clock.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * linux/arch/arm/mach-omap1/clock.c
  3. *
  4. * Copyright (C) 2004 - 2005, 2009-2010 Nokia Corporation
  5. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  6. *
  7. * Modified to use omap shared clock framework by
  8. * Tony Lindgren <tony@atomide.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/io.h>
  19. #include <linux/clk.h>
  20. #include <linux/clkdev.h>
  21. #include <asm/mach-types.h>
  22. #include <plat/cpu.h>
  23. #include <plat/usb.h>
  24. #include <plat/clock.h>
  25. #include <plat/sram.h>
  26. #include <plat/clkdev_omap.h>
  27. #include <mach/hardware.h>
  28. #include "iomap.h"
  29. #include "clock.h"
  30. #include "opp.h"
  31. __u32 arm_idlect1_mask;
  32. struct clk *api_ck_p, *ck_dpll1_p, *ck_ref_p;
  33. /*
  34. * Omap1 specific clock functions
  35. */
  36. unsigned long omap1_uart_recalc(struct clk *clk)
  37. {
  38. unsigned int val = __raw_readl(clk->enable_reg);
  39. return val & clk->enable_bit ? 48000000 : 12000000;
  40. }
  41. unsigned long omap1_sossi_recalc(struct clk *clk)
  42. {
  43. u32 div = omap_readl(MOD_CONF_CTRL_1);
  44. div = (div >> 17) & 0x7;
  45. div++;
  46. return clk->parent->rate / div;
  47. }
  48. static void omap1_clk_allow_idle(struct clk *clk)
  49. {
  50. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  51. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  52. return;
  53. if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
  54. arm_idlect1_mask |= 1 << iclk->idlect_shift;
  55. }
  56. static void omap1_clk_deny_idle(struct clk *clk)
  57. {
  58. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  59. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  60. return;
  61. if (iclk->no_idle_count++ == 0)
  62. arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
  63. }
  64. static __u16 verify_ckctl_value(__u16 newval)
  65. {
  66. /* This function checks for following limitations set
  67. * by the hardware (all conditions must be true):
  68. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  69. * ARM_CK >= TC_CK
  70. * DSP_CK >= TC_CK
  71. * DSPMMU_CK >= TC_CK
  72. *
  73. * In addition following rules are enforced:
  74. * LCD_CK <= TC_CK
  75. * ARMPER_CK <= TC_CK
  76. *
  77. * However, maximum frequencies are not checked for!
  78. */
  79. __u8 per_exp;
  80. __u8 lcd_exp;
  81. __u8 arm_exp;
  82. __u8 dsp_exp;
  83. __u8 tc_exp;
  84. __u8 dspmmu_exp;
  85. per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
  86. lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
  87. arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
  88. dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
  89. tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
  90. dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
  91. if (dspmmu_exp < dsp_exp)
  92. dspmmu_exp = dsp_exp;
  93. if (dspmmu_exp > dsp_exp+1)
  94. dspmmu_exp = dsp_exp+1;
  95. if (tc_exp < arm_exp)
  96. tc_exp = arm_exp;
  97. if (tc_exp < dspmmu_exp)
  98. tc_exp = dspmmu_exp;
  99. if (tc_exp > lcd_exp)
  100. lcd_exp = tc_exp;
  101. if (tc_exp > per_exp)
  102. per_exp = tc_exp;
  103. newval &= 0xf000;
  104. newval |= per_exp << CKCTL_PERDIV_OFFSET;
  105. newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
  106. newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
  107. newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
  108. newval |= tc_exp << CKCTL_TCDIV_OFFSET;
  109. newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
  110. return newval;
  111. }
  112. static int calc_dsor_exp(struct clk *clk, unsigned long rate)
  113. {
  114. /* Note: If target frequency is too low, this function will return 4,
  115. * which is invalid value. Caller must check for this value and act
  116. * accordingly.
  117. *
  118. * Note: This function does not check for following limitations set
  119. * by the hardware (all conditions must be true):
  120. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  121. * ARM_CK >= TC_CK
  122. * DSP_CK >= TC_CK
  123. * DSPMMU_CK >= TC_CK
  124. */
  125. unsigned long realrate;
  126. struct clk * parent;
  127. unsigned dsor_exp;
  128. parent = clk->parent;
  129. if (unlikely(parent == NULL))
  130. return -EIO;
  131. realrate = parent->rate;
  132. for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
  133. if (realrate <= rate)
  134. break;
  135. realrate /= 2;
  136. }
  137. return dsor_exp;
  138. }
  139. unsigned long omap1_ckctl_recalc(struct clk *clk)
  140. {
  141. /* Calculate divisor encoded as 2-bit exponent */
  142. int dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
  143. return clk->parent->rate / dsor;
  144. }
  145. unsigned long omap1_ckctl_recalc_dsp_domain(struct clk *clk)
  146. {
  147. int dsor;
  148. /* Calculate divisor encoded as 2-bit exponent
  149. *
  150. * The clock control bits are in DSP domain,
  151. * so api_ck is needed for access.
  152. * Note that DSP_CKCTL virt addr = phys addr, so
  153. * we must use __raw_readw() instead of omap_readw().
  154. */
  155. omap1_clk_enable(api_ck_p);
  156. dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
  157. omap1_clk_disable(api_ck_p);
  158. return clk->parent->rate / dsor;
  159. }
  160. /* MPU virtual clock functions */
  161. int omap1_select_table_rate(struct clk *clk, unsigned long rate)
  162. {
  163. /* Find the highest supported frequency <= rate and switch to it */
  164. struct mpu_rate * ptr;
  165. unsigned long dpll1_rate, ref_rate;
  166. dpll1_rate = ck_dpll1_p->rate;
  167. ref_rate = ck_ref_p->rate;
  168. for (ptr = omap1_rate_table; ptr->rate; ptr++) {
  169. if (!(ptr->flags & cpu_mask))
  170. continue;
  171. if (ptr->xtal != ref_rate)
  172. continue;
  173. /* Can check only after xtal frequency check */
  174. if (ptr->rate <= rate)
  175. break;
  176. }
  177. if (!ptr->rate)
  178. return -EINVAL;
  179. /*
  180. * In most cases we should not need to reprogram DPLL.
  181. * Reprogramming the DPLL is tricky, it must be done from SRAM.
  182. */
  183. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
  184. /* XXX Do we need to recalculate the tree below DPLL1 at this point? */
  185. ck_dpll1_p->rate = ptr->pll_rate;
  186. return 0;
  187. }
  188. int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
  189. {
  190. int dsor_exp;
  191. u16 regval;
  192. dsor_exp = calc_dsor_exp(clk, rate);
  193. if (dsor_exp > 3)
  194. dsor_exp = -EINVAL;
  195. if (dsor_exp < 0)
  196. return dsor_exp;
  197. regval = __raw_readw(DSP_CKCTL);
  198. regval &= ~(3 << clk->rate_offset);
  199. regval |= dsor_exp << clk->rate_offset;
  200. __raw_writew(regval, DSP_CKCTL);
  201. clk->rate = clk->parent->rate / (1 << dsor_exp);
  202. return 0;
  203. }
  204. long omap1_clk_round_rate_ckctl_arm(struct clk *clk, unsigned long rate)
  205. {
  206. int dsor_exp = calc_dsor_exp(clk, rate);
  207. if (dsor_exp < 0)
  208. return dsor_exp;
  209. if (dsor_exp > 3)
  210. dsor_exp = 3;
  211. return clk->parent->rate / (1 << dsor_exp);
  212. }
  213. int omap1_clk_set_rate_ckctl_arm(struct clk *clk, unsigned long rate)
  214. {
  215. int dsor_exp;
  216. u16 regval;
  217. dsor_exp = calc_dsor_exp(clk, rate);
  218. if (dsor_exp > 3)
  219. dsor_exp = -EINVAL;
  220. if (dsor_exp < 0)
  221. return dsor_exp;
  222. regval = omap_readw(ARM_CKCTL);
  223. regval &= ~(3 << clk->rate_offset);
  224. regval |= dsor_exp << clk->rate_offset;
  225. regval = verify_ckctl_value(regval);
  226. omap_writew(regval, ARM_CKCTL);
  227. clk->rate = clk->parent->rate / (1 << dsor_exp);
  228. return 0;
  229. }
  230. long omap1_round_to_table_rate(struct clk *clk, unsigned long rate)
  231. {
  232. /* Find the highest supported frequency <= rate */
  233. struct mpu_rate * ptr;
  234. long highest_rate;
  235. unsigned long ref_rate;
  236. ref_rate = ck_ref_p->rate;
  237. highest_rate = -EINVAL;
  238. for (ptr = omap1_rate_table; ptr->rate; ptr++) {
  239. if (!(ptr->flags & cpu_mask))
  240. continue;
  241. if (ptr->xtal != ref_rate)
  242. continue;
  243. highest_rate = ptr->rate;
  244. /* Can check only after xtal frequency check */
  245. if (ptr->rate <= rate)
  246. break;
  247. }
  248. return highest_rate;
  249. }
  250. static unsigned calc_ext_dsor(unsigned long rate)
  251. {
  252. unsigned dsor;
  253. /* MCLK and BCLK divisor selection is not linear:
  254. * freq = 96MHz / dsor
  255. *
  256. * RATIO_SEL range: dsor <-> RATIO_SEL
  257. * 0..6: (RATIO_SEL+2) <-> (dsor-2)
  258. * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
  259. * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
  260. * can not be used.
  261. */
  262. for (dsor = 2; dsor < 96; ++dsor) {
  263. if ((dsor & 1) && dsor > 8)
  264. continue;
  265. if (rate >= 96000000 / dsor)
  266. break;
  267. }
  268. return dsor;
  269. }
  270. /* XXX Only needed on 1510 */
  271. int omap1_set_uart_rate(struct clk *clk, unsigned long rate)
  272. {
  273. unsigned int val;
  274. val = __raw_readl(clk->enable_reg);
  275. if (rate == 12000000)
  276. val &= ~(1 << clk->enable_bit);
  277. else if (rate == 48000000)
  278. val |= (1 << clk->enable_bit);
  279. else
  280. return -EINVAL;
  281. __raw_writel(val, clk->enable_reg);
  282. clk->rate = rate;
  283. return 0;
  284. }
  285. /* External clock (MCLK & BCLK) functions */
  286. int omap1_set_ext_clk_rate(struct clk *clk, unsigned long rate)
  287. {
  288. unsigned dsor;
  289. __u16 ratio_bits;
  290. dsor = calc_ext_dsor(rate);
  291. clk->rate = 96000000 / dsor;
  292. if (dsor > 8)
  293. ratio_bits = ((dsor - 8) / 2 + 6) << 2;
  294. else
  295. ratio_bits = (dsor - 2) << 2;
  296. ratio_bits |= __raw_readw(clk->enable_reg) & ~0xfd;
  297. __raw_writew(ratio_bits, clk->enable_reg);
  298. return 0;
  299. }
  300. int omap1_set_sossi_rate(struct clk *clk, unsigned long rate)
  301. {
  302. u32 l;
  303. int div;
  304. unsigned long p_rate;
  305. p_rate = clk->parent->rate;
  306. /* Round towards slower frequency */
  307. div = (p_rate + rate - 1) / rate;
  308. div--;
  309. if (div < 0 || div > 7)
  310. return -EINVAL;
  311. l = omap_readl(MOD_CONF_CTRL_1);
  312. l &= ~(7 << 17);
  313. l |= div << 17;
  314. omap_writel(l, MOD_CONF_CTRL_1);
  315. clk->rate = p_rate / (div + 1);
  316. return 0;
  317. }
  318. long omap1_round_ext_clk_rate(struct clk *clk, unsigned long rate)
  319. {
  320. return 96000000 / calc_ext_dsor(rate);
  321. }
  322. void omap1_init_ext_clk(struct clk *clk)
  323. {
  324. unsigned dsor;
  325. __u16 ratio_bits;
  326. /* Determine current rate and ensure clock is based on 96MHz APLL */
  327. ratio_bits = __raw_readw(clk->enable_reg) & ~1;
  328. __raw_writew(ratio_bits, clk->enable_reg);
  329. ratio_bits = (ratio_bits & 0xfc) >> 2;
  330. if (ratio_bits > 6)
  331. dsor = (ratio_bits - 6) * 2 + 8;
  332. else
  333. dsor = ratio_bits + 2;
  334. clk-> rate = 96000000 / dsor;
  335. }
  336. int omap1_clk_enable(struct clk *clk)
  337. {
  338. int ret = 0;
  339. if (clk->usecount++ == 0) {
  340. if (clk->parent) {
  341. ret = omap1_clk_enable(clk->parent);
  342. if (ret)
  343. goto err;
  344. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  345. omap1_clk_deny_idle(clk->parent);
  346. }
  347. ret = clk->ops->enable(clk);
  348. if (ret) {
  349. if (clk->parent)
  350. omap1_clk_disable(clk->parent);
  351. goto err;
  352. }
  353. }
  354. return ret;
  355. err:
  356. clk->usecount--;
  357. return ret;
  358. }
  359. void omap1_clk_disable(struct clk *clk)
  360. {
  361. if (clk->usecount > 0 && !(--clk->usecount)) {
  362. clk->ops->disable(clk);
  363. if (likely(clk->parent)) {
  364. omap1_clk_disable(clk->parent);
  365. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  366. omap1_clk_allow_idle(clk->parent);
  367. }
  368. }
  369. }
  370. static int omap1_clk_enable_generic(struct clk *clk)
  371. {
  372. __u16 regval16;
  373. __u32 regval32;
  374. if (unlikely(clk->enable_reg == NULL)) {
  375. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  376. clk->name);
  377. return -EINVAL;
  378. }
  379. if (clk->flags & ENABLE_REG_32BIT) {
  380. regval32 = __raw_readl(clk->enable_reg);
  381. regval32 |= (1 << clk->enable_bit);
  382. __raw_writel(regval32, clk->enable_reg);
  383. } else {
  384. regval16 = __raw_readw(clk->enable_reg);
  385. regval16 |= (1 << clk->enable_bit);
  386. __raw_writew(regval16, clk->enable_reg);
  387. }
  388. return 0;
  389. }
  390. static void omap1_clk_disable_generic(struct clk *clk)
  391. {
  392. __u16 regval16;
  393. __u32 regval32;
  394. if (clk->enable_reg == NULL)
  395. return;
  396. if (clk->flags & ENABLE_REG_32BIT) {
  397. regval32 = __raw_readl(clk->enable_reg);
  398. regval32 &= ~(1 << clk->enable_bit);
  399. __raw_writel(regval32, clk->enable_reg);
  400. } else {
  401. regval16 = __raw_readw(clk->enable_reg);
  402. regval16 &= ~(1 << clk->enable_bit);
  403. __raw_writew(regval16, clk->enable_reg);
  404. }
  405. }
  406. const struct clkops clkops_generic = {
  407. .enable = omap1_clk_enable_generic,
  408. .disable = omap1_clk_disable_generic,
  409. };
  410. static int omap1_clk_enable_dsp_domain(struct clk *clk)
  411. {
  412. int retval;
  413. retval = omap1_clk_enable(api_ck_p);
  414. if (!retval) {
  415. retval = omap1_clk_enable_generic(clk);
  416. omap1_clk_disable(api_ck_p);
  417. }
  418. return retval;
  419. }
  420. static void omap1_clk_disable_dsp_domain(struct clk *clk)
  421. {
  422. if (omap1_clk_enable(api_ck_p) == 0) {
  423. omap1_clk_disable_generic(clk);
  424. omap1_clk_disable(api_ck_p);
  425. }
  426. }
  427. const struct clkops clkops_dspck = {
  428. .enable = omap1_clk_enable_dsp_domain,
  429. .disable = omap1_clk_disable_dsp_domain,
  430. };
  431. /* XXX SYSC register handling does not belong in the clock framework */
  432. static int omap1_clk_enable_uart_functional_16xx(struct clk *clk)
  433. {
  434. int ret;
  435. struct uart_clk *uclk;
  436. ret = omap1_clk_enable_generic(clk);
  437. if (ret == 0) {
  438. /* Set smart idle acknowledgement mode */
  439. uclk = (struct uart_clk *)clk;
  440. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
  441. uclk->sysc_addr);
  442. }
  443. return ret;
  444. }
  445. /* XXX SYSC register handling does not belong in the clock framework */
  446. static void omap1_clk_disable_uart_functional_16xx(struct clk *clk)
  447. {
  448. struct uart_clk *uclk;
  449. /* Set force idle acknowledgement mode */
  450. uclk = (struct uart_clk *)clk;
  451. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
  452. omap1_clk_disable_generic(clk);
  453. }
  454. /* XXX SYSC register handling does not belong in the clock framework */
  455. const struct clkops clkops_uart_16xx = {
  456. .enable = omap1_clk_enable_uart_functional_16xx,
  457. .disable = omap1_clk_disable_uart_functional_16xx,
  458. };
  459. long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
  460. {
  461. if (clk->round_rate != NULL)
  462. return clk->round_rate(clk, rate);
  463. return clk->rate;
  464. }
  465. int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
  466. {
  467. int ret = -EINVAL;
  468. if (clk->set_rate)
  469. ret = clk->set_rate(clk, rate);
  470. return ret;
  471. }
  472. /*
  473. * Omap1 clock reset and init functions
  474. */
  475. #ifdef CONFIG_OMAP_RESET_CLOCKS
  476. void omap1_clk_disable_unused(struct clk *clk)
  477. {
  478. __u32 regval32;
  479. /* Clocks in the DSP domain need api_ck. Just assume bootloader
  480. * has not enabled any DSP clocks */
  481. if (clk->enable_reg == DSP_IDLECT2) {
  482. printk(KERN_INFO "Skipping reset check for DSP domain "
  483. "clock \"%s\"\n", clk->name);
  484. return;
  485. }
  486. /* Is the clock already disabled? */
  487. if (clk->flags & ENABLE_REG_32BIT)
  488. regval32 = __raw_readl(clk->enable_reg);
  489. else
  490. regval32 = __raw_readw(clk->enable_reg);
  491. if ((regval32 & (1 << clk->enable_bit)) == 0)
  492. return;
  493. printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name);
  494. clk->ops->disable(clk);
  495. printk(" done\n");
  496. }
  497. #endif