flush.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. /*
  2. * linux/arch/arm/mm/flush.c
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/mm.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/highmem.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/cachetype.h>
  16. #include <asm/highmem.h>
  17. #include <asm/smp_plat.h>
  18. #include <asm/tlbflush.h>
  19. #include "mm.h"
  20. #ifdef CONFIG_CPU_CACHE_VIPT
  21. static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
  22. {
  23. unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  24. const int zero = 0;
  25. set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
  26. asm( "mcrr p15, 0, %1, %0, c14\n"
  27. " mcr p15, 0, %2, c7, c10, 4"
  28. :
  29. : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
  30. : "cc");
  31. }
  32. static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
  33. {
  34. unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  35. unsigned long offset = vaddr & (PAGE_SIZE - 1);
  36. unsigned long to;
  37. set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
  38. to = va + offset;
  39. flush_icache_range(to, to + len);
  40. }
  41. void flush_cache_mm(struct mm_struct *mm)
  42. {
  43. if (cache_is_vivt()) {
  44. vivt_flush_cache_mm(mm);
  45. return;
  46. }
  47. if (cache_is_vipt_aliasing()) {
  48. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  49. " mcr p15, 0, %0, c7, c10, 4"
  50. :
  51. : "r" (0)
  52. : "cc");
  53. }
  54. }
  55. void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  56. {
  57. if (cache_is_vivt()) {
  58. vivt_flush_cache_range(vma, start, end);
  59. return;
  60. }
  61. if (cache_is_vipt_aliasing()) {
  62. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  63. " mcr p15, 0, %0, c7, c10, 4"
  64. :
  65. : "r" (0)
  66. : "cc");
  67. }
  68. if (vma->vm_flags & VM_EXEC)
  69. __flush_icache_all();
  70. }
  71. void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
  72. {
  73. if (cache_is_vivt()) {
  74. vivt_flush_cache_page(vma, user_addr, pfn);
  75. return;
  76. }
  77. if (cache_is_vipt_aliasing()) {
  78. flush_pfn_alias(pfn, user_addr);
  79. __flush_icache_all();
  80. }
  81. if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
  82. __flush_icache_all();
  83. }
  84. #else
  85. #define flush_pfn_alias(pfn,vaddr) do { } while (0)
  86. #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
  87. #endif
  88. static void flush_ptrace_access_other(void *args)
  89. {
  90. __flush_icache_all();
  91. }
  92. static
  93. void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
  94. unsigned long uaddr, void *kaddr, unsigned long len)
  95. {
  96. if (cache_is_vivt()) {
  97. if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
  98. unsigned long addr = (unsigned long)kaddr;
  99. __cpuc_coherent_kern_range(addr, addr + len);
  100. }
  101. return;
  102. }
  103. if (cache_is_vipt_aliasing()) {
  104. flush_pfn_alias(page_to_pfn(page), uaddr);
  105. __flush_icache_all();
  106. return;
  107. }
  108. /* VIPT non-aliasing D-cache */
  109. if (vma->vm_flags & VM_EXEC) {
  110. unsigned long addr = (unsigned long)kaddr;
  111. if (icache_is_vipt_aliasing())
  112. flush_icache_alias(page_to_pfn(page), uaddr, len);
  113. else
  114. __cpuc_coherent_kern_range(addr, addr + len);
  115. if (cache_ops_need_broadcast())
  116. smp_call_function(flush_ptrace_access_other,
  117. NULL, 1);
  118. }
  119. }
  120. /*
  121. * Copy user data from/to a page which is mapped into a different
  122. * processes address space. Really, we want to allow our "user
  123. * space" model to handle this.
  124. *
  125. * Note that this code needs to run on the current CPU.
  126. */
  127. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  128. unsigned long uaddr, void *dst, const void *src,
  129. unsigned long len)
  130. {
  131. #ifdef CONFIG_SMP
  132. preempt_disable();
  133. #endif
  134. memcpy(dst, src, len);
  135. flush_ptrace_access(vma, page, uaddr, dst, len);
  136. #ifdef CONFIG_SMP
  137. preempt_enable();
  138. #endif
  139. }
  140. void __flush_dcache_page(struct address_space *mapping, struct page *page)
  141. {
  142. /*
  143. * Writeback any data associated with the kernel mapping of this
  144. * page. This ensures that data in the physical page is mutually
  145. * coherent with the kernels mapping.
  146. */
  147. if (!PageHighMem(page)) {
  148. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  149. } else {
  150. void *addr = kmap_high_get(page);
  151. if (addr) {
  152. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  153. kunmap_high(page);
  154. } else if (cache_is_vipt()) {
  155. /* unmapped pages might still be cached */
  156. addr = kmap_atomic(page);
  157. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  158. kunmap_atomic(addr);
  159. }
  160. }
  161. /*
  162. * If this is a page cache page, and we have an aliasing VIPT cache,
  163. * we only need to do one flush - which would be at the relevant
  164. * userspace colour, which is congruent with page->index.
  165. */
  166. if (mapping && cache_is_vipt_aliasing())
  167. flush_pfn_alias(page_to_pfn(page),
  168. page->index << PAGE_CACHE_SHIFT);
  169. }
  170. static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
  171. {
  172. struct mm_struct *mm = current->active_mm;
  173. struct vm_area_struct *mpnt;
  174. struct prio_tree_iter iter;
  175. pgoff_t pgoff;
  176. /*
  177. * There are possible user space mappings of this page:
  178. * - VIVT cache: we need to also write back and invalidate all user
  179. * data in the current VM view associated with this page.
  180. * - aliasing VIPT: we only need to find one mapping of this page.
  181. */
  182. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  183. flush_dcache_mmap_lock(mapping);
  184. vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
  185. unsigned long offset;
  186. /*
  187. * If this VMA is not in our MM, we can ignore it.
  188. */
  189. if (mpnt->vm_mm != mm)
  190. continue;
  191. if (!(mpnt->vm_flags & VM_MAYSHARE))
  192. continue;
  193. offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
  194. flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
  195. }
  196. flush_dcache_mmap_unlock(mapping);
  197. }
  198. #if __LINUX_ARM_ARCH__ >= 6
  199. void __sync_icache_dcache(pte_t pteval)
  200. {
  201. unsigned long pfn;
  202. struct page *page;
  203. struct address_space *mapping;
  204. if (!pte_present_user(pteval))
  205. return;
  206. if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
  207. /* only flush non-aliasing VIPT caches for exec mappings */
  208. return;
  209. pfn = pte_pfn(pteval);
  210. if (!pfn_valid(pfn))
  211. return;
  212. page = pfn_to_page(pfn);
  213. if (cache_is_vipt_aliasing())
  214. mapping = page_mapping(page);
  215. else
  216. mapping = NULL;
  217. if (!test_and_set_bit(PG_dcache_clean, &page->flags))
  218. __flush_dcache_page(mapping, page);
  219. if (pte_exec(pteval))
  220. __flush_icache_all();
  221. }
  222. #endif
  223. /*
  224. * Ensure cache coherency between kernel mapping and userspace mapping
  225. * of this page.
  226. *
  227. * We have three cases to consider:
  228. * - VIPT non-aliasing cache: fully coherent so nothing required.
  229. * - VIVT: fully aliasing, so we need to handle every alias in our
  230. * current VM view.
  231. * - VIPT aliasing: need to handle one alias in our current VM view.
  232. *
  233. * If we need to handle aliasing:
  234. * If the page only exists in the page cache and there are no user
  235. * space mappings, we can be lazy and remember that we may have dirty
  236. * kernel cache lines for later. Otherwise, we assume we have
  237. * aliasing mappings.
  238. *
  239. * Note that we disable the lazy flush for SMP configurations where
  240. * the cache maintenance operations are not automatically broadcasted.
  241. */
  242. void flush_dcache_page(struct page *page)
  243. {
  244. struct address_space *mapping;
  245. /*
  246. * The zero page is never written to, so never has any dirty
  247. * cache lines, and therefore never needs to be flushed.
  248. */
  249. if (page == ZERO_PAGE(0))
  250. return;
  251. mapping = page_mapping(page);
  252. if (!cache_ops_need_broadcast() &&
  253. mapping && !mapping_mapped(mapping))
  254. clear_bit(PG_dcache_clean, &page->flags);
  255. else {
  256. __flush_dcache_page(mapping, page);
  257. if (mapping && cache_is_vivt())
  258. __flush_dcache_aliases(mapping, page);
  259. else if (mapping)
  260. __flush_icache_all();
  261. set_bit(PG_dcache_clean, &page->flags);
  262. }
  263. }
  264. EXPORT_SYMBOL(flush_dcache_page);
  265. /*
  266. * Flush an anonymous page so that users of get_user_pages()
  267. * can safely access the data. The expected sequence is:
  268. *
  269. * get_user_pages()
  270. * -> flush_anon_page
  271. * memcpy() to/from page
  272. * if written to page, flush_dcache_page()
  273. */
  274. void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
  275. {
  276. unsigned long pfn;
  277. /* VIPT non-aliasing caches need do nothing */
  278. if (cache_is_vipt_nonaliasing())
  279. return;
  280. /*
  281. * Write back and invalidate userspace mapping.
  282. */
  283. pfn = page_to_pfn(page);
  284. if (cache_is_vivt()) {
  285. flush_cache_page(vma, vmaddr, pfn);
  286. } else {
  287. /*
  288. * For aliasing VIPT, we can flush an alias of the
  289. * userspace address only.
  290. */
  291. flush_pfn_alias(pfn, vmaddr);
  292. __flush_icache_all();
  293. }
  294. /*
  295. * Invalidate kernel mapping. No data should be contained
  296. * in this mapping of the page. FIXME: this is overkill
  297. * since we actually ask for a write-back and invalidate.
  298. */
  299. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  300. }