perf_event.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/perf_event.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/cputype.h>
  22. #include <asm/irq.h>
  23. #include <asm/irq_regs.h>
  24. #include <asm/pmu.h>
  25. #include <asm/stacktrace.h>
  26. /*
  27. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  28. * another platform that supports more, we need to increase this to be the
  29. * largest of all platforms.
  30. *
  31. * ARMv7 supports up to 32 events:
  32. * cycle counter CCNT + 31 events counters CNT0..30.
  33. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  34. */
  35. #define ARMPMU_MAX_HWEVENTS 32
  36. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  37. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  38. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  39. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  40. /* Set at runtime when we know what CPU type we are. */
  41. static struct arm_pmu *cpu_pmu;
  42. enum arm_perf_pmu_ids
  43. armpmu_get_pmu_id(void)
  44. {
  45. int id = -ENODEV;
  46. if (cpu_pmu != NULL)
  47. id = cpu_pmu->id;
  48. return id;
  49. }
  50. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  51. int perf_num_counters(void)
  52. {
  53. int max_events = 0;
  54. if (cpu_pmu != NULL)
  55. max_events = cpu_pmu->num_events;
  56. return max_events;
  57. }
  58. EXPORT_SYMBOL_GPL(perf_num_counters);
  59. #define HW_OP_UNSUPPORTED 0xFFFF
  60. #define C(_x) \
  61. PERF_COUNT_HW_CACHE_##_x
  62. #define CACHE_OP_UNSUPPORTED 0xFFFF
  63. static int
  64. armpmu_map_cache_event(const unsigned (*cache_map)
  65. [PERF_COUNT_HW_CACHE_MAX]
  66. [PERF_COUNT_HW_CACHE_OP_MAX]
  67. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  68. u64 config)
  69. {
  70. unsigned int cache_type, cache_op, cache_result, ret;
  71. cache_type = (config >> 0) & 0xff;
  72. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  73. return -EINVAL;
  74. cache_op = (config >> 8) & 0xff;
  75. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  76. return -EINVAL;
  77. cache_result = (config >> 16) & 0xff;
  78. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  79. return -EINVAL;
  80. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  81. if (ret == CACHE_OP_UNSUPPORTED)
  82. return -ENOENT;
  83. return ret;
  84. }
  85. static int
  86. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  87. {
  88. int mapping = (*event_map)[config];
  89. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  90. }
  91. static int
  92. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  93. {
  94. return (int)(config & raw_event_mask);
  95. }
  96. static int map_cpu_event(struct perf_event *event,
  97. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  98. const unsigned (*cache_map)
  99. [PERF_COUNT_HW_CACHE_MAX]
  100. [PERF_COUNT_HW_CACHE_OP_MAX]
  101. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  102. u32 raw_event_mask)
  103. {
  104. u64 config = event->attr.config;
  105. switch (event->attr.type) {
  106. case PERF_TYPE_HARDWARE:
  107. return armpmu_map_event(event_map, config);
  108. case PERF_TYPE_HW_CACHE:
  109. return armpmu_map_cache_event(cache_map, config);
  110. case PERF_TYPE_RAW:
  111. return armpmu_map_raw_event(raw_event_mask, config);
  112. }
  113. return -ENOENT;
  114. }
  115. int
  116. armpmu_event_set_period(struct perf_event *event,
  117. struct hw_perf_event *hwc,
  118. int idx)
  119. {
  120. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  121. s64 left = local64_read(&hwc->period_left);
  122. s64 period = hwc->sample_period;
  123. int ret = 0;
  124. if (unlikely(left <= -period)) {
  125. left = period;
  126. local64_set(&hwc->period_left, left);
  127. hwc->last_period = period;
  128. ret = 1;
  129. }
  130. if (unlikely(left <= 0)) {
  131. left += period;
  132. local64_set(&hwc->period_left, left);
  133. hwc->last_period = period;
  134. ret = 1;
  135. }
  136. if (left > (s64)armpmu->max_period)
  137. left = armpmu->max_period;
  138. local64_set(&hwc->prev_count, (u64)-left);
  139. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  140. perf_event_update_userpage(event);
  141. return ret;
  142. }
  143. u64
  144. armpmu_event_update(struct perf_event *event,
  145. struct hw_perf_event *hwc,
  146. int idx)
  147. {
  148. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  149. u64 delta, prev_raw_count, new_raw_count;
  150. again:
  151. prev_raw_count = local64_read(&hwc->prev_count);
  152. new_raw_count = armpmu->read_counter(idx);
  153. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  154. new_raw_count) != prev_raw_count)
  155. goto again;
  156. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  157. local64_add(delta, &event->count);
  158. local64_sub(delta, &hwc->period_left);
  159. return new_raw_count;
  160. }
  161. static void
  162. armpmu_read(struct perf_event *event)
  163. {
  164. struct hw_perf_event *hwc = &event->hw;
  165. /* Don't read disabled counters! */
  166. if (hwc->idx < 0)
  167. return;
  168. armpmu_event_update(event, hwc, hwc->idx);
  169. }
  170. static void
  171. armpmu_stop(struct perf_event *event, int flags)
  172. {
  173. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  174. struct hw_perf_event *hwc = &event->hw;
  175. /*
  176. * ARM pmu always has to update the counter, so ignore
  177. * PERF_EF_UPDATE, see comments in armpmu_start().
  178. */
  179. if (!(hwc->state & PERF_HES_STOPPED)) {
  180. armpmu->disable(hwc, hwc->idx);
  181. barrier(); /* why? */
  182. armpmu_event_update(event, hwc, hwc->idx);
  183. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  184. }
  185. }
  186. static void
  187. armpmu_start(struct perf_event *event, int flags)
  188. {
  189. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  190. struct hw_perf_event *hwc = &event->hw;
  191. /*
  192. * ARM pmu always has to reprogram the period, so ignore
  193. * PERF_EF_RELOAD, see the comment below.
  194. */
  195. if (flags & PERF_EF_RELOAD)
  196. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  197. hwc->state = 0;
  198. /*
  199. * Set the period again. Some counters can't be stopped, so when we
  200. * were stopped we simply disabled the IRQ source and the counter
  201. * may have been left counting. If we don't do this step then we may
  202. * get an interrupt too soon or *way* too late if the overflow has
  203. * happened since disabling.
  204. */
  205. armpmu_event_set_period(event, hwc, hwc->idx);
  206. armpmu->enable(hwc, hwc->idx);
  207. }
  208. static void
  209. armpmu_del(struct perf_event *event, int flags)
  210. {
  211. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  212. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  213. struct hw_perf_event *hwc = &event->hw;
  214. int idx = hwc->idx;
  215. WARN_ON(idx < 0);
  216. armpmu_stop(event, PERF_EF_UPDATE);
  217. hw_events->events[idx] = NULL;
  218. clear_bit(idx, hw_events->used_mask);
  219. perf_event_update_userpage(event);
  220. }
  221. static int
  222. armpmu_add(struct perf_event *event, int flags)
  223. {
  224. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  225. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  226. struct hw_perf_event *hwc = &event->hw;
  227. int idx;
  228. int err = 0;
  229. perf_pmu_disable(event->pmu);
  230. /* If we don't have a space for the counter then finish early. */
  231. idx = armpmu->get_event_idx(hw_events, hwc);
  232. if (idx < 0) {
  233. err = idx;
  234. goto out;
  235. }
  236. /*
  237. * If there is an event in the counter we are going to use then make
  238. * sure it is disabled.
  239. */
  240. event->hw.idx = idx;
  241. armpmu->disable(hwc, idx);
  242. hw_events->events[idx] = event;
  243. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  244. if (flags & PERF_EF_START)
  245. armpmu_start(event, PERF_EF_RELOAD);
  246. /* Propagate our changes to the userspace mapping. */
  247. perf_event_update_userpage(event);
  248. out:
  249. perf_pmu_enable(event->pmu);
  250. return err;
  251. }
  252. static int
  253. validate_event(struct pmu_hw_events *hw_events,
  254. struct perf_event *event)
  255. {
  256. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  257. struct hw_perf_event fake_event = event->hw;
  258. struct pmu *leader_pmu = event->group_leader->pmu;
  259. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  260. return 1;
  261. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  262. }
  263. static int
  264. validate_group(struct perf_event *event)
  265. {
  266. struct perf_event *sibling, *leader = event->group_leader;
  267. struct pmu_hw_events fake_pmu;
  268. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  269. /*
  270. * Initialise the fake PMU. We only need to populate the
  271. * used_mask for the purposes of validation.
  272. */
  273. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  274. fake_pmu.used_mask = fake_used_mask;
  275. if (!validate_event(&fake_pmu, leader))
  276. return -EINVAL;
  277. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  278. if (!validate_event(&fake_pmu, sibling))
  279. return -EINVAL;
  280. }
  281. if (!validate_event(&fake_pmu, event))
  282. return -EINVAL;
  283. return 0;
  284. }
  285. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  286. {
  287. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  288. struct platform_device *plat_device = armpmu->plat_device;
  289. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  290. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  291. }
  292. static void
  293. armpmu_release_hardware(struct arm_pmu *armpmu)
  294. {
  295. int i, irq, irqs;
  296. struct platform_device *pmu_device = armpmu->plat_device;
  297. struct arm_pmu_platdata *plat =
  298. dev_get_platdata(&pmu_device->dev);
  299. irqs = min(pmu_device->num_resources, num_possible_cpus());
  300. for (i = 0; i < irqs; ++i) {
  301. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  302. continue;
  303. irq = platform_get_irq(pmu_device, i);
  304. if (irq >= 0) {
  305. if (plat && plat->disable_irq)
  306. plat->disable_irq(irq);
  307. free_irq(irq, armpmu);
  308. }
  309. }
  310. release_pmu(armpmu->type);
  311. }
  312. static int
  313. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  314. {
  315. struct arm_pmu_platdata *plat;
  316. irq_handler_t handle_irq;
  317. int i, err, irq, irqs;
  318. struct platform_device *pmu_device = armpmu->plat_device;
  319. if (!pmu_device)
  320. return -ENODEV;
  321. err = reserve_pmu(armpmu->type);
  322. if (err) {
  323. pr_warning("unable to reserve pmu\n");
  324. return err;
  325. }
  326. plat = dev_get_platdata(&pmu_device->dev);
  327. if (plat && plat->handle_irq)
  328. handle_irq = armpmu_platform_irq;
  329. else
  330. handle_irq = armpmu->handle_irq;
  331. irqs = min(pmu_device->num_resources, num_possible_cpus());
  332. if (irqs < 1) {
  333. pr_err("no irqs for PMUs defined\n");
  334. return -ENODEV;
  335. }
  336. for (i = 0; i < irqs; ++i) {
  337. err = 0;
  338. irq = platform_get_irq(pmu_device, i);
  339. if (irq < 0)
  340. continue;
  341. /*
  342. * If we have a single PMU interrupt that we can't shift,
  343. * assume that we're running on a uniprocessor machine and
  344. * continue. Otherwise, continue without this interrupt.
  345. */
  346. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  347. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  348. irq, i);
  349. continue;
  350. }
  351. err = request_irq(irq, handle_irq,
  352. IRQF_DISABLED | IRQF_NOBALANCING,
  353. "arm-pmu", armpmu);
  354. if (err) {
  355. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  356. irq);
  357. armpmu_release_hardware(armpmu);
  358. return err;
  359. } else if (plat && plat->enable_irq)
  360. plat->enable_irq(irq);
  361. cpumask_set_cpu(i, &armpmu->active_irqs);
  362. }
  363. return 0;
  364. }
  365. static void
  366. hw_perf_event_destroy(struct perf_event *event)
  367. {
  368. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  369. atomic_t *active_events = &armpmu->active_events;
  370. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  371. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  372. armpmu_release_hardware(armpmu);
  373. mutex_unlock(pmu_reserve_mutex);
  374. }
  375. }
  376. static int
  377. event_requires_mode_exclusion(struct perf_event_attr *attr)
  378. {
  379. return attr->exclude_idle || attr->exclude_user ||
  380. attr->exclude_kernel || attr->exclude_hv;
  381. }
  382. static int
  383. __hw_perf_event_init(struct perf_event *event)
  384. {
  385. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  386. struct hw_perf_event *hwc = &event->hw;
  387. int mapping, err;
  388. mapping = armpmu->map_event(event);
  389. if (mapping < 0) {
  390. pr_debug("event %x:%llx not supported\n", event->attr.type,
  391. event->attr.config);
  392. return mapping;
  393. }
  394. /*
  395. * We don't assign an index until we actually place the event onto
  396. * hardware. Use -1 to signify that we haven't decided where to put it
  397. * yet. For SMP systems, each core has it's own PMU so we can't do any
  398. * clever allocation or constraints checking at this point.
  399. */
  400. hwc->idx = -1;
  401. hwc->config_base = 0;
  402. hwc->config = 0;
  403. hwc->event_base = 0;
  404. /*
  405. * Check whether we need to exclude the counter from certain modes.
  406. */
  407. if ((!armpmu->set_event_filter ||
  408. armpmu->set_event_filter(hwc, &event->attr)) &&
  409. event_requires_mode_exclusion(&event->attr)) {
  410. pr_debug("ARM performance counters do not support "
  411. "mode exclusion\n");
  412. return -EPERM;
  413. }
  414. /*
  415. * Store the event encoding into the config_base field.
  416. */
  417. hwc->config_base |= (unsigned long)mapping;
  418. if (!hwc->sample_period) {
  419. /*
  420. * For non-sampling runs, limit the sample_period to half
  421. * of the counter width. That way, the new counter value
  422. * is far less likely to overtake the previous one unless
  423. * you have some serious IRQ latency issues.
  424. */
  425. hwc->sample_period = armpmu->max_period >> 1;
  426. hwc->last_period = hwc->sample_period;
  427. local64_set(&hwc->period_left, hwc->sample_period);
  428. }
  429. err = 0;
  430. if (event->group_leader != event) {
  431. err = validate_group(event);
  432. if (err)
  433. return -EINVAL;
  434. }
  435. return err;
  436. }
  437. static int armpmu_event_init(struct perf_event *event)
  438. {
  439. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  440. int err = 0;
  441. atomic_t *active_events = &armpmu->active_events;
  442. /* does not support taken branch sampling */
  443. if (has_branch_stack(event))
  444. return -EOPNOTSUPP;
  445. if (armpmu->map_event(event) == -ENOENT)
  446. return -ENOENT;
  447. event->destroy = hw_perf_event_destroy;
  448. if (!atomic_inc_not_zero(active_events)) {
  449. mutex_lock(&armpmu->reserve_mutex);
  450. if (atomic_read(active_events) == 0)
  451. err = armpmu_reserve_hardware(armpmu);
  452. if (!err)
  453. atomic_inc(active_events);
  454. mutex_unlock(&armpmu->reserve_mutex);
  455. }
  456. if (err)
  457. return err;
  458. err = __hw_perf_event_init(event);
  459. if (err)
  460. hw_perf_event_destroy(event);
  461. return err;
  462. }
  463. static void armpmu_enable(struct pmu *pmu)
  464. {
  465. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  466. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  467. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  468. if (enabled)
  469. armpmu->start();
  470. }
  471. static void armpmu_disable(struct pmu *pmu)
  472. {
  473. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  474. armpmu->stop();
  475. }
  476. static void __init armpmu_init(struct arm_pmu *armpmu)
  477. {
  478. atomic_set(&armpmu->active_events, 0);
  479. mutex_init(&armpmu->reserve_mutex);
  480. armpmu->pmu = (struct pmu) {
  481. .pmu_enable = armpmu_enable,
  482. .pmu_disable = armpmu_disable,
  483. .event_init = armpmu_event_init,
  484. .add = armpmu_add,
  485. .del = armpmu_del,
  486. .start = armpmu_start,
  487. .stop = armpmu_stop,
  488. .read = armpmu_read,
  489. };
  490. }
  491. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  492. {
  493. armpmu_init(armpmu);
  494. return perf_pmu_register(&armpmu->pmu, name, type);
  495. }
  496. /* Include the PMU-specific implementations. */
  497. #include "perf_event_xscale.c"
  498. #include "perf_event_v6.c"
  499. #include "perf_event_v7.c"
  500. /*
  501. * Ensure the PMU has sane values out of reset.
  502. * This requires SMP to be available, so exists as a separate initcall.
  503. */
  504. static int __init
  505. cpu_pmu_reset(void)
  506. {
  507. if (cpu_pmu && cpu_pmu->reset)
  508. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  509. return 0;
  510. }
  511. arch_initcall(cpu_pmu_reset);
  512. /*
  513. * PMU platform driver and devicetree bindings.
  514. */
  515. static struct of_device_id armpmu_of_device_ids[] = {
  516. {.compatible = "arm,cortex-a9-pmu"},
  517. {.compatible = "arm,cortex-a8-pmu"},
  518. {.compatible = "arm,arm1136-pmu"},
  519. {.compatible = "arm,arm1176-pmu"},
  520. {},
  521. };
  522. static struct platform_device_id armpmu_plat_device_ids[] = {
  523. {.name = "arm-pmu"},
  524. {},
  525. };
  526. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  527. {
  528. if (!cpu_pmu)
  529. return -ENODEV;
  530. cpu_pmu->plat_device = pdev;
  531. return 0;
  532. }
  533. static struct platform_driver armpmu_driver = {
  534. .driver = {
  535. .name = "arm-pmu",
  536. .of_match_table = armpmu_of_device_ids,
  537. },
  538. .probe = armpmu_device_probe,
  539. .id_table = armpmu_plat_device_ids,
  540. };
  541. static int __init register_pmu_driver(void)
  542. {
  543. return platform_driver_register(&armpmu_driver);
  544. }
  545. device_initcall(register_pmu_driver);
  546. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  547. {
  548. return &__get_cpu_var(cpu_hw_events);
  549. }
  550. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  551. {
  552. int cpu;
  553. for_each_possible_cpu(cpu) {
  554. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  555. events->events = per_cpu(hw_events, cpu);
  556. events->used_mask = per_cpu(used_mask, cpu);
  557. raw_spin_lock_init(&events->pmu_lock);
  558. }
  559. armpmu->get_hw_events = armpmu_get_cpu_events;
  560. armpmu->type = ARM_PMU_DEVICE_CPU;
  561. }
  562. /*
  563. * PMU hardware loses all context when a CPU goes offline.
  564. * When a CPU is hotplugged back in, since some hardware registers are
  565. * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
  566. * junk values out of them.
  567. */
  568. static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
  569. unsigned long action, void *hcpu)
  570. {
  571. if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
  572. return NOTIFY_DONE;
  573. if (cpu_pmu && cpu_pmu->reset)
  574. cpu_pmu->reset(NULL);
  575. return NOTIFY_OK;
  576. }
  577. static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
  578. .notifier_call = pmu_cpu_notify,
  579. };
  580. /*
  581. * CPU PMU identification and registration.
  582. */
  583. static int __init
  584. init_hw_perf_events(void)
  585. {
  586. unsigned long cpuid = read_cpuid_id();
  587. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  588. unsigned long part_number = (cpuid & 0xFFF0);
  589. /* ARM Ltd CPUs. */
  590. if (0x41 == implementor) {
  591. switch (part_number) {
  592. case 0xB360: /* ARM1136 */
  593. case 0xB560: /* ARM1156 */
  594. case 0xB760: /* ARM1176 */
  595. cpu_pmu = armv6pmu_init();
  596. break;
  597. case 0xB020: /* ARM11mpcore */
  598. cpu_pmu = armv6mpcore_pmu_init();
  599. break;
  600. case 0xC080: /* Cortex-A8 */
  601. cpu_pmu = armv7_a8_pmu_init();
  602. break;
  603. case 0xC090: /* Cortex-A9 */
  604. cpu_pmu = armv7_a9_pmu_init();
  605. break;
  606. case 0xC050: /* Cortex-A5 */
  607. cpu_pmu = armv7_a5_pmu_init();
  608. break;
  609. case 0xC0F0: /* Cortex-A15 */
  610. cpu_pmu = armv7_a15_pmu_init();
  611. break;
  612. case 0xC070: /* Cortex-A7 */
  613. cpu_pmu = armv7_a7_pmu_init();
  614. break;
  615. }
  616. /* Intel CPUs [xscale]. */
  617. } else if (0x69 == implementor) {
  618. part_number = (cpuid >> 13) & 0x7;
  619. switch (part_number) {
  620. case 1:
  621. cpu_pmu = xscale1pmu_init();
  622. break;
  623. case 2:
  624. cpu_pmu = xscale2pmu_init();
  625. break;
  626. }
  627. }
  628. if (cpu_pmu) {
  629. pr_info("enabled with %s PMU driver, %d counters available\n",
  630. cpu_pmu->name, cpu_pmu->num_events);
  631. cpu_pmu_init(cpu_pmu);
  632. register_cpu_notifier(&pmu_cpu_notifier);
  633. armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
  634. } else {
  635. pr_info("no hardware support available\n");
  636. }
  637. return 0;
  638. }
  639. early_initcall(init_hw_perf_events);
  640. /*
  641. * Callchain handling code.
  642. */
  643. /*
  644. * The registers we're interested in are at the end of the variable
  645. * length saved register structure. The fp points at the end of this
  646. * structure so the address of this struct is:
  647. * (struct frame_tail *)(xxx->fp)-1
  648. *
  649. * This code has been adapted from the ARM OProfile support.
  650. */
  651. struct frame_tail {
  652. struct frame_tail __user *fp;
  653. unsigned long sp;
  654. unsigned long lr;
  655. } __attribute__((packed));
  656. /*
  657. * Get the return address for a single stackframe and return a pointer to the
  658. * next frame tail.
  659. */
  660. static struct frame_tail __user *
  661. user_backtrace(struct frame_tail __user *tail,
  662. struct perf_callchain_entry *entry)
  663. {
  664. struct frame_tail buftail;
  665. /* Also check accessibility of one struct frame_tail beyond */
  666. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  667. return NULL;
  668. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  669. return NULL;
  670. perf_callchain_store(entry, buftail.lr);
  671. /*
  672. * Frame pointers should strictly progress back up the stack
  673. * (towards higher addresses).
  674. */
  675. if (tail + 1 >= buftail.fp)
  676. return NULL;
  677. return buftail.fp - 1;
  678. }
  679. void
  680. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  681. {
  682. struct frame_tail __user *tail;
  683. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  684. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  685. tail && !((unsigned long)tail & 0x3))
  686. tail = user_backtrace(tail, entry);
  687. }
  688. /*
  689. * Gets called by walk_stackframe() for every stackframe. This will be called
  690. * whist unwinding the stackframe and is like a subroutine return so we use
  691. * the PC.
  692. */
  693. static int
  694. callchain_trace(struct stackframe *fr,
  695. void *data)
  696. {
  697. struct perf_callchain_entry *entry = data;
  698. perf_callchain_store(entry, fr->pc);
  699. return 0;
  700. }
  701. void
  702. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  703. {
  704. struct stackframe fr;
  705. fr.fp = regs->ARM_fp;
  706. fr.sp = regs->ARM_sp;
  707. fr.lr = regs->ARM_lr;
  708. fr.pc = regs->ARM_pc;
  709. walk_stackframe(&fr, callchain_trace, entry);
  710. }