mmu.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <linux/vmalloc.h>
  19. #include <asm/cp15.h>
  20. #include <asm/cputype.h>
  21. #include <asm/sections.h>
  22. #include <asm/cachetype.h>
  23. #include <asm/setup.h>
  24. #include <asm/sizes.h>
  25. #include <asm/smp_plat.h>
  26. #include <asm/tlb.h>
  27. #include <asm/highmem.h>
  28. #include <asm/system_info.h>
  29. #include <asm/traps.h>
  30. #include <asm/mach/arch.h>
  31. #include <asm/mach/map.h>
  32. #include "mm.h"
  33. /*
  34. * empty_zero_page is a special page that is used for
  35. * zero-initialized data and COW.
  36. */
  37. struct page *empty_zero_page;
  38. EXPORT_SYMBOL(empty_zero_page);
  39. /*
  40. * The pmd table for the upper-most set of pages.
  41. */
  42. pmd_t *top_pmd;
  43. #define CPOLICY_UNCACHED 0
  44. #define CPOLICY_BUFFERED 1
  45. #define CPOLICY_WRITETHROUGH 2
  46. #define CPOLICY_WRITEBACK 3
  47. #define CPOLICY_WRITEALLOC 4
  48. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  49. static unsigned int ecc_mask __initdata = 0;
  50. pgprot_t pgprot_user;
  51. pgprot_t pgprot_kernel;
  52. EXPORT_SYMBOL(pgprot_user);
  53. EXPORT_SYMBOL(pgprot_kernel);
  54. struct cachepolicy {
  55. const char policy[16];
  56. unsigned int cr_mask;
  57. pmdval_t pmd;
  58. pteval_t pte;
  59. };
  60. static struct cachepolicy cache_policies[] __initdata = {
  61. {
  62. .policy = "uncached",
  63. .cr_mask = CR_W|CR_C,
  64. .pmd = PMD_SECT_UNCACHED,
  65. .pte = L_PTE_MT_UNCACHED,
  66. }, {
  67. .policy = "buffered",
  68. .cr_mask = CR_C,
  69. .pmd = PMD_SECT_BUFFERED,
  70. .pte = L_PTE_MT_BUFFERABLE,
  71. }, {
  72. .policy = "writethrough",
  73. .cr_mask = 0,
  74. .pmd = PMD_SECT_WT,
  75. .pte = L_PTE_MT_WRITETHROUGH,
  76. }, {
  77. .policy = "writeback",
  78. .cr_mask = 0,
  79. .pmd = PMD_SECT_WB,
  80. .pte = L_PTE_MT_WRITEBACK,
  81. }, {
  82. .policy = "writealloc",
  83. .cr_mask = 0,
  84. .pmd = PMD_SECT_WBWA,
  85. .pte = L_PTE_MT_WRITEALLOC,
  86. }
  87. };
  88. /*
  89. * These are useful for identifying cache coherency
  90. * problems by allowing the cache or the cache and
  91. * writebuffer to be turned off. (Note: the write
  92. * buffer should not be on and the cache off).
  93. */
  94. static int __init early_cachepolicy(char *p)
  95. {
  96. int i;
  97. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  98. int len = strlen(cache_policies[i].policy);
  99. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  100. cachepolicy = i;
  101. cr_alignment &= ~cache_policies[i].cr_mask;
  102. cr_no_alignment &= ~cache_policies[i].cr_mask;
  103. break;
  104. }
  105. }
  106. if (i == ARRAY_SIZE(cache_policies))
  107. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  108. /*
  109. * This restriction is partly to do with the way we boot; it is
  110. * unpredictable to have memory mapped using two different sets of
  111. * memory attributes (shared, type, and cache attribs). We can not
  112. * change these attributes once the initial assembly has setup the
  113. * page tables.
  114. */
  115. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  116. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  117. cachepolicy = CPOLICY_WRITEBACK;
  118. }
  119. flush_cache_all();
  120. set_cr(cr_alignment);
  121. return 0;
  122. }
  123. early_param("cachepolicy", early_cachepolicy);
  124. static int __init early_nocache(char *__unused)
  125. {
  126. char *p = "buffered";
  127. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  128. early_cachepolicy(p);
  129. return 0;
  130. }
  131. early_param("nocache", early_nocache);
  132. static int __init early_nowrite(char *__unused)
  133. {
  134. char *p = "uncached";
  135. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  136. early_cachepolicy(p);
  137. return 0;
  138. }
  139. early_param("nowb", early_nowrite);
  140. #ifndef CONFIG_ARM_LPAE
  141. static int __init early_ecc(char *p)
  142. {
  143. if (memcmp(p, "on", 2) == 0)
  144. ecc_mask = PMD_PROTECTION;
  145. else if (memcmp(p, "off", 3) == 0)
  146. ecc_mask = 0;
  147. return 0;
  148. }
  149. early_param("ecc", early_ecc);
  150. #endif
  151. static int __init noalign_setup(char *__unused)
  152. {
  153. cr_alignment &= ~CR_A;
  154. cr_no_alignment &= ~CR_A;
  155. set_cr(cr_alignment);
  156. return 1;
  157. }
  158. __setup("noalign", noalign_setup);
  159. #ifndef CONFIG_SMP
  160. void adjust_cr(unsigned long mask, unsigned long set)
  161. {
  162. unsigned long flags;
  163. mask &= ~CR_A;
  164. set &= mask;
  165. local_irq_save(flags);
  166. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  167. cr_alignment = (cr_alignment & ~mask) | set;
  168. set_cr((get_cr() & ~mask) | set);
  169. local_irq_restore(flags);
  170. }
  171. #endif
  172. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  173. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  174. static struct mem_type mem_types[] = {
  175. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  176. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  177. L_PTE_SHARED,
  178. .prot_l1 = PMD_TYPE_TABLE,
  179. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  180. .domain = DOMAIN_IO,
  181. },
  182. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  183. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  184. .prot_l1 = PMD_TYPE_TABLE,
  185. .prot_sect = PROT_SECT_DEVICE,
  186. .domain = DOMAIN_IO,
  187. },
  188. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  189. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  190. .prot_l1 = PMD_TYPE_TABLE,
  191. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  192. .domain = DOMAIN_IO,
  193. },
  194. [MT_DEVICE_WC] = { /* ioremap_wc */
  195. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  196. .prot_l1 = PMD_TYPE_TABLE,
  197. .prot_sect = PROT_SECT_DEVICE,
  198. .domain = DOMAIN_IO,
  199. },
  200. [MT_UNCACHED] = {
  201. .prot_pte = PROT_PTE_DEVICE,
  202. .prot_l1 = PMD_TYPE_TABLE,
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_IO,
  205. },
  206. [MT_CACHECLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. #ifndef CONFIG_ARM_LPAE
  211. [MT_MINICLEAN] = {
  212. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  213. .domain = DOMAIN_KERNEL,
  214. },
  215. #endif
  216. [MT_LOW_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_RDONLY,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_HIGH_VECTORS] = {
  223. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  224. L_PTE_USER | L_PTE_RDONLY,
  225. .prot_l1 = PMD_TYPE_TABLE,
  226. .domain = DOMAIN_USER,
  227. },
  228. [MT_MEMORY] = {
  229. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  230. .prot_l1 = PMD_TYPE_TABLE,
  231. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  232. .domain = DOMAIN_KERNEL,
  233. },
  234. [MT_ROM] = {
  235. .prot_sect = PMD_TYPE_SECT,
  236. .domain = DOMAIN_KERNEL,
  237. },
  238. [MT_MEMORY_NONCACHED] = {
  239. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  240. L_PTE_MT_BUFFERABLE,
  241. .prot_l1 = PMD_TYPE_TABLE,
  242. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  243. .domain = DOMAIN_KERNEL,
  244. },
  245. [MT_MEMORY_DTCM] = {
  246. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  247. L_PTE_XN,
  248. .prot_l1 = PMD_TYPE_TABLE,
  249. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  250. .domain = DOMAIN_KERNEL,
  251. },
  252. [MT_MEMORY_ITCM] = {
  253. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  254. .prot_l1 = PMD_TYPE_TABLE,
  255. .domain = DOMAIN_KERNEL,
  256. },
  257. [MT_MEMORY_SO] = {
  258. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  259. L_PTE_MT_UNCACHED,
  260. .prot_l1 = PMD_TYPE_TABLE,
  261. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
  262. PMD_SECT_UNCACHED | PMD_SECT_XN,
  263. .domain = DOMAIN_KERNEL,
  264. },
  265. };
  266. const struct mem_type *get_mem_type(unsigned int type)
  267. {
  268. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  269. }
  270. EXPORT_SYMBOL(get_mem_type);
  271. /*
  272. * Adjust the PMD section entries according to the CPU in use.
  273. */
  274. static void __init build_mem_type_table(void)
  275. {
  276. struct cachepolicy *cp;
  277. unsigned int cr = get_cr();
  278. pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
  279. int cpu_arch = cpu_architecture();
  280. int i;
  281. if (cpu_arch < CPU_ARCH_ARMv6) {
  282. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  283. if (cachepolicy > CPOLICY_BUFFERED)
  284. cachepolicy = CPOLICY_BUFFERED;
  285. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  286. if (cachepolicy > CPOLICY_WRITETHROUGH)
  287. cachepolicy = CPOLICY_WRITETHROUGH;
  288. #endif
  289. }
  290. if (cpu_arch < CPU_ARCH_ARMv5) {
  291. if (cachepolicy >= CPOLICY_WRITEALLOC)
  292. cachepolicy = CPOLICY_WRITEBACK;
  293. ecc_mask = 0;
  294. }
  295. if (is_smp())
  296. cachepolicy = CPOLICY_WRITEALLOC;
  297. /*
  298. * Strip out features not present on earlier architectures.
  299. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  300. * without extended page tables don't have the 'Shared' bit.
  301. */
  302. if (cpu_arch < CPU_ARCH_ARMv5)
  303. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  304. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  305. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  306. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  307. mem_types[i].prot_sect &= ~PMD_SECT_S;
  308. /*
  309. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  310. * "update-able on write" bit on ARM610). However, Xscale and
  311. * Xscale3 require this bit to be cleared.
  312. */
  313. if (cpu_is_xscale() || cpu_is_xsc3()) {
  314. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  315. mem_types[i].prot_sect &= ~PMD_BIT4;
  316. mem_types[i].prot_l1 &= ~PMD_BIT4;
  317. }
  318. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  319. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  320. if (mem_types[i].prot_l1)
  321. mem_types[i].prot_l1 |= PMD_BIT4;
  322. if (mem_types[i].prot_sect)
  323. mem_types[i].prot_sect |= PMD_BIT4;
  324. }
  325. }
  326. /*
  327. * Mark the device areas according to the CPU/architecture.
  328. */
  329. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  330. if (!cpu_is_xsc3()) {
  331. /*
  332. * Mark device regions on ARMv6+ as execute-never
  333. * to prevent speculative instruction fetches.
  334. */
  335. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  336. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  337. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  338. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  339. }
  340. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  341. /*
  342. * For ARMv7 with TEX remapping,
  343. * - shared device is SXCB=1100
  344. * - nonshared device is SXCB=0100
  345. * - write combine device mem is SXCB=0001
  346. * (Uncached Normal memory)
  347. */
  348. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  349. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  350. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  351. } else if (cpu_is_xsc3()) {
  352. /*
  353. * For Xscale3,
  354. * - shared device is TEXCB=00101
  355. * - nonshared device is TEXCB=01000
  356. * - write combine device mem is TEXCB=00100
  357. * (Inner/Outer Uncacheable in xsc3 parlance)
  358. */
  359. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  360. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  361. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  362. } else {
  363. /*
  364. * For ARMv6 and ARMv7 without TEX remapping,
  365. * - shared device is TEXCB=00001
  366. * - nonshared device is TEXCB=01000
  367. * - write combine device mem is TEXCB=00100
  368. * (Uncached Normal in ARMv6 parlance).
  369. */
  370. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  371. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  372. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  373. }
  374. } else {
  375. /*
  376. * On others, write combining is "Uncached/Buffered"
  377. */
  378. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  379. }
  380. /*
  381. * Now deal with the memory-type mappings
  382. */
  383. cp = &cache_policies[cachepolicy];
  384. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  385. /*
  386. * Only use write-through for non-SMP systems
  387. */
  388. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  389. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  390. /*
  391. * Enable CPU-specific coherency if supported.
  392. * (Only available on XSC3 at the moment.)
  393. */
  394. if (arch_is_coherent() && cpu_is_xsc3()) {
  395. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  396. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  397. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  398. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  399. }
  400. /*
  401. * ARMv6 and above have extended page tables.
  402. */
  403. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  404. #ifndef CONFIG_ARM_LPAE
  405. /*
  406. * Mark cache clean areas and XIP ROM read only
  407. * from SVC mode and no access from userspace.
  408. */
  409. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  410. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  411. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  412. #endif
  413. if (is_smp()) {
  414. /*
  415. * Mark memory with the "shared" attribute
  416. * for SMP systems
  417. */
  418. user_pgprot |= L_PTE_SHARED;
  419. kern_pgprot |= L_PTE_SHARED;
  420. vecs_pgprot |= L_PTE_SHARED;
  421. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  422. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  423. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  424. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  425. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  426. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  427. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  428. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  429. }
  430. }
  431. /*
  432. * Non-cacheable Normal - intended for memory areas that must
  433. * not cause dirty cache line writebacks when used
  434. */
  435. if (cpu_arch >= CPU_ARCH_ARMv6) {
  436. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  437. /* Non-cacheable Normal is XCB = 001 */
  438. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  439. PMD_SECT_BUFFERED;
  440. } else {
  441. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  442. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  443. PMD_SECT_TEX(1);
  444. }
  445. } else {
  446. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  447. }
  448. #ifdef CONFIG_ARM_LPAE
  449. /*
  450. * Do not generate access flag faults for the kernel mappings.
  451. */
  452. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  453. mem_types[i].prot_pte |= PTE_EXT_AF;
  454. mem_types[i].prot_sect |= PMD_SECT_AF;
  455. }
  456. kern_pgprot |= PTE_EXT_AF;
  457. vecs_pgprot |= PTE_EXT_AF;
  458. #endif
  459. for (i = 0; i < 16; i++) {
  460. unsigned long v = pgprot_val(protection_map[i]);
  461. protection_map[i] = __pgprot(v | user_pgprot);
  462. }
  463. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  464. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  465. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  466. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  467. L_PTE_DIRTY | kern_pgprot);
  468. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  469. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  470. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  471. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  472. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  473. mem_types[MT_ROM].prot_sect |= cp->pmd;
  474. switch (cp->pmd) {
  475. case PMD_SECT_WT:
  476. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  477. break;
  478. case PMD_SECT_WB:
  479. case PMD_SECT_WBWA:
  480. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  481. break;
  482. }
  483. printk("Memory policy: ECC %sabled, Data cache %s\n",
  484. ecc_mask ? "en" : "dis", cp->policy);
  485. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  486. struct mem_type *t = &mem_types[i];
  487. if (t->prot_l1)
  488. t->prot_l1 |= PMD_DOMAIN(t->domain);
  489. if (t->prot_sect)
  490. t->prot_sect |= PMD_DOMAIN(t->domain);
  491. }
  492. }
  493. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  494. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  495. unsigned long size, pgprot_t vma_prot)
  496. {
  497. if (!pfn_valid(pfn))
  498. return pgprot_noncached(vma_prot);
  499. else if (file->f_flags & O_SYNC)
  500. return pgprot_writecombine(vma_prot);
  501. return vma_prot;
  502. }
  503. EXPORT_SYMBOL(phys_mem_access_prot);
  504. #endif
  505. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  506. static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
  507. {
  508. void *ptr = __va(memblock_alloc(sz, align));
  509. memset(ptr, 0, sz);
  510. return ptr;
  511. }
  512. static void __init *early_alloc(unsigned long sz)
  513. {
  514. return early_alloc_aligned(sz, sz);
  515. }
  516. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  517. {
  518. if (pmd_none(*pmd)) {
  519. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  520. __pmd_populate(pmd, __pa(pte), prot);
  521. }
  522. BUG_ON(pmd_bad(*pmd));
  523. return pte_offset_kernel(pmd, addr);
  524. }
  525. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  526. unsigned long end, unsigned long pfn,
  527. const struct mem_type *type)
  528. {
  529. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  530. do {
  531. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  532. pfn++;
  533. } while (pte++, addr += PAGE_SIZE, addr != end);
  534. }
  535. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  536. unsigned long end, phys_addr_t phys,
  537. const struct mem_type *type)
  538. {
  539. pmd_t *pmd = pmd_offset(pud, addr);
  540. /*
  541. * Try a section mapping - end, addr and phys must all be aligned
  542. * to a section boundary. Note that PMDs refer to the individual
  543. * L1 entries, whereas PGDs refer to a group of L1 entries making
  544. * up one logical pointer to an L2 table.
  545. */
  546. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  547. pmd_t *p = pmd;
  548. #ifndef CONFIG_ARM_LPAE
  549. if (addr & SECTION_SIZE)
  550. pmd++;
  551. #endif
  552. do {
  553. *pmd = __pmd(phys | type->prot_sect);
  554. phys += SECTION_SIZE;
  555. } while (pmd++, addr += SECTION_SIZE, addr != end);
  556. flush_pmd_entry(p);
  557. } else {
  558. /*
  559. * No need to loop; pte's aren't interested in the
  560. * individual L1 entries.
  561. */
  562. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  563. }
  564. }
  565. static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
  566. unsigned long phys, const struct mem_type *type)
  567. {
  568. pud_t *pud = pud_offset(pgd, addr);
  569. unsigned long next;
  570. do {
  571. next = pud_addr_end(addr, end);
  572. alloc_init_section(pud, addr, next, phys, type);
  573. phys += next - addr;
  574. } while (pud++, addr = next, addr != end);
  575. }
  576. #ifndef CONFIG_ARM_LPAE
  577. static void __init create_36bit_mapping(struct map_desc *md,
  578. const struct mem_type *type)
  579. {
  580. unsigned long addr, length, end;
  581. phys_addr_t phys;
  582. pgd_t *pgd;
  583. addr = md->virtual;
  584. phys = __pfn_to_phys(md->pfn);
  585. length = PAGE_ALIGN(md->length);
  586. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  587. printk(KERN_ERR "MM: CPU does not support supersection "
  588. "mapping for 0x%08llx at 0x%08lx\n",
  589. (long long)__pfn_to_phys((u64)md->pfn), addr);
  590. return;
  591. }
  592. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  593. * Since domain assignments can in fact be arbitrary, the
  594. * 'domain == 0' check below is required to insure that ARMv6
  595. * supersections are only allocated for domain 0 regardless
  596. * of the actual domain assignments in use.
  597. */
  598. if (type->domain) {
  599. printk(KERN_ERR "MM: invalid domain in supersection "
  600. "mapping for 0x%08llx at 0x%08lx\n",
  601. (long long)__pfn_to_phys((u64)md->pfn), addr);
  602. return;
  603. }
  604. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  605. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  606. " at 0x%08lx invalid alignment\n",
  607. (long long)__pfn_to_phys((u64)md->pfn), addr);
  608. return;
  609. }
  610. /*
  611. * Shift bits [35:32] of address into bits [23:20] of PMD
  612. * (See ARMv6 spec).
  613. */
  614. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  615. pgd = pgd_offset_k(addr);
  616. end = addr + length;
  617. do {
  618. pud_t *pud = pud_offset(pgd, addr);
  619. pmd_t *pmd = pmd_offset(pud, addr);
  620. int i;
  621. for (i = 0; i < 16; i++)
  622. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  623. addr += SUPERSECTION_SIZE;
  624. phys += SUPERSECTION_SIZE;
  625. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  626. } while (addr != end);
  627. }
  628. #endif /* !CONFIG_ARM_LPAE */
  629. /*
  630. * Create the page directory entries and any necessary
  631. * page tables for the mapping specified by `md'. We
  632. * are able to cope here with varying sizes and address
  633. * offsets, and we take full advantage of sections and
  634. * supersections.
  635. */
  636. static void __init create_mapping(struct map_desc *md)
  637. {
  638. unsigned long addr, length, end;
  639. phys_addr_t phys;
  640. const struct mem_type *type;
  641. pgd_t *pgd;
  642. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  643. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  644. " at 0x%08lx in user region\n",
  645. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  646. return;
  647. }
  648. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  649. md->virtual >= PAGE_OFFSET &&
  650. (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
  651. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  652. " at 0x%08lx out of vmalloc space\n",
  653. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  654. }
  655. type = &mem_types[md->type];
  656. #ifndef CONFIG_ARM_LPAE
  657. /*
  658. * Catch 36-bit addresses
  659. */
  660. if (md->pfn >= 0x100000) {
  661. create_36bit_mapping(md, type);
  662. return;
  663. }
  664. #endif
  665. addr = md->virtual & PAGE_MASK;
  666. phys = __pfn_to_phys(md->pfn);
  667. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  668. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  669. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  670. "be mapped using pages, ignoring.\n",
  671. (long long)__pfn_to_phys(md->pfn), addr);
  672. return;
  673. }
  674. pgd = pgd_offset_k(addr);
  675. end = addr + length;
  676. do {
  677. unsigned long next = pgd_addr_end(addr, end);
  678. alloc_init_pud(pgd, addr, next, phys, type);
  679. phys += next - addr;
  680. addr = next;
  681. } while (pgd++, addr != end);
  682. }
  683. /*
  684. * Create the architecture specific mappings
  685. */
  686. void __init iotable_init(struct map_desc *io_desc, int nr)
  687. {
  688. struct map_desc *md;
  689. struct vm_struct *vm;
  690. if (!nr)
  691. return;
  692. vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
  693. for (md = io_desc; nr; md++, nr--) {
  694. create_mapping(md);
  695. vm->addr = (void *)(md->virtual & PAGE_MASK);
  696. vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  697. vm->phys_addr = __pfn_to_phys(md->pfn);
  698. vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
  699. vm->flags |= VM_ARM_MTYPE(md->type);
  700. vm->caller = iotable_init;
  701. vm_area_add_early(vm++);
  702. }
  703. }
  704. static void * __initdata vmalloc_min =
  705. (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
  706. /*
  707. * vmalloc=size forces the vmalloc area to be exactly 'size'
  708. * bytes. This can be used to increase (or decrease) the vmalloc
  709. * area - the default is 240m.
  710. */
  711. static int __init early_vmalloc(char *arg)
  712. {
  713. unsigned long vmalloc_reserve = memparse(arg, NULL);
  714. if (vmalloc_reserve < SZ_16M) {
  715. vmalloc_reserve = SZ_16M;
  716. printk(KERN_WARNING
  717. "vmalloc area too small, limiting to %luMB\n",
  718. vmalloc_reserve >> 20);
  719. }
  720. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  721. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  722. printk(KERN_WARNING
  723. "vmalloc area is too big, limiting to %luMB\n",
  724. vmalloc_reserve >> 20);
  725. }
  726. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  727. return 0;
  728. }
  729. early_param("vmalloc", early_vmalloc);
  730. static phys_addr_t lowmem_limit __initdata = 0;
  731. void __init sanity_check_meminfo(void)
  732. {
  733. int i, j, highmem = 0;
  734. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  735. struct membank *bank = &meminfo.bank[j];
  736. *bank = meminfo.bank[i];
  737. if (bank->start > ULONG_MAX)
  738. highmem = 1;
  739. #ifdef CONFIG_HIGHMEM
  740. if (__va(bank->start) >= vmalloc_min ||
  741. __va(bank->start) < (void *)PAGE_OFFSET)
  742. highmem = 1;
  743. bank->highmem = highmem;
  744. /*
  745. * Split those memory banks which are partially overlapping
  746. * the vmalloc area greatly simplifying things later.
  747. */
  748. if (!highmem && __va(bank->start) < vmalloc_min &&
  749. bank->size > vmalloc_min - __va(bank->start)) {
  750. if (meminfo.nr_banks >= NR_BANKS) {
  751. printk(KERN_CRIT "NR_BANKS too low, "
  752. "ignoring high memory\n");
  753. } else {
  754. memmove(bank + 1, bank,
  755. (meminfo.nr_banks - i) * sizeof(*bank));
  756. meminfo.nr_banks++;
  757. i++;
  758. bank[1].size -= vmalloc_min - __va(bank->start);
  759. bank[1].start = __pa(vmalloc_min - 1) + 1;
  760. bank[1].highmem = highmem = 1;
  761. j++;
  762. }
  763. bank->size = vmalloc_min - __va(bank->start);
  764. }
  765. #else
  766. bank->highmem = highmem;
  767. /*
  768. * Highmem banks not allowed with !CONFIG_HIGHMEM.
  769. */
  770. if (highmem) {
  771. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  772. "(!CONFIG_HIGHMEM).\n",
  773. (unsigned long long)bank->start,
  774. (unsigned long long)bank->start + bank->size - 1);
  775. continue;
  776. }
  777. /*
  778. * Check whether this memory bank would entirely overlap
  779. * the vmalloc area.
  780. */
  781. if (__va(bank->start) >= vmalloc_min ||
  782. __va(bank->start) < (void *)PAGE_OFFSET) {
  783. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  784. "(vmalloc region overlap).\n",
  785. (unsigned long long)bank->start,
  786. (unsigned long long)bank->start + bank->size - 1);
  787. continue;
  788. }
  789. /*
  790. * Check whether this memory bank would partially overlap
  791. * the vmalloc area.
  792. */
  793. if (__va(bank->start + bank->size) > vmalloc_min ||
  794. __va(bank->start + bank->size) < __va(bank->start)) {
  795. unsigned long newsize = vmalloc_min - __va(bank->start);
  796. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  797. "to -%.8llx (vmalloc region overlap).\n",
  798. (unsigned long long)bank->start,
  799. (unsigned long long)bank->start + bank->size - 1,
  800. (unsigned long long)bank->start + newsize - 1);
  801. bank->size = newsize;
  802. }
  803. #endif
  804. if (!bank->highmem && bank->start + bank->size > lowmem_limit)
  805. lowmem_limit = bank->start + bank->size;
  806. j++;
  807. }
  808. #ifdef CONFIG_HIGHMEM
  809. if (highmem) {
  810. const char *reason = NULL;
  811. if (cache_is_vipt_aliasing()) {
  812. /*
  813. * Interactions between kmap and other mappings
  814. * make highmem support with aliasing VIPT caches
  815. * rather difficult.
  816. */
  817. reason = "with VIPT aliasing cache";
  818. }
  819. if (reason) {
  820. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  821. reason);
  822. while (j > 0 && meminfo.bank[j - 1].highmem)
  823. j--;
  824. }
  825. }
  826. #endif
  827. meminfo.nr_banks = j;
  828. high_memory = __va(lowmem_limit - 1) + 1;
  829. memblock_set_current_limit(lowmem_limit);
  830. }
  831. static inline void prepare_page_table(void)
  832. {
  833. unsigned long addr;
  834. phys_addr_t end;
  835. /*
  836. * Clear out all the mappings below the kernel image.
  837. */
  838. for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
  839. pmd_clear(pmd_off_k(addr));
  840. #ifdef CONFIG_XIP_KERNEL
  841. /* The XIP kernel is mapped in the module area -- skip over it */
  842. addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
  843. #endif
  844. for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
  845. pmd_clear(pmd_off_k(addr));
  846. /*
  847. * Find the end of the first block of lowmem.
  848. */
  849. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  850. if (end >= lowmem_limit)
  851. end = lowmem_limit;
  852. /*
  853. * Clear out all the kernel space mappings, except for the first
  854. * memory bank, up to the vmalloc region.
  855. */
  856. for (addr = __phys_to_virt(end);
  857. addr < VMALLOC_START; addr += PMD_SIZE)
  858. pmd_clear(pmd_off_k(addr));
  859. }
  860. #ifdef CONFIG_ARM_LPAE
  861. /* the first page is reserved for pgd */
  862. #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
  863. PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
  864. #else
  865. #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
  866. #endif
  867. /*
  868. * Reserve the special regions of memory
  869. */
  870. void __init arm_mm_memblock_reserve(void)
  871. {
  872. /*
  873. * Reserve the page tables. These are already in use,
  874. * and can only be in node 0.
  875. */
  876. memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
  877. #ifdef CONFIG_SA1111
  878. /*
  879. * Because of the SA1111 DMA bug, we want to preserve our
  880. * precious DMA-able memory...
  881. */
  882. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  883. #endif
  884. }
  885. /*
  886. * Set up the device mappings. Since we clear out the page tables for all
  887. * mappings above VMALLOC_START, we will remove any debug device mappings.
  888. * This means you have to be careful how you debug this function, or any
  889. * called function. This means you can't use any function or debugging
  890. * method which may touch any device, otherwise the kernel _will_ crash.
  891. */
  892. static void __init devicemaps_init(struct machine_desc *mdesc)
  893. {
  894. struct map_desc map;
  895. unsigned long addr;
  896. void *vectors;
  897. /*
  898. * Allocate the vector page early.
  899. */
  900. vectors = early_alloc(PAGE_SIZE);
  901. early_trap_init(vectors);
  902. for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
  903. pmd_clear(pmd_off_k(addr));
  904. /*
  905. * Map the kernel if it is XIP.
  906. * It is always first in the modulearea.
  907. */
  908. #ifdef CONFIG_XIP_KERNEL
  909. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  910. map.virtual = MODULES_VADDR;
  911. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  912. map.type = MT_ROM;
  913. create_mapping(&map);
  914. #endif
  915. /*
  916. * Map the cache flushing regions.
  917. */
  918. #ifdef FLUSH_BASE
  919. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  920. map.virtual = FLUSH_BASE;
  921. map.length = SZ_1M;
  922. map.type = MT_CACHECLEAN;
  923. create_mapping(&map);
  924. #endif
  925. #ifdef FLUSH_BASE_MINICACHE
  926. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  927. map.virtual = FLUSH_BASE_MINICACHE;
  928. map.length = SZ_1M;
  929. map.type = MT_MINICLEAN;
  930. create_mapping(&map);
  931. #endif
  932. /*
  933. * Create a mapping for the machine vectors at the high-vectors
  934. * location (0xffff0000). If we aren't using high-vectors, also
  935. * create a mapping at the low-vectors virtual address.
  936. */
  937. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  938. map.virtual = 0xffff0000;
  939. map.length = PAGE_SIZE;
  940. map.type = MT_HIGH_VECTORS;
  941. create_mapping(&map);
  942. if (!vectors_high()) {
  943. map.virtual = 0;
  944. map.type = MT_LOW_VECTORS;
  945. create_mapping(&map);
  946. }
  947. /*
  948. * Ask the machine support to map in the statically mapped devices.
  949. */
  950. if (mdesc->map_io)
  951. mdesc->map_io();
  952. /*
  953. * Finally flush the caches and tlb to ensure that we're in a
  954. * consistent state wrt the writebuffer. This also ensures that
  955. * any write-allocated cache lines in the vector page are written
  956. * back. After this point, we can start to touch devices again.
  957. */
  958. local_flush_tlb_all();
  959. flush_cache_all();
  960. }
  961. static void __init kmap_init(void)
  962. {
  963. #ifdef CONFIG_HIGHMEM
  964. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  965. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  966. #endif
  967. }
  968. static void __init map_lowmem(void)
  969. {
  970. struct memblock_region *reg;
  971. /* Map all the lowmem memory banks. */
  972. for_each_memblock(memory, reg) {
  973. phys_addr_t start = reg->base;
  974. phys_addr_t end = start + reg->size;
  975. struct map_desc map;
  976. if (end > lowmem_limit)
  977. end = lowmem_limit;
  978. if (start >= end)
  979. break;
  980. map.pfn = __phys_to_pfn(start);
  981. map.virtual = __phys_to_virt(start);
  982. map.length = end - start;
  983. map.type = MT_MEMORY;
  984. create_mapping(&map);
  985. }
  986. }
  987. /*
  988. * paging_init() sets up the page tables, initialises the zone memory
  989. * maps, and sets up the zero page, bad page and bad page tables.
  990. */
  991. void __init paging_init(struct machine_desc *mdesc)
  992. {
  993. void *zero_page;
  994. memblock_set_current_limit(lowmem_limit);
  995. build_mem_type_table();
  996. prepare_page_table();
  997. map_lowmem();
  998. devicemaps_init(mdesc);
  999. kmap_init();
  1000. top_pmd = pmd_off_k(0xffff0000);
  1001. /* allocate the zero page. */
  1002. zero_page = early_alloc(PAGE_SIZE);
  1003. bootmem_init();
  1004. empty_zero_page = virt_to_page(zero_page);
  1005. __flush_dcache_page(NULL, empty_zero_page);
  1006. }