dma.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/slab.h>
  27. #include <mach/edma.h>
  28. /* Offsets matching "struct edmacc_param" */
  29. #define PARM_OPT 0x00
  30. #define PARM_SRC 0x04
  31. #define PARM_A_B_CNT 0x08
  32. #define PARM_DST 0x0c
  33. #define PARM_SRC_DST_BIDX 0x10
  34. #define PARM_LINK_BCNTRLD 0x14
  35. #define PARM_SRC_DST_CIDX 0x18
  36. #define PARM_CCNT 0x1c
  37. #define PARM_SIZE 0x20
  38. /* Offsets for EDMA CC global channel registers and their shadows */
  39. #define SH_ER 0x00 /* 64 bits */
  40. #define SH_ECR 0x08 /* 64 bits */
  41. #define SH_ESR 0x10 /* 64 bits */
  42. #define SH_CER 0x18 /* 64 bits */
  43. #define SH_EER 0x20 /* 64 bits */
  44. #define SH_EECR 0x28 /* 64 bits */
  45. #define SH_EESR 0x30 /* 64 bits */
  46. #define SH_SER 0x38 /* 64 bits */
  47. #define SH_SECR 0x40 /* 64 bits */
  48. #define SH_IER 0x50 /* 64 bits */
  49. #define SH_IECR 0x58 /* 64 bits */
  50. #define SH_IESR 0x60 /* 64 bits */
  51. #define SH_IPR 0x68 /* 64 bits */
  52. #define SH_ICR 0x70 /* 64 bits */
  53. #define SH_IEVAL 0x78
  54. #define SH_QER 0x80
  55. #define SH_QEER 0x84
  56. #define SH_QEECR 0x88
  57. #define SH_QEESR 0x8c
  58. #define SH_QSER 0x90
  59. #define SH_QSECR 0x94
  60. #define SH_SIZE 0x200
  61. /* Offsets for EDMA CC global registers */
  62. #define EDMA_REV 0x0000
  63. #define EDMA_CCCFG 0x0004
  64. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  65. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  66. #define EDMA_QDMAQNUM 0x0260
  67. #define EDMA_QUETCMAP 0x0280
  68. #define EDMA_QUEPRI 0x0284
  69. #define EDMA_EMR 0x0300 /* 64 bits */
  70. #define EDMA_EMCR 0x0308 /* 64 bits */
  71. #define EDMA_QEMR 0x0310
  72. #define EDMA_QEMCR 0x0314
  73. #define EDMA_CCERR 0x0318
  74. #define EDMA_CCERRCLR 0x031c
  75. #define EDMA_EEVAL 0x0320
  76. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  77. #define EDMA_QRAE 0x0380 /* 4 registers */
  78. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  79. #define EDMA_QSTAT 0x0600 /* 2 registers */
  80. #define EDMA_QWMTHRA 0x0620
  81. #define EDMA_QWMTHRB 0x0624
  82. #define EDMA_CCSTAT 0x0640
  83. #define EDMA_M 0x1000 /* global channel registers */
  84. #define EDMA_ECR 0x1008
  85. #define EDMA_ECRH 0x100C
  86. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  87. #define EDMA_PARM 0x4000 /* 128 param entries */
  88. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  89. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  90. #define CHMAP_EXIST BIT(24)
  91. #define EDMA_MAX_DMACH 64
  92. #define EDMA_MAX_PARAMENTRY 512
  93. /*****************************************************************************/
  94. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  95. static inline unsigned int edma_read(unsigned ctlr, int offset)
  96. {
  97. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  98. }
  99. static inline void edma_write(unsigned ctlr, int offset, int val)
  100. {
  101. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  102. }
  103. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  104. unsigned or)
  105. {
  106. unsigned val = edma_read(ctlr, offset);
  107. val &= and;
  108. val |= or;
  109. edma_write(ctlr, offset, val);
  110. }
  111. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  112. {
  113. unsigned val = edma_read(ctlr, offset);
  114. val &= and;
  115. edma_write(ctlr, offset, val);
  116. }
  117. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  118. {
  119. unsigned val = edma_read(ctlr, offset);
  120. val |= or;
  121. edma_write(ctlr, offset, val);
  122. }
  123. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  124. {
  125. return edma_read(ctlr, offset + (i << 2));
  126. }
  127. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  128. unsigned val)
  129. {
  130. edma_write(ctlr, offset + (i << 2), val);
  131. }
  132. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  133. unsigned and, unsigned or)
  134. {
  135. edma_modify(ctlr, offset + (i << 2), and, or);
  136. }
  137. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  138. {
  139. edma_or(ctlr, offset + (i << 2), or);
  140. }
  141. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  142. unsigned or)
  143. {
  144. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  145. }
  146. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  147. unsigned val)
  148. {
  149. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  150. }
  151. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  152. {
  153. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  154. }
  155. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  156. int i)
  157. {
  158. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  159. }
  160. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  161. {
  162. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  163. }
  164. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  165. unsigned val)
  166. {
  167. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  168. }
  169. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  170. int param_no)
  171. {
  172. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  173. }
  174. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  175. unsigned val)
  176. {
  177. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  178. }
  179. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  180. unsigned and, unsigned or)
  181. {
  182. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  183. }
  184. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  185. unsigned and)
  186. {
  187. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  188. }
  189. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  190. unsigned or)
  191. {
  192. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  193. }
  194. static inline void set_bits(int offset, int len, unsigned long *p)
  195. {
  196. for (; len > 0; len--)
  197. set_bit(offset + (len - 1), p);
  198. }
  199. static inline void clear_bits(int offset, int len, unsigned long *p)
  200. {
  201. for (; len > 0; len--)
  202. clear_bit(offset + (len - 1), p);
  203. }
  204. /*****************************************************************************/
  205. /* actual number of DMA channels and slots on this silicon */
  206. struct edma {
  207. /* how many dma resources of each type */
  208. unsigned num_channels;
  209. unsigned num_region;
  210. unsigned num_slots;
  211. unsigned num_tc;
  212. unsigned num_cc;
  213. enum dma_event_q default_queue;
  214. /* list of channels with no even trigger; terminated by "-1" */
  215. const s8 *noevent;
  216. /* The edma_inuse bit for each PaRAM slot is clear unless the
  217. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  218. */
  219. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  220. /* The edma_unused bit for each channel is clear unless
  221. * it is not being used on this platform. It uses a bit
  222. * of SOC-specific initialization code.
  223. */
  224. DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  225. unsigned irq_res_start;
  226. unsigned irq_res_end;
  227. struct dma_interrupt_data {
  228. void (*callback)(unsigned channel, unsigned short ch_status,
  229. void *data);
  230. void *data;
  231. } intr_data[EDMA_MAX_DMACH];
  232. };
  233. static struct edma *edma_cc[EDMA_MAX_CC];
  234. static int arch_num_cc;
  235. /* dummy param set used to (re)initialize parameter RAM slots */
  236. static const struct edmacc_param dummy_paramset = {
  237. .link_bcntrld = 0xffff,
  238. .ccnt = 1,
  239. };
  240. /*****************************************************************************/
  241. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  242. enum dma_event_q queue_no)
  243. {
  244. int bit = (ch_no & 0x7) * 4;
  245. /* default to low priority queue */
  246. if (queue_no == EVENTQ_DEFAULT)
  247. queue_no = edma_cc[ctlr]->default_queue;
  248. queue_no &= 7;
  249. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  250. ~(0x7 << bit), queue_no << bit);
  251. }
  252. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  253. {
  254. int bit = queue_no * 4;
  255. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  256. }
  257. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  258. int priority)
  259. {
  260. int bit = queue_no * 4;
  261. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  262. ((priority & 0x7) << bit));
  263. }
  264. /**
  265. * map_dmach_param - Maps channel number to param entry number
  266. *
  267. * This maps the dma channel number to param entry numberter. In
  268. * other words using the DMA channel mapping registers a param entry
  269. * can be mapped to any channel
  270. *
  271. * Callers are responsible for ensuring the channel mapping logic is
  272. * included in that particular EDMA variant (Eg : dm646x)
  273. *
  274. */
  275. static void __init map_dmach_param(unsigned ctlr)
  276. {
  277. int i;
  278. for (i = 0; i < EDMA_MAX_DMACH; i++)
  279. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  280. }
  281. static inline void
  282. setup_dma_interrupt(unsigned lch,
  283. void (*callback)(unsigned channel, u16 ch_status, void *data),
  284. void *data)
  285. {
  286. unsigned ctlr;
  287. ctlr = EDMA_CTLR(lch);
  288. lch = EDMA_CHAN_SLOT(lch);
  289. if (!callback)
  290. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  291. BIT(lch & 0x1f));
  292. edma_cc[ctlr]->intr_data[lch].callback = callback;
  293. edma_cc[ctlr]->intr_data[lch].data = data;
  294. if (callback) {
  295. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  296. BIT(lch & 0x1f));
  297. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  298. BIT(lch & 0x1f));
  299. }
  300. }
  301. static int irq2ctlr(int irq)
  302. {
  303. if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
  304. return 0;
  305. else if (irq >= edma_cc[1]->irq_res_start &&
  306. irq <= edma_cc[1]->irq_res_end)
  307. return 1;
  308. return -1;
  309. }
  310. /******************************************************************************
  311. *
  312. * DMA interrupt handler
  313. *
  314. *****************************************************************************/
  315. static irqreturn_t dma_irq_handler(int irq, void *data)
  316. {
  317. int i;
  318. int ctlr;
  319. unsigned int cnt = 0;
  320. ctlr = irq2ctlr(irq);
  321. if (ctlr < 0)
  322. return IRQ_NONE;
  323. dev_dbg(data, "dma_irq_handler\n");
  324. if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
  325. (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
  326. return IRQ_NONE;
  327. while (1) {
  328. int j;
  329. if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
  330. edma_shadow0_read_array(ctlr, SH_IER, 0))
  331. j = 0;
  332. else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
  333. edma_shadow0_read_array(ctlr, SH_IER, 1))
  334. j = 1;
  335. else
  336. break;
  337. dev_dbg(data, "IPR%d %08x\n", j,
  338. edma_shadow0_read_array(ctlr, SH_IPR, j));
  339. for (i = 0; i < 32; i++) {
  340. int k = (j << 5) + i;
  341. if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
  342. && (edma_shadow0_read_array(ctlr,
  343. SH_IER, j) & BIT(i))) {
  344. /* Clear the corresponding IPR bits */
  345. edma_shadow0_write_array(ctlr, SH_ICR, j,
  346. BIT(i));
  347. if (edma_cc[ctlr]->intr_data[k].callback)
  348. edma_cc[ctlr]->intr_data[k].callback(
  349. k, DMA_COMPLETE,
  350. edma_cc[ctlr]->intr_data[k].
  351. data);
  352. }
  353. }
  354. cnt++;
  355. if (cnt > 10)
  356. break;
  357. }
  358. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  359. return IRQ_HANDLED;
  360. }
  361. /******************************************************************************
  362. *
  363. * DMA error interrupt handler
  364. *
  365. *****************************************************************************/
  366. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  367. {
  368. int i;
  369. int ctlr;
  370. unsigned int cnt = 0;
  371. ctlr = irq2ctlr(irq);
  372. if (ctlr < 0)
  373. return IRQ_NONE;
  374. dev_dbg(data, "dma_ccerr_handler\n");
  375. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  376. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  377. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  378. (edma_read(ctlr, EDMA_CCERR) == 0))
  379. return IRQ_NONE;
  380. while (1) {
  381. int j = -1;
  382. if (edma_read_array(ctlr, EDMA_EMR, 0))
  383. j = 0;
  384. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  385. j = 1;
  386. if (j >= 0) {
  387. dev_dbg(data, "EMR%d %08x\n", j,
  388. edma_read_array(ctlr, EDMA_EMR, j));
  389. for (i = 0; i < 32; i++) {
  390. int k = (j << 5) + i;
  391. if (edma_read_array(ctlr, EDMA_EMR, j) &
  392. BIT(i)) {
  393. /* Clear the corresponding EMR bits */
  394. edma_write_array(ctlr, EDMA_EMCR, j,
  395. BIT(i));
  396. /* Clear any SER */
  397. edma_shadow0_write_array(ctlr, SH_SECR,
  398. j, BIT(i));
  399. if (edma_cc[ctlr]->intr_data[k].
  400. callback) {
  401. edma_cc[ctlr]->intr_data[k].
  402. callback(k,
  403. DMA_CC_ERROR,
  404. edma_cc[ctlr]->intr_data
  405. [k].data);
  406. }
  407. }
  408. }
  409. } else if (edma_read(ctlr, EDMA_QEMR)) {
  410. dev_dbg(data, "QEMR %02x\n",
  411. edma_read(ctlr, EDMA_QEMR));
  412. for (i = 0; i < 8; i++) {
  413. if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
  414. /* Clear the corresponding IPR bits */
  415. edma_write(ctlr, EDMA_QEMCR, BIT(i));
  416. edma_shadow0_write(ctlr, SH_QSECR,
  417. BIT(i));
  418. /* NOTE: not reported!! */
  419. }
  420. }
  421. } else if (edma_read(ctlr, EDMA_CCERR)) {
  422. dev_dbg(data, "CCERR %08x\n",
  423. edma_read(ctlr, EDMA_CCERR));
  424. /* FIXME: CCERR.BIT(16) ignored! much better
  425. * to just write CCERRCLR with CCERR value...
  426. */
  427. for (i = 0; i < 8; i++) {
  428. if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
  429. /* Clear the corresponding IPR bits */
  430. edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
  431. /* NOTE: not reported!! */
  432. }
  433. }
  434. }
  435. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  436. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  437. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  438. (edma_read(ctlr, EDMA_CCERR) == 0))
  439. break;
  440. cnt++;
  441. if (cnt > 10)
  442. break;
  443. }
  444. edma_write(ctlr, EDMA_EEVAL, 1);
  445. return IRQ_HANDLED;
  446. }
  447. /******************************************************************************
  448. *
  449. * Transfer controller error interrupt handlers
  450. *
  451. *****************************************************************************/
  452. #define tc_errs_handled false /* disabled as long as they're NOPs */
  453. static irqreturn_t dma_tc0err_handler(int irq, void *data)
  454. {
  455. dev_dbg(data, "dma_tc0err_handler\n");
  456. return IRQ_HANDLED;
  457. }
  458. static irqreturn_t dma_tc1err_handler(int irq, void *data)
  459. {
  460. dev_dbg(data, "dma_tc1err_handler\n");
  461. return IRQ_HANDLED;
  462. }
  463. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  464. unsigned int num_slots,
  465. unsigned int start_slot)
  466. {
  467. int i, j;
  468. unsigned int count = num_slots;
  469. int stop_slot = start_slot;
  470. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  471. for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
  472. j = EDMA_CHAN_SLOT(i);
  473. if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
  474. /* Record our current beginning slot */
  475. if (count == num_slots)
  476. stop_slot = i;
  477. count--;
  478. set_bit(j, tmp_inuse);
  479. if (count == 0)
  480. break;
  481. } else {
  482. clear_bit(j, tmp_inuse);
  483. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  484. stop_slot = i;
  485. break;
  486. } else {
  487. count = num_slots;
  488. }
  489. }
  490. }
  491. /*
  492. * We have to clear any bits that we set
  493. * if we run out parameter RAM slots, i.e we do find a set
  494. * of contiguous parameter RAM slots but do not find the exact number
  495. * requested as we may reach the total number of parameter RAM slots
  496. */
  497. if (i == edma_cc[ctlr]->num_slots)
  498. stop_slot = i;
  499. for (j = start_slot; j < stop_slot; j++)
  500. if (test_bit(j, tmp_inuse))
  501. clear_bit(j, edma_cc[ctlr]->edma_inuse);
  502. if (count)
  503. return -EBUSY;
  504. for (j = i - num_slots + 1; j <= i; ++j)
  505. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  506. &dummy_paramset, PARM_SIZE);
  507. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  508. }
  509. static int prepare_unused_channel_list(struct device *dev, void *data)
  510. {
  511. struct platform_device *pdev = to_platform_device(dev);
  512. int i, ctlr;
  513. for (i = 0; i < pdev->num_resources; i++) {
  514. if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  515. (int)pdev->resource[i].start >= 0) {
  516. ctlr = EDMA_CTLR(pdev->resource[i].start);
  517. clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  518. edma_cc[ctlr]->edma_unused);
  519. }
  520. }
  521. return 0;
  522. }
  523. /*-----------------------------------------------------------------------*/
  524. static bool unused_chan_list_done;
  525. /* Resource alloc/free: dma channels, parameter RAM slots */
  526. /**
  527. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  528. * @channel: specific channel to allocate; negative for "any unmapped channel"
  529. * @callback: optional; to be issued on DMA completion or errors
  530. * @data: passed to callback
  531. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  532. * Controller (TC) executes requests using this channel. Use
  533. * EVENTQ_DEFAULT unless you really need a high priority queue.
  534. *
  535. * This allocates a DMA channel and its associated parameter RAM slot.
  536. * The parameter RAM is initialized to hold a dummy transfer.
  537. *
  538. * Normal use is to pass a specific channel number as @channel, to make
  539. * use of hardware events mapped to that channel. When the channel will
  540. * be used only for software triggering or event chaining, channels not
  541. * mapped to hardware events (or mapped to unused events) are preferable.
  542. *
  543. * DMA transfers start from a channel using edma_start(), or by
  544. * chaining. When the transfer described in that channel's parameter RAM
  545. * slot completes, that slot's data may be reloaded through a link.
  546. *
  547. * DMA errors are only reported to the @callback associated with the
  548. * channel driving that transfer, but transfer completion callbacks can
  549. * be sent to another channel under control of the TCC field in
  550. * the option word of the transfer's parameter RAM set. Drivers must not
  551. * use DMA transfer completion callbacks for channels they did not allocate.
  552. * (The same applies to TCC codes used in transfer chaining.)
  553. *
  554. * Returns the number of the channel, else negative errno.
  555. */
  556. int edma_alloc_channel(int channel,
  557. void (*callback)(unsigned channel, u16 ch_status, void *data),
  558. void *data,
  559. enum dma_event_q eventq_no)
  560. {
  561. unsigned i, done = 0, ctlr = 0;
  562. int ret = 0;
  563. if (!unused_chan_list_done) {
  564. /*
  565. * Scan all the platform devices to find out the EDMA channels
  566. * used and clear them in the unused list, making the rest
  567. * available for ARM usage.
  568. */
  569. ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  570. prepare_unused_channel_list);
  571. if (ret < 0)
  572. return ret;
  573. unused_chan_list_done = true;
  574. }
  575. if (channel >= 0) {
  576. ctlr = EDMA_CTLR(channel);
  577. channel = EDMA_CHAN_SLOT(channel);
  578. }
  579. if (channel < 0) {
  580. for (i = 0; i < arch_num_cc; i++) {
  581. channel = 0;
  582. for (;;) {
  583. channel = find_next_bit(edma_cc[i]->edma_unused,
  584. edma_cc[i]->num_channels,
  585. channel);
  586. if (channel == edma_cc[i]->num_channels)
  587. break;
  588. if (!test_and_set_bit(channel,
  589. edma_cc[i]->edma_inuse)) {
  590. done = 1;
  591. ctlr = i;
  592. break;
  593. }
  594. channel++;
  595. }
  596. if (done)
  597. break;
  598. }
  599. if (!done)
  600. return -ENOMEM;
  601. } else if (channel >= edma_cc[ctlr]->num_channels) {
  602. return -EINVAL;
  603. } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
  604. return -EBUSY;
  605. }
  606. /* ensure access through shadow region 0 */
  607. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
  608. /* ensure no events are pending */
  609. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  610. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  611. &dummy_paramset, PARM_SIZE);
  612. if (callback)
  613. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  614. callback, data);
  615. map_dmach_queue(ctlr, channel, eventq_no);
  616. return EDMA_CTLR_CHAN(ctlr, channel);
  617. }
  618. EXPORT_SYMBOL(edma_alloc_channel);
  619. /**
  620. * edma_free_channel - deallocate DMA channel
  621. * @channel: dma channel returned from edma_alloc_channel()
  622. *
  623. * This deallocates the DMA channel and associated parameter RAM slot
  624. * allocated by edma_alloc_channel().
  625. *
  626. * Callers are responsible for ensuring the channel is inactive, and
  627. * will not be reactivated by linking, chaining, or software calls to
  628. * edma_start().
  629. */
  630. void edma_free_channel(unsigned channel)
  631. {
  632. unsigned ctlr;
  633. ctlr = EDMA_CTLR(channel);
  634. channel = EDMA_CHAN_SLOT(channel);
  635. if (channel >= edma_cc[ctlr]->num_channels)
  636. return;
  637. setup_dma_interrupt(channel, NULL, NULL);
  638. /* REVISIT should probably take out of shadow region 0 */
  639. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  640. &dummy_paramset, PARM_SIZE);
  641. clear_bit(channel, edma_cc[ctlr]->edma_inuse);
  642. }
  643. EXPORT_SYMBOL(edma_free_channel);
  644. /**
  645. * edma_alloc_slot - allocate DMA parameter RAM
  646. * @slot: specific slot to allocate; negative for "any unused slot"
  647. *
  648. * This allocates a parameter RAM slot, initializing it to hold a
  649. * dummy transfer. Slots allocated using this routine have not been
  650. * mapped to a hardware DMA channel, and will normally be used by
  651. * linking to them from a slot associated with a DMA channel.
  652. *
  653. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  654. * slots may be allocated on behalf of DSP firmware.
  655. *
  656. * Returns the number of the slot, else negative errno.
  657. */
  658. int edma_alloc_slot(unsigned ctlr, int slot)
  659. {
  660. if (slot >= 0)
  661. slot = EDMA_CHAN_SLOT(slot);
  662. if (slot < 0) {
  663. slot = edma_cc[ctlr]->num_channels;
  664. for (;;) {
  665. slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
  666. edma_cc[ctlr]->num_slots, slot);
  667. if (slot == edma_cc[ctlr]->num_slots)
  668. return -ENOMEM;
  669. if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
  670. break;
  671. }
  672. } else if (slot < edma_cc[ctlr]->num_channels ||
  673. slot >= edma_cc[ctlr]->num_slots) {
  674. return -EINVAL;
  675. } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
  676. return -EBUSY;
  677. }
  678. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  679. &dummy_paramset, PARM_SIZE);
  680. return EDMA_CTLR_CHAN(ctlr, slot);
  681. }
  682. EXPORT_SYMBOL(edma_alloc_slot);
  683. /**
  684. * edma_free_slot - deallocate DMA parameter RAM
  685. * @slot: parameter RAM slot returned from edma_alloc_slot()
  686. *
  687. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  688. * Callers are responsible for ensuring the slot is inactive, and will
  689. * not be activated.
  690. */
  691. void edma_free_slot(unsigned slot)
  692. {
  693. unsigned ctlr;
  694. ctlr = EDMA_CTLR(slot);
  695. slot = EDMA_CHAN_SLOT(slot);
  696. if (slot < edma_cc[ctlr]->num_channels ||
  697. slot >= edma_cc[ctlr]->num_slots)
  698. return;
  699. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  700. &dummy_paramset, PARM_SIZE);
  701. clear_bit(slot, edma_cc[ctlr]->edma_inuse);
  702. }
  703. EXPORT_SYMBOL(edma_free_slot);
  704. /**
  705. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  706. * The API will return the starting point of a set of
  707. * contiguous parameter RAM slots that have been requested
  708. *
  709. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  710. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  711. * @count: number of contiguous Paramter RAM slots
  712. * @slot - the start value of Parameter RAM slot that should be passed if id
  713. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  714. *
  715. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  716. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  717. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  718. *
  719. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  720. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  721. * argument to the API.
  722. *
  723. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  724. * starts looking for a set of contiguous parameter RAMs from the "slot"
  725. * that is passed as an argument to the API. On failure the API will try to
  726. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  727. * RAM slots
  728. */
  729. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  730. {
  731. /*
  732. * The start slot requested should be greater than
  733. * the number of channels and lesser than the total number
  734. * of slots
  735. */
  736. if ((id != EDMA_CONT_PARAMS_ANY) &&
  737. (slot < edma_cc[ctlr]->num_channels ||
  738. slot >= edma_cc[ctlr]->num_slots))
  739. return -EINVAL;
  740. /*
  741. * The number of parameter RAM slots requested cannot be less than 1
  742. * and cannot be more than the number of slots minus the number of
  743. * channels
  744. */
  745. if (count < 1 || count >
  746. (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
  747. return -EINVAL;
  748. switch (id) {
  749. case EDMA_CONT_PARAMS_ANY:
  750. return reserve_contiguous_slots(ctlr, id, count,
  751. edma_cc[ctlr]->num_channels);
  752. case EDMA_CONT_PARAMS_FIXED_EXACT:
  753. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  754. return reserve_contiguous_slots(ctlr, id, count, slot);
  755. default:
  756. return -EINVAL;
  757. }
  758. }
  759. EXPORT_SYMBOL(edma_alloc_cont_slots);
  760. /**
  761. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  762. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  763. * @count: the number of contiguous parameter RAM slots to be freed
  764. *
  765. * This deallocates the parameter RAM slots allocated by
  766. * edma_alloc_cont_slots.
  767. * Callers/applications need to keep track of sets of contiguous
  768. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  769. * API.
  770. * Callers are responsible for ensuring the slots are inactive, and will
  771. * not be activated.
  772. */
  773. int edma_free_cont_slots(unsigned slot, int count)
  774. {
  775. unsigned ctlr, slot_to_free;
  776. int i;
  777. ctlr = EDMA_CTLR(slot);
  778. slot = EDMA_CHAN_SLOT(slot);
  779. if (slot < edma_cc[ctlr]->num_channels ||
  780. slot >= edma_cc[ctlr]->num_slots ||
  781. count < 1)
  782. return -EINVAL;
  783. for (i = slot; i < slot + count; ++i) {
  784. ctlr = EDMA_CTLR(i);
  785. slot_to_free = EDMA_CHAN_SLOT(i);
  786. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  787. &dummy_paramset, PARM_SIZE);
  788. clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
  789. }
  790. return 0;
  791. }
  792. EXPORT_SYMBOL(edma_free_cont_slots);
  793. /*-----------------------------------------------------------------------*/
  794. /* Parameter RAM operations (i) -- read/write partial slots */
  795. /**
  796. * edma_set_src - set initial DMA source address in parameter RAM slot
  797. * @slot: parameter RAM slot being configured
  798. * @src_port: physical address of source (memory, controller FIFO, etc)
  799. * @addressMode: INCR, except in very rare cases
  800. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  801. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  802. *
  803. * Note that the source address is modified during the DMA transfer
  804. * according to edma_set_src_index().
  805. */
  806. void edma_set_src(unsigned slot, dma_addr_t src_port,
  807. enum address_mode mode, enum fifo_width width)
  808. {
  809. unsigned ctlr;
  810. ctlr = EDMA_CTLR(slot);
  811. slot = EDMA_CHAN_SLOT(slot);
  812. if (slot < edma_cc[ctlr]->num_slots) {
  813. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  814. if (mode) {
  815. /* set SAM and program FWID */
  816. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  817. } else {
  818. /* clear SAM */
  819. i &= ~SAM;
  820. }
  821. edma_parm_write(ctlr, PARM_OPT, slot, i);
  822. /* set the source port address
  823. in source register of param structure */
  824. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  825. }
  826. }
  827. EXPORT_SYMBOL(edma_set_src);
  828. /**
  829. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  830. * @slot: parameter RAM slot being configured
  831. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  832. * @addressMode: INCR, except in very rare cases
  833. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  834. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  835. *
  836. * Note that the destination address is modified during the DMA transfer
  837. * according to edma_set_dest_index().
  838. */
  839. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  840. enum address_mode mode, enum fifo_width width)
  841. {
  842. unsigned ctlr;
  843. ctlr = EDMA_CTLR(slot);
  844. slot = EDMA_CHAN_SLOT(slot);
  845. if (slot < edma_cc[ctlr]->num_slots) {
  846. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  847. if (mode) {
  848. /* set DAM and program FWID */
  849. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  850. } else {
  851. /* clear DAM */
  852. i &= ~DAM;
  853. }
  854. edma_parm_write(ctlr, PARM_OPT, slot, i);
  855. /* set the destination port address
  856. in dest register of param structure */
  857. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  858. }
  859. }
  860. EXPORT_SYMBOL(edma_set_dest);
  861. /**
  862. * edma_get_position - returns the current transfer points
  863. * @slot: parameter RAM slot being examined
  864. * @src: pointer to source port position
  865. * @dst: pointer to destination port position
  866. *
  867. * Returns current source and destination addresses for a particular
  868. * parameter RAM slot. Its channel should not be active when this is called.
  869. */
  870. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  871. {
  872. struct edmacc_param temp;
  873. unsigned ctlr;
  874. ctlr = EDMA_CTLR(slot);
  875. slot = EDMA_CHAN_SLOT(slot);
  876. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  877. if (src != NULL)
  878. *src = temp.src;
  879. if (dst != NULL)
  880. *dst = temp.dst;
  881. }
  882. EXPORT_SYMBOL(edma_get_position);
  883. /**
  884. * edma_set_src_index - configure DMA source address indexing
  885. * @slot: parameter RAM slot being configured
  886. * @src_bidx: byte offset between source arrays in a frame
  887. * @src_cidx: byte offset between source frames in a block
  888. *
  889. * Offsets are specified to support either contiguous or discontiguous
  890. * memory transfers, or repeated access to a hardware register, as needed.
  891. * When accessing hardware registers, both offsets are normally zero.
  892. */
  893. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  894. {
  895. unsigned ctlr;
  896. ctlr = EDMA_CTLR(slot);
  897. slot = EDMA_CHAN_SLOT(slot);
  898. if (slot < edma_cc[ctlr]->num_slots) {
  899. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  900. 0xffff0000, src_bidx);
  901. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  902. 0xffff0000, src_cidx);
  903. }
  904. }
  905. EXPORT_SYMBOL(edma_set_src_index);
  906. /**
  907. * edma_set_dest_index - configure DMA destination address indexing
  908. * @slot: parameter RAM slot being configured
  909. * @dest_bidx: byte offset between destination arrays in a frame
  910. * @dest_cidx: byte offset between destination frames in a block
  911. *
  912. * Offsets are specified to support either contiguous or discontiguous
  913. * memory transfers, or repeated access to a hardware register, as needed.
  914. * When accessing hardware registers, both offsets are normally zero.
  915. */
  916. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  917. {
  918. unsigned ctlr;
  919. ctlr = EDMA_CTLR(slot);
  920. slot = EDMA_CHAN_SLOT(slot);
  921. if (slot < edma_cc[ctlr]->num_slots) {
  922. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  923. 0x0000ffff, dest_bidx << 16);
  924. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  925. 0x0000ffff, dest_cidx << 16);
  926. }
  927. }
  928. EXPORT_SYMBOL(edma_set_dest_index);
  929. /**
  930. * edma_set_transfer_params - configure DMA transfer parameters
  931. * @slot: parameter RAM slot being configured
  932. * @acnt: how many bytes per array (at least one)
  933. * @bcnt: how many arrays per frame (at least one)
  934. * @ccnt: how many frames per block (at least one)
  935. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  936. * the value to reload into bcnt when it decrements to zero
  937. * @sync_mode: ASYNC or ABSYNC
  938. *
  939. * See the EDMA3 documentation to understand how to configure and link
  940. * transfers using the fields in PaRAM slots. If you are not doing it
  941. * all at once with edma_write_slot(), you will use this routine
  942. * plus two calls each for source and destination, setting the initial
  943. * address and saying how to index that address.
  944. *
  945. * An example of an A-Synchronized transfer is a serial link using a
  946. * single word shift register. In that case, @acnt would be equal to
  947. * that word size; the serial controller issues a DMA synchronization
  948. * event to transfer each word, and memory access by the DMA transfer
  949. * controller will be word-at-a-time.
  950. *
  951. * An example of an AB-Synchronized transfer is a device using a FIFO.
  952. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  953. * The controller with the FIFO issues DMA synchronization events when
  954. * the FIFO threshold is reached, and the DMA transfer controller will
  955. * transfer one frame to (or from) the FIFO. It will probably use
  956. * efficient burst modes to access memory.
  957. */
  958. void edma_set_transfer_params(unsigned slot,
  959. u16 acnt, u16 bcnt, u16 ccnt,
  960. u16 bcnt_rld, enum sync_dimension sync_mode)
  961. {
  962. unsigned ctlr;
  963. ctlr = EDMA_CTLR(slot);
  964. slot = EDMA_CHAN_SLOT(slot);
  965. if (slot < edma_cc[ctlr]->num_slots) {
  966. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  967. 0x0000ffff, bcnt_rld << 16);
  968. if (sync_mode == ASYNC)
  969. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  970. else
  971. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  972. /* Set the acount, bcount, ccount registers */
  973. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  974. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  975. }
  976. }
  977. EXPORT_SYMBOL(edma_set_transfer_params);
  978. /**
  979. * edma_link - link one parameter RAM slot to another
  980. * @from: parameter RAM slot originating the link
  981. * @to: parameter RAM slot which is the link target
  982. *
  983. * The originating slot should not be part of any active DMA transfer.
  984. */
  985. void edma_link(unsigned from, unsigned to)
  986. {
  987. unsigned ctlr_from, ctlr_to;
  988. ctlr_from = EDMA_CTLR(from);
  989. from = EDMA_CHAN_SLOT(from);
  990. ctlr_to = EDMA_CTLR(to);
  991. to = EDMA_CHAN_SLOT(to);
  992. if (from >= edma_cc[ctlr_from]->num_slots)
  993. return;
  994. if (to >= edma_cc[ctlr_to]->num_slots)
  995. return;
  996. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  997. PARM_OFFSET(to));
  998. }
  999. EXPORT_SYMBOL(edma_link);
  1000. /**
  1001. * edma_unlink - cut link from one parameter RAM slot
  1002. * @from: parameter RAM slot originating the link
  1003. *
  1004. * The originating slot should not be part of any active DMA transfer.
  1005. * Its link is set to 0xffff.
  1006. */
  1007. void edma_unlink(unsigned from)
  1008. {
  1009. unsigned ctlr;
  1010. ctlr = EDMA_CTLR(from);
  1011. from = EDMA_CHAN_SLOT(from);
  1012. if (from >= edma_cc[ctlr]->num_slots)
  1013. return;
  1014. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  1015. }
  1016. EXPORT_SYMBOL(edma_unlink);
  1017. /*-----------------------------------------------------------------------*/
  1018. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  1019. /**
  1020. * edma_write_slot - write parameter RAM data for slot
  1021. * @slot: number of parameter RAM slot being modified
  1022. * @param: data to be written into parameter RAM slot
  1023. *
  1024. * Use this to assign all parameters of a transfer at once. This
  1025. * allows more efficient setup of transfers than issuing multiple
  1026. * calls to set up those parameters in small pieces, and provides
  1027. * complete control over all transfer options.
  1028. */
  1029. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  1030. {
  1031. unsigned ctlr;
  1032. ctlr = EDMA_CTLR(slot);
  1033. slot = EDMA_CHAN_SLOT(slot);
  1034. if (slot >= edma_cc[ctlr]->num_slots)
  1035. return;
  1036. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1037. PARM_SIZE);
  1038. }
  1039. EXPORT_SYMBOL(edma_write_slot);
  1040. /**
  1041. * edma_read_slot - read parameter RAM data from slot
  1042. * @slot: number of parameter RAM slot being copied
  1043. * @param: where to store copy of parameter RAM data
  1044. *
  1045. * Use this to read data from a parameter RAM slot, perhaps to
  1046. * save them as a template for later reuse.
  1047. */
  1048. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1049. {
  1050. unsigned ctlr;
  1051. ctlr = EDMA_CTLR(slot);
  1052. slot = EDMA_CHAN_SLOT(slot);
  1053. if (slot >= edma_cc[ctlr]->num_slots)
  1054. return;
  1055. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1056. PARM_SIZE);
  1057. }
  1058. EXPORT_SYMBOL(edma_read_slot);
  1059. /*-----------------------------------------------------------------------*/
  1060. /* Various EDMA channel control operations */
  1061. /**
  1062. * edma_pause - pause dma on a channel
  1063. * @channel: on which edma_start() has been called
  1064. *
  1065. * This temporarily disables EDMA hardware events on the specified channel,
  1066. * preventing them from triggering new transfers on its behalf
  1067. */
  1068. void edma_pause(unsigned channel)
  1069. {
  1070. unsigned ctlr;
  1071. ctlr = EDMA_CTLR(channel);
  1072. channel = EDMA_CHAN_SLOT(channel);
  1073. if (channel < edma_cc[ctlr]->num_channels) {
  1074. unsigned int mask = BIT(channel & 0x1f);
  1075. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1076. }
  1077. }
  1078. EXPORT_SYMBOL(edma_pause);
  1079. /**
  1080. * edma_resume - resumes dma on a paused channel
  1081. * @channel: on which edma_pause() has been called
  1082. *
  1083. * This re-enables EDMA hardware events on the specified channel.
  1084. */
  1085. void edma_resume(unsigned channel)
  1086. {
  1087. unsigned ctlr;
  1088. ctlr = EDMA_CTLR(channel);
  1089. channel = EDMA_CHAN_SLOT(channel);
  1090. if (channel < edma_cc[ctlr]->num_channels) {
  1091. unsigned int mask = BIT(channel & 0x1f);
  1092. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1093. }
  1094. }
  1095. EXPORT_SYMBOL(edma_resume);
  1096. /**
  1097. * edma_start - start dma on a channel
  1098. * @channel: channel being activated
  1099. *
  1100. * Channels with event associations will be triggered by their hardware
  1101. * events, and channels without such associations will be triggered by
  1102. * software. (At this writing there is no interface for using software
  1103. * triggers except with channels that don't support hardware triggers.)
  1104. *
  1105. * Returns zero on success, else negative errno.
  1106. */
  1107. int edma_start(unsigned channel)
  1108. {
  1109. unsigned ctlr;
  1110. ctlr = EDMA_CTLR(channel);
  1111. channel = EDMA_CHAN_SLOT(channel);
  1112. if (channel < edma_cc[ctlr]->num_channels) {
  1113. int j = channel >> 5;
  1114. unsigned int mask = BIT(channel & 0x1f);
  1115. /* EDMA channels without event association */
  1116. if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
  1117. pr_debug("EDMA: ESR%d %08x\n", j,
  1118. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1119. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1120. return 0;
  1121. }
  1122. /* EDMA channel with event association */
  1123. pr_debug("EDMA: ER%d %08x\n", j,
  1124. edma_shadow0_read_array(ctlr, SH_ER, j));
  1125. /* Clear any pending event or error */
  1126. edma_write_array(ctlr, EDMA_ECR, j, mask);
  1127. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1128. /* Clear any SER */
  1129. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1130. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1131. pr_debug("EDMA: EER%d %08x\n", j,
  1132. edma_shadow0_read_array(ctlr, SH_EER, j));
  1133. return 0;
  1134. }
  1135. return -EINVAL;
  1136. }
  1137. EXPORT_SYMBOL(edma_start);
  1138. /**
  1139. * edma_stop - stops dma on the channel passed
  1140. * @channel: channel being deactivated
  1141. *
  1142. * When @lch is a channel, any active transfer is paused and
  1143. * all pending hardware events are cleared. The current transfer
  1144. * may not be resumed, and the channel's Parameter RAM should be
  1145. * reinitialized before being reused.
  1146. */
  1147. void edma_stop(unsigned channel)
  1148. {
  1149. unsigned ctlr;
  1150. ctlr = EDMA_CTLR(channel);
  1151. channel = EDMA_CHAN_SLOT(channel);
  1152. if (channel < edma_cc[ctlr]->num_channels) {
  1153. int j = channel >> 5;
  1154. unsigned int mask = BIT(channel & 0x1f);
  1155. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1156. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1157. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1158. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1159. pr_debug("EDMA: EER%d %08x\n", j,
  1160. edma_shadow0_read_array(ctlr, SH_EER, j));
  1161. /* REVISIT: consider guarding against inappropriate event
  1162. * chaining by overwriting with dummy_paramset.
  1163. */
  1164. }
  1165. }
  1166. EXPORT_SYMBOL(edma_stop);
  1167. /******************************************************************************
  1168. *
  1169. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1170. * been removed before EDMA has finished.It is usedful for removable media.
  1171. * Arguments:
  1172. * ch_no - channel no
  1173. *
  1174. * Return: zero on success, or corresponding error no on failure
  1175. *
  1176. * FIXME this should not be needed ... edma_stop() should suffice.
  1177. *
  1178. *****************************************************************************/
  1179. void edma_clean_channel(unsigned channel)
  1180. {
  1181. unsigned ctlr;
  1182. ctlr = EDMA_CTLR(channel);
  1183. channel = EDMA_CHAN_SLOT(channel);
  1184. if (channel < edma_cc[ctlr]->num_channels) {
  1185. int j = (channel >> 5);
  1186. unsigned int mask = BIT(channel & 0x1f);
  1187. pr_debug("EDMA: EMR%d %08x\n", j,
  1188. edma_read_array(ctlr, EDMA_EMR, j));
  1189. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1190. /* Clear the corresponding EMR bits */
  1191. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1192. /* Clear any SER */
  1193. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1194. edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
  1195. }
  1196. }
  1197. EXPORT_SYMBOL(edma_clean_channel);
  1198. /*
  1199. * edma_clear_event - clear an outstanding event on the DMA channel
  1200. * Arguments:
  1201. * channel - channel number
  1202. */
  1203. void edma_clear_event(unsigned channel)
  1204. {
  1205. unsigned ctlr;
  1206. ctlr = EDMA_CTLR(channel);
  1207. channel = EDMA_CHAN_SLOT(channel);
  1208. if (channel >= edma_cc[ctlr]->num_channels)
  1209. return;
  1210. if (channel < 32)
  1211. edma_write(ctlr, EDMA_ECR, BIT(channel));
  1212. else
  1213. edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
  1214. }
  1215. EXPORT_SYMBOL(edma_clear_event);
  1216. /*-----------------------------------------------------------------------*/
  1217. static int __init edma_probe(struct platform_device *pdev)
  1218. {
  1219. struct edma_soc_info **info = pdev->dev.platform_data;
  1220. const s8 (*queue_priority_mapping)[2];
  1221. const s8 (*queue_tc_mapping)[2];
  1222. int i, j, off, ln, found = 0;
  1223. int status = -1;
  1224. const s16 (*rsv_chans)[2];
  1225. const s16 (*rsv_slots)[2];
  1226. int irq[EDMA_MAX_CC] = {0, 0};
  1227. int err_irq[EDMA_MAX_CC] = {0, 0};
  1228. struct resource *r[EDMA_MAX_CC] = {NULL};
  1229. resource_size_t len[EDMA_MAX_CC];
  1230. char res_name[10];
  1231. char irq_name[10];
  1232. if (!info)
  1233. return -ENODEV;
  1234. for (j = 0; j < EDMA_MAX_CC; j++) {
  1235. sprintf(res_name, "edma_cc%d", j);
  1236. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1237. res_name);
  1238. if (!r[j] || !info[j]) {
  1239. if (found)
  1240. break;
  1241. else
  1242. return -ENODEV;
  1243. } else {
  1244. found = 1;
  1245. }
  1246. len[j] = resource_size(r[j]);
  1247. r[j] = request_mem_region(r[j]->start, len[j],
  1248. dev_name(&pdev->dev));
  1249. if (!r[j]) {
  1250. status = -EBUSY;
  1251. goto fail1;
  1252. }
  1253. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1254. if (!edmacc_regs_base[j]) {
  1255. status = -EBUSY;
  1256. goto fail1;
  1257. }
  1258. edma_cc[j] = kzalloc(sizeof(struct edma), GFP_KERNEL);
  1259. if (!edma_cc[j]) {
  1260. status = -ENOMEM;
  1261. goto fail1;
  1262. }
  1263. edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
  1264. EDMA_MAX_DMACH);
  1265. edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
  1266. EDMA_MAX_PARAMENTRY);
  1267. edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
  1268. EDMA_MAX_CC);
  1269. edma_cc[j]->default_queue = info[j]->default_queue;
  1270. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1271. edmacc_regs_base[j]);
  1272. for (i = 0; i < edma_cc[j]->num_slots; i++)
  1273. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1274. &dummy_paramset, PARM_SIZE);
  1275. /* Mark all channels as unused */
  1276. memset(edma_cc[j]->edma_unused, 0xff,
  1277. sizeof(edma_cc[j]->edma_unused));
  1278. if (info[j]->rsv) {
  1279. /* Clear the reserved channels in unused list */
  1280. rsv_chans = info[j]->rsv->rsv_chans;
  1281. if (rsv_chans) {
  1282. for (i = 0; rsv_chans[i][0] != -1; i++) {
  1283. off = rsv_chans[i][0];
  1284. ln = rsv_chans[i][1];
  1285. clear_bits(off, ln,
  1286. edma_cc[j]->edma_unused);
  1287. }
  1288. }
  1289. /* Set the reserved slots in inuse list */
  1290. rsv_slots = info[j]->rsv->rsv_slots;
  1291. if (rsv_slots) {
  1292. for (i = 0; rsv_slots[i][0] != -1; i++) {
  1293. off = rsv_slots[i][0];
  1294. ln = rsv_slots[i][1];
  1295. set_bits(off, ln,
  1296. edma_cc[j]->edma_inuse);
  1297. }
  1298. }
  1299. }
  1300. sprintf(irq_name, "edma%d", j);
  1301. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1302. edma_cc[j]->irq_res_start = irq[j];
  1303. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1304. &pdev->dev);
  1305. if (status < 0) {
  1306. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1307. irq[j], status);
  1308. goto fail;
  1309. }
  1310. sprintf(irq_name, "edma%d_err", j);
  1311. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1312. edma_cc[j]->irq_res_end = err_irq[j];
  1313. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1314. "edma_error", &pdev->dev);
  1315. if (status < 0) {
  1316. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1317. err_irq[j], status);
  1318. goto fail;
  1319. }
  1320. for (i = 0; i < edma_cc[j]->num_channels; i++)
  1321. map_dmach_queue(j, i, info[j]->default_queue);
  1322. queue_tc_mapping = info[j]->queue_tc_mapping;
  1323. queue_priority_mapping = info[j]->queue_priority_mapping;
  1324. /* Event queue to TC mapping */
  1325. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1326. map_queue_tc(j, queue_tc_mapping[i][0],
  1327. queue_tc_mapping[i][1]);
  1328. /* Event queue priority mapping */
  1329. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1330. assign_priority_to_queue(j,
  1331. queue_priority_mapping[i][0],
  1332. queue_priority_mapping[i][1]);
  1333. /* Map the channel to param entry if channel mapping logic
  1334. * exist
  1335. */
  1336. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1337. map_dmach_param(j);
  1338. for (i = 0; i < info[j]->n_region; i++) {
  1339. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1340. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1341. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1342. }
  1343. arch_num_cc++;
  1344. }
  1345. if (tc_errs_handled) {
  1346. status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
  1347. "edma_tc0", &pdev->dev);
  1348. if (status < 0) {
  1349. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1350. IRQ_TCERRINT0, status);
  1351. return status;
  1352. }
  1353. status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
  1354. "edma_tc1", &pdev->dev);
  1355. if (status < 0) {
  1356. dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
  1357. IRQ_TCERRINT, status);
  1358. return status;
  1359. }
  1360. }
  1361. return 0;
  1362. fail:
  1363. for (i = 0; i < EDMA_MAX_CC; i++) {
  1364. if (err_irq[i])
  1365. free_irq(err_irq[i], &pdev->dev);
  1366. if (irq[i])
  1367. free_irq(irq[i], &pdev->dev);
  1368. }
  1369. fail1:
  1370. for (i = 0; i < EDMA_MAX_CC; i++) {
  1371. if (r[i])
  1372. release_mem_region(r[i]->start, len[i]);
  1373. if (edmacc_regs_base[i])
  1374. iounmap(edmacc_regs_base[i]);
  1375. kfree(edma_cc[i]);
  1376. }
  1377. return status;
  1378. }
  1379. static struct platform_driver edma_driver = {
  1380. .driver.name = "edma",
  1381. };
  1382. static int __init edma_init(void)
  1383. {
  1384. return platform_driver_probe(&edma_driver, edma_probe);
  1385. }
  1386. arch_initcall(edma_init);