contig.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/memblock.h>
  20. #include <linux/mm.h>
  21. #include <linux/nmi.h>
  22. #include <linux/swap.h>
  23. #include <asm/meminit.h>
  24. #include <asm/pgalloc.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/sections.h>
  27. #include <asm/mca.h>
  28. #ifdef CONFIG_VIRTUAL_MEM_MAP
  29. static unsigned long max_gap;
  30. #endif
  31. /**
  32. * show_mem - give short summary of memory stats
  33. *
  34. * Shows a simple page count of reserved and used pages in the system.
  35. * For discontig machines, it does this on a per-pgdat basis.
  36. */
  37. void show_mem(unsigned int filter)
  38. {
  39. int i, total_reserved = 0;
  40. int total_shared = 0, total_cached = 0;
  41. unsigned long total_present = 0;
  42. pg_data_t *pgdat;
  43. printk(KERN_INFO "Mem-info:\n");
  44. show_free_areas(filter);
  45. printk(KERN_INFO "Node memory in pages:\n");
  46. for_each_online_pgdat(pgdat) {
  47. unsigned long present;
  48. unsigned long flags;
  49. int shared = 0, cached = 0, reserved = 0;
  50. int nid = pgdat->node_id;
  51. if (skip_free_areas_node(filter, nid))
  52. continue;
  53. pgdat_resize_lock(pgdat, &flags);
  54. present = pgdat->node_present_pages;
  55. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  56. struct page *page;
  57. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  58. touch_nmi_watchdog();
  59. if (pfn_valid(pgdat->node_start_pfn + i))
  60. page = pfn_to_page(pgdat->node_start_pfn + i);
  61. else {
  62. #ifdef CONFIG_VIRTUAL_MEM_MAP
  63. if (max_gap < LARGE_GAP)
  64. continue;
  65. #endif
  66. i = vmemmap_find_next_valid_pfn(nid, i) - 1;
  67. continue;
  68. }
  69. if (PageReserved(page))
  70. reserved++;
  71. else if (PageSwapCache(page))
  72. cached++;
  73. else if (page_count(page))
  74. shared += page_count(page)-1;
  75. }
  76. pgdat_resize_unlock(pgdat, &flags);
  77. total_present += present;
  78. total_reserved += reserved;
  79. total_cached += cached;
  80. total_shared += shared;
  81. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  82. "shrd: %10d, swpd: %10d\n", nid,
  83. present, reserved, shared, cached);
  84. }
  85. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  86. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  87. printk(KERN_INFO "%d pages shared\n", total_shared);
  88. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  89. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  90. quicklist_total_size());
  91. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  92. }
  93. /* physical address where the bootmem map is located */
  94. unsigned long bootmap_start;
  95. /**
  96. * find_bootmap_location - callback to find a memory area for the bootmap
  97. * @start: start of region
  98. * @end: end of region
  99. * @arg: unused callback data
  100. *
  101. * Find a place to put the bootmap and return its starting address in
  102. * bootmap_start. This address must be page-aligned.
  103. */
  104. static int __init
  105. find_bootmap_location (u64 start, u64 end, void *arg)
  106. {
  107. u64 needed = *(unsigned long *)arg;
  108. u64 range_start, range_end, free_start;
  109. int i;
  110. #if IGNORE_PFN0
  111. if (start == PAGE_OFFSET) {
  112. start += PAGE_SIZE;
  113. if (start >= end)
  114. return 0;
  115. }
  116. #endif
  117. free_start = PAGE_OFFSET;
  118. for (i = 0; i < num_rsvd_regions; i++) {
  119. range_start = max(start, free_start);
  120. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  121. free_start = PAGE_ALIGN(rsvd_region[i].end);
  122. if (range_end <= range_start)
  123. continue; /* skip over empty range */
  124. if (range_end - range_start >= needed) {
  125. bootmap_start = __pa(range_start);
  126. return -1; /* done */
  127. }
  128. /* nothing more available in this segment */
  129. if (range_end == end)
  130. return 0;
  131. }
  132. return 0;
  133. }
  134. #ifdef CONFIG_SMP
  135. static void *cpu_data;
  136. /**
  137. * per_cpu_init - setup per-cpu variables
  138. *
  139. * Allocate and setup per-cpu data areas.
  140. */
  141. void * __cpuinit
  142. per_cpu_init (void)
  143. {
  144. static bool first_time = true;
  145. void *cpu0_data = __cpu0_per_cpu;
  146. unsigned int cpu;
  147. if (!first_time)
  148. goto skip;
  149. first_time = false;
  150. /*
  151. * get_free_pages() cannot be used before cpu_init() done.
  152. * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
  153. * to avoid that AP calls get_zeroed_page().
  154. */
  155. for_each_possible_cpu(cpu) {
  156. void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
  157. memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
  158. __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
  159. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  160. /*
  161. * percpu area for cpu0 is moved from the __init area
  162. * which is setup by head.S and used till this point.
  163. * Update ar.k3. This move is ensures that percpu
  164. * area for cpu0 is on the correct node and its
  165. * virtual address isn't insanely far from other
  166. * percpu areas which is important for congruent
  167. * percpu allocator.
  168. */
  169. if (cpu == 0)
  170. ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
  171. (unsigned long)__per_cpu_start);
  172. cpu_data += PERCPU_PAGE_SIZE;
  173. }
  174. skip:
  175. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  176. }
  177. static inline void
  178. alloc_per_cpu_data(void)
  179. {
  180. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
  181. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  182. }
  183. /**
  184. * setup_per_cpu_areas - setup percpu areas
  185. *
  186. * Arch code has already allocated and initialized percpu areas. All
  187. * this function has to do is to teach the determined layout to the
  188. * dynamic percpu allocator, which happens to be more complex than
  189. * creating whole new ones using helpers.
  190. */
  191. void __init
  192. setup_per_cpu_areas(void)
  193. {
  194. struct pcpu_alloc_info *ai;
  195. struct pcpu_group_info *gi;
  196. unsigned int cpu;
  197. ssize_t static_size, reserved_size, dyn_size;
  198. int rc;
  199. ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
  200. if (!ai)
  201. panic("failed to allocate pcpu_alloc_info");
  202. gi = &ai->groups[0];
  203. /* units are assigned consecutively to possible cpus */
  204. for_each_possible_cpu(cpu)
  205. gi->cpu_map[gi->nr_units++] = cpu;
  206. /* set parameters */
  207. static_size = __per_cpu_end - __per_cpu_start;
  208. reserved_size = PERCPU_MODULE_RESERVE;
  209. dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
  210. if (dyn_size < 0)
  211. panic("percpu area overflow static=%zd reserved=%zd\n",
  212. static_size, reserved_size);
  213. ai->static_size = static_size;
  214. ai->reserved_size = reserved_size;
  215. ai->dyn_size = dyn_size;
  216. ai->unit_size = PERCPU_PAGE_SIZE;
  217. ai->atom_size = PAGE_SIZE;
  218. ai->alloc_size = PERCPU_PAGE_SIZE;
  219. rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
  220. if (rc)
  221. panic("failed to setup percpu area (err=%d)", rc);
  222. pcpu_free_alloc_info(ai);
  223. }
  224. #else
  225. #define alloc_per_cpu_data() do { } while (0)
  226. #endif /* CONFIG_SMP */
  227. /**
  228. * find_memory - setup memory map
  229. *
  230. * Walk the EFI memory map and find usable memory for the system, taking
  231. * into account reserved areas.
  232. */
  233. void __init
  234. find_memory (void)
  235. {
  236. unsigned long bootmap_size;
  237. reserve_memory();
  238. /* first find highest page frame number */
  239. min_low_pfn = ~0UL;
  240. max_low_pfn = 0;
  241. efi_memmap_walk(find_max_min_low_pfn, NULL);
  242. max_pfn = max_low_pfn;
  243. /* how many bytes to cover all the pages */
  244. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  245. /* look for a location to hold the bootmap */
  246. bootmap_start = ~0UL;
  247. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  248. if (bootmap_start == ~0UL)
  249. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  250. bootmap_size = init_bootmem_node(NODE_DATA(0),
  251. (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
  252. /* Free all available memory, then mark bootmem-map as being in use. */
  253. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  254. reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
  255. find_initrd();
  256. alloc_per_cpu_data();
  257. }
  258. static int count_pages(u64 start, u64 end, void *arg)
  259. {
  260. unsigned long *count = arg;
  261. *count += (end - start) >> PAGE_SHIFT;
  262. return 0;
  263. }
  264. /*
  265. * Set up the page tables.
  266. */
  267. void __init
  268. paging_init (void)
  269. {
  270. unsigned long max_dma;
  271. unsigned long max_zone_pfns[MAX_NR_ZONES];
  272. num_physpages = 0;
  273. efi_memmap_walk(count_pages, &num_physpages);
  274. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  275. #ifdef CONFIG_ZONE_DMA
  276. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  277. max_zone_pfns[ZONE_DMA] = max_dma;
  278. #endif
  279. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  280. #ifdef CONFIG_VIRTUAL_MEM_MAP
  281. efi_memmap_walk(filter_memory, register_active_ranges);
  282. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  283. if (max_gap < LARGE_GAP) {
  284. vmem_map = (struct page *) 0;
  285. free_area_init_nodes(max_zone_pfns);
  286. } else {
  287. unsigned long map_size;
  288. /* allocate virtual_mem_map */
  289. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  290. sizeof(struct page));
  291. VMALLOC_END -= map_size;
  292. vmem_map = (struct page *) VMALLOC_END;
  293. efi_memmap_walk(create_mem_map_page_table, NULL);
  294. /*
  295. * alloc_node_mem_map makes an adjustment for mem_map
  296. * which isn't compatible with vmem_map.
  297. */
  298. NODE_DATA(0)->node_mem_map = vmem_map +
  299. find_min_pfn_with_active_regions();
  300. free_area_init_nodes(max_zone_pfns);
  301. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  302. }
  303. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  304. memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
  305. free_area_init_nodes(max_zone_pfns);
  306. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  307. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  308. }