQ_TYPE_LEVEL_LOW);
  475. db1x_register_pcmcia_socket(
  476. AU1000_PCMCIA_ATTR_PHYS_ADDR,
  477. AU1000_PCMCIA_ATTR_PHYS_ADDR + 0x000400000 - 1,
  478. AU1000_PCMCIA_MEM_PHYS_ADDR,
  479. AU1000_PCMCIA_MEM_PHYS_ADDR + 0x000400000 - 1,
  480. AU1000_PCMCIA_IO_PHYS_ADDR,
  481. AU1000_PCMCIA_IO_PHYS_ADDR + 0x000010000 - 1,
  482. c0, d0, /*s0*/0, 0, 0);
  483. db1x_register_pcmcia_socket(
  484. AU1000_PCMCIA_ATTR_PHYS_ADDR + 0x004000000,
  485. AU1000_PCMCIA_ATTR_PHYS_ADDR + 0x004400000 - 1,
  486. AU1000_PCMCIA_MEM_PHYS_ADDR + 0x004000000,
  487. AU1000_PCMCIA_MEM_PHYS_ADDR + 0x004400000 - 1,
  488. AU1000_PCMCIA_IO_PHYS_ADDR + 0x004000000,
  489. AU1000_PCMCIA_IO_PHYS_ADDR + 0x004010000 - 1,
  490. c1, d1, /*s1*/0, 0, 1);
  491. platform_add_devices(db1x00_devs, ARRAY_SIZE(db1x00_devs));
  492. db1x_register_norflash(32 << 20, 4 /* 32bit */, F_SWAPPED);
  493. return 0;
  494. }
  495. device_initcall(db1000_dev_init);