pgtable-2level.h 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. /*
  2. * arch/arm/include/asm/pgtable-2level.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASM_PGTABLE_2LEVEL_H
  11. #define _ASM_PGTABLE_2LEVEL_H
  12. /*
  13. * Hardware-wise, we have a two level page table structure, where the first
  14. * level has 4096 entries, and the second level has 256 entries. Each entry
  15. * is one 32-bit word. Most of the bits in the second level entry are used
  16. * by hardware, and there aren't any "accessed" and "dirty" bits.
  17. *
  18. * Linux on the other hand has a three level page table structure, which can
  19. * be wrapped to fit a two level page table structure easily - using the PGD
  20. * and PTE only. However, Linux also expects one "PTE" table per page, and
  21. * at least a "dirty" bit.
  22. *
  23. * Therefore, we tweak the implementation slightly - we tell Linux that we
  24. * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  25. * hardware pointers to the second level.) The second level contains two
  26. * hardware PTE tables arranged contiguously, preceded by Linux versions
  27. * which contain the state information Linux needs. We, therefore, end up
  28. * with 512 entries in the "PTE" level.
  29. *
  30. * This leads to the page tables having the following layout:
  31. *
  32. * pgd pte
  33. * | |
  34. * +--------+
  35. * | | +------------+ +0
  36. * +- - - - + | Linux pt 0 |
  37. * | | +------------+ +1024
  38. * +--------+ +0 | Linux pt 1 |
  39. * | |-----> +------------+ +2048
  40. * +- - - - + +4 | h/w pt 0 |
  41. * | |-----> +------------+ +3072
  42. * +--------+ +8 | h/w pt 1 |
  43. * | | +------------+ +4096
  44. *
  45. * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  46. * PTE_xxx for definitions of bits appearing in the "h/w pt".
  47. *
  48. * PMD_xxx definitions refer to bits in the first level page table.
  49. *
  50. * The "dirty" bit is emulated by only granting hardware write permission
  51. * iff the page is marked "writable" and "dirty" in the Linux PTE. This
  52. * means that a write to a clean page will cause a permission fault, and
  53. * the Linux MM layer will mark the page dirty via handle_pte_fault().
  54. * For the hardware to notice the permission change, the TLB entry must
  55. * be flushed, and ptep_set_access_flags() does that for us.
  56. *
  57. * The "accessed" or "young" bit is emulated by a similar method; we only
  58. * allow accesses to the page if the "young" bit is set. Accesses to the
  59. * page will cause a fault, and handle_pte_fault() will set the young bit
  60. * for us as long as the page is marked present in the corresponding Linux
  61. * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
  62. * up to date.
  63. *
  64. * However, when the "young" bit is cleared, we deny access to the page
  65. * by clearing the hardware PTE. Currently Linux does not flush the TLB
  66. * for us in this case, which means the TLB will retain the transation
  67. * until either the TLB entry is evicted under pressure, or a context
  68. * switch which changes the user space mapping occurs.
  69. */
  70. #define PTRS_PER_PTE 512
  71. #define PTRS_PER_PMD 1
  72. #define PTRS_PER_PGD 2048
  73. #define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
  74. #define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
  75. #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
  76. /*
  77. * PMD_SHIFT determines the size of the area a second-level page table can map
  78. * PGDIR_SHIFT determines what a third-level page table entry can map
  79. */
  80. #define PMD_SHIFT 21
  81. #define PGDIR_SHIFT 21
  82. #define PMD_SIZE (1UL << PMD_SHIFT)
  83. #define PMD_MASK (~(PMD_SIZE-1))
  84. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  85. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  86. /*
  87. * section address mask and size definitions.
  88. */
  89. #define SECTION_SHIFT 20
  90. #define SECTION_SIZE (1UL << SECTION_SHIFT)
  91. #define SECTION_MASK (~(SECTION_SIZE-1))
  92. /*
  93. * ARMv6 supersection address mask and size definitions.
  94. */
  95. #define SUPERSECTION_SHIFT 24
  96. #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
  97. #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
  98. #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
  99. /*
  100. * "Linux" PTE definitions.
  101. *
  102. * We keep two sets of PTEs - the hardware and the linux version.
  103. * This allows greater flexibility in the way we map the Linux bits
  104. * onto the hardware tables, and allows us to have YOUNG and DIRTY
  105. * bits.
  106. *
  107. * The PTE table pointer refers to the hardware entries; the "Linux"
  108. * entries are stored 1024 bytes below.
  109. */
  110. #define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
  111. #define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
  112. #define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
  113. #define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
  114. #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
  115. #define L_PTE_USER (_AT(pteval_t, 1) << 8)
  116. #define L_PTE_XN (_AT(pteval_t, 1) << 9)
  117. #define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
  118. /*
  119. * These are the memory types, defined to be compatible with
  120. * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
  121. */
  122. #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
  123. #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
  124. #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
  125. #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
  126. #define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
  127. #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
  128. #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
  129. #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
  130. #define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
  131. #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
  132. #define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
  133. #ifndef __ASSEMBLY__
  134. /*
  135. * The "pud_xxx()" functions here are trivial when the pmd is folded into
  136. * the pud: the pud entry is never bad, always exists, and can't be set or
  137. * cleared.
  138. */
  139. #define pud_none(pud) (0)
  140. #define pud_bad(pud) (0)
  141. #define pud_present(pud) (1)
  142. #define pud_clear(pudp) do { } while (0)
  143. #define set_pud(pud,pudp) do { } while (0)
  144. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
  145. {
  146. return (pmd_t *)pud;
  147. }
  148. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  149. #define copy_pmd(pmdpd,pmdps) \
  150. do { \
  151. pmdpd[0] = pmdps[0]; \
  152. pmdpd[1] = pmdps[1]; \
  153. flush_pmd_entry(pmdpd); \
  154. } while (0)
  155. #define pmd_clear(pmdp) \
  156. do { \
  157. pmdp[0] = __pmd(0); \
  158. pmdp[1] = __pmd(0); \
  159. clean_pmd_entry(pmdp); \
  160. } while (0)
  161. /* we don't need complex calculations here as the pmd is folded into the pgd */
  162. #define pmd_addr_end(addr,end) (end)
  163. #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
  164. #endif /* __ASSEMBLY__ */
  165. #endif /* _ASM_PGTABLE_2LEVEL_H */