intel_display.c 298 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  45. struct intel_crtc_config *pipe_config);
  46. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  47. struct intel_crtc_config *pipe_config);
  48. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  49. int x, int y, struct drm_framebuffer *old_fb);
  50. typedef struct {
  51. int min, max;
  52. } intel_range_t;
  53. typedef struct {
  54. int dot_limit;
  55. int p2_slow, p2_fast;
  56. } intel_p2_t;
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. int
  63. intel_pch_rawclk(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. WARN_ON(!HAS_PCH_SPLIT(dev));
  67. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  68. }
  69. static inline u32 /* units of 100MHz */
  70. intel_fdi_link_freq(struct drm_device *dev)
  71. {
  72. if (IS_GEN5(dev)) {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  75. } else
  76. return 27;
  77. }
  78. static const intel_limit_t intel_limits_i8xx_dac = {
  79. .dot = { .min = 25000, .max = 350000 },
  80. .vco = { .min = 930000, .max = 1400000 },
  81. .n = { .min = 3, .max = 16 },
  82. .m = { .min = 96, .max = 140 },
  83. .m1 = { .min = 18, .max = 26 },
  84. .m2 = { .min = 6, .max = 16 },
  85. .p = { .min = 4, .max = 128 },
  86. .p1 = { .min = 2, .max = 33 },
  87. .p2 = { .dot_limit = 165000,
  88. .p2_slow = 4, .p2_fast = 2 },
  89. };
  90. static const intel_limit_t intel_limits_i8xx_dvo = {
  91. .dot = { .min = 25000, .max = 350000 },
  92. .vco = { .min = 930000, .max = 1400000 },
  93. .n = { .min = 3, .max = 16 },
  94. .m = { .min = 96, .max = 140 },
  95. .m1 = { .min = 18, .max = 26 },
  96. .m2 = { .min = 6, .max = 16 },
  97. .p = { .min = 4, .max = 128 },
  98. .p1 = { .min = 2, .max = 33 },
  99. .p2 = { .dot_limit = 165000,
  100. .p2_slow = 4, .p2_fast = 4 },
  101. };
  102. static const intel_limit_t intel_limits_i8xx_lvds = {
  103. .dot = { .min = 25000, .max = 350000 },
  104. .vco = { .min = 930000, .max = 1400000 },
  105. .n = { .min = 3, .max = 16 },
  106. .m = { .min = 96, .max = 140 },
  107. .m1 = { .min = 18, .max = 26 },
  108. .m2 = { .min = 6, .max = 16 },
  109. .p = { .min = 4, .max = 128 },
  110. .p1 = { .min = 1, .max = 6 },
  111. .p2 = { .dot_limit = 165000,
  112. .p2_slow = 14, .p2_fast = 7 },
  113. };
  114. static const intel_limit_t intel_limits_i9xx_sdvo = {
  115. .dot = { .min = 20000, .max = 400000 },
  116. .vco = { .min = 1400000, .max = 2800000 },
  117. .n = { .min = 1, .max = 6 },
  118. .m = { .min = 70, .max = 120 },
  119. .m1 = { .min = 8, .max = 18 },
  120. .m2 = { .min = 3, .max = 7 },
  121. .p = { .min = 5, .max = 80 },
  122. .p1 = { .min = 1, .max = 8 },
  123. .p2 = { .dot_limit = 200000,
  124. .p2_slow = 10, .p2_fast = 5 },
  125. };
  126. static const intel_limit_t intel_limits_i9xx_lvds = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 8, .max = 18 },
  132. .m2 = { .min = 3, .max = 7 },
  133. .p = { .min = 7, .max = 98 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 112000,
  136. .p2_slow = 14, .p2_fast = 7 },
  137. };
  138. static const intel_limit_t intel_limits_g4x_sdvo = {
  139. .dot = { .min = 25000, .max = 270000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 17, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 10, .max = 30 },
  146. .p1 = { .min = 1, .max = 3},
  147. .p2 = { .dot_limit = 270000,
  148. .p2_slow = 10,
  149. .p2_fast = 10
  150. },
  151. };
  152. static const intel_limit_t intel_limits_g4x_hdmi = {
  153. .dot = { .min = 22000, .max = 400000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 16, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 5, .max = 80 },
  160. .p1 = { .min = 1, .max = 8},
  161. .p2 = { .dot_limit = 165000,
  162. .p2_slow = 10, .p2_fast = 5 },
  163. };
  164. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  165. .dot = { .min = 20000, .max = 115000 },
  166. .vco = { .min = 1750000, .max = 3500000 },
  167. .n = { .min = 1, .max = 3 },
  168. .m = { .min = 104, .max = 138 },
  169. .m1 = { .min = 17, .max = 23 },
  170. .m2 = { .min = 5, .max = 11 },
  171. .p = { .min = 28, .max = 112 },
  172. .p1 = { .min = 2, .max = 8 },
  173. .p2 = { .dot_limit = 0,
  174. .p2_slow = 14, .p2_fast = 14
  175. },
  176. };
  177. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  178. .dot = { .min = 80000, .max = 224000 },
  179. .vco = { .min = 1750000, .max = 3500000 },
  180. .n = { .min = 1, .max = 3 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 14, .max = 42 },
  185. .p1 = { .min = 2, .max = 6 },
  186. .p2 = { .dot_limit = 0,
  187. .p2_slow = 7, .p2_fast = 7
  188. },
  189. };
  190. static const intel_limit_t intel_limits_pineview_sdvo = {
  191. .dot = { .min = 20000, .max = 400000},
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. /* Pineview's Ncounter is a ring counter */
  194. .n = { .min = 3, .max = 6 },
  195. .m = { .min = 2, .max = 256 },
  196. /* Pineview only has one combined m divider, which we treat as m2. */
  197. .m1 = { .min = 0, .max = 0 },
  198. .m2 = { .min = 0, .max = 254 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8 },
  201. .p2 = { .dot_limit = 200000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. };
  204. static const intel_limit_t intel_limits_pineview_lvds = {
  205. .dot = { .min = 20000, .max = 400000 },
  206. .vco = { .min = 1700000, .max = 3500000 },
  207. .n = { .min = 3, .max = 6 },
  208. .m = { .min = 2, .max = 256 },
  209. .m1 = { .min = 0, .max = 0 },
  210. .m2 = { .min = 0, .max = 254 },
  211. .p = { .min = 7, .max = 112 },
  212. .p1 = { .min = 1, .max = 8 },
  213. .p2 = { .dot_limit = 112000,
  214. .p2_slow = 14, .p2_fast = 14 },
  215. };
  216. /* Ironlake / Sandybridge
  217. *
  218. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  219. * the range value for them is (actual_value - 2).
  220. */
  221. static const intel_limit_t intel_limits_ironlake_dac = {
  222. .dot = { .min = 25000, .max = 350000 },
  223. .vco = { .min = 1760000, .max = 3510000 },
  224. .n = { .min = 1, .max = 5 },
  225. .m = { .min = 79, .max = 127 },
  226. .m1 = { .min = 12, .max = 22 },
  227. .m2 = { .min = 5, .max = 9 },
  228. .p = { .min = 5, .max = 80 },
  229. .p1 = { .min = 1, .max = 8 },
  230. .p2 = { .dot_limit = 225000,
  231. .p2_slow = 10, .p2_fast = 5 },
  232. };
  233. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  234. .dot = { .min = 25000, .max = 350000 },
  235. .vco = { .min = 1760000, .max = 3510000 },
  236. .n = { .min = 1, .max = 3 },
  237. .m = { .min = 79, .max = 118 },
  238. .m1 = { .min = 12, .max = 22 },
  239. .m2 = { .min = 5, .max = 9 },
  240. .p = { .min = 28, .max = 112 },
  241. .p1 = { .min = 2, .max = 8 },
  242. .p2 = { .dot_limit = 225000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. };
  245. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  246. .dot = { .min = 25000, .max = 350000 },
  247. .vco = { .min = 1760000, .max = 3510000 },
  248. .n = { .min = 1, .max = 3 },
  249. .m = { .min = 79, .max = 127 },
  250. .m1 = { .min = 12, .max = 22 },
  251. .m2 = { .min = 5, .max = 9 },
  252. .p = { .min = 14, .max = 56 },
  253. .p1 = { .min = 2, .max = 8 },
  254. .p2 = { .dot_limit = 225000,
  255. .p2_slow = 7, .p2_fast = 7 },
  256. };
  257. /* LVDS 100mhz refclk limits. */
  258. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  259. .dot = { .min = 25000, .max = 350000 },
  260. .vco = { .min = 1760000, .max = 3510000 },
  261. .n = { .min = 1, .max = 2 },
  262. .m = { .min = 79, .max = 126 },
  263. .m1 = { .min = 12, .max = 22 },
  264. .m2 = { .min = 5, .max = 9 },
  265. .p = { .min = 28, .max = 112 },
  266. .p1 = { .min = 2, .max = 8 },
  267. .p2 = { .dot_limit = 225000,
  268. .p2_slow = 14, .p2_fast = 14 },
  269. };
  270. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 126 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 14, .max = 42 },
  278. .p1 = { .min = 2, .max = 6 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 7, .p2_fast = 7 },
  281. };
  282. static const intel_limit_t intel_limits_vlv_dac = {
  283. .dot = { .min = 25000, .max = 270000 },
  284. .vco = { .min = 4000000, .max = 6000000 },
  285. .n = { .min = 1, .max = 7 },
  286. .m = { .min = 22, .max = 450 }, /* guess */
  287. .m1 = { .min = 2, .max = 3 },
  288. .m2 = { .min = 11, .max = 156 },
  289. .p = { .min = 10, .max = 30 },
  290. .p1 = { .min = 1, .max = 3 },
  291. .p2 = { .dot_limit = 270000,
  292. .p2_slow = 2, .p2_fast = 20 },
  293. };
  294. static const intel_limit_t intel_limits_vlv_hdmi = {
  295. .dot = { .min = 25000, .max = 270000 },
  296. .vco = { .min = 4000000, .max = 6000000 },
  297. .n = { .min = 1, .max = 7 },
  298. .m = { .min = 60, .max = 300 }, /* guess */
  299. .m1 = { .min = 2, .max = 3 },
  300. .m2 = { .min = 11, .max = 156 },
  301. .p = { .min = 10, .max = 30 },
  302. .p1 = { .min = 2, .max = 3 },
  303. .p2 = { .dot_limit = 270000,
  304. .p2_slow = 2, .p2_fast = 20 },
  305. };
  306. /**
  307. * Returns whether any output on the specified pipe is of the specified type
  308. */
  309. static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  310. {
  311. struct drm_device *dev = crtc->dev;
  312. struct intel_encoder *encoder;
  313. for_each_encoder_on_crtc(dev, crtc, encoder)
  314. if (encoder->type == type)
  315. return true;
  316. return false;
  317. }
  318. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  319. int refclk)
  320. {
  321. struct drm_device *dev = crtc->dev;
  322. const intel_limit_t *limit;
  323. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  324. if (intel_is_dual_link_lvds(dev)) {
  325. if (refclk == 100000)
  326. limit = &intel_limits_ironlake_dual_lvds_100m;
  327. else
  328. limit = &intel_limits_ironlake_dual_lvds;
  329. } else {
  330. if (refclk == 100000)
  331. limit = &intel_limits_ironlake_single_lvds_100m;
  332. else
  333. limit = &intel_limits_ironlake_single_lvds;
  334. }
  335. } else
  336. limit = &intel_limits_ironlake_dac;
  337. return limit;
  338. }
  339. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  340. {
  341. struct drm_device *dev = crtc->dev;
  342. const intel_limit_t *limit;
  343. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  344. if (intel_is_dual_link_lvds(dev))
  345. limit = &intel_limits_g4x_dual_channel_lvds;
  346. else
  347. limit = &intel_limits_g4x_single_channel_lvds;
  348. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  349. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  350. limit = &intel_limits_g4x_hdmi;
  351. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  352. limit = &intel_limits_g4x_sdvo;
  353. } else /* The option is for other outputs */
  354. limit = &intel_limits_i9xx_sdvo;
  355. return limit;
  356. }
  357. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  358. {
  359. struct drm_device *dev = crtc->dev;
  360. const intel_limit_t *limit;
  361. if (HAS_PCH_SPLIT(dev))
  362. limit = intel_ironlake_limit(crtc, refclk);
  363. else if (IS_G4X(dev)) {
  364. limit = intel_g4x_limit(crtc);
  365. } else if (IS_PINEVIEW(dev)) {
  366. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  367. limit = &intel_limits_pineview_lvds;
  368. else
  369. limit = &intel_limits_pineview_sdvo;
  370. } else if (IS_VALLEYVIEW(dev)) {
  371. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  372. limit = &intel_limits_vlv_dac;
  373. else
  374. limit = &intel_limits_vlv_hdmi;
  375. } else if (!IS_GEN2(dev)) {
  376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  377. limit = &intel_limits_i9xx_lvds;
  378. else
  379. limit = &intel_limits_i9xx_sdvo;
  380. } else {
  381. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  382. limit = &intel_limits_i8xx_lvds;
  383. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  384. limit = &intel_limits_i8xx_dvo;
  385. else
  386. limit = &intel_limits_i8xx_dac;
  387. }
  388. return limit;
  389. }
  390. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  391. static void pineview_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = clock->m2 + 2;
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / clock->n;
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  399. {
  400. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  401. }
  402. static void i9xx_clock(int refclk, intel_clock_t *clock)
  403. {
  404. clock->m = i9xx_dpll_compute_m(clock);
  405. clock->p = clock->p1 * clock->p2;
  406. clock->vco = refclk * clock->m / (clock->n + 2);
  407. clock->dot = clock->vco / clock->p;
  408. }
  409. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  410. /**
  411. * Returns whether the given set of divisors are valid for a given refclk with
  412. * the given connectors.
  413. */
  414. static bool intel_PLL_is_valid(struct drm_device *dev,
  415. const intel_limit_t *limit,
  416. const intel_clock_t *clock)
  417. {
  418. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  419. INTELPllInvalid("p1 out of range\n");
  420. if (clock->p < limit->p.min || limit->p.max < clock->p)
  421. INTELPllInvalid("p out of range\n");
  422. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  423. INTELPllInvalid("m2 out of range\n");
  424. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  425. INTELPllInvalid("m1 out of range\n");
  426. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  427. INTELPllInvalid("m1 <= m2\n");
  428. if (clock->m < limit->m.min || limit->m.max < clock->m)
  429. INTELPllInvalid("m out of range\n");
  430. if (clock->n < limit->n.min || limit->n.max < clock->n)
  431. INTELPllInvalid("n out of range\n");
  432. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  433. INTELPllInvalid("vco out of range\n");
  434. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  435. * connector, etc., rather than just a single range.
  436. */
  437. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  438. INTELPllInvalid("dot out of range\n");
  439. return true;
  440. }
  441. static bool
  442. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  443. int target, int refclk, intel_clock_t *match_clock,
  444. intel_clock_t *best_clock)
  445. {
  446. struct drm_device *dev = crtc->dev;
  447. intel_clock_t clock;
  448. int err = target;
  449. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  450. /*
  451. * For LVDS just rely on its current settings for dual-channel.
  452. * We haven't figured out how to reliably set up different
  453. * single/dual channel state, if we even can.
  454. */
  455. if (intel_is_dual_link_lvds(dev))
  456. clock.p2 = limit->p2.p2_fast;
  457. else
  458. clock.p2 = limit->p2.p2_slow;
  459. } else {
  460. if (target < limit->p2.dot_limit)
  461. clock.p2 = limit->p2.p2_slow;
  462. else
  463. clock.p2 = limit->p2.p2_fast;
  464. }
  465. memset(best_clock, 0, sizeof(*best_clock));
  466. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  467. clock.m1++) {
  468. for (clock.m2 = limit->m2.min;
  469. clock.m2 <= limit->m2.max; clock.m2++) {
  470. if (clock.m2 >= clock.m1)
  471. break;
  472. for (clock.n = limit->n.min;
  473. clock.n <= limit->n.max; clock.n++) {
  474. for (clock.p1 = limit->p1.min;
  475. clock.p1 <= limit->p1.max; clock.p1++) {
  476. int this_err;
  477. i9xx_clock(refclk, &clock);
  478. if (!intel_PLL_is_valid(dev, limit,
  479. &clock))
  480. continue;
  481. if (match_clock &&
  482. clock.p != match_clock->p)
  483. continue;
  484. this_err = abs(clock.dot - target);
  485. if (this_err < err) {
  486. *best_clock = clock;
  487. err = this_err;
  488. }
  489. }
  490. }
  491. }
  492. }
  493. return (err != target);
  494. }
  495. static bool
  496. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  497. int target, int refclk, intel_clock_t *match_clock,
  498. intel_clock_t *best_clock)
  499. {
  500. struct drm_device *dev = crtc->dev;
  501. intel_clock_t clock;
  502. int err = target;
  503. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  504. /*
  505. * For LVDS just rely on its current settings for dual-channel.
  506. * We haven't figured out how to reliably set up different
  507. * single/dual channel state, if we even can.
  508. */
  509. if (intel_is_dual_link_lvds(dev))
  510. clock.p2 = limit->p2.p2_fast;
  511. else
  512. clock.p2 = limit->p2.p2_slow;
  513. } else {
  514. if (target < limit->p2.dot_limit)
  515. clock.p2 = limit->p2.p2_slow;
  516. else
  517. clock.p2 = limit->p2.p2_fast;
  518. }
  519. memset(best_clock, 0, sizeof(*best_clock));
  520. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  521. clock.m1++) {
  522. for (clock.m2 = limit->m2.min;
  523. clock.m2 <= limit->m2.max; clock.m2++) {
  524. for (clock.n = limit->n.min;
  525. clock.n <= limit->n.max; clock.n++) {
  526. for (clock.p1 = limit->p1.min;
  527. clock.p1 <= limit->p1.max; clock.p1++) {
  528. int this_err;
  529. pineview_clock(refclk, &clock);
  530. if (!intel_PLL_is_valid(dev, limit,
  531. &clock))
  532. continue;
  533. if (match_clock &&
  534. clock.p != match_clock->p)
  535. continue;
  536. this_err = abs(clock.dot - target);
  537. if (this_err < err) {
  538. *best_clock = clock;
  539. err = this_err;
  540. }
  541. }
  542. }
  543. }
  544. }
  545. return (err != target);
  546. }
  547. static bool
  548. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  549. int target, int refclk, intel_clock_t *match_clock,
  550. intel_clock_t *best_clock)
  551. {
  552. struct drm_device *dev = crtc->dev;
  553. intel_clock_t clock;
  554. int max_n;
  555. bool found;
  556. /* approximately equals target * 0.00585 */
  557. int err_most = (target >> 8) + (target >> 9);
  558. found = false;
  559. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  560. if (intel_is_dual_link_lvds(dev))
  561. clock.p2 = limit->p2.p2_fast;
  562. else
  563. clock.p2 = limit->p2.p2_slow;
  564. } else {
  565. if (target < limit->p2.dot_limit)
  566. clock.p2 = limit->p2.p2_slow;
  567. else
  568. clock.p2 = limit->p2.p2_fast;
  569. }
  570. memset(best_clock, 0, sizeof(*best_clock));
  571. max_n = limit->n.max;
  572. /* based on hardware requirement, prefer smaller n to precision */
  573. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  574. /* based on hardware requirement, prefere larger m1,m2 */
  575. for (clock.m1 = limit->m1.max;
  576. clock.m1 >= limit->m1.min; clock.m1--) {
  577. for (clock.m2 = limit->m2.max;
  578. clock.m2 >= limit->m2.min; clock.m2--) {
  579. for (clock.p1 = limit->p1.max;
  580. clock.p1 >= limit->p1.min; clock.p1--) {
  581. int this_err;
  582. i9xx_clock(refclk, &clock);
  583. if (!intel_PLL_is_valid(dev, limit,
  584. &clock))
  585. continue;
  586. this_err = abs(clock.dot - target);
  587. if (this_err < err_most) {
  588. *best_clock = clock;
  589. err_most = this_err;
  590. max_n = clock.n;
  591. found = true;
  592. }
  593. }
  594. }
  595. }
  596. }
  597. return found;
  598. }
  599. static bool
  600. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  601. int target, int refclk, intel_clock_t *match_clock,
  602. intel_clock_t *best_clock)
  603. {
  604. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  605. u32 m, n, fastclk;
  606. u32 updrate, minupdate, p;
  607. unsigned long bestppm, ppm, absppm;
  608. int dotclk, flag;
  609. flag = 0;
  610. dotclk = target * 1000;
  611. bestppm = 1000000;
  612. ppm = absppm = 0;
  613. fastclk = dotclk / (2*100);
  614. updrate = 0;
  615. minupdate = 19200;
  616. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  617. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  618. /* based on hardware requirement, prefer smaller n to precision */
  619. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  620. updrate = refclk / n;
  621. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  622. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  623. if (p2 > 10)
  624. p2 = p2 - 1;
  625. p = p1 * p2;
  626. /* based on hardware requirement, prefer bigger m1,m2 values */
  627. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  628. m2 = (((2*(fastclk * p * n / m1 )) +
  629. refclk) / (2*refclk));
  630. m = m1 * m2;
  631. vco = updrate * m;
  632. if (vco >= limit->vco.min && vco < limit->vco.max) {
  633. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  634. absppm = (ppm > 0) ? ppm : (-ppm);
  635. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  636. bestppm = 0;
  637. flag = 1;
  638. }
  639. if (absppm < bestppm - 10) {
  640. bestppm = absppm;
  641. flag = 1;
  642. }
  643. if (flag) {
  644. bestn = n;
  645. bestm1 = m1;
  646. bestm2 = m2;
  647. bestp1 = p1;
  648. bestp2 = p2;
  649. flag = 0;
  650. }
  651. }
  652. }
  653. }
  654. }
  655. }
  656. best_clock->n = bestn;
  657. best_clock->m1 = bestm1;
  658. best_clock->m2 = bestm2;
  659. best_clock->p1 = bestp1;
  660. best_clock->p2 = bestp2;
  661. return true;
  662. }
  663. bool intel_crtc_active(struct drm_crtc *crtc)
  664. {
  665. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  666. /* Be paranoid as we can arrive here with only partial
  667. * state retrieved from the hardware during setup.
  668. *
  669. * We can ditch the adjusted_mode.clock check as soon
  670. * as Haswell has gained clock readout/fastboot support.
  671. *
  672. * We can ditch the crtc->fb check as soon as we can
  673. * properly reconstruct framebuffers.
  674. */
  675. return intel_crtc->active && crtc->fb &&
  676. intel_crtc->config.adjusted_mode.clock;
  677. }
  678. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  679. enum pipe pipe)
  680. {
  681. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  682. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  683. return intel_crtc->config.cpu_transcoder;
  684. }
  685. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. u32 frame, frame_reg = PIPEFRAME(pipe);
  689. frame = I915_READ(frame_reg);
  690. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  691. DRM_DEBUG_KMS("vblank wait timed out\n");
  692. }
  693. /**
  694. * intel_wait_for_vblank - wait for vblank on a given pipe
  695. * @dev: drm device
  696. * @pipe: pipe to wait for
  697. *
  698. * Wait for vblank to occur on a given pipe. Needed for various bits of
  699. * mode setting code.
  700. */
  701. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  702. {
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. int pipestat_reg = PIPESTAT(pipe);
  705. if (INTEL_INFO(dev)->gen >= 5) {
  706. ironlake_wait_for_vblank(dev, pipe);
  707. return;
  708. }
  709. /* Clear existing vblank status. Note this will clear any other
  710. * sticky status fields as well.
  711. *
  712. * This races with i915_driver_irq_handler() with the result
  713. * that either function could miss a vblank event. Here it is not
  714. * fatal, as we will either wait upon the next vblank interrupt or
  715. * timeout. Generally speaking intel_wait_for_vblank() is only
  716. * called during modeset at which time the GPU should be idle and
  717. * should *not* be performing page flips and thus not waiting on
  718. * vblanks...
  719. * Currently, the result of us stealing a vblank from the irq
  720. * handler is that a single frame will be skipped during swapbuffers.
  721. */
  722. I915_WRITE(pipestat_reg,
  723. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  724. /* Wait for vblank interrupt bit to set */
  725. if (wait_for(I915_READ(pipestat_reg) &
  726. PIPE_VBLANK_INTERRUPT_STATUS,
  727. 50))
  728. DRM_DEBUG_KMS("vblank wait timed out\n");
  729. }
  730. /*
  731. * intel_wait_for_pipe_off - wait for pipe to turn off
  732. * @dev: drm device
  733. * @pipe: pipe to wait for
  734. *
  735. * After disabling a pipe, we can't wait for vblank in the usual way,
  736. * spinning on the vblank interrupt status bit, since we won't actually
  737. * see an interrupt when the pipe is disabled.
  738. *
  739. * On Gen4 and above:
  740. * wait for the pipe register state bit to turn off
  741. *
  742. * Otherwise:
  743. * wait for the display line value to settle (it usually
  744. * ends up stopping at the start of the next frame).
  745. *
  746. */
  747. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  748. {
  749. struct drm_i915_private *dev_priv = dev->dev_private;
  750. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  751. pipe);
  752. if (INTEL_INFO(dev)->gen >= 4) {
  753. int reg = PIPECONF(cpu_transcoder);
  754. /* Wait for the Pipe State to go off */
  755. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  756. 100))
  757. WARN(1, "pipe_off wait timed out\n");
  758. } else {
  759. u32 last_line, line_mask;
  760. int reg = PIPEDSL(pipe);
  761. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  762. if (IS_GEN2(dev))
  763. line_mask = DSL_LINEMASK_GEN2;
  764. else
  765. line_mask = DSL_LINEMASK_GEN3;
  766. /* Wait for the display line to settle */
  767. do {
  768. last_line = I915_READ(reg) & line_mask;
  769. mdelay(5);
  770. } while (((I915_READ(reg) & line_mask) != last_line) &&
  771. time_after(timeout, jiffies));
  772. if (time_after(jiffies, timeout))
  773. WARN(1, "pipe_off wait timed out\n");
  774. }
  775. }
  776. /*
  777. * ibx_digital_port_connected - is the specified port connected?
  778. * @dev_priv: i915 private structure
  779. * @port: the port to test
  780. *
  781. * Returns true if @port is connected, false otherwise.
  782. */
  783. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  784. struct intel_digital_port *port)
  785. {
  786. u32 bit;
  787. if (HAS_PCH_IBX(dev_priv->dev)) {
  788. switch(port->port) {
  789. case PORT_B:
  790. bit = SDE_PORTB_HOTPLUG;
  791. break;
  792. case PORT_C:
  793. bit = SDE_PORTC_HOTPLUG;
  794. break;
  795. case PORT_D:
  796. bit = SDE_PORTD_HOTPLUG;
  797. break;
  798. default:
  799. return true;
  800. }
  801. } else {
  802. switch(port->port) {
  803. case PORT_B:
  804. bit = SDE_PORTB_HOTPLUG_CPT;
  805. break;
  806. case PORT_C:
  807. bit = SDE_PORTC_HOTPLUG_CPT;
  808. break;
  809. case PORT_D:
  810. bit = SDE_PORTD_HOTPLUG_CPT;
  811. break;
  812. default:
  813. return true;
  814. }
  815. }
  816. return I915_READ(SDEISR) & bit;
  817. }
  818. static const char *state_string(bool enabled)
  819. {
  820. return enabled ? "on" : "off";
  821. }
  822. /* Only for pre-ILK configs */
  823. void assert_pll(struct drm_i915_private *dev_priv,
  824. enum pipe pipe, bool state)
  825. {
  826. int reg;
  827. u32 val;
  828. bool cur_state;
  829. reg = DPLL(pipe);
  830. val = I915_READ(reg);
  831. cur_state = !!(val & DPLL_VCO_ENABLE);
  832. WARN(cur_state != state,
  833. "PLL state assertion failure (expected %s, current %s)\n",
  834. state_string(state), state_string(cur_state));
  835. }
  836. /* XXX: the dsi pll is shared between MIPI DSI ports */
  837. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  838. {
  839. u32 val;
  840. bool cur_state;
  841. mutex_lock(&dev_priv->dpio_lock);
  842. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  843. mutex_unlock(&dev_priv->dpio_lock);
  844. cur_state = val & DSI_PLL_VCO_EN;
  845. WARN(cur_state != state,
  846. "DSI PLL state assertion failure (expected %s, current %s)\n",
  847. state_string(state), state_string(cur_state));
  848. }
  849. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  850. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  851. struct intel_shared_dpll *
  852. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  853. {
  854. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  855. if (crtc->config.shared_dpll < 0)
  856. return NULL;
  857. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  858. }
  859. /* For ILK+ */
  860. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  861. struct intel_shared_dpll *pll,
  862. bool state)
  863. {
  864. bool cur_state;
  865. struct intel_dpll_hw_state hw_state;
  866. if (HAS_PCH_LPT(dev_priv->dev)) {
  867. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  868. return;
  869. }
  870. if (WARN (!pll,
  871. "asserting DPLL %s with no DPLL\n", state_string(state)))
  872. return;
  873. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  874. WARN(cur_state != state,
  875. "%s assertion failure (expected %s, current %s)\n",
  876. pll->name, state_string(state), state_string(cur_state));
  877. }
  878. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  879. enum pipe pipe, bool state)
  880. {
  881. int reg;
  882. u32 val;
  883. bool cur_state;
  884. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  885. pipe);
  886. if (HAS_DDI(dev_priv->dev)) {
  887. /* DDI does not have a specific FDI_TX register */
  888. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  889. val = I915_READ(reg);
  890. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  891. } else {
  892. reg = FDI_TX_CTL(pipe);
  893. val = I915_READ(reg);
  894. cur_state = !!(val & FDI_TX_ENABLE);
  895. }
  896. WARN(cur_state != state,
  897. "FDI TX state assertion failure (expected %s, current %s)\n",
  898. state_string(state), state_string(cur_state));
  899. }
  900. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  901. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  902. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  903. enum pipe pipe, bool state)
  904. {
  905. int reg;
  906. u32 val;
  907. bool cur_state;
  908. reg = FDI_RX_CTL(pipe);
  909. val = I915_READ(reg);
  910. cur_state = !!(val & FDI_RX_ENABLE);
  911. WARN(cur_state != state,
  912. "FDI RX state assertion failure (expected %s, current %s)\n",
  913. state_string(state), state_string(cur_state));
  914. }
  915. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  916. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  917. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  918. enum pipe pipe)
  919. {
  920. int reg;
  921. u32 val;
  922. /* ILK FDI PLL is always enabled */
  923. if (dev_priv->info->gen == 5)
  924. return;
  925. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  926. if (HAS_DDI(dev_priv->dev))
  927. return;
  928. reg = FDI_TX_CTL(pipe);
  929. val = I915_READ(reg);
  930. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  931. }
  932. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  933. enum pipe pipe, bool state)
  934. {
  935. int reg;
  936. u32 val;
  937. bool cur_state;
  938. reg = FDI_RX_CTL(pipe);
  939. val = I915_READ(reg);
  940. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  941. WARN(cur_state != state,
  942. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  943. state_string(state), state_string(cur_state));
  944. }
  945. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  946. enum pipe pipe)
  947. {
  948. int pp_reg, lvds_reg;
  949. u32 val;
  950. enum pipe panel_pipe = PIPE_A;
  951. bool locked = true;
  952. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  953. pp_reg = PCH_PP_CONTROL;
  954. lvds_reg = PCH_LVDS;
  955. } else {
  956. pp_reg = PP_CONTROL;
  957. lvds_reg = LVDS;
  958. }
  959. val = I915_READ(pp_reg);
  960. if (!(val & PANEL_POWER_ON) ||
  961. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  962. locked = false;
  963. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  964. panel_pipe = PIPE_B;
  965. WARN(panel_pipe == pipe && locked,
  966. "panel assertion failure, pipe %c regs locked\n",
  967. pipe_name(pipe));
  968. }
  969. static void assert_cursor(struct drm_i915_private *dev_priv,
  970. enum pipe pipe, bool state)
  971. {
  972. struct drm_device *dev = dev_priv->dev;
  973. bool cur_state;
  974. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  975. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  976. else if (IS_845G(dev) || IS_I865G(dev))
  977. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  978. else
  979. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  980. WARN(cur_state != state,
  981. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  982. pipe_name(pipe), state_string(state), state_string(cur_state));
  983. }
  984. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  985. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  986. void assert_pipe(struct drm_i915_private *dev_priv,
  987. enum pipe pipe, bool state)
  988. {
  989. int reg;
  990. u32 val;
  991. bool cur_state;
  992. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  993. pipe);
  994. /* if we need the pipe A quirk it must be always on */
  995. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  996. state = true;
  997. if (!intel_display_power_enabled(dev_priv->dev,
  998. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  999. cur_state = false;
  1000. } else {
  1001. reg = PIPECONF(cpu_transcoder);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & PIPECONF_ENABLE);
  1004. }
  1005. WARN(cur_state != state,
  1006. "pipe %c assertion failure (expected %s, current %s)\n",
  1007. pipe_name(pipe), state_string(state), state_string(cur_state));
  1008. }
  1009. static void assert_plane(struct drm_i915_private *dev_priv,
  1010. enum plane plane, bool state)
  1011. {
  1012. int reg;
  1013. u32 val;
  1014. bool cur_state;
  1015. reg = DSPCNTR(plane);
  1016. val = I915_READ(reg);
  1017. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1018. WARN(cur_state != state,
  1019. "plane %c assertion failure (expected %s, current %s)\n",
  1020. plane_name(plane), state_string(state), state_string(cur_state));
  1021. }
  1022. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1023. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1024. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1025. enum pipe pipe)
  1026. {
  1027. struct drm_device *dev = dev_priv->dev;
  1028. int reg, i;
  1029. u32 val;
  1030. int cur_pipe;
  1031. /* Primary planes are fixed to pipes on gen4+ */
  1032. if (INTEL_INFO(dev)->gen >= 4) {
  1033. reg = DSPCNTR(pipe);
  1034. val = I915_READ(reg);
  1035. WARN((val & DISPLAY_PLANE_ENABLE),
  1036. "plane %c assertion failure, should be disabled but not\n",
  1037. plane_name(pipe));
  1038. return;
  1039. }
  1040. /* Need to check both planes against the pipe */
  1041. for_each_pipe(i) {
  1042. reg = DSPCNTR(i);
  1043. val = I915_READ(reg);
  1044. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1045. DISPPLANE_SEL_PIPE_SHIFT;
  1046. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1047. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1048. plane_name(i), pipe_name(pipe));
  1049. }
  1050. }
  1051. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1052. enum pipe pipe)
  1053. {
  1054. struct drm_device *dev = dev_priv->dev;
  1055. int reg, i;
  1056. u32 val;
  1057. if (IS_VALLEYVIEW(dev)) {
  1058. for (i = 0; i < dev_priv->num_plane; i++) {
  1059. reg = SPCNTR(pipe, i);
  1060. val = I915_READ(reg);
  1061. WARN((val & SP_ENABLE),
  1062. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1063. sprite_name(pipe, i), pipe_name(pipe));
  1064. }
  1065. } else if (INTEL_INFO(dev)->gen >= 7) {
  1066. reg = SPRCTL(pipe);
  1067. val = I915_READ(reg);
  1068. WARN((val & SPRITE_ENABLE),
  1069. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1070. plane_name(pipe), pipe_name(pipe));
  1071. } else if (INTEL_INFO(dev)->gen >= 5) {
  1072. reg = DVSCNTR(pipe);
  1073. val = I915_READ(reg);
  1074. WARN((val & DVS_ENABLE),
  1075. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1076. plane_name(pipe), pipe_name(pipe));
  1077. }
  1078. }
  1079. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1080. {
  1081. u32 val;
  1082. bool enabled;
  1083. if (HAS_PCH_LPT(dev_priv->dev)) {
  1084. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1085. return;
  1086. }
  1087. val = I915_READ(PCH_DREF_CONTROL);
  1088. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1089. DREF_SUPERSPREAD_SOURCE_MASK));
  1090. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1091. }
  1092. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1093. enum pipe pipe)
  1094. {
  1095. int reg;
  1096. u32 val;
  1097. bool enabled;
  1098. reg = PCH_TRANSCONF(pipe);
  1099. val = I915_READ(reg);
  1100. enabled = !!(val & TRANS_ENABLE);
  1101. WARN(enabled,
  1102. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1103. pipe_name(pipe));
  1104. }
  1105. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 port_sel, u32 val)
  1107. {
  1108. if ((val & DP_PORT_EN) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1112. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1113. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1114. return false;
  1115. } else {
  1116. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & SDVO_ENABLE) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & LVDS_PORT_EN) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, u32 val)
  1151. {
  1152. if ((val & ADPA_DAC_ENABLE) == 0)
  1153. return false;
  1154. if (HAS_PCH_CPT(dev_priv->dev)) {
  1155. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1156. return false;
  1157. } else {
  1158. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1159. return false;
  1160. }
  1161. return true;
  1162. }
  1163. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1164. enum pipe pipe, int reg, u32 port_sel)
  1165. {
  1166. u32 val = I915_READ(reg);
  1167. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1168. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1169. reg, pipe_name(pipe));
  1170. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1171. && (val & DP_PIPEB_SELECT),
  1172. "IBX PCH dp port still using transcoder B\n");
  1173. }
  1174. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1175. enum pipe pipe, int reg)
  1176. {
  1177. u32 val = I915_READ(reg);
  1178. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1179. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1180. reg, pipe_name(pipe));
  1181. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1182. && (val & SDVO_PIPE_B_SELECT),
  1183. "IBX PCH hdmi port still using transcoder B\n");
  1184. }
  1185. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1186. enum pipe pipe)
  1187. {
  1188. int reg;
  1189. u32 val;
  1190. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1191. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1192. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1193. reg = PCH_ADPA;
  1194. val = I915_READ(reg);
  1195. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1196. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1197. pipe_name(pipe));
  1198. reg = PCH_LVDS;
  1199. val = I915_READ(reg);
  1200. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1201. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1202. pipe_name(pipe));
  1203. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1204. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1205. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1206. }
  1207. static void vlv_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. POSTING_READ(reg);
  1221. udelay(150);
  1222. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1223. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1224. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1225. POSTING_READ(DPLL_MD(crtc->pipe));
  1226. /* We do this three times for luck */
  1227. I915_WRITE(reg, dpll);
  1228. POSTING_READ(reg);
  1229. udelay(150); /* wait for warmup */
  1230. I915_WRITE(reg, dpll);
  1231. POSTING_READ(reg);
  1232. udelay(150); /* wait for warmup */
  1233. I915_WRITE(reg, dpll);
  1234. POSTING_READ(reg);
  1235. udelay(150); /* wait for warmup */
  1236. }
  1237. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1238. {
  1239. struct drm_device *dev = crtc->base.dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. int reg = DPLL(crtc->pipe);
  1242. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1243. assert_pipe_disabled(dev_priv, crtc->pipe);
  1244. /* No really, not for ILK+ */
  1245. BUG_ON(dev_priv->info->gen >= 5);
  1246. /* PLL is protected by panel, make sure we can write it */
  1247. if (IS_MOBILE(dev) && !IS_I830(dev))
  1248. assert_panel_unlocked(dev_priv, crtc->pipe);
  1249. I915_WRITE(reg, dpll);
  1250. /* Wait for the clocks to stabilize. */
  1251. POSTING_READ(reg);
  1252. udelay(150);
  1253. if (INTEL_INFO(dev)->gen >= 4) {
  1254. I915_WRITE(DPLL_MD(crtc->pipe),
  1255. crtc->config.dpll_hw_state.dpll_md);
  1256. } else {
  1257. /* The pixel multiplier can only be updated once the
  1258. * DPLL is enabled and the clocks are stable.
  1259. *
  1260. * So write it again.
  1261. */
  1262. I915_WRITE(reg, dpll);
  1263. }
  1264. /* We do this three times for luck */
  1265. I915_WRITE(reg, dpll);
  1266. POSTING_READ(reg);
  1267. udelay(150); /* wait for warmup */
  1268. I915_WRITE(reg, dpll);
  1269. POSTING_READ(reg);
  1270. udelay(150); /* wait for warmup */
  1271. I915_WRITE(reg, dpll);
  1272. POSTING_READ(reg);
  1273. udelay(150); /* wait for warmup */
  1274. }
  1275. /**
  1276. * i9xx_disable_pll - disable a PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to disable
  1279. *
  1280. * Disable the PLL for @pipe, making sure the pipe is off first.
  1281. *
  1282. * Note! This is for pre-ILK only.
  1283. */
  1284. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1285. {
  1286. /* Don't disable pipe A or pipe A PLLs if needed */
  1287. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1288. return;
  1289. /* Make sure the pipe isn't still relying on us */
  1290. assert_pipe_disabled(dev_priv, pipe);
  1291. I915_WRITE(DPLL(pipe), 0);
  1292. POSTING_READ(DPLL(pipe));
  1293. }
  1294. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1295. {
  1296. u32 port_mask;
  1297. if (!port)
  1298. port_mask = DPLL_PORTB_READY_MASK;
  1299. else
  1300. port_mask = DPLL_PORTC_READY_MASK;
  1301. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1302. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1303. 'B' + port, I915_READ(DPLL(0)));
  1304. }
  1305. /**
  1306. * ironlake_enable_shared_dpll - enable PCH PLL
  1307. * @dev_priv: i915 private structure
  1308. * @pipe: pipe PLL to enable
  1309. *
  1310. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1311. * drives the transcoder clock.
  1312. */
  1313. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1314. {
  1315. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1316. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1317. /* PCH PLLs only available on ILK, SNB and IVB */
  1318. BUG_ON(dev_priv->info->gen < 5);
  1319. if (WARN_ON(pll == NULL))
  1320. return;
  1321. if (WARN_ON(pll->refcount == 0))
  1322. return;
  1323. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1324. pll->name, pll->active, pll->on,
  1325. crtc->base.base.id);
  1326. if (pll->active++) {
  1327. WARN_ON(!pll->on);
  1328. assert_shared_dpll_enabled(dev_priv, pll);
  1329. return;
  1330. }
  1331. WARN_ON(pll->on);
  1332. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1333. pll->enable(dev_priv, pll);
  1334. pll->on = true;
  1335. }
  1336. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1337. {
  1338. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1339. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1340. /* PCH only available on ILK+ */
  1341. BUG_ON(dev_priv->info->gen < 5);
  1342. if (WARN_ON(pll == NULL))
  1343. return;
  1344. if (WARN_ON(pll->refcount == 0))
  1345. return;
  1346. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1347. pll->name, pll->active, pll->on,
  1348. crtc->base.base.id);
  1349. if (WARN_ON(pll->active == 0)) {
  1350. assert_shared_dpll_disabled(dev_priv, pll);
  1351. return;
  1352. }
  1353. assert_shared_dpll_enabled(dev_priv, pll);
  1354. WARN_ON(!pll->on);
  1355. if (--pll->active)
  1356. return;
  1357. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1358. pll->disable(dev_priv, pll);
  1359. pll->on = false;
  1360. }
  1361. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1362. enum pipe pipe)
  1363. {
  1364. struct drm_device *dev = dev_priv->dev;
  1365. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1367. uint32_t reg, val, pipeconf_val;
  1368. /* PCH only available on ILK+ */
  1369. BUG_ON(dev_priv->info->gen < 5);
  1370. /* Make sure PCH DPLL is enabled */
  1371. assert_shared_dpll_enabled(dev_priv,
  1372. intel_crtc_to_shared_dpll(intel_crtc));
  1373. /* FDI must be feeding us bits for PCH ports */
  1374. assert_fdi_tx_enabled(dev_priv, pipe);
  1375. assert_fdi_rx_enabled(dev_priv, pipe);
  1376. if (HAS_PCH_CPT(dev)) {
  1377. /* Workaround: Set the timing override bit before enabling the
  1378. * pch transcoder. */
  1379. reg = TRANS_CHICKEN2(pipe);
  1380. val = I915_READ(reg);
  1381. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1382. I915_WRITE(reg, val);
  1383. }
  1384. reg = PCH_TRANSCONF(pipe);
  1385. val = I915_READ(reg);
  1386. pipeconf_val = I915_READ(PIPECONF(pipe));
  1387. if (HAS_PCH_IBX(dev_priv->dev)) {
  1388. /*
  1389. * make the BPC in transcoder be consistent with
  1390. * that in pipeconf reg.
  1391. */
  1392. val &= ~PIPECONF_BPC_MASK;
  1393. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1394. }
  1395. val &= ~TRANS_INTERLACE_MASK;
  1396. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1397. if (HAS_PCH_IBX(dev_priv->dev) &&
  1398. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1399. val |= TRANS_LEGACY_INTERLACED_ILK;
  1400. else
  1401. val |= TRANS_INTERLACED;
  1402. else
  1403. val |= TRANS_PROGRESSIVE;
  1404. I915_WRITE(reg, val | TRANS_ENABLE);
  1405. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1406. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1407. }
  1408. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1409. enum transcoder cpu_transcoder)
  1410. {
  1411. u32 val, pipeconf_val;
  1412. /* PCH only available on ILK+ */
  1413. BUG_ON(dev_priv->info->gen < 5);
  1414. /* FDI must be feeding us bits for PCH ports */
  1415. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1416. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1417. /* Workaround: set timing override bit. */
  1418. val = I915_READ(_TRANSA_CHICKEN2);
  1419. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1420. I915_WRITE(_TRANSA_CHICKEN2, val);
  1421. val = TRANS_ENABLE;
  1422. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1423. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1424. PIPECONF_INTERLACED_ILK)
  1425. val |= TRANS_INTERLACED;
  1426. else
  1427. val |= TRANS_PROGRESSIVE;
  1428. I915_WRITE(LPT_TRANSCONF, val);
  1429. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1430. DRM_ERROR("Failed to enable PCH transcoder\n");
  1431. }
  1432. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1433. enum pipe pipe)
  1434. {
  1435. struct drm_device *dev = dev_priv->dev;
  1436. uint32_t reg, val;
  1437. /* FDI relies on the transcoder */
  1438. assert_fdi_tx_disabled(dev_priv, pipe);
  1439. assert_fdi_rx_disabled(dev_priv, pipe);
  1440. /* Ports must be off as well */
  1441. assert_pch_ports_disabled(dev_priv, pipe);
  1442. reg = PCH_TRANSCONF(pipe);
  1443. val = I915_READ(reg);
  1444. val &= ~TRANS_ENABLE;
  1445. I915_WRITE(reg, val);
  1446. /* wait for PCH transcoder off, transcoder state */
  1447. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1448. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1449. if (!HAS_PCH_IBX(dev)) {
  1450. /* Workaround: Clear the timing override chicken bit again. */
  1451. reg = TRANS_CHICKEN2(pipe);
  1452. val = I915_READ(reg);
  1453. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1454. I915_WRITE(reg, val);
  1455. }
  1456. }
  1457. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1458. {
  1459. u32 val;
  1460. val = I915_READ(LPT_TRANSCONF);
  1461. val &= ~TRANS_ENABLE;
  1462. I915_WRITE(LPT_TRANSCONF, val);
  1463. /* wait for PCH transcoder off, transcoder state */
  1464. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1465. DRM_ERROR("Failed to disable PCH transcoder\n");
  1466. /* Workaround: clear timing override bit. */
  1467. val = I915_READ(_TRANSA_CHICKEN2);
  1468. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1469. I915_WRITE(_TRANSA_CHICKEN2, val);
  1470. }
  1471. /**
  1472. * intel_enable_pipe - enable a pipe, asserting requirements
  1473. * @dev_priv: i915 private structure
  1474. * @pipe: pipe to enable
  1475. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1476. *
  1477. * Enable @pipe, making sure that various hardware specific requirements
  1478. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1479. *
  1480. * @pipe should be %PIPE_A or %PIPE_B.
  1481. *
  1482. * Will wait until the pipe is actually running (i.e. first vblank) before
  1483. * returning.
  1484. */
  1485. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1486. bool pch_port, bool dsi)
  1487. {
  1488. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1489. pipe);
  1490. enum pipe pch_transcoder;
  1491. int reg;
  1492. u32 val;
  1493. assert_planes_disabled(dev_priv, pipe);
  1494. assert_cursor_disabled(dev_priv, pipe);
  1495. assert_sprites_disabled(dev_priv, pipe);
  1496. if (HAS_PCH_LPT(dev_priv->dev))
  1497. pch_transcoder = TRANSCODER_A;
  1498. else
  1499. pch_transcoder = pipe;
  1500. /*
  1501. * A pipe without a PLL won't actually be able to drive bits from
  1502. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1503. * need the check.
  1504. */
  1505. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1506. if (dsi)
  1507. assert_dsi_pll_enabled(dev_priv);
  1508. else
  1509. assert_pll_enabled(dev_priv, pipe);
  1510. else {
  1511. if (pch_port) {
  1512. /* if driving the PCH, we need FDI enabled */
  1513. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1514. assert_fdi_tx_pll_enabled(dev_priv,
  1515. (enum pipe) cpu_transcoder);
  1516. }
  1517. /* FIXME: assert CPU port conditions for SNB+ */
  1518. }
  1519. reg = PIPECONF(cpu_transcoder);
  1520. val = I915_READ(reg);
  1521. if (val & PIPECONF_ENABLE)
  1522. return;
  1523. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1524. intel_wait_for_vblank(dev_priv->dev, pipe);
  1525. }
  1526. /**
  1527. * intel_disable_pipe - disable a pipe, asserting requirements
  1528. * @dev_priv: i915 private structure
  1529. * @pipe: pipe to disable
  1530. *
  1531. * Disable @pipe, making sure that various hardware specific requirements
  1532. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1533. *
  1534. * @pipe should be %PIPE_A or %PIPE_B.
  1535. *
  1536. * Will wait until the pipe has shut down before returning.
  1537. */
  1538. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1539. enum pipe pipe)
  1540. {
  1541. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1542. pipe);
  1543. int reg;
  1544. u32 val;
  1545. /*
  1546. * Make sure planes won't keep trying to pump pixels to us,
  1547. * or we might hang the display.
  1548. */
  1549. assert_planes_disabled(dev_priv, pipe);
  1550. assert_cursor_disabled(dev_priv, pipe);
  1551. assert_sprites_disabled(dev_priv, pipe);
  1552. /* Don't disable pipe A or pipe A PLLs if needed */
  1553. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1554. return;
  1555. reg = PIPECONF(cpu_transcoder);
  1556. val = I915_READ(reg);
  1557. if ((val & PIPECONF_ENABLE) == 0)
  1558. return;
  1559. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1560. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1561. }
  1562. /*
  1563. * Plane regs are double buffered, going from enabled->disabled needs a
  1564. * trigger in order to latch. The display address reg provides this.
  1565. */
  1566. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1567. enum plane plane)
  1568. {
  1569. if (dev_priv->info->gen >= 4)
  1570. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1571. else
  1572. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1573. }
  1574. /**
  1575. * intel_enable_plane - enable a display plane on a given pipe
  1576. * @dev_priv: i915 private structure
  1577. * @plane: plane to enable
  1578. * @pipe: pipe being fed
  1579. *
  1580. * Enable @plane on @pipe, making sure that @pipe is running first.
  1581. */
  1582. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1583. enum plane plane, enum pipe pipe)
  1584. {
  1585. int reg;
  1586. u32 val;
  1587. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1588. assert_pipe_enabled(dev_priv, pipe);
  1589. reg = DSPCNTR(plane);
  1590. val = I915_READ(reg);
  1591. if (val & DISPLAY_PLANE_ENABLE)
  1592. return;
  1593. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1594. intel_flush_display_plane(dev_priv, plane);
  1595. intel_wait_for_vblank(dev_priv->dev, pipe);
  1596. }
  1597. /**
  1598. * intel_disable_plane - disable a display plane
  1599. * @dev_priv: i915 private structure
  1600. * @plane: plane to disable
  1601. * @pipe: pipe consuming the data
  1602. *
  1603. * Disable @plane; should be an independent operation.
  1604. */
  1605. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1606. enum plane plane, enum pipe pipe)
  1607. {
  1608. int reg;
  1609. u32 val;
  1610. reg = DSPCNTR(plane);
  1611. val = I915_READ(reg);
  1612. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1613. return;
  1614. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1615. intel_flush_display_plane(dev_priv, plane);
  1616. intel_wait_for_vblank(dev_priv->dev, pipe);
  1617. }
  1618. static bool need_vtd_wa(struct drm_device *dev)
  1619. {
  1620. #ifdef CONFIG_INTEL_IOMMU
  1621. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1622. return true;
  1623. #endif
  1624. return false;
  1625. }
  1626. int
  1627. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1628. struct drm_i915_gem_object *obj,
  1629. struct intel_ring_buffer *pipelined)
  1630. {
  1631. struct drm_i915_private *dev_priv = dev->dev_private;
  1632. u32 alignment;
  1633. int ret;
  1634. switch (obj->tiling_mode) {
  1635. case I915_TILING_NONE:
  1636. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1637. alignment = 128 * 1024;
  1638. else if (INTEL_INFO(dev)->gen >= 4)
  1639. alignment = 4 * 1024;
  1640. else
  1641. alignment = 64 * 1024;
  1642. break;
  1643. case I915_TILING_X:
  1644. /* pin() will align the object as required by fence */
  1645. alignment = 0;
  1646. break;
  1647. case I915_TILING_Y:
  1648. /* Despite that we check this in framebuffer_init userspace can
  1649. * screw us over and change the tiling after the fact. Only
  1650. * pinned buffers can't change their tiling. */
  1651. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1652. return -EINVAL;
  1653. default:
  1654. BUG();
  1655. }
  1656. /* Note that the w/a also requires 64 PTE of padding following the
  1657. * bo. We currently fill all unused PTE with the shadow page and so
  1658. * we should always have valid PTE following the scanout preventing
  1659. * the VT-d warning.
  1660. */
  1661. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1662. alignment = 256 * 1024;
  1663. dev_priv->mm.interruptible = false;
  1664. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1665. if (ret)
  1666. goto err_interruptible;
  1667. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1668. * fence, whereas 965+ only requires a fence if using
  1669. * framebuffer compression. For simplicity, we always install
  1670. * a fence as the cost is not that onerous.
  1671. */
  1672. ret = i915_gem_object_get_fence(obj);
  1673. if (ret)
  1674. goto err_unpin;
  1675. i915_gem_object_pin_fence(obj);
  1676. dev_priv->mm.interruptible = true;
  1677. return 0;
  1678. err_unpin:
  1679. i915_gem_object_unpin_from_display_plane(obj);
  1680. err_interruptible:
  1681. dev_priv->mm.interruptible = true;
  1682. return ret;
  1683. }
  1684. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1685. {
  1686. i915_gem_object_unpin_fence(obj);
  1687. i915_gem_object_unpin_from_display_plane(obj);
  1688. }
  1689. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1690. * is assumed to be a power-of-two. */
  1691. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1692. unsigned int tiling_mode,
  1693. unsigned int cpp,
  1694. unsigned int pitch)
  1695. {
  1696. if (tiling_mode != I915_TILING_NONE) {
  1697. unsigned int tile_rows, tiles;
  1698. tile_rows = *y / 8;
  1699. *y %= 8;
  1700. tiles = *x / (512/cpp);
  1701. *x %= 512/cpp;
  1702. return tile_rows * pitch * 8 + tiles * 4096;
  1703. } else {
  1704. unsigned int offset;
  1705. offset = *y * pitch + *x * cpp;
  1706. *y = 0;
  1707. *x = (offset & 4095) / cpp;
  1708. return offset & -4096;
  1709. }
  1710. }
  1711. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1712. int x, int y)
  1713. {
  1714. struct drm_device *dev = crtc->dev;
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1717. struct intel_framebuffer *intel_fb;
  1718. struct drm_i915_gem_object *obj;
  1719. int plane = intel_crtc->plane;
  1720. unsigned long linear_offset;
  1721. u32 dspcntr;
  1722. u32 reg;
  1723. switch (plane) {
  1724. case 0:
  1725. case 1:
  1726. break;
  1727. default:
  1728. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1729. return -EINVAL;
  1730. }
  1731. intel_fb = to_intel_framebuffer(fb);
  1732. obj = intel_fb->obj;
  1733. reg = DSPCNTR(plane);
  1734. dspcntr = I915_READ(reg);
  1735. /* Mask out pixel format bits in case we change it */
  1736. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1737. switch (fb->pixel_format) {
  1738. case DRM_FORMAT_C8:
  1739. dspcntr |= DISPPLANE_8BPP;
  1740. break;
  1741. case DRM_FORMAT_XRGB1555:
  1742. case DRM_FORMAT_ARGB1555:
  1743. dspcntr |= DISPPLANE_BGRX555;
  1744. break;
  1745. case DRM_FORMAT_RGB565:
  1746. dspcntr |= DISPPLANE_BGRX565;
  1747. break;
  1748. case DRM_FORMAT_XRGB8888:
  1749. case DRM_FORMAT_ARGB8888:
  1750. dspcntr |= DISPPLANE_BGRX888;
  1751. break;
  1752. case DRM_FORMAT_XBGR8888:
  1753. case DRM_FORMAT_ABGR8888:
  1754. dspcntr |= DISPPLANE_RGBX888;
  1755. break;
  1756. case DRM_FORMAT_XRGB2101010:
  1757. case DRM_FORMAT_ARGB2101010:
  1758. dspcntr |= DISPPLANE_BGRX101010;
  1759. break;
  1760. case DRM_FORMAT_XBGR2101010:
  1761. case DRM_FORMAT_ABGR2101010:
  1762. dspcntr |= DISPPLANE_RGBX101010;
  1763. break;
  1764. default:
  1765. BUG();
  1766. }
  1767. if (INTEL_INFO(dev)->gen >= 4) {
  1768. if (obj->tiling_mode != I915_TILING_NONE)
  1769. dspcntr |= DISPPLANE_TILED;
  1770. else
  1771. dspcntr &= ~DISPPLANE_TILED;
  1772. }
  1773. if (IS_G4X(dev))
  1774. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1775. I915_WRITE(reg, dspcntr);
  1776. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1777. if (INTEL_INFO(dev)->gen >= 4) {
  1778. intel_crtc->dspaddr_offset =
  1779. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1780. fb->bits_per_pixel / 8,
  1781. fb->pitches[0]);
  1782. linear_offset -= intel_crtc->dspaddr_offset;
  1783. } else {
  1784. intel_crtc->dspaddr_offset = linear_offset;
  1785. }
  1786. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1787. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1788. fb->pitches[0]);
  1789. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1790. if (INTEL_INFO(dev)->gen >= 4) {
  1791. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1792. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1793. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1794. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1795. } else
  1796. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1797. POSTING_READ(reg);
  1798. return 0;
  1799. }
  1800. static int ironlake_update_plane(struct drm_crtc *crtc,
  1801. struct drm_framebuffer *fb, int x, int y)
  1802. {
  1803. struct drm_device *dev = crtc->dev;
  1804. struct drm_i915_private *dev_priv = dev->dev_private;
  1805. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1806. struct intel_framebuffer *intel_fb;
  1807. struct drm_i915_gem_object *obj;
  1808. int plane = intel_crtc->plane;
  1809. unsigned long linear_offset;
  1810. u32 dspcntr;
  1811. u32 reg;
  1812. switch (plane) {
  1813. case 0:
  1814. case 1:
  1815. case 2:
  1816. break;
  1817. default:
  1818. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1819. return -EINVAL;
  1820. }
  1821. intel_fb = to_intel_framebuffer(fb);
  1822. obj = intel_fb->obj;
  1823. reg = DSPCNTR(plane);
  1824. dspcntr = I915_READ(reg);
  1825. /* Mask out pixel format bits in case we change it */
  1826. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1827. switch (fb->pixel_format) {
  1828. case DRM_FORMAT_C8:
  1829. dspcntr |= DISPPLANE_8BPP;
  1830. break;
  1831. case DRM_FORMAT_RGB565:
  1832. dspcntr |= DISPPLANE_BGRX565;
  1833. break;
  1834. case DRM_FORMAT_XRGB8888:
  1835. case DRM_FORMAT_ARGB8888:
  1836. dspcntr |= DISPPLANE_BGRX888;
  1837. break;
  1838. case DRM_FORMAT_XBGR8888:
  1839. case DRM_FORMAT_ABGR8888:
  1840. dspcntr |= DISPPLANE_RGBX888;
  1841. break;
  1842. case DRM_FORMAT_XRGB2101010:
  1843. case DRM_FORMAT_ARGB2101010:
  1844. dspcntr |= DISPPLANE_BGRX101010;
  1845. break;
  1846. case DRM_FORMAT_XBGR2101010:
  1847. case DRM_FORMAT_ABGR2101010:
  1848. dspcntr |= DISPPLANE_RGBX101010;
  1849. break;
  1850. default:
  1851. BUG();
  1852. }
  1853. if (obj->tiling_mode != I915_TILING_NONE)
  1854. dspcntr |= DISPPLANE_TILED;
  1855. else
  1856. dspcntr &= ~DISPPLANE_TILED;
  1857. if (IS_HASWELL(dev))
  1858. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1859. else
  1860. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1861. I915_WRITE(reg, dspcntr);
  1862. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1863. intel_crtc->dspaddr_offset =
  1864. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1865. fb->bits_per_pixel / 8,
  1866. fb->pitches[0]);
  1867. linear_offset -= intel_crtc->dspaddr_offset;
  1868. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1869. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1870. fb->pitches[0]);
  1871. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1872. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1873. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1874. if (IS_HASWELL(dev)) {
  1875. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1876. } else {
  1877. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1878. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1879. }
  1880. POSTING_READ(reg);
  1881. return 0;
  1882. }
  1883. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1884. static int
  1885. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1886. int x, int y, enum mode_set_atomic state)
  1887. {
  1888. struct drm_device *dev = crtc->dev;
  1889. struct drm_i915_private *dev_priv = dev->dev_private;
  1890. if (dev_priv->display.disable_fbc)
  1891. dev_priv->display.disable_fbc(dev);
  1892. intel_increase_pllclock(crtc);
  1893. return dev_priv->display.update_plane(crtc, fb, x, y);
  1894. }
  1895. void intel_display_handle_reset(struct drm_device *dev)
  1896. {
  1897. struct drm_i915_private *dev_priv = dev->dev_private;
  1898. struct drm_crtc *crtc;
  1899. /*
  1900. * Flips in the rings have been nuked by the reset,
  1901. * so complete all pending flips so that user space
  1902. * will get its events and not get stuck.
  1903. *
  1904. * Also update the base address of all primary
  1905. * planes to the the last fb to make sure we're
  1906. * showing the correct fb after a reset.
  1907. *
  1908. * Need to make two loops over the crtcs so that we
  1909. * don't try to grab a crtc mutex before the
  1910. * pending_flip_queue really got woken up.
  1911. */
  1912. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1914. enum plane plane = intel_crtc->plane;
  1915. intel_prepare_page_flip(dev, plane);
  1916. intel_finish_page_flip_plane(dev, plane);
  1917. }
  1918. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1920. mutex_lock(&crtc->mutex);
  1921. if (intel_crtc->active)
  1922. dev_priv->display.update_plane(crtc, crtc->fb,
  1923. crtc->x, crtc->y);
  1924. mutex_unlock(&crtc->mutex);
  1925. }
  1926. }
  1927. static int
  1928. intel_finish_fb(struct drm_framebuffer *old_fb)
  1929. {
  1930. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1931. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1932. bool was_interruptible = dev_priv->mm.interruptible;
  1933. int ret;
  1934. /* Big Hammer, we also need to ensure that any pending
  1935. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1936. * current scanout is retired before unpinning the old
  1937. * framebuffer.
  1938. *
  1939. * This should only fail upon a hung GPU, in which case we
  1940. * can safely continue.
  1941. */
  1942. dev_priv->mm.interruptible = false;
  1943. ret = i915_gem_object_finish_gpu(obj);
  1944. dev_priv->mm.interruptible = was_interruptible;
  1945. return ret;
  1946. }
  1947. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1948. {
  1949. struct drm_device *dev = crtc->dev;
  1950. struct drm_i915_master_private *master_priv;
  1951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1952. if (!dev->primary->master)
  1953. return;
  1954. master_priv = dev->primary->master->driver_priv;
  1955. if (!master_priv->sarea_priv)
  1956. return;
  1957. switch (intel_crtc->pipe) {
  1958. case 0:
  1959. master_priv->sarea_priv->pipeA_x = x;
  1960. master_priv->sarea_priv->pipeA_y = y;
  1961. break;
  1962. case 1:
  1963. master_priv->sarea_priv->pipeB_x = x;
  1964. master_priv->sarea_priv->pipeB_y = y;
  1965. break;
  1966. default:
  1967. break;
  1968. }
  1969. }
  1970. static int
  1971. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1972. struct drm_framebuffer *fb)
  1973. {
  1974. struct drm_device *dev = crtc->dev;
  1975. struct drm_i915_private *dev_priv = dev->dev_private;
  1976. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1977. struct drm_framebuffer *old_fb;
  1978. int ret;
  1979. /* no fb bound */
  1980. if (!fb) {
  1981. DRM_ERROR("No FB bound\n");
  1982. return 0;
  1983. }
  1984. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1985. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1986. plane_name(intel_crtc->plane),
  1987. INTEL_INFO(dev)->num_pipes);
  1988. return -EINVAL;
  1989. }
  1990. mutex_lock(&dev->struct_mutex);
  1991. ret = intel_pin_and_fence_fb_obj(dev,
  1992. to_intel_framebuffer(fb)->obj,
  1993. NULL);
  1994. if (ret != 0) {
  1995. mutex_unlock(&dev->struct_mutex);
  1996. DRM_ERROR("pin & fence failed\n");
  1997. return ret;
  1998. }
  1999. /* Update pipe size and adjust fitter if needed */
  2000. if (i915_fastboot) {
  2001. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2002. ((crtc->mode.hdisplay - 1) << 16) |
  2003. (crtc->mode.vdisplay - 1));
  2004. if (!intel_crtc->config.pch_pfit.enabled &&
  2005. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2006. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2007. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2008. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2009. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2010. }
  2011. }
  2012. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2013. if (ret) {
  2014. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2015. mutex_unlock(&dev->struct_mutex);
  2016. DRM_ERROR("failed to update base address\n");
  2017. return ret;
  2018. }
  2019. old_fb = crtc->fb;
  2020. crtc->fb = fb;
  2021. crtc->x = x;
  2022. crtc->y = y;
  2023. if (old_fb) {
  2024. if (intel_crtc->active && old_fb != fb)
  2025. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2026. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2027. }
  2028. intel_update_fbc(dev);
  2029. intel_edp_psr_update(dev);
  2030. mutex_unlock(&dev->struct_mutex);
  2031. intel_crtc_update_sarea_pos(crtc, x, y);
  2032. return 0;
  2033. }
  2034. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. u32 reg, temp;
  2041. /* enable normal train */
  2042. reg = FDI_TX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. if (IS_IVYBRIDGE(dev)) {
  2045. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2046. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2047. } else {
  2048. temp &= ~FDI_LINK_TRAIN_NONE;
  2049. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2050. }
  2051. I915_WRITE(reg, temp);
  2052. reg = FDI_RX_CTL(pipe);
  2053. temp = I915_READ(reg);
  2054. if (HAS_PCH_CPT(dev)) {
  2055. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2056. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2057. } else {
  2058. temp &= ~FDI_LINK_TRAIN_NONE;
  2059. temp |= FDI_LINK_TRAIN_NONE;
  2060. }
  2061. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2062. /* wait one idle pattern time */
  2063. POSTING_READ(reg);
  2064. udelay(1000);
  2065. /* IVB wants error correction enabled */
  2066. if (IS_IVYBRIDGE(dev))
  2067. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2068. FDI_FE_ERRC_ENABLE);
  2069. }
  2070. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2071. {
  2072. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2073. }
  2074. static void ivb_modeset_global_resources(struct drm_device *dev)
  2075. {
  2076. struct drm_i915_private *dev_priv = dev->dev_private;
  2077. struct intel_crtc *pipe_B_crtc =
  2078. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2079. struct intel_crtc *pipe_C_crtc =
  2080. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2081. uint32_t temp;
  2082. /*
  2083. * When everything is off disable fdi C so that we could enable fdi B
  2084. * with all lanes. Note that we don't care about enabled pipes without
  2085. * an enabled pch encoder.
  2086. */
  2087. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2088. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2089. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2090. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2091. temp = I915_READ(SOUTH_CHICKEN1);
  2092. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2093. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2094. I915_WRITE(SOUTH_CHICKEN1, temp);
  2095. }
  2096. }
  2097. /* The FDI link training functions for ILK/Ibexpeak. */
  2098. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2099. {
  2100. struct drm_device *dev = crtc->dev;
  2101. struct drm_i915_private *dev_priv = dev->dev_private;
  2102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2103. int pipe = intel_crtc->pipe;
  2104. int plane = intel_crtc->plane;
  2105. u32 reg, temp, tries;
  2106. /* FDI needs bits from pipe & plane first */
  2107. assert_pipe_enabled(dev_priv, pipe);
  2108. assert_plane_enabled(dev_priv, plane);
  2109. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2110. for train result */
  2111. reg = FDI_RX_IMR(pipe);
  2112. temp = I915_READ(reg);
  2113. temp &= ~FDI_RX_SYMBOL_LOCK;
  2114. temp &= ~FDI_RX_BIT_LOCK;
  2115. I915_WRITE(reg, temp);
  2116. I915_READ(reg);
  2117. udelay(150);
  2118. /* enable CPU FDI TX and PCH FDI RX */
  2119. reg = FDI_TX_CTL(pipe);
  2120. temp = I915_READ(reg);
  2121. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2122. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2123. temp &= ~FDI_LINK_TRAIN_NONE;
  2124. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2125. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2126. reg = FDI_RX_CTL(pipe);
  2127. temp = I915_READ(reg);
  2128. temp &= ~FDI_LINK_TRAIN_NONE;
  2129. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2130. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2131. POSTING_READ(reg);
  2132. udelay(150);
  2133. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2134. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2135. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2136. FDI_RX_PHASE_SYNC_POINTER_EN);
  2137. reg = FDI_RX_IIR(pipe);
  2138. for (tries = 0; tries < 5; tries++) {
  2139. temp = I915_READ(reg);
  2140. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2141. if ((temp & FDI_RX_BIT_LOCK)) {
  2142. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2143. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2144. break;
  2145. }
  2146. }
  2147. if (tries == 5)
  2148. DRM_ERROR("FDI train 1 fail!\n");
  2149. /* Train 2 */
  2150. reg = FDI_TX_CTL(pipe);
  2151. temp = I915_READ(reg);
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2154. I915_WRITE(reg, temp);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2159. I915_WRITE(reg, temp);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. reg = FDI_RX_IIR(pipe);
  2163. for (tries = 0; tries < 5; tries++) {
  2164. temp = I915_READ(reg);
  2165. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2166. if (temp & FDI_RX_SYMBOL_LOCK) {
  2167. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2168. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2169. break;
  2170. }
  2171. }
  2172. if (tries == 5)
  2173. DRM_ERROR("FDI train 2 fail!\n");
  2174. DRM_DEBUG_KMS("FDI train done\n");
  2175. }
  2176. static const int snb_b_fdi_train_param[] = {
  2177. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2178. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2179. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2180. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2181. };
  2182. /* The FDI link training functions for SNB/Cougarpoint. */
  2183. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2184. {
  2185. struct drm_device *dev = crtc->dev;
  2186. struct drm_i915_private *dev_priv = dev->dev_private;
  2187. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2188. int pipe = intel_crtc->pipe;
  2189. u32 reg, temp, i, retry;
  2190. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2191. for train result */
  2192. reg = FDI_RX_IMR(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_RX_SYMBOL_LOCK;
  2195. temp &= ~FDI_RX_BIT_LOCK;
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(150);
  2199. /* enable CPU FDI TX and PCH FDI RX */
  2200. reg = FDI_TX_CTL(pipe);
  2201. temp = I915_READ(reg);
  2202. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2203. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2204. temp &= ~FDI_LINK_TRAIN_NONE;
  2205. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2206. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2207. /* SNB-B */
  2208. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2209. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2210. I915_WRITE(FDI_RX_MISC(pipe),
  2211. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2212. reg = FDI_RX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. if (HAS_PCH_CPT(dev)) {
  2215. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2216. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2217. } else {
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2220. }
  2221. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2222. POSTING_READ(reg);
  2223. udelay(150);
  2224. for (i = 0; i < 4; i++) {
  2225. reg = FDI_TX_CTL(pipe);
  2226. temp = I915_READ(reg);
  2227. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2228. temp |= snb_b_fdi_train_param[i];
  2229. I915_WRITE(reg, temp);
  2230. POSTING_READ(reg);
  2231. udelay(500);
  2232. for (retry = 0; retry < 5; retry++) {
  2233. reg = FDI_RX_IIR(pipe);
  2234. temp = I915_READ(reg);
  2235. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2236. if (temp & FDI_RX_BIT_LOCK) {
  2237. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2238. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2239. break;
  2240. }
  2241. udelay(50);
  2242. }
  2243. if (retry < 5)
  2244. break;
  2245. }
  2246. if (i == 4)
  2247. DRM_ERROR("FDI train 1 fail!\n");
  2248. /* Train 2 */
  2249. reg = FDI_TX_CTL(pipe);
  2250. temp = I915_READ(reg);
  2251. temp &= ~FDI_LINK_TRAIN_NONE;
  2252. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2253. if (IS_GEN6(dev)) {
  2254. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2255. /* SNB-B */
  2256. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2257. }
  2258. I915_WRITE(reg, temp);
  2259. reg = FDI_RX_CTL(pipe);
  2260. temp = I915_READ(reg);
  2261. if (HAS_PCH_CPT(dev)) {
  2262. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2263. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2264. } else {
  2265. temp &= ~FDI_LINK_TRAIN_NONE;
  2266. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2267. }
  2268. I915_WRITE(reg, temp);
  2269. POSTING_READ(reg);
  2270. udelay(150);
  2271. for (i = 0; i < 4; i++) {
  2272. reg = FDI_TX_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2275. temp |= snb_b_fdi_train_param[i];
  2276. I915_WRITE(reg, temp);
  2277. POSTING_READ(reg);
  2278. udelay(500);
  2279. for (retry = 0; retry < 5; retry++) {
  2280. reg = FDI_RX_IIR(pipe);
  2281. temp = I915_READ(reg);
  2282. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2283. if (temp & FDI_RX_SYMBOL_LOCK) {
  2284. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2285. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2286. break;
  2287. }
  2288. udelay(50);
  2289. }
  2290. if (retry < 5)
  2291. break;
  2292. }
  2293. if (i == 4)
  2294. DRM_ERROR("FDI train 2 fail!\n");
  2295. DRM_DEBUG_KMS("FDI train done.\n");
  2296. }
  2297. /* Manual link training for Ivy Bridge A0 parts */
  2298. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2299. {
  2300. struct drm_device *dev = crtc->dev;
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2303. int pipe = intel_crtc->pipe;
  2304. u32 reg, temp, i, j;
  2305. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2306. for train result */
  2307. reg = FDI_RX_IMR(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~FDI_RX_SYMBOL_LOCK;
  2310. temp &= ~FDI_RX_BIT_LOCK;
  2311. I915_WRITE(reg, temp);
  2312. POSTING_READ(reg);
  2313. udelay(150);
  2314. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2315. I915_READ(FDI_RX_IIR(pipe)));
  2316. /* Try each vswing and preemphasis setting twice before moving on */
  2317. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2318. /* disable first in case we need to retry */
  2319. reg = FDI_TX_CTL(pipe);
  2320. temp = I915_READ(reg);
  2321. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2322. temp &= ~FDI_TX_ENABLE;
  2323. I915_WRITE(reg, temp);
  2324. reg = FDI_RX_CTL(pipe);
  2325. temp = I915_READ(reg);
  2326. temp &= ~FDI_LINK_TRAIN_AUTO;
  2327. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2328. temp &= ~FDI_RX_ENABLE;
  2329. I915_WRITE(reg, temp);
  2330. /* enable CPU FDI TX and PCH FDI RX */
  2331. reg = FDI_TX_CTL(pipe);
  2332. temp = I915_READ(reg);
  2333. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2334. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2335. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2336. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2337. temp |= snb_b_fdi_train_param[j/2];
  2338. temp |= FDI_COMPOSITE_SYNC;
  2339. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2340. I915_WRITE(FDI_RX_MISC(pipe),
  2341. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2342. reg = FDI_RX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2345. temp |= FDI_COMPOSITE_SYNC;
  2346. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2347. POSTING_READ(reg);
  2348. udelay(1); /* should be 0.5us */
  2349. for (i = 0; i < 4; i++) {
  2350. reg = FDI_RX_IIR(pipe);
  2351. temp = I915_READ(reg);
  2352. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2353. if (temp & FDI_RX_BIT_LOCK ||
  2354. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2355. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2356. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2357. i);
  2358. break;
  2359. }
  2360. udelay(1); /* should be 0.5us */
  2361. }
  2362. if (i == 4) {
  2363. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2364. continue;
  2365. }
  2366. /* Train 2 */
  2367. reg = FDI_TX_CTL(pipe);
  2368. temp = I915_READ(reg);
  2369. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2370. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2371. I915_WRITE(reg, temp);
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2375. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2376. I915_WRITE(reg, temp);
  2377. POSTING_READ(reg);
  2378. udelay(2); /* should be 1.5us */
  2379. for (i = 0; i < 4; i++) {
  2380. reg = FDI_RX_IIR(pipe);
  2381. temp = I915_READ(reg);
  2382. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2383. if (temp & FDI_RX_SYMBOL_LOCK ||
  2384. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2385. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2387. i);
  2388. goto train_done;
  2389. }
  2390. udelay(2); /* should be 1.5us */
  2391. }
  2392. if (i == 4)
  2393. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2394. }
  2395. train_done:
  2396. DRM_DEBUG_KMS("FDI train done.\n");
  2397. }
  2398. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2399. {
  2400. struct drm_device *dev = intel_crtc->base.dev;
  2401. struct drm_i915_private *dev_priv = dev->dev_private;
  2402. int pipe = intel_crtc->pipe;
  2403. u32 reg, temp;
  2404. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2405. reg = FDI_RX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2408. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2409. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2410. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2411. POSTING_READ(reg);
  2412. udelay(200);
  2413. /* Switch from Rawclk to PCDclk */
  2414. temp = I915_READ(reg);
  2415. I915_WRITE(reg, temp | FDI_PCDCLK);
  2416. POSTING_READ(reg);
  2417. udelay(200);
  2418. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2419. reg = FDI_TX_CTL(pipe);
  2420. temp = I915_READ(reg);
  2421. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2422. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2423. POSTING_READ(reg);
  2424. udelay(100);
  2425. }
  2426. }
  2427. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2428. {
  2429. struct drm_device *dev = intel_crtc->base.dev;
  2430. struct drm_i915_private *dev_priv = dev->dev_private;
  2431. int pipe = intel_crtc->pipe;
  2432. u32 reg, temp;
  2433. /* Switch from PCDclk to Rawclk */
  2434. reg = FDI_RX_CTL(pipe);
  2435. temp = I915_READ(reg);
  2436. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2437. /* Disable CPU FDI TX PLL */
  2438. reg = FDI_TX_CTL(pipe);
  2439. temp = I915_READ(reg);
  2440. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2441. POSTING_READ(reg);
  2442. udelay(100);
  2443. reg = FDI_RX_CTL(pipe);
  2444. temp = I915_READ(reg);
  2445. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2446. /* Wait for the clocks to turn off. */
  2447. POSTING_READ(reg);
  2448. udelay(100);
  2449. }
  2450. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2451. {
  2452. struct drm_device *dev = crtc->dev;
  2453. struct drm_i915_private *dev_priv = dev->dev_private;
  2454. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2455. int pipe = intel_crtc->pipe;
  2456. u32 reg, temp;
  2457. /* disable CPU FDI tx and PCH FDI rx */
  2458. reg = FDI_TX_CTL(pipe);
  2459. temp = I915_READ(reg);
  2460. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2461. POSTING_READ(reg);
  2462. reg = FDI_RX_CTL(pipe);
  2463. temp = I915_READ(reg);
  2464. temp &= ~(0x7 << 16);
  2465. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2466. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2467. POSTING_READ(reg);
  2468. udelay(100);
  2469. /* Ironlake workaround, disable clock pointer after downing FDI */
  2470. if (HAS_PCH_IBX(dev)) {
  2471. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2472. }
  2473. /* still set train pattern 1 */
  2474. reg = FDI_TX_CTL(pipe);
  2475. temp = I915_READ(reg);
  2476. temp &= ~FDI_LINK_TRAIN_NONE;
  2477. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2478. I915_WRITE(reg, temp);
  2479. reg = FDI_RX_CTL(pipe);
  2480. temp = I915_READ(reg);
  2481. if (HAS_PCH_CPT(dev)) {
  2482. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2483. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2484. } else {
  2485. temp &= ~FDI_LINK_TRAIN_NONE;
  2486. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2487. }
  2488. /* BPC in FDI rx is consistent with that in PIPECONF */
  2489. temp &= ~(0x07 << 16);
  2490. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2491. I915_WRITE(reg, temp);
  2492. POSTING_READ(reg);
  2493. udelay(100);
  2494. }
  2495. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2496. {
  2497. struct drm_device *dev = crtc->dev;
  2498. struct drm_i915_private *dev_priv = dev->dev_private;
  2499. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2500. unsigned long flags;
  2501. bool pending;
  2502. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2503. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2504. return false;
  2505. spin_lock_irqsave(&dev->event_lock, flags);
  2506. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2507. spin_unlock_irqrestore(&dev->event_lock, flags);
  2508. return pending;
  2509. }
  2510. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2511. {
  2512. struct drm_device *dev = crtc->dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. if (crtc->fb == NULL)
  2515. return;
  2516. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2517. wait_event(dev_priv->pending_flip_queue,
  2518. !intel_crtc_has_pending_flip(crtc));
  2519. mutex_lock(&dev->struct_mutex);
  2520. intel_finish_fb(crtc->fb);
  2521. mutex_unlock(&dev->struct_mutex);
  2522. }
  2523. /* Program iCLKIP clock to the desired frequency */
  2524. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2525. {
  2526. struct drm_device *dev = crtc->dev;
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  2529. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2530. u32 temp;
  2531. mutex_lock(&dev_priv->dpio_lock);
  2532. /* It is necessary to ungate the pixclk gate prior to programming
  2533. * the divisors, and gate it back when it is done.
  2534. */
  2535. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2536. /* Disable SSCCTL */
  2537. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2538. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2539. SBI_SSCCTL_DISABLE,
  2540. SBI_ICLK);
  2541. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2542. if (clock == 20000) {
  2543. auxdiv = 1;
  2544. divsel = 0x41;
  2545. phaseinc = 0x20;
  2546. } else {
  2547. /* The iCLK virtual clock root frequency is in MHz,
  2548. * but the adjusted_mode->clock in in KHz. To get the divisors,
  2549. * it is necessary to divide one by another, so we
  2550. * convert the virtual clock precision to KHz here for higher
  2551. * precision.
  2552. */
  2553. u32 iclk_virtual_root_freq = 172800 * 1000;
  2554. u32 iclk_pi_range = 64;
  2555. u32 desired_divisor, msb_divisor_value, pi_value;
  2556. desired_divisor = (iclk_virtual_root_freq / clock);
  2557. msb_divisor_value = desired_divisor / iclk_pi_range;
  2558. pi_value = desired_divisor % iclk_pi_range;
  2559. auxdiv = 0;
  2560. divsel = msb_divisor_value - 2;
  2561. phaseinc = pi_value;
  2562. }
  2563. /* This should not happen with any sane values */
  2564. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2565. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2566. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2567. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2568. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2569. clock,
  2570. auxdiv,
  2571. divsel,
  2572. phasedir,
  2573. phaseinc);
  2574. /* Program SSCDIVINTPHASE6 */
  2575. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2576. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2577. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2578. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2579. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2580. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2581. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2582. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2583. /* Program SSCAUXDIV */
  2584. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2585. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2586. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2587. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2588. /* Enable modulator and associated divider */
  2589. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2590. temp &= ~SBI_SSCCTL_DISABLE;
  2591. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2592. /* Wait for initialization time */
  2593. udelay(24);
  2594. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2595. mutex_unlock(&dev_priv->dpio_lock);
  2596. }
  2597. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2598. enum pipe pch_transcoder)
  2599. {
  2600. struct drm_device *dev = crtc->base.dev;
  2601. struct drm_i915_private *dev_priv = dev->dev_private;
  2602. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2603. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2604. I915_READ(HTOTAL(cpu_transcoder)));
  2605. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2606. I915_READ(HBLANK(cpu_transcoder)));
  2607. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2608. I915_READ(HSYNC(cpu_transcoder)));
  2609. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2610. I915_READ(VTOTAL(cpu_transcoder)));
  2611. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2612. I915_READ(VBLANK(cpu_transcoder)));
  2613. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2614. I915_READ(VSYNC(cpu_transcoder)));
  2615. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2616. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2617. }
  2618. /*
  2619. * Enable PCH resources required for PCH ports:
  2620. * - PCH PLLs
  2621. * - FDI training & RX/TX
  2622. * - update transcoder timings
  2623. * - DP transcoding bits
  2624. * - transcoder
  2625. */
  2626. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2627. {
  2628. struct drm_device *dev = crtc->dev;
  2629. struct drm_i915_private *dev_priv = dev->dev_private;
  2630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2631. int pipe = intel_crtc->pipe;
  2632. u32 reg, temp;
  2633. assert_pch_transcoder_disabled(dev_priv, pipe);
  2634. /* Write the TU size bits before fdi link training, so that error
  2635. * detection works. */
  2636. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2637. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2638. /* For PCH output, training FDI link */
  2639. dev_priv->display.fdi_link_train(crtc);
  2640. /* We need to program the right clock selection before writing the pixel
  2641. * mutliplier into the DPLL. */
  2642. if (HAS_PCH_CPT(dev)) {
  2643. u32 sel;
  2644. temp = I915_READ(PCH_DPLL_SEL);
  2645. temp |= TRANS_DPLL_ENABLE(pipe);
  2646. sel = TRANS_DPLLB_SEL(pipe);
  2647. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2648. temp |= sel;
  2649. else
  2650. temp &= ~sel;
  2651. I915_WRITE(PCH_DPLL_SEL, temp);
  2652. }
  2653. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2654. * transcoder, and we actually should do this to not upset any PCH
  2655. * transcoder that already use the clock when we share it.
  2656. *
  2657. * Note that enable_shared_dpll tries to do the right thing, but
  2658. * get_shared_dpll unconditionally resets the pll - we need that to have
  2659. * the right LVDS enable sequence. */
  2660. ironlake_enable_shared_dpll(intel_crtc);
  2661. /* set transcoder timing, panel must allow it */
  2662. assert_panel_unlocked(dev_priv, pipe);
  2663. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2664. intel_fdi_normal_train(crtc);
  2665. /* For PCH DP, enable TRANS_DP_CTL */
  2666. if (HAS_PCH_CPT(dev) &&
  2667. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2668. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2669. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2670. reg = TRANS_DP_CTL(pipe);
  2671. temp = I915_READ(reg);
  2672. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2673. TRANS_DP_SYNC_MASK |
  2674. TRANS_DP_BPC_MASK);
  2675. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2676. TRANS_DP_ENH_FRAMING);
  2677. temp |= bpc << 9; /* same format but at 11:9 */
  2678. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2679. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2680. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2681. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2682. switch (intel_trans_dp_port_sel(crtc)) {
  2683. case PCH_DP_B:
  2684. temp |= TRANS_DP_PORT_SEL_B;
  2685. break;
  2686. case PCH_DP_C:
  2687. temp |= TRANS_DP_PORT_SEL_C;
  2688. break;
  2689. case PCH_DP_D:
  2690. temp |= TRANS_DP_PORT_SEL_D;
  2691. break;
  2692. default:
  2693. BUG();
  2694. }
  2695. I915_WRITE(reg, temp);
  2696. }
  2697. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2698. }
  2699. static void lpt_pch_enable(struct drm_crtc *crtc)
  2700. {
  2701. struct drm_device *dev = crtc->dev;
  2702. struct drm_i915_private *dev_priv = dev->dev_private;
  2703. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2704. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2705. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2706. lpt_program_iclkip(crtc);
  2707. /* Set transcoder timing. */
  2708. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2709. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2710. }
  2711. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2712. {
  2713. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2714. if (pll == NULL)
  2715. return;
  2716. if (pll->refcount == 0) {
  2717. WARN(1, "bad %s refcount\n", pll->name);
  2718. return;
  2719. }
  2720. if (--pll->refcount == 0) {
  2721. WARN_ON(pll->on);
  2722. WARN_ON(pll->active);
  2723. }
  2724. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2725. }
  2726. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2727. {
  2728. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2729. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2730. enum intel_dpll_id i;
  2731. if (pll) {
  2732. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2733. crtc->base.base.id, pll->name);
  2734. intel_put_shared_dpll(crtc);
  2735. }
  2736. if (HAS_PCH_IBX(dev_priv->dev)) {
  2737. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2738. i = (enum intel_dpll_id) crtc->pipe;
  2739. pll = &dev_priv->shared_dplls[i];
  2740. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2741. crtc->base.base.id, pll->name);
  2742. goto found;
  2743. }
  2744. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2745. pll = &dev_priv->shared_dplls[i];
  2746. /* Only want to check enabled timings first */
  2747. if (pll->refcount == 0)
  2748. continue;
  2749. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2750. sizeof(pll->hw_state)) == 0) {
  2751. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2752. crtc->base.base.id,
  2753. pll->name, pll->refcount, pll->active);
  2754. goto found;
  2755. }
  2756. }
  2757. /* Ok no matching timings, maybe there's a free one? */
  2758. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2759. pll = &dev_priv->shared_dplls[i];
  2760. if (pll->refcount == 0) {
  2761. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2762. crtc->base.base.id, pll->name);
  2763. goto found;
  2764. }
  2765. }
  2766. return NULL;
  2767. found:
  2768. crtc->config.shared_dpll = i;
  2769. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2770. pipe_name(crtc->pipe));
  2771. if (pll->active == 0) {
  2772. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2773. sizeof(pll->hw_state));
  2774. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2775. WARN_ON(pll->on);
  2776. assert_shared_dpll_disabled(dev_priv, pll);
  2777. pll->mode_set(dev_priv, pll);
  2778. }
  2779. pll->refcount++;
  2780. return pll;
  2781. }
  2782. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2783. {
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. int dslreg = PIPEDSL(pipe);
  2786. u32 temp;
  2787. temp = I915_READ(dslreg);
  2788. udelay(500);
  2789. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2790. if (wait_for(I915_READ(dslreg) != temp, 5))
  2791. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2792. }
  2793. }
  2794. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2795. {
  2796. struct drm_device *dev = crtc->base.dev;
  2797. struct drm_i915_private *dev_priv = dev->dev_private;
  2798. int pipe = crtc->pipe;
  2799. if (crtc->config.pch_pfit.enabled) {
  2800. /* Force use of hard-coded filter coefficients
  2801. * as some pre-programmed values are broken,
  2802. * e.g. x201.
  2803. */
  2804. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2805. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2806. PF_PIPE_SEL_IVB(pipe));
  2807. else
  2808. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2809. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2810. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2811. }
  2812. }
  2813. static void intel_enable_planes(struct drm_crtc *crtc)
  2814. {
  2815. struct drm_device *dev = crtc->dev;
  2816. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2817. struct intel_plane *intel_plane;
  2818. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2819. if (intel_plane->pipe == pipe)
  2820. intel_plane_restore(&intel_plane->base);
  2821. }
  2822. static void intel_disable_planes(struct drm_crtc *crtc)
  2823. {
  2824. struct drm_device *dev = crtc->dev;
  2825. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2826. struct intel_plane *intel_plane;
  2827. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2828. if (intel_plane->pipe == pipe)
  2829. intel_plane_disable(&intel_plane->base);
  2830. }
  2831. static void hsw_enable_ips(struct intel_crtc *crtc)
  2832. {
  2833. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2834. if (!crtc->config.ips_enabled)
  2835. return;
  2836. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2837. * We guarantee that the plane is enabled by calling intel_enable_ips
  2838. * only after intel_enable_plane. And intel_enable_plane already waits
  2839. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2840. assert_plane_enabled(dev_priv, crtc->plane);
  2841. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2842. }
  2843. static void hsw_disable_ips(struct intel_crtc *crtc)
  2844. {
  2845. struct drm_device *dev = crtc->base.dev;
  2846. struct drm_i915_private *dev_priv = dev->dev_private;
  2847. if (!crtc->config.ips_enabled)
  2848. return;
  2849. assert_plane_enabled(dev_priv, crtc->plane);
  2850. I915_WRITE(IPS_CTL, 0);
  2851. POSTING_READ(IPS_CTL);
  2852. /* We need to wait for a vblank before we can disable the plane. */
  2853. intel_wait_for_vblank(dev, crtc->pipe);
  2854. }
  2855. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2856. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  2857. {
  2858. struct drm_device *dev = crtc->dev;
  2859. struct drm_i915_private *dev_priv = dev->dev_private;
  2860. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2861. enum pipe pipe = intel_crtc->pipe;
  2862. int palreg = PALETTE(pipe);
  2863. int i;
  2864. bool reenable_ips = false;
  2865. /* The clocks have to be on to load the palette. */
  2866. if (!crtc->enabled || !intel_crtc->active)
  2867. return;
  2868. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  2869. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2870. assert_dsi_pll_enabled(dev_priv);
  2871. else
  2872. assert_pll_enabled(dev_priv, pipe);
  2873. }
  2874. /* use legacy palette for Ironlake */
  2875. if (HAS_PCH_SPLIT(dev))
  2876. palreg = LGC_PALETTE(pipe);
  2877. /* Workaround : Do not read or write the pipe palette/gamma data while
  2878. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  2879. */
  2880. if (intel_crtc->config.ips_enabled &&
  2881. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  2882. GAMMA_MODE_MODE_SPLIT)) {
  2883. hsw_disable_ips(intel_crtc);
  2884. reenable_ips = true;
  2885. }
  2886. for (i = 0; i < 256; i++) {
  2887. I915_WRITE(palreg + 4 * i,
  2888. (intel_crtc->lut_r[i] << 16) |
  2889. (intel_crtc->lut_g[i] << 8) |
  2890. intel_crtc->lut_b[i]);
  2891. }
  2892. if (reenable_ips)
  2893. hsw_enable_ips(intel_crtc);
  2894. }
  2895. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2896. {
  2897. struct drm_device *dev = crtc->dev;
  2898. struct drm_i915_private *dev_priv = dev->dev_private;
  2899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2900. struct intel_encoder *encoder;
  2901. int pipe = intel_crtc->pipe;
  2902. int plane = intel_crtc->plane;
  2903. WARN_ON(!crtc->enabled);
  2904. if (intel_crtc->active)
  2905. return;
  2906. intel_crtc->active = true;
  2907. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2908. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2909. for_each_encoder_on_crtc(dev, crtc, encoder)
  2910. if (encoder->pre_enable)
  2911. encoder->pre_enable(encoder);
  2912. if (intel_crtc->config.has_pch_encoder) {
  2913. /* Note: FDI PLL enabling _must_ be done before we enable the
  2914. * cpu pipes, hence this is separate from all the other fdi/pch
  2915. * enabling. */
  2916. ironlake_fdi_pll_enable(intel_crtc);
  2917. } else {
  2918. assert_fdi_tx_disabled(dev_priv, pipe);
  2919. assert_fdi_rx_disabled(dev_priv, pipe);
  2920. }
  2921. ironlake_pfit_enable(intel_crtc);
  2922. /*
  2923. * On ILK+ LUT must be loaded before the pipe is running but with
  2924. * clocks enabled
  2925. */
  2926. intel_crtc_load_lut(crtc);
  2927. intel_update_watermarks(crtc);
  2928. intel_enable_pipe(dev_priv, pipe,
  2929. intel_crtc->config.has_pch_encoder, false);
  2930. intel_enable_plane(dev_priv, plane, pipe);
  2931. intel_enable_planes(crtc);
  2932. intel_crtc_update_cursor(crtc, true);
  2933. if (intel_crtc->config.has_pch_encoder)
  2934. ironlake_pch_enable(crtc);
  2935. mutex_lock(&dev->struct_mutex);
  2936. intel_update_fbc(dev);
  2937. mutex_unlock(&dev->struct_mutex);
  2938. for_each_encoder_on_crtc(dev, crtc, encoder)
  2939. encoder->enable(encoder);
  2940. if (HAS_PCH_CPT(dev))
  2941. cpt_verify_modeset(dev, intel_crtc->pipe);
  2942. /*
  2943. * There seems to be a race in PCH platform hw (at least on some
  2944. * outputs) where an enabled pipe still completes any pageflip right
  2945. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2946. * as the first vblank happend, everything works as expected. Hence just
  2947. * wait for one vblank before returning to avoid strange things
  2948. * happening.
  2949. */
  2950. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2951. }
  2952. /* IPS only exists on ULT machines and is tied to pipe A. */
  2953. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2954. {
  2955. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2956. }
  2957. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2958. {
  2959. struct drm_device *dev = crtc->dev;
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2962. struct intel_encoder *encoder;
  2963. int pipe = intel_crtc->pipe;
  2964. int plane = intel_crtc->plane;
  2965. WARN_ON(!crtc->enabled);
  2966. if (intel_crtc->active)
  2967. return;
  2968. intel_crtc->active = true;
  2969. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2970. if (intel_crtc->config.has_pch_encoder)
  2971. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2972. if (intel_crtc->config.has_pch_encoder)
  2973. dev_priv->display.fdi_link_train(crtc);
  2974. for_each_encoder_on_crtc(dev, crtc, encoder)
  2975. if (encoder->pre_enable)
  2976. encoder->pre_enable(encoder);
  2977. intel_ddi_enable_pipe_clock(intel_crtc);
  2978. ironlake_pfit_enable(intel_crtc);
  2979. /*
  2980. * On ILK+ LUT must be loaded before the pipe is running but with
  2981. * clocks enabled
  2982. */
  2983. intel_crtc_load_lut(crtc);
  2984. intel_ddi_set_pipe_settings(crtc);
  2985. intel_ddi_enable_transcoder_func(crtc);
  2986. intel_update_watermarks(crtc);
  2987. intel_enable_pipe(dev_priv, pipe,
  2988. intel_crtc->config.has_pch_encoder, false);
  2989. intel_enable_plane(dev_priv, plane, pipe);
  2990. intel_enable_planes(crtc);
  2991. intel_crtc_update_cursor(crtc, true);
  2992. hsw_enable_ips(intel_crtc);
  2993. if (intel_crtc->config.has_pch_encoder)
  2994. lpt_pch_enable(crtc);
  2995. mutex_lock(&dev->struct_mutex);
  2996. intel_update_fbc(dev);
  2997. mutex_unlock(&dev->struct_mutex);
  2998. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2999. encoder->enable(encoder);
  3000. intel_opregion_notify_encoder(encoder, true);
  3001. }
  3002. /*
  3003. * There seems to be a race in PCH platform hw (at least on some
  3004. * outputs) where an enabled pipe still completes any pageflip right
  3005. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3006. * as the first vblank happend, everything works as expected. Hence just
  3007. * wait for one vblank before returning to avoid strange things
  3008. * happening.
  3009. */
  3010. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3011. }
  3012. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3013. {
  3014. struct drm_device *dev = crtc->base.dev;
  3015. struct drm_i915_private *dev_priv = dev->dev_private;
  3016. int pipe = crtc->pipe;
  3017. /* To avoid upsetting the power well on haswell only disable the pfit if
  3018. * it's in use. The hw state code will make sure we get this right. */
  3019. if (crtc->config.pch_pfit.enabled) {
  3020. I915_WRITE(PF_CTL(pipe), 0);
  3021. I915_WRITE(PF_WIN_POS(pipe), 0);
  3022. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3023. }
  3024. }
  3025. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3026. {
  3027. struct drm_device *dev = crtc->dev;
  3028. struct drm_i915_private *dev_priv = dev->dev_private;
  3029. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3030. struct intel_encoder *encoder;
  3031. int pipe = intel_crtc->pipe;
  3032. int plane = intel_crtc->plane;
  3033. u32 reg, temp;
  3034. if (!intel_crtc->active)
  3035. return;
  3036. for_each_encoder_on_crtc(dev, crtc, encoder)
  3037. encoder->disable(encoder);
  3038. intel_crtc_wait_for_pending_flips(crtc);
  3039. drm_vblank_off(dev, pipe);
  3040. if (dev_priv->fbc.plane == plane)
  3041. intel_disable_fbc(dev);
  3042. intel_crtc_update_cursor(crtc, false);
  3043. intel_disable_planes(crtc);
  3044. intel_disable_plane(dev_priv, plane, pipe);
  3045. if (intel_crtc->config.has_pch_encoder)
  3046. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3047. intel_disable_pipe(dev_priv, pipe);
  3048. ironlake_pfit_disable(intel_crtc);
  3049. for_each_encoder_on_crtc(dev, crtc, encoder)
  3050. if (encoder->post_disable)
  3051. encoder->post_disable(encoder);
  3052. if (intel_crtc->config.has_pch_encoder) {
  3053. ironlake_fdi_disable(crtc);
  3054. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3055. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3056. if (HAS_PCH_CPT(dev)) {
  3057. /* disable TRANS_DP_CTL */
  3058. reg = TRANS_DP_CTL(pipe);
  3059. temp = I915_READ(reg);
  3060. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3061. TRANS_DP_PORT_SEL_MASK);
  3062. temp |= TRANS_DP_PORT_SEL_NONE;
  3063. I915_WRITE(reg, temp);
  3064. /* disable DPLL_SEL */
  3065. temp = I915_READ(PCH_DPLL_SEL);
  3066. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3067. I915_WRITE(PCH_DPLL_SEL, temp);
  3068. }
  3069. /* disable PCH DPLL */
  3070. intel_disable_shared_dpll(intel_crtc);
  3071. ironlake_fdi_pll_disable(intel_crtc);
  3072. }
  3073. intel_crtc->active = false;
  3074. intel_update_watermarks(crtc);
  3075. mutex_lock(&dev->struct_mutex);
  3076. intel_update_fbc(dev);
  3077. mutex_unlock(&dev->struct_mutex);
  3078. }
  3079. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3080. {
  3081. struct drm_device *dev = crtc->dev;
  3082. struct drm_i915_private *dev_priv = dev->dev_private;
  3083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3084. struct intel_encoder *encoder;
  3085. int pipe = intel_crtc->pipe;
  3086. int plane = intel_crtc->plane;
  3087. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3088. if (!intel_crtc->active)
  3089. return;
  3090. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3091. intel_opregion_notify_encoder(encoder, false);
  3092. encoder->disable(encoder);
  3093. }
  3094. intel_crtc_wait_for_pending_flips(crtc);
  3095. drm_vblank_off(dev, pipe);
  3096. /* FBC must be disabled before disabling the plane on HSW. */
  3097. if (dev_priv->fbc.plane == plane)
  3098. intel_disable_fbc(dev);
  3099. hsw_disable_ips(intel_crtc);
  3100. intel_crtc_update_cursor(crtc, false);
  3101. intel_disable_planes(crtc);
  3102. intel_disable_plane(dev_priv, plane, pipe);
  3103. if (intel_crtc->config.has_pch_encoder)
  3104. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3105. intel_disable_pipe(dev_priv, pipe);
  3106. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3107. ironlake_pfit_disable(intel_crtc);
  3108. intel_ddi_disable_pipe_clock(intel_crtc);
  3109. for_each_encoder_on_crtc(dev, crtc, encoder)
  3110. if (encoder->post_disable)
  3111. encoder->post_disable(encoder);
  3112. if (intel_crtc->config.has_pch_encoder) {
  3113. lpt_disable_pch_transcoder(dev_priv);
  3114. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3115. intel_ddi_fdi_disable(crtc);
  3116. }
  3117. intel_crtc->active = false;
  3118. intel_update_watermarks(crtc);
  3119. mutex_lock(&dev->struct_mutex);
  3120. intel_update_fbc(dev);
  3121. mutex_unlock(&dev->struct_mutex);
  3122. }
  3123. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3124. {
  3125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3126. intel_put_shared_dpll(intel_crtc);
  3127. }
  3128. static void haswell_crtc_off(struct drm_crtc *crtc)
  3129. {
  3130. intel_ddi_put_crtc_pll(crtc);
  3131. }
  3132. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3133. {
  3134. if (!enable && intel_crtc->overlay) {
  3135. struct drm_device *dev = intel_crtc->base.dev;
  3136. struct drm_i915_private *dev_priv = dev->dev_private;
  3137. mutex_lock(&dev->struct_mutex);
  3138. dev_priv->mm.interruptible = false;
  3139. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3140. dev_priv->mm.interruptible = true;
  3141. mutex_unlock(&dev->struct_mutex);
  3142. }
  3143. /* Let userspace switch the overlay on again. In most cases userspace
  3144. * has to recompute where to put it anyway.
  3145. */
  3146. }
  3147. /**
  3148. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3149. * cursor plane briefly if not already running after enabling the display
  3150. * plane.
  3151. * This workaround avoids occasional blank screens when self refresh is
  3152. * enabled.
  3153. */
  3154. static void
  3155. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3156. {
  3157. u32 cntl = I915_READ(CURCNTR(pipe));
  3158. if ((cntl & CURSOR_MODE) == 0) {
  3159. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3160. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3161. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3162. intel_wait_for_vblank(dev_priv->dev, pipe);
  3163. I915_WRITE(CURCNTR(pipe), cntl);
  3164. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3165. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3166. }
  3167. }
  3168. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3169. {
  3170. struct drm_device *dev = crtc->base.dev;
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. struct intel_crtc_config *pipe_config = &crtc->config;
  3173. if (!crtc->config.gmch_pfit.control)
  3174. return;
  3175. /*
  3176. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3177. * according to register description and PRM.
  3178. */
  3179. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3180. assert_pipe_disabled(dev_priv, crtc->pipe);
  3181. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3182. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3183. /* Border color in case we don't scale up to the full screen. Black by
  3184. * default, change to something else for debugging. */
  3185. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3186. }
  3187. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3188. {
  3189. struct drm_device *dev = crtc->dev;
  3190. struct drm_i915_private *dev_priv = dev->dev_private;
  3191. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3192. struct intel_encoder *encoder;
  3193. int pipe = intel_crtc->pipe;
  3194. int plane = intel_crtc->plane;
  3195. bool is_dsi;
  3196. WARN_ON(!crtc->enabled);
  3197. if (intel_crtc->active)
  3198. return;
  3199. intel_crtc->active = true;
  3200. for_each_encoder_on_crtc(dev, crtc, encoder)
  3201. if (encoder->pre_pll_enable)
  3202. encoder->pre_pll_enable(encoder);
  3203. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3204. if (!is_dsi)
  3205. vlv_enable_pll(intel_crtc);
  3206. for_each_encoder_on_crtc(dev, crtc, encoder)
  3207. if (encoder->pre_enable)
  3208. encoder->pre_enable(encoder);
  3209. i9xx_pfit_enable(intel_crtc);
  3210. intel_crtc_load_lut(crtc);
  3211. intel_update_watermarks(crtc);
  3212. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3213. intel_enable_plane(dev_priv, plane, pipe);
  3214. intel_enable_planes(crtc);
  3215. intel_crtc_update_cursor(crtc, true);
  3216. intel_update_fbc(dev);
  3217. for_each_encoder_on_crtc(dev, crtc, encoder)
  3218. encoder->enable(encoder);
  3219. }
  3220. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3221. {
  3222. struct drm_device *dev = crtc->dev;
  3223. struct drm_i915_private *dev_priv = dev->dev_private;
  3224. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3225. struct intel_encoder *encoder;
  3226. int pipe = intel_crtc->pipe;
  3227. int plane = intel_crtc->plane;
  3228. WARN_ON(!crtc->enabled);
  3229. if (intel_crtc->active)
  3230. return;
  3231. intel_crtc->active = true;
  3232. for_each_encoder_on_crtc(dev, crtc, encoder)
  3233. if (encoder->pre_enable)
  3234. encoder->pre_enable(encoder);
  3235. i9xx_enable_pll(intel_crtc);
  3236. i9xx_pfit_enable(intel_crtc);
  3237. intel_crtc_load_lut(crtc);
  3238. intel_update_watermarks(crtc);
  3239. intel_enable_pipe(dev_priv, pipe, false, false);
  3240. intel_enable_plane(dev_priv, plane, pipe);
  3241. intel_enable_planes(crtc);
  3242. /* The fixup needs to happen before cursor is enabled */
  3243. if (IS_G4X(dev))
  3244. g4x_fixup_plane(dev_priv, pipe);
  3245. intel_crtc_update_cursor(crtc, true);
  3246. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3247. intel_crtc_dpms_overlay(intel_crtc, true);
  3248. intel_update_fbc(dev);
  3249. for_each_encoder_on_crtc(dev, crtc, encoder)
  3250. encoder->enable(encoder);
  3251. }
  3252. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3253. {
  3254. struct drm_device *dev = crtc->base.dev;
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. if (!crtc->config.gmch_pfit.control)
  3257. return;
  3258. assert_pipe_disabled(dev_priv, crtc->pipe);
  3259. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3260. I915_READ(PFIT_CONTROL));
  3261. I915_WRITE(PFIT_CONTROL, 0);
  3262. }
  3263. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3264. {
  3265. struct drm_device *dev = crtc->dev;
  3266. struct drm_i915_private *dev_priv = dev->dev_private;
  3267. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3268. struct intel_encoder *encoder;
  3269. int pipe = intel_crtc->pipe;
  3270. int plane = intel_crtc->plane;
  3271. if (!intel_crtc->active)
  3272. return;
  3273. for_each_encoder_on_crtc(dev, crtc, encoder)
  3274. encoder->disable(encoder);
  3275. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3276. intel_crtc_wait_for_pending_flips(crtc);
  3277. drm_vblank_off(dev, pipe);
  3278. if (dev_priv->fbc.plane == plane)
  3279. intel_disable_fbc(dev);
  3280. intel_crtc_dpms_overlay(intel_crtc, false);
  3281. intel_crtc_update_cursor(crtc, false);
  3282. intel_disable_planes(crtc);
  3283. intel_disable_plane(dev_priv, plane, pipe);
  3284. intel_disable_pipe(dev_priv, pipe);
  3285. i9xx_pfit_disable(intel_crtc);
  3286. for_each_encoder_on_crtc(dev, crtc, encoder)
  3287. if (encoder->post_disable)
  3288. encoder->post_disable(encoder);
  3289. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3290. i9xx_disable_pll(dev_priv, pipe);
  3291. intel_crtc->active = false;
  3292. intel_update_watermarks(crtc);
  3293. intel_update_fbc(dev);
  3294. }
  3295. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3296. {
  3297. }
  3298. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3299. bool enabled)
  3300. {
  3301. struct drm_device *dev = crtc->dev;
  3302. struct drm_i915_master_private *master_priv;
  3303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3304. int pipe = intel_crtc->pipe;
  3305. if (!dev->primary->master)
  3306. return;
  3307. master_priv = dev->primary->master->driver_priv;
  3308. if (!master_priv->sarea_priv)
  3309. return;
  3310. switch (pipe) {
  3311. case 0:
  3312. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3313. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3314. break;
  3315. case 1:
  3316. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3317. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3318. break;
  3319. default:
  3320. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3321. break;
  3322. }
  3323. }
  3324. /**
  3325. * Sets the power management mode of the pipe and plane.
  3326. */
  3327. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3328. {
  3329. struct drm_device *dev = crtc->dev;
  3330. struct drm_i915_private *dev_priv = dev->dev_private;
  3331. struct intel_encoder *intel_encoder;
  3332. bool enable = false;
  3333. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3334. enable |= intel_encoder->connectors_active;
  3335. if (enable)
  3336. dev_priv->display.crtc_enable(crtc);
  3337. else
  3338. dev_priv->display.crtc_disable(crtc);
  3339. intel_crtc_update_sarea(crtc, enable);
  3340. }
  3341. static void intel_crtc_disable(struct drm_crtc *crtc)
  3342. {
  3343. struct drm_device *dev = crtc->dev;
  3344. struct drm_connector *connector;
  3345. struct drm_i915_private *dev_priv = dev->dev_private;
  3346. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3347. /* crtc should still be enabled when we disable it. */
  3348. WARN_ON(!crtc->enabled);
  3349. dev_priv->display.crtc_disable(crtc);
  3350. intel_crtc->eld_vld = false;
  3351. intel_crtc_update_sarea(crtc, false);
  3352. dev_priv->display.off(crtc);
  3353. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3354. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3355. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3356. if (crtc->fb) {
  3357. mutex_lock(&dev->struct_mutex);
  3358. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3359. mutex_unlock(&dev->struct_mutex);
  3360. crtc->fb = NULL;
  3361. }
  3362. /* Update computed state. */
  3363. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3364. if (!connector->encoder || !connector->encoder->crtc)
  3365. continue;
  3366. if (connector->encoder->crtc != crtc)
  3367. continue;
  3368. connector->dpms = DRM_MODE_DPMS_OFF;
  3369. to_intel_encoder(connector->encoder)->connectors_active = false;
  3370. }
  3371. }
  3372. void intel_encoder_destroy(struct drm_encoder *encoder)
  3373. {
  3374. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3375. drm_encoder_cleanup(encoder);
  3376. kfree(intel_encoder);
  3377. }
  3378. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3379. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3380. * state of the entire output pipe. */
  3381. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3382. {
  3383. if (mode == DRM_MODE_DPMS_ON) {
  3384. encoder->connectors_active = true;
  3385. intel_crtc_update_dpms(encoder->base.crtc);
  3386. } else {
  3387. encoder->connectors_active = false;
  3388. intel_crtc_update_dpms(encoder->base.crtc);
  3389. }
  3390. }
  3391. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3392. * internal consistency). */
  3393. static void intel_connector_check_state(struct intel_connector *connector)
  3394. {
  3395. if (connector->get_hw_state(connector)) {
  3396. struct intel_encoder *encoder = connector->encoder;
  3397. struct drm_crtc *crtc;
  3398. bool encoder_enabled;
  3399. enum pipe pipe;
  3400. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3401. connector->base.base.id,
  3402. drm_get_connector_name(&connector->base));
  3403. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3404. "wrong connector dpms state\n");
  3405. WARN(connector->base.encoder != &encoder->base,
  3406. "active connector not linked to encoder\n");
  3407. WARN(!encoder->connectors_active,
  3408. "encoder->connectors_active not set\n");
  3409. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3410. WARN(!encoder_enabled, "encoder not enabled\n");
  3411. if (WARN_ON(!encoder->base.crtc))
  3412. return;
  3413. crtc = encoder->base.crtc;
  3414. WARN(!crtc->enabled, "crtc not enabled\n");
  3415. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3416. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3417. "encoder active on the wrong pipe\n");
  3418. }
  3419. }
  3420. /* Even simpler default implementation, if there's really no special case to
  3421. * consider. */
  3422. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3423. {
  3424. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3425. /* All the simple cases only support two dpms states. */
  3426. if (mode != DRM_MODE_DPMS_ON)
  3427. mode = DRM_MODE_DPMS_OFF;
  3428. if (mode == connector->dpms)
  3429. return;
  3430. connector->dpms = mode;
  3431. /* Only need to change hw state when actually enabled */
  3432. if (encoder->base.crtc)
  3433. intel_encoder_dpms(encoder, mode);
  3434. else
  3435. WARN_ON(encoder->connectors_active != false);
  3436. intel_modeset_check_state(connector->dev);
  3437. }
  3438. /* Simple connector->get_hw_state implementation for encoders that support only
  3439. * one connector and no cloning and hence the encoder state determines the state
  3440. * of the connector. */
  3441. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3442. {
  3443. enum pipe pipe = 0;
  3444. struct intel_encoder *encoder = connector->encoder;
  3445. return encoder->get_hw_state(encoder, &pipe);
  3446. }
  3447. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3448. struct intel_crtc_config *pipe_config)
  3449. {
  3450. struct drm_i915_private *dev_priv = dev->dev_private;
  3451. struct intel_crtc *pipe_B_crtc =
  3452. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3453. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3454. pipe_name(pipe), pipe_config->fdi_lanes);
  3455. if (pipe_config->fdi_lanes > 4) {
  3456. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3457. pipe_name(pipe), pipe_config->fdi_lanes);
  3458. return false;
  3459. }
  3460. if (IS_HASWELL(dev)) {
  3461. if (pipe_config->fdi_lanes > 2) {
  3462. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3463. pipe_config->fdi_lanes);
  3464. return false;
  3465. } else {
  3466. return true;
  3467. }
  3468. }
  3469. if (INTEL_INFO(dev)->num_pipes == 2)
  3470. return true;
  3471. /* Ivybridge 3 pipe is really complicated */
  3472. switch (pipe) {
  3473. case PIPE_A:
  3474. return true;
  3475. case PIPE_B:
  3476. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3477. pipe_config->fdi_lanes > 2) {
  3478. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3479. pipe_name(pipe), pipe_config->fdi_lanes);
  3480. return false;
  3481. }
  3482. return true;
  3483. case PIPE_C:
  3484. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3485. pipe_B_crtc->config.fdi_lanes <= 2) {
  3486. if (pipe_config->fdi_lanes > 2) {
  3487. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3488. pipe_name(pipe), pipe_config->fdi_lanes);
  3489. return false;
  3490. }
  3491. } else {
  3492. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3493. return false;
  3494. }
  3495. return true;
  3496. default:
  3497. BUG();
  3498. }
  3499. }
  3500. #define RETRY 1
  3501. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3502. struct intel_crtc_config *pipe_config)
  3503. {
  3504. struct drm_device *dev = intel_crtc->base.dev;
  3505. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3506. int lane, link_bw, fdi_dotclock;
  3507. bool setup_ok, needs_recompute = false;
  3508. retry:
  3509. /* FDI is a binary signal running at ~2.7GHz, encoding
  3510. * each output octet as 10 bits. The actual frequency
  3511. * is stored as a divider into a 100MHz clock, and the
  3512. * mode pixel clock is stored in units of 1KHz.
  3513. * Hence the bw of each lane in terms of the mode signal
  3514. * is:
  3515. */
  3516. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3517. fdi_dotclock = adjusted_mode->clock;
  3518. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3519. pipe_config->pipe_bpp);
  3520. pipe_config->fdi_lanes = lane;
  3521. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3522. link_bw, &pipe_config->fdi_m_n);
  3523. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3524. intel_crtc->pipe, pipe_config);
  3525. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3526. pipe_config->pipe_bpp -= 2*3;
  3527. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3528. pipe_config->pipe_bpp);
  3529. needs_recompute = true;
  3530. pipe_config->bw_constrained = true;
  3531. goto retry;
  3532. }
  3533. if (needs_recompute)
  3534. return RETRY;
  3535. return setup_ok ? 0 : -EINVAL;
  3536. }
  3537. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3538. struct intel_crtc_config *pipe_config)
  3539. {
  3540. pipe_config->ips_enabled = i915_enable_ips &&
  3541. hsw_crtc_supports_ips(crtc) &&
  3542. pipe_config->pipe_bpp <= 24;
  3543. }
  3544. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3545. struct intel_crtc_config *pipe_config)
  3546. {
  3547. struct drm_device *dev = crtc->base.dev;
  3548. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3549. /* FIXME should check pixel clock limits on all platforms */
  3550. if (INTEL_INFO(dev)->gen < 4) {
  3551. struct drm_i915_private *dev_priv = dev->dev_private;
  3552. int clock_limit =
  3553. dev_priv->display.get_display_clock_speed(dev);
  3554. /*
  3555. * Enable pixel doubling when the dot clock
  3556. * is > 90% of the (display) core speed.
  3557. *
  3558. * GDG double wide on either pipe,
  3559. * otherwise pipe A only.
  3560. */
  3561. if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  3562. adjusted_mode->clock > clock_limit * 9 / 10) {
  3563. clock_limit *= 2;
  3564. pipe_config->double_wide = true;
  3565. }
  3566. if (adjusted_mode->clock > clock_limit * 9 / 10)
  3567. return -EINVAL;
  3568. }
  3569. /*
  3570. * Pipe horizontal size must be even in:
  3571. * - DVO ganged mode
  3572. * - LVDS dual channel mode
  3573. * - Double wide pipe
  3574. */
  3575. if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3576. intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  3577. pipe_config->pipe_src_w &= ~1;
  3578. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3579. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3580. */
  3581. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3582. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3583. return -EINVAL;
  3584. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3585. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3586. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3587. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3588. * for lvds. */
  3589. pipe_config->pipe_bpp = 8*3;
  3590. }
  3591. if (HAS_IPS(dev))
  3592. hsw_compute_ips_config(crtc, pipe_config);
  3593. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3594. * clock survives for now. */
  3595. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3596. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3597. if (pipe_config->has_pch_encoder)
  3598. return ironlake_fdi_compute_config(crtc, pipe_config);
  3599. return 0;
  3600. }
  3601. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3602. {
  3603. return 400000; /* FIXME */
  3604. }
  3605. static int i945_get_display_clock_speed(struct drm_device *dev)
  3606. {
  3607. return 400000;
  3608. }
  3609. static int i915_get_display_clock_speed(struct drm_device *dev)
  3610. {
  3611. return 333000;
  3612. }
  3613. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3614. {
  3615. return 200000;
  3616. }
  3617. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3618. {
  3619. u16 gcfgc = 0;
  3620. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3621. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3622. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3623. return 267000;
  3624. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3625. return 333000;
  3626. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3627. return 444000;
  3628. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3629. return 200000;
  3630. default:
  3631. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3632. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3633. return 133000;
  3634. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3635. return 167000;
  3636. }
  3637. }
  3638. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3639. {
  3640. u16 gcfgc = 0;
  3641. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3642. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3643. return 133000;
  3644. else {
  3645. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3646. case GC_DISPLAY_CLOCK_333_MHZ:
  3647. return 333000;
  3648. default:
  3649. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3650. return 190000;
  3651. }
  3652. }
  3653. }
  3654. static int i865_get_display_clock_speed(struct drm_device *dev)
  3655. {
  3656. return 266000;
  3657. }
  3658. static int i855_get_display_clock_speed(struct drm_device *dev)
  3659. {
  3660. u16 hpllcc = 0;
  3661. /* Assume that the hardware is in the high speed state. This
  3662. * should be the default.
  3663. */
  3664. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3665. case GC_CLOCK_133_200:
  3666. case GC_CLOCK_100_200:
  3667. return 200000;
  3668. case GC_CLOCK_166_250:
  3669. return 250000;
  3670. case GC_CLOCK_100_133:
  3671. return 133000;
  3672. }
  3673. /* Shouldn't happen */
  3674. return 0;
  3675. }
  3676. static int i830_get_display_clock_speed(struct drm_device *dev)
  3677. {
  3678. return 133000;
  3679. }
  3680. static void
  3681. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3682. {
  3683. while (*num > DATA_LINK_M_N_MASK ||
  3684. *den > DATA_LINK_M_N_MASK) {
  3685. *num >>= 1;
  3686. *den >>= 1;
  3687. }
  3688. }
  3689. static void compute_m_n(unsigned int m, unsigned int n,
  3690. uint32_t *ret_m, uint32_t *ret_n)
  3691. {
  3692. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3693. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3694. intel_reduce_m_n_ratio(ret_m, ret_n);
  3695. }
  3696. void
  3697. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3698. int pixel_clock, int link_clock,
  3699. struct intel_link_m_n *m_n)
  3700. {
  3701. m_n->tu = 64;
  3702. compute_m_n(bits_per_pixel * pixel_clock,
  3703. link_clock * nlanes * 8,
  3704. &m_n->gmch_m, &m_n->gmch_n);
  3705. compute_m_n(pixel_clock, link_clock,
  3706. &m_n->link_m, &m_n->link_n);
  3707. }
  3708. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3709. {
  3710. if (i915_panel_use_ssc >= 0)
  3711. return i915_panel_use_ssc != 0;
  3712. return dev_priv->vbt.lvds_use_ssc
  3713. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3714. }
  3715. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3716. {
  3717. struct drm_device *dev = crtc->dev;
  3718. struct drm_i915_private *dev_priv = dev->dev_private;
  3719. int refclk;
  3720. if (IS_VALLEYVIEW(dev)) {
  3721. refclk = 100000;
  3722. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3723. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3724. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3725. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3726. refclk / 1000);
  3727. } else if (!IS_GEN2(dev)) {
  3728. refclk = 96000;
  3729. } else {
  3730. refclk = 48000;
  3731. }
  3732. return refclk;
  3733. }
  3734. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3735. {
  3736. return (1 << dpll->n) << 16 | dpll->m2;
  3737. }
  3738. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3739. {
  3740. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3741. }
  3742. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3743. intel_clock_t *reduced_clock)
  3744. {
  3745. struct drm_device *dev = crtc->base.dev;
  3746. struct drm_i915_private *dev_priv = dev->dev_private;
  3747. int pipe = crtc->pipe;
  3748. u32 fp, fp2 = 0;
  3749. if (IS_PINEVIEW(dev)) {
  3750. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3751. if (reduced_clock)
  3752. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3753. } else {
  3754. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3755. if (reduced_clock)
  3756. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3757. }
  3758. I915_WRITE(FP0(pipe), fp);
  3759. crtc->config.dpll_hw_state.fp0 = fp;
  3760. crtc->lowfreq_avail = false;
  3761. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3762. reduced_clock && i915_powersave) {
  3763. I915_WRITE(FP1(pipe), fp2);
  3764. crtc->config.dpll_hw_state.fp1 = fp2;
  3765. crtc->lowfreq_avail = true;
  3766. } else {
  3767. I915_WRITE(FP1(pipe), fp);
  3768. crtc->config.dpll_hw_state.fp1 = fp;
  3769. }
  3770. }
  3771. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3772. pipe)
  3773. {
  3774. u32 reg_val;
  3775. /*
  3776. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3777. * and set it to a reasonable value instead.
  3778. */
  3779. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3780. reg_val &= 0xffffff00;
  3781. reg_val |= 0x00000030;
  3782. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3783. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3784. reg_val &= 0x8cffffff;
  3785. reg_val = 0x8c000000;
  3786. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3787. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3788. reg_val &= 0xffffff00;
  3789. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3790. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3791. reg_val &= 0x00ffffff;
  3792. reg_val |= 0xb0000000;
  3793. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3794. }
  3795. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3796. struct intel_link_m_n *m_n)
  3797. {
  3798. struct drm_device *dev = crtc->base.dev;
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. int pipe = crtc->pipe;
  3801. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3802. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3803. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3804. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3805. }
  3806. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3807. struct intel_link_m_n *m_n)
  3808. {
  3809. struct drm_device *dev = crtc->base.dev;
  3810. struct drm_i915_private *dev_priv = dev->dev_private;
  3811. int pipe = crtc->pipe;
  3812. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3813. if (INTEL_INFO(dev)->gen >= 5) {
  3814. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3815. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3816. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3817. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3818. } else {
  3819. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3820. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3821. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3822. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3823. }
  3824. }
  3825. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3826. {
  3827. if (crtc->config.has_pch_encoder)
  3828. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3829. else
  3830. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3831. }
  3832. static void vlv_update_pll(struct intel_crtc *crtc)
  3833. {
  3834. struct drm_device *dev = crtc->base.dev;
  3835. struct drm_i915_private *dev_priv = dev->dev_private;
  3836. int pipe = crtc->pipe;
  3837. u32 dpll, mdiv;
  3838. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3839. u32 coreclk, reg_val, dpll_md;
  3840. mutex_lock(&dev_priv->dpio_lock);
  3841. bestn = crtc->config.dpll.n;
  3842. bestm1 = crtc->config.dpll.m1;
  3843. bestm2 = crtc->config.dpll.m2;
  3844. bestp1 = crtc->config.dpll.p1;
  3845. bestp2 = crtc->config.dpll.p2;
  3846. /* See eDP HDMI DPIO driver vbios notes doc */
  3847. /* PLL B needs special handling */
  3848. if (pipe)
  3849. vlv_pllb_recal_opamp(dev_priv, pipe);
  3850. /* Set up Tx target for periodic Rcomp update */
  3851. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3852. /* Disable target IRef on PLL */
  3853. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3854. reg_val &= 0x00ffffff;
  3855. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3856. /* Disable fast lock */
  3857. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3858. /* Set idtafcrecal before PLL is enabled */
  3859. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3860. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3861. mdiv |= ((bestn << DPIO_N_SHIFT));
  3862. mdiv |= (1 << DPIO_K_SHIFT);
  3863. /*
  3864. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3865. * but we don't support that).
  3866. * Note: don't use the DAC post divider as it seems unstable.
  3867. */
  3868. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3869. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3870. mdiv |= DPIO_ENABLE_CALIBRATION;
  3871. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3872. /* Set HBR and RBR LPF coefficients */
  3873. if (crtc->config.port_clock == 162000 ||
  3874. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3875. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3876. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3877. 0x009f0003);
  3878. else
  3879. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3880. 0x00d0000f);
  3881. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3882. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3883. /* Use SSC source */
  3884. if (!pipe)
  3885. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3886. 0x0df40000);
  3887. else
  3888. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3889. 0x0df70000);
  3890. } else { /* HDMI or VGA */
  3891. /* Use bend source */
  3892. if (!pipe)
  3893. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3894. 0x0df70000);
  3895. else
  3896. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3897. 0x0df40000);
  3898. }
  3899. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3900. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3901. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3902. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3903. coreclk |= 0x01000000;
  3904. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3905. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3906. /* Enable DPIO clock input */
  3907. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3908. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3909. if (pipe)
  3910. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3911. dpll |= DPLL_VCO_ENABLE;
  3912. crtc->config.dpll_hw_state.dpll = dpll;
  3913. dpll_md = (crtc->config.pixel_multiplier - 1)
  3914. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3915. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3916. if (crtc->config.has_dp_encoder)
  3917. intel_dp_set_m_n(crtc);
  3918. mutex_unlock(&dev_priv->dpio_lock);
  3919. }
  3920. static void i9xx_update_pll(struct intel_crtc *crtc,
  3921. intel_clock_t *reduced_clock,
  3922. int num_connectors)
  3923. {
  3924. struct drm_device *dev = crtc->base.dev;
  3925. struct drm_i915_private *dev_priv = dev->dev_private;
  3926. u32 dpll;
  3927. bool is_sdvo;
  3928. struct dpll *clock = &crtc->config.dpll;
  3929. i9xx_update_pll_dividers(crtc, reduced_clock);
  3930. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3931. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3932. dpll = DPLL_VGA_MODE_DIS;
  3933. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3934. dpll |= DPLLB_MODE_LVDS;
  3935. else
  3936. dpll |= DPLLB_MODE_DAC_SERIAL;
  3937. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3938. dpll |= (crtc->config.pixel_multiplier - 1)
  3939. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3940. }
  3941. if (is_sdvo)
  3942. dpll |= DPLL_SDVO_HIGH_SPEED;
  3943. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3944. dpll |= DPLL_SDVO_HIGH_SPEED;
  3945. /* compute bitmask from p1 value */
  3946. if (IS_PINEVIEW(dev))
  3947. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3948. else {
  3949. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3950. if (IS_G4X(dev) && reduced_clock)
  3951. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3952. }
  3953. switch (clock->p2) {
  3954. case 5:
  3955. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3956. break;
  3957. case 7:
  3958. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3959. break;
  3960. case 10:
  3961. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3962. break;
  3963. case 14:
  3964. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3965. break;
  3966. }
  3967. if (INTEL_INFO(dev)->gen >= 4)
  3968. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3969. if (crtc->config.sdvo_tv_clock)
  3970. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3971. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3972. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3973. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3974. else
  3975. dpll |= PLL_REF_INPUT_DREFCLK;
  3976. dpll |= DPLL_VCO_ENABLE;
  3977. crtc->config.dpll_hw_state.dpll = dpll;
  3978. if (INTEL_INFO(dev)->gen >= 4) {
  3979. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3980. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3981. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3982. }
  3983. if (crtc->config.has_dp_encoder)
  3984. intel_dp_set_m_n(crtc);
  3985. }
  3986. static void i8xx_update_pll(struct intel_crtc *crtc,
  3987. intel_clock_t *reduced_clock,
  3988. int num_connectors)
  3989. {
  3990. struct drm_device *dev = crtc->base.dev;
  3991. struct drm_i915_private *dev_priv = dev->dev_private;
  3992. u32 dpll;
  3993. struct dpll *clock = &crtc->config.dpll;
  3994. i9xx_update_pll_dividers(crtc, reduced_clock);
  3995. dpll = DPLL_VGA_MODE_DIS;
  3996. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3997. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3998. } else {
  3999. if (clock->p1 == 2)
  4000. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4001. else
  4002. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4003. if (clock->p2 == 4)
  4004. dpll |= PLL_P2_DIVIDE_BY_4;
  4005. }
  4006. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4007. dpll |= DPLL_DVO_2X_MODE;
  4008. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4009. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4010. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4011. else
  4012. dpll |= PLL_REF_INPUT_DREFCLK;
  4013. dpll |= DPLL_VCO_ENABLE;
  4014. crtc->config.dpll_hw_state.dpll = dpll;
  4015. }
  4016. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4017. {
  4018. struct drm_device *dev = intel_crtc->base.dev;
  4019. struct drm_i915_private *dev_priv = dev->dev_private;
  4020. enum pipe pipe = intel_crtc->pipe;
  4021. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4022. struct drm_display_mode *adjusted_mode =
  4023. &intel_crtc->config.adjusted_mode;
  4024. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4025. /* We need to be careful not to changed the adjusted mode, for otherwise
  4026. * the hw state checker will get angry at the mismatch. */
  4027. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4028. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4029. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4030. /* the chip adds 2 halflines automatically */
  4031. crtc_vtotal -= 1;
  4032. crtc_vblank_end -= 1;
  4033. vsyncshift = adjusted_mode->crtc_hsync_start
  4034. - adjusted_mode->crtc_htotal / 2;
  4035. } else {
  4036. vsyncshift = 0;
  4037. }
  4038. if (INTEL_INFO(dev)->gen > 3)
  4039. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4040. I915_WRITE(HTOTAL(cpu_transcoder),
  4041. (adjusted_mode->crtc_hdisplay - 1) |
  4042. ((adjusted_mode->crtc_htotal - 1) << 16));
  4043. I915_WRITE(HBLANK(cpu_transcoder),
  4044. (adjusted_mode->crtc_hblank_start - 1) |
  4045. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4046. I915_WRITE(HSYNC(cpu_transcoder),
  4047. (adjusted_mode->crtc_hsync_start - 1) |
  4048. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4049. I915_WRITE(VTOTAL(cpu_transcoder),
  4050. (adjusted_mode->crtc_vdisplay - 1) |
  4051. ((crtc_vtotal - 1) << 16));
  4052. I915_WRITE(VBLANK(cpu_transcoder),
  4053. (adjusted_mode->crtc_vblank_start - 1) |
  4054. ((crtc_vblank_end - 1) << 16));
  4055. I915_WRITE(VSYNC(cpu_transcoder),
  4056. (adjusted_mode->crtc_vsync_start - 1) |
  4057. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4058. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4059. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4060. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4061. * bits. */
  4062. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4063. (pipe == PIPE_B || pipe == PIPE_C))
  4064. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4065. /* pipesrc controls the size that is scaled from, which should
  4066. * always be the user's requested size.
  4067. */
  4068. I915_WRITE(PIPESRC(pipe),
  4069. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4070. (intel_crtc->config.pipe_src_h - 1));
  4071. }
  4072. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4073. struct intel_crtc_config *pipe_config)
  4074. {
  4075. struct drm_device *dev = crtc->base.dev;
  4076. struct drm_i915_private *dev_priv = dev->dev_private;
  4077. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4078. uint32_t tmp;
  4079. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4080. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4081. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4082. tmp = I915_READ(HBLANK(cpu_transcoder));
  4083. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4084. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4085. tmp = I915_READ(HSYNC(cpu_transcoder));
  4086. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4087. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4088. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4089. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4090. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4091. tmp = I915_READ(VBLANK(cpu_transcoder));
  4092. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4093. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4094. tmp = I915_READ(VSYNC(cpu_transcoder));
  4095. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4096. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4097. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4098. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4099. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4100. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4101. }
  4102. tmp = I915_READ(PIPESRC(crtc->pipe));
  4103. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4104. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4105. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4106. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4107. }
  4108. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4109. struct intel_crtc_config *pipe_config)
  4110. {
  4111. struct drm_crtc *crtc = &intel_crtc->base;
  4112. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4113. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4114. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4115. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4116. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4117. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4118. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4119. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4120. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4121. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4122. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4123. }
  4124. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4125. {
  4126. struct drm_device *dev = intel_crtc->base.dev;
  4127. struct drm_i915_private *dev_priv = dev->dev_private;
  4128. uint32_t pipeconf;
  4129. pipeconf = 0;
  4130. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4131. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4132. pipeconf |= PIPECONF_ENABLE;
  4133. if (intel_crtc->config.double_wide)
  4134. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4135. /* only g4x and later have fancy bpc/dither controls */
  4136. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4137. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4138. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4139. pipeconf |= PIPECONF_DITHER_EN |
  4140. PIPECONF_DITHER_TYPE_SP;
  4141. switch (intel_crtc->config.pipe_bpp) {
  4142. case 18:
  4143. pipeconf |= PIPECONF_6BPC;
  4144. break;
  4145. case 24:
  4146. pipeconf |= PIPECONF_8BPC;
  4147. break;
  4148. case 30:
  4149. pipeconf |= PIPECONF_10BPC;
  4150. break;
  4151. default:
  4152. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4153. BUG();
  4154. }
  4155. }
  4156. if (HAS_PIPE_CXSR(dev)) {
  4157. if (intel_crtc->lowfreq_avail) {
  4158. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4159. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4160. } else {
  4161. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4162. }
  4163. }
  4164. if (!IS_GEN2(dev) &&
  4165. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4166. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4167. else
  4168. pipeconf |= PIPECONF_PROGRESSIVE;
  4169. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4170. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4171. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4172. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4173. }
  4174. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4175. int x, int y,
  4176. struct drm_framebuffer *fb)
  4177. {
  4178. struct drm_device *dev = crtc->dev;
  4179. struct drm_i915_private *dev_priv = dev->dev_private;
  4180. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4181. int pipe = intel_crtc->pipe;
  4182. int plane = intel_crtc->plane;
  4183. int refclk, num_connectors = 0;
  4184. intel_clock_t clock, reduced_clock;
  4185. u32 dspcntr;
  4186. bool ok, has_reduced_clock = false;
  4187. bool is_lvds = false, is_dsi = false;
  4188. struct intel_encoder *encoder;
  4189. const intel_limit_t *limit;
  4190. int ret;
  4191. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4192. switch (encoder->type) {
  4193. case INTEL_OUTPUT_LVDS:
  4194. is_lvds = true;
  4195. break;
  4196. case INTEL_OUTPUT_DSI:
  4197. is_dsi = true;
  4198. break;
  4199. }
  4200. num_connectors++;
  4201. }
  4202. if (is_dsi)
  4203. goto skip_dpll;
  4204. if (!intel_crtc->config.clock_set) {
  4205. refclk = i9xx_get_refclk(crtc, num_connectors);
  4206. /*
  4207. * Returns a set of divisors for the desired target clock with
  4208. * the given refclk, or FALSE. The returned values represent
  4209. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4210. * 2) / p1 / p2.
  4211. */
  4212. limit = intel_limit(crtc, refclk);
  4213. ok = dev_priv->display.find_dpll(limit, crtc,
  4214. intel_crtc->config.port_clock,
  4215. refclk, NULL, &clock);
  4216. if (!ok) {
  4217. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4218. return -EINVAL;
  4219. }
  4220. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4221. /*
  4222. * Ensure we match the reduced clock's P to the target
  4223. * clock. If the clocks don't match, we can't switch
  4224. * the display clock by using the FP0/FP1. In such case
  4225. * we will disable the LVDS downclock feature.
  4226. */
  4227. has_reduced_clock =
  4228. dev_priv->display.find_dpll(limit, crtc,
  4229. dev_priv->lvds_downclock,
  4230. refclk, &clock,
  4231. &reduced_clock);
  4232. }
  4233. /* Compat-code for transition, will disappear. */
  4234. intel_crtc->config.dpll.n = clock.n;
  4235. intel_crtc->config.dpll.m1 = clock.m1;
  4236. intel_crtc->config.dpll.m2 = clock.m2;
  4237. intel_crtc->config.dpll.p1 = clock.p1;
  4238. intel_crtc->config.dpll.p2 = clock.p2;
  4239. }
  4240. if (IS_GEN2(dev)) {
  4241. i8xx_update_pll(intel_crtc,
  4242. has_reduced_clock ? &reduced_clock : NULL,
  4243. num_connectors);
  4244. } else if (IS_VALLEYVIEW(dev)) {
  4245. vlv_update_pll(intel_crtc);
  4246. } else {
  4247. i9xx_update_pll(intel_crtc,
  4248. has_reduced_clock ? &reduced_clock : NULL,
  4249. num_connectors);
  4250. }
  4251. skip_dpll:
  4252. /* Set up the display plane register */
  4253. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4254. if (!IS_VALLEYVIEW(dev)) {
  4255. if (pipe == 0)
  4256. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4257. else
  4258. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4259. }
  4260. intel_set_pipe_timings(intel_crtc);
  4261. /* pipesrc and dspsize control the size that is scaled from,
  4262. * which should always be the user's requested size.
  4263. */
  4264. I915_WRITE(DSPSIZE(plane),
  4265. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4266. (intel_crtc->config.pipe_src_w - 1));
  4267. I915_WRITE(DSPPOS(plane), 0);
  4268. i9xx_set_pipeconf(intel_crtc);
  4269. I915_WRITE(DSPCNTR(plane), dspcntr);
  4270. POSTING_READ(DSPCNTR(plane));
  4271. ret = intel_pipe_set_base(crtc, x, y, fb);
  4272. return ret;
  4273. }
  4274. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4275. struct intel_crtc_config *pipe_config)
  4276. {
  4277. struct drm_device *dev = crtc->base.dev;
  4278. struct drm_i915_private *dev_priv = dev->dev_private;
  4279. uint32_t tmp;
  4280. tmp = I915_READ(PFIT_CONTROL);
  4281. if (!(tmp & PFIT_ENABLE))
  4282. return;
  4283. /* Check whether the pfit is attached to our pipe. */
  4284. if (INTEL_INFO(dev)->gen < 4) {
  4285. if (crtc->pipe != PIPE_B)
  4286. return;
  4287. } else {
  4288. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4289. return;
  4290. }
  4291. pipe_config->gmch_pfit.control = tmp;
  4292. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4293. if (INTEL_INFO(dev)->gen < 5)
  4294. pipe_config->gmch_pfit.lvds_border_bits =
  4295. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4296. }
  4297. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4298. struct intel_crtc_config *pipe_config)
  4299. {
  4300. struct drm_device *dev = crtc->base.dev;
  4301. struct drm_i915_private *dev_priv = dev->dev_private;
  4302. uint32_t tmp;
  4303. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4304. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4305. tmp = I915_READ(PIPECONF(crtc->pipe));
  4306. if (!(tmp & PIPECONF_ENABLE))
  4307. return false;
  4308. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4309. switch (tmp & PIPECONF_BPC_MASK) {
  4310. case PIPECONF_6BPC:
  4311. pipe_config->pipe_bpp = 18;
  4312. break;
  4313. case PIPECONF_8BPC:
  4314. pipe_config->pipe_bpp = 24;
  4315. break;
  4316. case PIPECONF_10BPC:
  4317. pipe_config->pipe_bpp = 30;
  4318. break;
  4319. default:
  4320. break;
  4321. }
  4322. }
  4323. if (INTEL_INFO(dev)->gen < 4)
  4324. pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  4325. intel_get_pipe_timings(crtc, pipe_config);
  4326. i9xx_get_pfit_config(crtc, pipe_config);
  4327. if (INTEL_INFO(dev)->gen >= 4) {
  4328. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4329. pipe_config->pixel_multiplier =
  4330. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4331. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4332. pipe_config->dpll_hw_state.dpll_md = tmp;
  4333. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4334. tmp = I915_READ(DPLL(crtc->pipe));
  4335. pipe_config->pixel_multiplier =
  4336. ((tmp & SDVO_MULTIPLIER_MASK)
  4337. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4338. } else {
  4339. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4340. * port and will be fixed up in the encoder->get_config
  4341. * function. */
  4342. pipe_config->pixel_multiplier = 1;
  4343. }
  4344. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4345. if (!IS_VALLEYVIEW(dev)) {
  4346. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4347. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4348. } else {
  4349. /* Mask out read-only status bits. */
  4350. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4351. DPLL_PORTC_READY_MASK |
  4352. DPLL_PORTB_READY_MASK);
  4353. }
  4354. i9xx_crtc_clock_get(crtc, pipe_config);
  4355. return true;
  4356. }
  4357. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4358. {
  4359. struct drm_i915_private *dev_priv = dev->dev_private;
  4360. struct drm_mode_config *mode_config = &dev->mode_config;
  4361. struct intel_encoder *encoder;
  4362. u32 val, final;
  4363. bool has_lvds = false;
  4364. bool has_cpu_edp = false;
  4365. bool has_panel = false;
  4366. bool has_ck505 = false;
  4367. bool can_ssc = false;
  4368. /* We need to take the global config into account */
  4369. list_for_each_entry(encoder, &mode_config->encoder_list,
  4370. base.head) {
  4371. switch (encoder->type) {
  4372. case INTEL_OUTPUT_LVDS:
  4373. has_panel = true;
  4374. has_lvds = true;
  4375. break;
  4376. case INTEL_OUTPUT_EDP:
  4377. has_panel = true;
  4378. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4379. has_cpu_edp = true;
  4380. break;
  4381. }
  4382. }
  4383. if (HAS_PCH_IBX(dev)) {
  4384. has_ck505 = dev_priv->vbt.display_clock_mode;
  4385. can_ssc = has_ck505;
  4386. } else {
  4387. has_ck505 = false;
  4388. can_ssc = true;
  4389. }
  4390. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4391. has_panel, has_lvds, has_ck505);
  4392. /* Ironlake: try to setup display ref clock before DPLL
  4393. * enabling. This is only under driver's control after
  4394. * PCH B stepping, previous chipset stepping should be
  4395. * ignoring this setting.
  4396. */
  4397. val = I915_READ(PCH_DREF_CONTROL);
  4398. /* As we must carefully and slowly disable/enable each source in turn,
  4399. * compute the final state we want first and check if we need to
  4400. * make any changes at all.
  4401. */
  4402. final = val;
  4403. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4404. if (has_ck505)
  4405. final |= DREF_NONSPREAD_CK505_ENABLE;
  4406. else
  4407. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4408. final &= ~DREF_SSC_SOURCE_MASK;
  4409. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4410. final &= ~DREF_SSC1_ENABLE;
  4411. if (has_panel) {
  4412. final |= DREF_SSC_SOURCE_ENABLE;
  4413. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4414. final |= DREF_SSC1_ENABLE;
  4415. if (has_cpu_edp) {
  4416. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4417. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4418. else
  4419. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4420. } else
  4421. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4422. } else {
  4423. final |= DREF_SSC_SOURCE_DISABLE;
  4424. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4425. }
  4426. if (final == val)
  4427. return;
  4428. /* Always enable nonspread source */
  4429. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4430. if (has_ck505)
  4431. val |= DREF_NONSPREAD_CK505_ENABLE;
  4432. else
  4433. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4434. if (has_panel) {
  4435. val &= ~DREF_SSC_SOURCE_MASK;
  4436. val |= DREF_SSC_SOURCE_ENABLE;
  4437. /* SSC must be turned on before enabling the CPU output */
  4438. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4439. DRM_DEBUG_KMS("Using SSC on panel\n");
  4440. val |= DREF_SSC1_ENABLE;
  4441. } else
  4442. val &= ~DREF_SSC1_ENABLE;
  4443. /* Get SSC going before enabling the outputs */
  4444. I915_WRITE(PCH_DREF_CONTROL, val);
  4445. POSTING_READ(PCH_DREF_CONTROL);
  4446. udelay(200);
  4447. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4448. /* Enable CPU source on CPU attached eDP */
  4449. if (has_cpu_edp) {
  4450. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4451. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4452. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4453. }
  4454. else
  4455. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4456. } else
  4457. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4458. I915_WRITE(PCH_DREF_CONTROL, val);
  4459. POSTING_READ(PCH_DREF_CONTROL);
  4460. udelay(200);
  4461. } else {
  4462. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4463. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4464. /* Turn off CPU output */
  4465. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4466. I915_WRITE(PCH_DREF_CONTROL, val);
  4467. POSTING_READ(PCH_DREF_CONTROL);
  4468. udelay(200);
  4469. /* Turn off the SSC source */
  4470. val &= ~DREF_SSC_SOURCE_MASK;
  4471. val |= DREF_SSC_SOURCE_DISABLE;
  4472. /* Turn off SSC1 */
  4473. val &= ~DREF_SSC1_ENABLE;
  4474. I915_WRITE(PCH_DREF_CONTROL, val);
  4475. POSTING_READ(PCH_DREF_CONTROL);
  4476. udelay(200);
  4477. }
  4478. BUG_ON(val != final);
  4479. }
  4480. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4481. {
  4482. uint32_t tmp;
  4483. tmp = I915_READ(SOUTH_CHICKEN2);
  4484. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4485. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4486. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4487. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4488. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4489. tmp = I915_READ(SOUTH_CHICKEN2);
  4490. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4491. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4492. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4493. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4494. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4495. }
  4496. /* WaMPhyProgramming:hsw */
  4497. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4498. {
  4499. uint32_t tmp;
  4500. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4501. tmp &= ~(0xFF << 24);
  4502. tmp |= (0x12 << 24);
  4503. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4504. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4505. tmp |= (1 << 11);
  4506. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4507. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4508. tmp |= (1 << 11);
  4509. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4510. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4511. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4512. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4513. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4514. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4515. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4516. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4517. tmp &= ~(7 << 13);
  4518. tmp |= (5 << 13);
  4519. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4520. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4521. tmp &= ~(7 << 13);
  4522. tmp |= (5 << 13);
  4523. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4524. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4525. tmp &= ~0xFF;
  4526. tmp |= 0x1C;
  4527. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4528. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4529. tmp &= ~0xFF;
  4530. tmp |= 0x1C;
  4531. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4532. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4533. tmp &= ~(0xFF << 16);
  4534. tmp |= (0x1C << 16);
  4535. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4536. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4537. tmp &= ~(0xFF << 16);
  4538. tmp |= (0x1C << 16);
  4539. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4540. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4541. tmp |= (1 << 27);
  4542. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4543. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4544. tmp |= (1 << 27);
  4545. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4546. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4547. tmp &= ~(0xF << 28);
  4548. tmp |= (4 << 28);
  4549. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4550. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4551. tmp &= ~(0xF << 28);
  4552. tmp |= (4 << 28);
  4553. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4554. }
  4555. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4556. * Programming" based on the parameters passed:
  4557. * - Sequence to enable CLKOUT_DP
  4558. * - Sequence to enable CLKOUT_DP without spread
  4559. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4560. */
  4561. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4562. bool with_fdi)
  4563. {
  4564. struct drm_i915_private *dev_priv = dev->dev_private;
  4565. uint32_t reg, tmp;
  4566. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4567. with_spread = true;
  4568. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4569. with_fdi, "LP PCH doesn't have FDI\n"))
  4570. with_fdi = false;
  4571. mutex_lock(&dev_priv->dpio_lock);
  4572. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4573. tmp &= ~SBI_SSCCTL_DISABLE;
  4574. tmp |= SBI_SSCCTL_PATHALT;
  4575. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4576. udelay(24);
  4577. if (with_spread) {
  4578. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4579. tmp &= ~SBI_SSCCTL_PATHALT;
  4580. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4581. if (with_fdi) {
  4582. lpt_reset_fdi_mphy(dev_priv);
  4583. lpt_program_fdi_mphy(dev_priv);
  4584. }
  4585. }
  4586. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4587. SBI_GEN0 : SBI_DBUFF0;
  4588. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4589. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4590. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4591. mutex_unlock(&dev_priv->dpio_lock);
  4592. }
  4593. /* Sequence to disable CLKOUT_DP */
  4594. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4595. {
  4596. struct drm_i915_private *dev_priv = dev->dev_private;
  4597. uint32_t reg, tmp;
  4598. mutex_lock(&dev_priv->dpio_lock);
  4599. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4600. SBI_GEN0 : SBI_DBUFF0;
  4601. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4602. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4603. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4604. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4605. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4606. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4607. tmp |= SBI_SSCCTL_PATHALT;
  4608. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4609. udelay(32);
  4610. }
  4611. tmp |= SBI_SSCCTL_DISABLE;
  4612. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4613. }
  4614. mutex_unlock(&dev_priv->dpio_lock);
  4615. }
  4616. static void lpt_init_pch_refclk(struct drm_device *dev)
  4617. {
  4618. struct drm_mode_config *mode_config = &dev->mode_config;
  4619. struct intel_encoder *encoder;
  4620. bool has_vga = false;
  4621. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4622. switch (encoder->type) {
  4623. case INTEL_OUTPUT_ANALOG:
  4624. has_vga = true;
  4625. break;
  4626. }
  4627. }
  4628. if (has_vga)
  4629. lpt_enable_clkout_dp(dev, true, true);
  4630. else
  4631. lpt_disable_clkout_dp(dev);
  4632. }
  4633. /*
  4634. * Initialize reference clocks when the driver loads
  4635. */
  4636. void intel_init_pch_refclk(struct drm_device *dev)
  4637. {
  4638. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4639. ironlake_init_pch_refclk(dev);
  4640. else if (HAS_PCH_LPT(dev))
  4641. lpt_init_pch_refclk(dev);
  4642. }
  4643. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4644. {
  4645. struct drm_device *dev = crtc->dev;
  4646. struct drm_i915_private *dev_priv = dev->dev_private;
  4647. struct intel_encoder *encoder;
  4648. int num_connectors = 0;
  4649. bool is_lvds = false;
  4650. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4651. switch (encoder->type) {
  4652. case INTEL_OUTPUT_LVDS:
  4653. is_lvds = true;
  4654. break;
  4655. }
  4656. num_connectors++;
  4657. }
  4658. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4659. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4660. dev_priv->vbt.lvds_ssc_freq);
  4661. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4662. }
  4663. return 120000;
  4664. }
  4665. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4666. {
  4667. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4668. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4669. int pipe = intel_crtc->pipe;
  4670. uint32_t val;
  4671. val = 0;
  4672. switch (intel_crtc->config.pipe_bpp) {
  4673. case 18:
  4674. val |= PIPECONF_6BPC;
  4675. break;
  4676. case 24:
  4677. val |= PIPECONF_8BPC;
  4678. break;
  4679. case 30:
  4680. val |= PIPECONF_10BPC;
  4681. break;
  4682. case 36:
  4683. val |= PIPECONF_12BPC;
  4684. break;
  4685. default:
  4686. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4687. BUG();
  4688. }
  4689. if (intel_crtc->config.dither)
  4690. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4691. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4692. val |= PIPECONF_INTERLACED_ILK;
  4693. else
  4694. val |= PIPECONF_PROGRESSIVE;
  4695. if (intel_crtc->config.limited_color_range)
  4696. val |= PIPECONF_COLOR_RANGE_SELECT;
  4697. I915_WRITE(PIPECONF(pipe), val);
  4698. POSTING_READ(PIPECONF(pipe));
  4699. }
  4700. /*
  4701. * Set up the pipe CSC unit.
  4702. *
  4703. * Currently only full range RGB to limited range RGB conversion
  4704. * is supported, but eventually this should handle various
  4705. * RGB<->YCbCr scenarios as well.
  4706. */
  4707. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4708. {
  4709. struct drm_device *dev = crtc->dev;
  4710. struct drm_i915_private *dev_priv = dev->dev_private;
  4711. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4712. int pipe = intel_crtc->pipe;
  4713. uint16_t coeff = 0x7800; /* 1.0 */
  4714. /*
  4715. * TODO: Check what kind of values actually come out of the pipe
  4716. * with these coeff/postoff values and adjust to get the best
  4717. * accuracy. Perhaps we even need to take the bpc value into
  4718. * consideration.
  4719. */
  4720. if (intel_crtc->config.limited_color_range)
  4721. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4722. /*
  4723. * GY/GU and RY/RU should be the other way around according
  4724. * to BSpec, but reality doesn't agree. Just set them up in
  4725. * a way that results in the correct picture.
  4726. */
  4727. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4728. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4729. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4730. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4731. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4732. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4733. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4734. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4735. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4736. if (INTEL_INFO(dev)->gen > 6) {
  4737. uint16_t postoff = 0;
  4738. if (intel_crtc->config.limited_color_range)
  4739. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4740. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4741. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4742. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4743. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4744. } else {
  4745. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4746. if (intel_crtc->config.limited_color_range)
  4747. mode |= CSC_BLACK_SCREEN_OFFSET;
  4748. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4749. }
  4750. }
  4751. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4752. {
  4753. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4754. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4755. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4756. uint32_t val;
  4757. val = 0;
  4758. if (intel_crtc->config.dither)
  4759. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4760. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4761. val |= PIPECONF_INTERLACED_ILK;
  4762. else
  4763. val |= PIPECONF_PROGRESSIVE;
  4764. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4765. POSTING_READ(PIPECONF(cpu_transcoder));
  4766. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4767. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4768. }
  4769. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4770. intel_clock_t *clock,
  4771. bool *has_reduced_clock,
  4772. intel_clock_t *reduced_clock)
  4773. {
  4774. struct drm_device *dev = crtc->dev;
  4775. struct drm_i915_private *dev_priv = dev->dev_private;
  4776. struct intel_encoder *intel_encoder;
  4777. int refclk;
  4778. const intel_limit_t *limit;
  4779. bool ret, is_lvds = false;
  4780. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4781. switch (intel_encoder->type) {
  4782. case INTEL_OUTPUT_LVDS:
  4783. is_lvds = true;
  4784. break;
  4785. }
  4786. }
  4787. refclk = ironlake_get_refclk(crtc);
  4788. /*
  4789. * Returns a set of divisors for the desired target clock with the given
  4790. * refclk, or FALSE. The returned values represent the clock equation:
  4791. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4792. */
  4793. limit = intel_limit(crtc, refclk);
  4794. ret = dev_priv->display.find_dpll(limit, crtc,
  4795. to_intel_crtc(crtc)->config.port_clock,
  4796. refclk, NULL, clock);
  4797. if (!ret)
  4798. return false;
  4799. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4800. /*
  4801. * Ensure we match the reduced clock's P to the target clock.
  4802. * If the clocks don't match, we can't switch the display clock
  4803. * by using the FP0/FP1. In such case we will disable the LVDS
  4804. * downclock feature.
  4805. */
  4806. *has_reduced_clock =
  4807. dev_priv->display.find_dpll(limit, crtc,
  4808. dev_priv->lvds_downclock,
  4809. refclk, clock,
  4810. reduced_clock);
  4811. }
  4812. return true;
  4813. }
  4814. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4815. {
  4816. struct drm_i915_private *dev_priv = dev->dev_private;
  4817. uint32_t temp;
  4818. temp = I915_READ(SOUTH_CHICKEN1);
  4819. if (temp & FDI_BC_BIFURCATION_SELECT)
  4820. return;
  4821. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4822. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4823. temp |= FDI_BC_BIFURCATION_SELECT;
  4824. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4825. I915_WRITE(SOUTH_CHICKEN1, temp);
  4826. POSTING_READ(SOUTH_CHICKEN1);
  4827. }
  4828. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4829. {
  4830. struct drm_device *dev = intel_crtc->base.dev;
  4831. struct drm_i915_private *dev_priv = dev->dev_private;
  4832. switch (intel_crtc->pipe) {
  4833. case PIPE_A:
  4834. break;
  4835. case PIPE_B:
  4836. if (intel_crtc->config.fdi_lanes > 2)
  4837. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4838. else
  4839. cpt_enable_fdi_bc_bifurcation(dev);
  4840. break;
  4841. case PIPE_C:
  4842. cpt_enable_fdi_bc_bifurcation(dev);
  4843. break;
  4844. default:
  4845. BUG();
  4846. }
  4847. }
  4848. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4849. {
  4850. /*
  4851. * Account for spread spectrum to avoid
  4852. * oversubscribing the link. Max center spread
  4853. * is 2.5%; use 5% for safety's sake.
  4854. */
  4855. u32 bps = target_clock * bpp * 21 / 20;
  4856. return bps / (link_bw * 8) + 1;
  4857. }
  4858. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4859. {
  4860. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4861. }
  4862. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4863. u32 *fp,
  4864. intel_clock_t *reduced_clock, u32 *fp2)
  4865. {
  4866. struct drm_crtc *crtc = &intel_crtc->base;
  4867. struct drm_device *dev = crtc->dev;
  4868. struct drm_i915_private *dev_priv = dev->dev_private;
  4869. struct intel_encoder *intel_encoder;
  4870. uint32_t dpll;
  4871. int factor, num_connectors = 0;
  4872. bool is_lvds = false, is_sdvo = false;
  4873. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4874. switch (intel_encoder->type) {
  4875. case INTEL_OUTPUT_LVDS:
  4876. is_lvds = true;
  4877. break;
  4878. case INTEL_OUTPUT_SDVO:
  4879. case INTEL_OUTPUT_HDMI:
  4880. is_sdvo = true;
  4881. break;
  4882. }
  4883. num_connectors++;
  4884. }
  4885. /* Enable autotuning of the PLL clock (if permissible) */
  4886. factor = 21;
  4887. if (is_lvds) {
  4888. if ((intel_panel_use_ssc(dev_priv) &&
  4889. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4890. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4891. factor = 25;
  4892. } else if (intel_crtc->config.sdvo_tv_clock)
  4893. factor = 20;
  4894. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4895. *fp |= FP_CB_TUNE;
  4896. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4897. *fp2 |= FP_CB_TUNE;
  4898. dpll = 0;
  4899. if (is_lvds)
  4900. dpll |= DPLLB_MODE_LVDS;
  4901. else
  4902. dpll |= DPLLB_MODE_DAC_SERIAL;
  4903. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4904. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4905. if (is_sdvo)
  4906. dpll |= DPLL_SDVO_HIGH_SPEED;
  4907. if (intel_crtc->config.has_dp_encoder)
  4908. dpll |= DPLL_SDVO_HIGH_SPEED;
  4909. /* compute bitmask from p1 value */
  4910. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4911. /* also FPA1 */
  4912. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4913. switch (intel_crtc->config.dpll.p2) {
  4914. case 5:
  4915. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4916. break;
  4917. case 7:
  4918. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4919. break;
  4920. case 10:
  4921. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4922. break;
  4923. case 14:
  4924. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4925. break;
  4926. }
  4927. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4928. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4929. else
  4930. dpll |= PLL_REF_INPUT_DREFCLK;
  4931. return dpll | DPLL_VCO_ENABLE;
  4932. }
  4933. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4934. int x, int y,
  4935. struct drm_framebuffer *fb)
  4936. {
  4937. struct drm_device *dev = crtc->dev;
  4938. struct drm_i915_private *dev_priv = dev->dev_private;
  4939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4940. int pipe = intel_crtc->pipe;
  4941. int plane = intel_crtc->plane;
  4942. int num_connectors = 0;
  4943. intel_clock_t clock, reduced_clock;
  4944. u32 dpll = 0, fp = 0, fp2 = 0;
  4945. bool ok, has_reduced_clock = false;
  4946. bool is_lvds = false;
  4947. struct intel_encoder *encoder;
  4948. struct intel_shared_dpll *pll;
  4949. int ret;
  4950. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4951. switch (encoder->type) {
  4952. case INTEL_OUTPUT_LVDS:
  4953. is_lvds = true;
  4954. break;
  4955. }
  4956. num_connectors++;
  4957. }
  4958. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4959. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4960. ok = ironlake_compute_clocks(crtc, &clock,
  4961. &has_reduced_clock, &reduced_clock);
  4962. if (!ok && !intel_crtc->config.clock_set) {
  4963. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4964. return -EINVAL;
  4965. }
  4966. /* Compat-code for transition, will disappear. */
  4967. if (!intel_crtc->config.clock_set) {
  4968. intel_crtc->config.dpll.n = clock.n;
  4969. intel_crtc->config.dpll.m1 = clock.m1;
  4970. intel_crtc->config.dpll.m2 = clock.m2;
  4971. intel_crtc->config.dpll.p1 = clock.p1;
  4972. intel_crtc->config.dpll.p2 = clock.p2;
  4973. }
  4974. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4975. if (intel_crtc->config.has_pch_encoder) {
  4976. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4977. if (has_reduced_clock)
  4978. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4979. dpll = ironlake_compute_dpll(intel_crtc,
  4980. &fp, &reduced_clock,
  4981. has_reduced_clock ? &fp2 : NULL);
  4982. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4983. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4984. if (has_reduced_clock)
  4985. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4986. else
  4987. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4988. pll = intel_get_shared_dpll(intel_crtc);
  4989. if (pll == NULL) {
  4990. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4991. pipe_name(pipe));
  4992. return -EINVAL;
  4993. }
  4994. } else
  4995. intel_put_shared_dpll(intel_crtc);
  4996. if (intel_crtc->config.has_dp_encoder)
  4997. intel_dp_set_m_n(intel_crtc);
  4998. if (is_lvds && has_reduced_clock && i915_powersave)
  4999. intel_crtc->lowfreq_avail = true;
  5000. else
  5001. intel_crtc->lowfreq_avail = false;
  5002. if (intel_crtc->config.has_pch_encoder) {
  5003. pll = intel_crtc_to_shared_dpll(intel_crtc);
  5004. }
  5005. intel_set_pipe_timings(intel_crtc);
  5006. if (intel_crtc->config.has_pch_encoder) {
  5007. intel_cpu_transcoder_set_m_n(intel_crtc,
  5008. &intel_crtc->config.fdi_m_n);
  5009. }
  5010. if (IS_IVYBRIDGE(dev))
  5011. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  5012. ironlake_set_pipeconf(crtc);
  5013. /* Set up the display plane register */
  5014. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5015. POSTING_READ(DSPCNTR(plane));
  5016. ret = intel_pipe_set_base(crtc, x, y, fb);
  5017. return ret;
  5018. }
  5019. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  5020. struct intel_link_m_n *m_n)
  5021. {
  5022. struct drm_device *dev = crtc->base.dev;
  5023. struct drm_i915_private *dev_priv = dev->dev_private;
  5024. enum pipe pipe = crtc->pipe;
  5025. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  5026. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  5027. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  5028. & ~TU_SIZE_MASK;
  5029. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  5030. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  5031. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5032. }
  5033. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  5034. enum transcoder transcoder,
  5035. struct intel_link_m_n *m_n)
  5036. {
  5037. struct drm_device *dev = crtc->base.dev;
  5038. struct drm_i915_private *dev_priv = dev->dev_private;
  5039. enum pipe pipe = crtc->pipe;
  5040. if (INTEL_INFO(dev)->gen >= 5) {
  5041. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5042. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5043. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5044. & ~TU_SIZE_MASK;
  5045. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5046. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5047. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5048. } else {
  5049. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5050. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5051. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5052. & ~TU_SIZE_MASK;
  5053. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5054. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5055. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5056. }
  5057. }
  5058. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5059. struct intel_crtc_config *pipe_config)
  5060. {
  5061. if (crtc->config.has_pch_encoder)
  5062. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5063. else
  5064. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5065. &pipe_config->dp_m_n);
  5066. }
  5067. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5068. struct intel_crtc_config *pipe_config)
  5069. {
  5070. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5071. &pipe_config->fdi_m_n);
  5072. }
  5073. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5074. struct intel_crtc_config *pipe_config)
  5075. {
  5076. struct drm_device *dev = crtc->base.dev;
  5077. struct drm_i915_private *dev_priv = dev->dev_private;
  5078. uint32_t tmp;
  5079. tmp = I915_READ(PF_CTL(crtc->pipe));
  5080. if (tmp & PF_ENABLE) {
  5081. pipe_config->pch_pfit.enabled = true;
  5082. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5083. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5084. /* We currently do not free assignements of panel fitters on
  5085. * ivb/hsw (since we don't use the higher upscaling modes which
  5086. * differentiates them) so just WARN about this case for now. */
  5087. if (IS_GEN7(dev)) {
  5088. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5089. PF_PIPE_SEL_IVB(crtc->pipe));
  5090. }
  5091. }
  5092. }
  5093. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5094. struct intel_crtc_config *pipe_config)
  5095. {
  5096. struct drm_device *dev = crtc->base.dev;
  5097. struct drm_i915_private *dev_priv = dev->dev_private;
  5098. uint32_t tmp;
  5099. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5100. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5101. tmp = I915_READ(PIPECONF(crtc->pipe));
  5102. if (!(tmp & PIPECONF_ENABLE))
  5103. return false;
  5104. switch (tmp & PIPECONF_BPC_MASK) {
  5105. case PIPECONF_6BPC:
  5106. pipe_config->pipe_bpp = 18;
  5107. break;
  5108. case PIPECONF_8BPC:
  5109. pipe_config->pipe_bpp = 24;
  5110. break;
  5111. case PIPECONF_10BPC:
  5112. pipe_config->pipe_bpp = 30;
  5113. break;
  5114. case PIPECONF_12BPC:
  5115. pipe_config->pipe_bpp = 36;
  5116. break;
  5117. default:
  5118. break;
  5119. }
  5120. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5121. struct intel_shared_dpll *pll;
  5122. pipe_config->has_pch_encoder = true;
  5123. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5124. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5125. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5126. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5127. if (HAS_PCH_IBX(dev_priv->dev)) {
  5128. pipe_config->shared_dpll =
  5129. (enum intel_dpll_id) crtc->pipe;
  5130. } else {
  5131. tmp = I915_READ(PCH_DPLL_SEL);
  5132. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5133. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5134. else
  5135. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5136. }
  5137. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5138. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5139. &pipe_config->dpll_hw_state));
  5140. tmp = pipe_config->dpll_hw_state.dpll;
  5141. pipe_config->pixel_multiplier =
  5142. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5143. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5144. ironlake_pch_clock_get(crtc, pipe_config);
  5145. } else {
  5146. pipe_config->pixel_multiplier = 1;
  5147. }
  5148. intel_get_pipe_timings(crtc, pipe_config);
  5149. ironlake_get_pfit_config(crtc, pipe_config);
  5150. return true;
  5151. }
  5152. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5153. {
  5154. struct drm_device *dev = dev_priv->dev;
  5155. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5156. struct intel_crtc *crtc;
  5157. unsigned long irqflags;
  5158. uint32_t val;
  5159. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5160. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5161. pipe_name(crtc->pipe));
  5162. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5163. WARN(plls->spll_refcount, "SPLL enabled\n");
  5164. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5165. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5166. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5167. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5168. "CPU PWM1 enabled\n");
  5169. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5170. "CPU PWM2 enabled\n");
  5171. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5172. "PCH PWM1 enabled\n");
  5173. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5174. "Utility pin enabled\n");
  5175. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5176. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5177. val = I915_READ(DEIMR);
  5178. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5179. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5180. val = I915_READ(SDEIMR);
  5181. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5182. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5183. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5184. }
  5185. /*
  5186. * This function implements pieces of two sequences from BSpec:
  5187. * - Sequence for display software to disable LCPLL
  5188. * - Sequence for display software to allow package C8+
  5189. * The steps implemented here are just the steps that actually touch the LCPLL
  5190. * register. Callers should take care of disabling all the display engine
  5191. * functions, doing the mode unset, fixing interrupts, etc.
  5192. */
  5193. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5194. bool switch_to_fclk, bool allow_power_down)
  5195. {
  5196. uint32_t val;
  5197. assert_can_disable_lcpll(dev_priv);
  5198. val = I915_READ(LCPLL_CTL);
  5199. if (switch_to_fclk) {
  5200. val |= LCPLL_CD_SOURCE_FCLK;
  5201. I915_WRITE(LCPLL_CTL, val);
  5202. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5203. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5204. DRM_ERROR("Switching to FCLK failed\n");
  5205. val = I915_READ(LCPLL_CTL);
  5206. }
  5207. val |= LCPLL_PLL_DISABLE;
  5208. I915_WRITE(LCPLL_CTL, val);
  5209. POSTING_READ(LCPLL_CTL);
  5210. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5211. DRM_ERROR("LCPLL still locked\n");
  5212. val = I915_READ(D_COMP);
  5213. val |= D_COMP_COMP_DISABLE;
  5214. mutex_lock(&dev_priv->rps.hw_lock);
  5215. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5216. DRM_ERROR("Failed to disable D_COMP\n");
  5217. mutex_unlock(&dev_priv->rps.hw_lock);
  5218. POSTING_READ(D_COMP);
  5219. ndelay(100);
  5220. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5221. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5222. if (allow_power_down) {
  5223. val = I915_READ(LCPLL_CTL);
  5224. val |= LCPLL_POWER_DOWN_ALLOW;
  5225. I915_WRITE(LCPLL_CTL, val);
  5226. POSTING_READ(LCPLL_CTL);
  5227. }
  5228. }
  5229. /*
  5230. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5231. * source.
  5232. */
  5233. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5234. {
  5235. uint32_t val;
  5236. val = I915_READ(LCPLL_CTL);
  5237. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5238. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5239. return;
  5240. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5241. * we'll hang the machine! */
  5242. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5243. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5244. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5245. I915_WRITE(LCPLL_CTL, val);
  5246. POSTING_READ(LCPLL_CTL);
  5247. }
  5248. val = I915_READ(D_COMP);
  5249. val |= D_COMP_COMP_FORCE;
  5250. val &= ~D_COMP_COMP_DISABLE;
  5251. mutex_lock(&dev_priv->rps.hw_lock);
  5252. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5253. DRM_ERROR("Failed to enable D_COMP\n");
  5254. mutex_unlock(&dev_priv->rps.hw_lock);
  5255. POSTING_READ(D_COMP);
  5256. val = I915_READ(LCPLL_CTL);
  5257. val &= ~LCPLL_PLL_DISABLE;
  5258. I915_WRITE(LCPLL_CTL, val);
  5259. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5260. DRM_ERROR("LCPLL not locked yet\n");
  5261. if (val & LCPLL_CD_SOURCE_FCLK) {
  5262. val = I915_READ(LCPLL_CTL);
  5263. val &= ~LCPLL_CD_SOURCE_FCLK;
  5264. I915_WRITE(LCPLL_CTL, val);
  5265. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5266. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5267. DRM_ERROR("Switching back to LCPLL failed\n");
  5268. }
  5269. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5270. }
  5271. void hsw_enable_pc8_work(struct work_struct *__work)
  5272. {
  5273. struct drm_i915_private *dev_priv =
  5274. container_of(to_delayed_work(__work), struct drm_i915_private,
  5275. pc8.enable_work);
  5276. struct drm_device *dev = dev_priv->dev;
  5277. uint32_t val;
  5278. if (dev_priv->pc8.enabled)
  5279. return;
  5280. DRM_DEBUG_KMS("Enabling package C8+\n");
  5281. dev_priv->pc8.enabled = true;
  5282. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5283. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5284. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5285. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5286. }
  5287. lpt_disable_clkout_dp(dev);
  5288. hsw_pc8_disable_interrupts(dev);
  5289. hsw_disable_lcpll(dev_priv, true, true);
  5290. }
  5291. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5292. {
  5293. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5294. WARN(dev_priv->pc8.disable_count < 1,
  5295. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5296. dev_priv->pc8.disable_count--;
  5297. if (dev_priv->pc8.disable_count != 0)
  5298. return;
  5299. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5300. msecs_to_jiffies(i915_pc8_timeout));
  5301. }
  5302. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5303. {
  5304. struct drm_device *dev = dev_priv->dev;
  5305. uint32_t val;
  5306. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5307. WARN(dev_priv->pc8.disable_count < 0,
  5308. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5309. dev_priv->pc8.disable_count++;
  5310. if (dev_priv->pc8.disable_count != 1)
  5311. return;
  5312. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5313. if (!dev_priv->pc8.enabled)
  5314. return;
  5315. DRM_DEBUG_KMS("Disabling package C8+\n");
  5316. hsw_restore_lcpll(dev_priv);
  5317. hsw_pc8_restore_interrupts(dev);
  5318. lpt_init_pch_refclk(dev);
  5319. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5320. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5321. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5322. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5323. }
  5324. intel_prepare_ddi(dev);
  5325. i915_gem_init_swizzling(dev);
  5326. mutex_lock(&dev_priv->rps.hw_lock);
  5327. gen6_update_ring_freq(dev);
  5328. mutex_unlock(&dev_priv->rps.hw_lock);
  5329. dev_priv->pc8.enabled = false;
  5330. }
  5331. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5332. {
  5333. mutex_lock(&dev_priv->pc8.lock);
  5334. __hsw_enable_package_c8(dev_priv);
  5335. mutex_unlock(&dev_priv->pc8.lock);
  5336. }
  5337. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5338. {
  5339. mutex_lock(&dev_priv->pc8.lock);
  5340. __hsw_disable_package_c8(dev_priv);
  5341. mutex_unlock(&dev_priv->pc8.lock);
  5342. }
  5343. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5344. {
  5345. struct drm_device *dev = dev_priv->dev;
  5346. struct intel_crtc *crtc;
  5347. uint32_t val;
  5348. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5349. if (crtc->base.enabled)
  5350. return false;
  5351. /* This case is still possible since we have the i915.disable_power_well
  5352. * parameter and also the KVMr or something else might be requesting the
  5353. * power well. */
  5354. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5355. if (val != 0) {
  5356. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5357. return false;
  5358. }
  5359. return true;
  5360. }
  5361. /* Since we're called from modeset_global_resources there's no way to
  5362. * symmetrically increase and decrease the refcount, so we use
  5363. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5364. * or not.
  5365. */
  5366. static void hsw_update_package_c8(struct drm_device *dev)
  5367. {
  5368. struct drm_i915_private *dev_priv = dev->dev_private;
  5369. bool allow;
  5370. if (!i915_enable_pc8)
  5371. return;
  5372. mutex_lock(&dev_priv->pc8.lock);
  5373. allow = hsw_can_enable_package_c8(dev_priv);
  5374. if (allow == dev_priv->pc8.requirements_met)
  5375. goto done;
  5376. dev_priv->pc8.requirements_met = allow;
  5377. if (allow)
  5378. __hsw_enable_package_c8(dev_priv);
  5379. else
  5380. __hsw_disable_package_c8(dev_priv);
  5381. done:
  5382. mutex_unlock(&dev_priv->pc8.lock);
  5383. }
  5384. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5385. {
  5386. if (!dev_priv->pc8.gpu_idle) {
  5387. dev_priv->pc8.gpu_idle = true;
  5388. hsw_enable_package_c8(dev_priv);
  5389. }
  5390. }
  5391. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5392. {
  5393. if (dev_priv->pc8.gpu_idle) {
  5394. dev_priv->pc8.gpu_idle = false;
  5395. hsw_disable_package_c8(dev_priv);
  5396. }
  5397. }
  5398. static void haswell_modeset_global_resources(struct drm_device *dev)
  5399. {
  5400. bool enable = false;
  5401. struct intel_crtc *crtc;
  5402. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5403. if (!crtc->base.enabled)
  5404. continue;
  5405. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  5406. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5407. enable = true;
  5408. }
  5409. intel_set_power_well(dev, enable);
  5410. hsw_update_package_c8(dev);
  5411. }
  5412. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5413. int x, int y,
  5414. struct drm_framebuffer *fb)
  5415. {
  5416. struct drm_device *dev = crtc->dev;
  5417. struct drm_i915_private *dev_priv = dev->dev_private;
  5418. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5419. int plane = intel_crtc->plane;
  5420. int ret;
  5421. if (!intel_ddi_pll_mode_set(crtc))
  5422. return -EINVAL;
  5423. if (intel_crtc->config.has_dp_encoder)
  5424. intel_dp_set_m_n(intel_crtc);
  5425. intel_crtc->lowfreq_avail = false;
  5426. intel_set_pipe_timings(intel_crtc);
  5427. if (intel_crtc->config.has_pch_encoder) {
  5428. intel_cpu_transcoder_set_m_n(intel_crtc,
  5429. &intel_crtc->config.fdi_m_n);
  5430. }
  5431. haswell_set_pipeconf(crtc);
  5432. intel_set_pipe_csc(crtc);
  5433. /* Set up the display plane register */
  5434. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5435. POSTING_READ(DSPCNTR(plane));
  5436. ret = intel_pipe_set_base(crtc, x, y, fb);
  5437. return ret;
  5438. }
  5439. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5440. struct intel_crtc_config *pipe_config)
  5441. {
  5442. struct drm_device *dev = crtc->base.dev;
  5443. struct drm_i915_private *dev_priv = dev->dev_private;
  5444. enum intel_display_power_domain pfit_domain;
  5445. uint32_t tmp;
  5446. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5447. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5448. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5449. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5450. enum pipe trans_edp_pipe;
  5451. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5452. default:
  5453. WARN(1, "unknown pipe linked to edp transcoder\n");
  5454. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5455. case TRANS_DDI_EDP_INPUT_A_ON:
  5456. trans_edp_pipe = PIPE_A;
  5457. break;
  5458. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5459. trans_edp_pipe = PIPE_B;
  5460. break;
  5461. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5462. trans_edp_pipe = PIPE_C;
  5463. break;
  5464. }
  5465. if (trans_edp_pipe == crtc->pipe)
  5466. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5467. }
  5468. if (!intel_display_power_enabled(dev,
  5469. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5470. return false;
  5471. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5472. if (!(tmp & PIPECONF_ENABLE))
  5473. return false;
  5474. /*
  5475. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5476. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5477. * the PCH transcoder is on.
  5478. */
  5479. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5480. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5481. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5482. pipe_config->has_pch_encoder = true;
  5483. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5484. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5485. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5486. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5487. }
  5488. intel_get_pipe_timings(crtc, pipe_config);
  5489. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5490. if (intel_display_power_enabled(dev, pfit_domain))
  5491. ironlake_get_pfit_config(crtc, pipe_config);
  5492. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5493. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5494. pipe_config->pixel_multiplier = 1;
  5495. return true;
  5496. }
  5497. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5498. int x, int y,
  5499. struct drm_framebuffer *fb)
  5500. {
  5501. struct drm_device *dev = crtc->dev;
  5502. struct drm_i915_private *dev_priv = dev->dev_private;
  5503. struct intel_encoder *encoder;
  5504. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5505. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5506. int pipe = intel_crtc->pipe;
  5507. int ret;
  5508. drm_vblank_pre_modeset(dev, pipe);
  5509. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5510. drm_vblank_post_modeset(dev, pipe);
  5511. if (ret != 0)
  5512. return ret;
  5513. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5514. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5515. encoder->base.base.id,
  5516. drm_get_encoder_name(&encoder->base),
  5517. mode->base.id, mode->name);
  5518. encoder->mode_set(encoder);
  5519. }
  5520. return 0;
  5521. }
  5522. static bool intel_eld_uptodate(struct drm_connector *connector,
  5523. int reg_eldv, uint32_t bits_eldv,
  5524. int reg_elda, uint32_t bits_elda,
  5525. int reg_edid)
  5526. {
  5527. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5528. uint8_t *eld = connector->eld;
  5529. uint32_t i;
  5530. i = I915_READ(reg_eldv);
  5531. i &= bits_eldv;
  5532. if (!eld[0])
  5533. return !i;
  5534. if (!i)
  5535. return false;
  5536. i = I915_READ(reg_elda);
  5537. i &= ~bits_elda;
  5538. I915_WRITE(reg_elda, i);
  5539. for (i = 0; i < eld[2]; i++)
  5540. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5541. return false;
  5542. return true;
  5543. }
  5544. static void g4x_write_eld(struct drm_connector *connector,
  5545. struct drm_crtc *crtc)
  5546. {
  5547. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5548. uint8_t *eld = connector->eld;
  5549. uint32_t eldv;
  5550. uint32_t len;
  5551. uint32_t i;
  5552. i = I915_READ(G4X_AUD_VID_DID);
  5553. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5554. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5555. else
  5556. eldv = G4X_ELDV_DEVCTG;
  5557. if (intel_eld_uptodate(connector,
  5558. G4X_AUD_CNTL_ST, eldv,
  5559. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5560. G4X_HDMIW_HDMIEDID))
  5561. return;
  5562. i = I915_READ(G4X_AUD_CNTL_ST);
  5563. i &= ~(eldv | G4X_ELD_ADDR);
  5564. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5565. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5566. if (!eld[0])
  5567. return;
  5568. len = min_t(uint8_t, eld[2], len);
  5569. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5570. for (i = 0; i < len; i++)
  5571. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5572. i = I915_READ(G4X_AUD_CNTL_ST);
  5573. i |= eldv;
  5574. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5575. }
  5576. static void haswell_write_eld(struct drm_connector *connector,
  5577. struct drm_crtc *crtc)
  5578. {
  5579. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5580. uint8_t *eld = connector->eld;
  5581. struct drm_device *dev = crtc->dev;
  5582. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5583. uint32_t eldv;
  5584. uint32_t i;
  5585. int len;
  5586. int pipe = to_intel_crtc(crtc)->pipe;
  5587. int tmp;
  5588. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5589. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5590. int aud_config = HSW_AUD_CFG(pipe);
  5591. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5592. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5593. /* Audio output enable */
  5594. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5595. tmp = I915_READ(aud_cntrl_st2);
  5596. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5597. I915_WRITE(aud_cntrl_st2, tmp);
  5598. /* Wait for 1 vertical blank */
  5599. intel_wait_for_vblank(dev, pipe);
  5600. /* Set ELD valid state */
  5601. tmp = I915_READ(aud_cntrl_st2);
  5602. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5603. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5604. I915_WRITE(aud_cntrl_st2, tmp);
  5605. tmp = I915_READ(aud_cntrl_st2);
  5606. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5607. /* Enable HDMI mode */
  5608. tmp = I915_READ(aud_config);
  5609. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5610. /* clear N_programing_enable and N_value_index */
  5611. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5612. I915_WRITE(aud_config, tmp);
  5613. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5614. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5615. intel_crtc->eld_vld = true;
  5616. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5617. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5618. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5619. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5620. } else
  5621. I915_WRITE(aud_config, 0);
  5622. if (intel_eld_uptodate(connector,
  5623. aud_cntrl_st2, eldv,
  5624. aud_cntl_st, IBX_ELD_ADDRESS,
  5625. hdmiw_hdmiedid))
  5626. return;
  5627. i = I915_READ(aud_cntrl_st2);
  5628. i &= ~eldv;
  5629. I915_WRITE(aud_cntrl_st2, i);
  5630. if (!eld[0])
  5631. return;
  5632. i = I915_READ(aud_cntl_st);
  5633. i &= ~IBX_ELD_ADDRESS;
  5634. I915_WRITE(aud_cntl_st, i);
  5635. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5636. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5637. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5638. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5639. for (i = 0; i < len; i++)
  5640. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5641. i = I915_READ(aud_cntrl_st2);
  5642. i |= eldv;
  5643. I915_WRITE(aud_cntrl_st2, i);
  5644. }
  5645. static void ironlake_write_eld(struct drm_connector *connector,
  5646. struct drm_crtc *crtc)
  5647. {
  5648. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5649. uint8_t *eld = connector->eld;
  5650. uint32_t eldv;
  5651. uint32_t i;
  5652. int len;
  5653. int hdmiw_hdmiedid;
  5654. int aud_config;
  5655. int aud_cntl_st;
  5656. int aud_cntrl_st2;
  5657. int pipe = to_intel_crtc(crtc)->pipe;
  5658. if (HAS_PCH_IBX(connector->dev)) {
  5659. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5660. aud_config = IBX_AUD_CFG(pipe);
  5661. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5662. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5663. } else {
  5664. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5665. aud_config = CPT_AUD_CFG(pipe);
  5666. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5667. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5668. }
  5669. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5670. i = I915_READ(aud_cntl_st);
  5671. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5672. if (!i) {
  5673. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5674. /* operate blindly on all ports */
  5675. eldv = IBX_ELD_VALIDB;
  5676. eldv |= IBX_ELD_VALIDB << 4;
  5677. eldv |= IBX_ELD_VALIDB << 8;
  5678. } else {
  5679. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5680. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5681. }
  5682. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5683. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5684. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5685. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5686. } else
  5687. I915_WRITE(aud_config, 0);
  5688. if (intel_eld_uptodate(connector,
  5689. aud_cntrl_st2, eldv,
  5690. aud_cntl_st, IBX_ELD_ADDRESS,
  5691. hdmiw_hdmiedid))
  5692. return;
  5693. i = I915_READ(aud_cntrl_st2);
  5694. i &= ~eldv;
  5695. I915_WRITE(aud_cntrl_st2, i);
  5696. if (!eld[0])
  5697. return;
  5698. i = I915_READ(aud_cntl_st);
  5699. i &= ~IBX_ELD_ADDRESS;
  5700. I915_WRITE(aud_cntl_st, i);
  5701. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5702. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5703. for (i = 0; i < len; i++)
  5704. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5705. i = I915_READ(aud_cntrl_st2);
  5706. i |= eldv;
  5707. I915_WRITE(aud_cntrl_st2, i);
  5708. }
  5709. void intel_write_eld(struct drm_encoder *encoder,
  5710. struct drm_display_mode *mode)
  5711. {
  5712. struct drm_crtc *crtc = encoder->crtc;
  5713. struct drm_connector *connector;
  5714. struct drm_device *dev = encoder->dev;
  5715. struct drm_i915_private *dev_priv = dev->dev_private;
  5716. connector = drm_select_eld(encoder, mode);
  5717. if (!connector)
  5718. return;
  5719. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5720. connector->base.id,
  5721. drm_get_connector_name(connector),
  5722. connector->encoder->base.id,
  5723. drm_get_encoder_name(connector->encoder));
  5724. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5725. if (dev_priv->display.write_eld)
  5726. dev_priv->display.write_eld(connector, crtc);
  5727. }
  5728. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5729. {
  5730. struct drm_device *dev = crtc->dev;
  5731. struct drm_i915_private *dev_priv = dev->dev_private;
  5732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5733. bool visible = base != 0;
  5734. u32 cntl;
  5735. if (intel_crtc->cursor_visible == visible)
  5736. return;
  5737. cntl = I915_READ(_CURACNTR);
  5738. if (visible) {
  5739. /* On these chipsets we can only modify the base whilst
  5740. * the cursor is disabled.
  5741. */
  5742. I915_WRITE(_CURABASE, base);
  5743. cntl &= ~(CURSOR_FORMAT_MASK);
  5744. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5745. cntl |= CURSOR_ENABLE |
  5746. CURSOR_GAMMA_ENABLE |
  5747. CURSOR_FORMAT_ARGB;
  5748. } else
  5749. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5750. I915_WRITE(_CURACNTR, cntl);
  5751. intel_crtc->cursor_visible = visible;
  5752. }
  5753. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5754. {
  5755. struct drm_device *dev = crtc->dev;
  5756. struct drm_i915_private *dev_priv = dev->dev_private;
  5757. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5758. int pipe = intel_crtc->pipe;
  5759. bool visible = base != 0;
  5760. if (intel_crtc->cursor_visible != visible) {
  5761. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5762. if (base) {
  5763. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5764. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5765. cntl |= pipe << 28; /* Connect to correct pipe */
  5766. } else {
  5767. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5768. cntl |= CURSOR_MODE_DISABLE;
  5769. }
  5770. I915_WRITE(CURCNTR(pipe), cntl);
  5771. intel_crtc->cursor_visible = visible;
  5772. }
  5773. /* and commit changes on next vblank */
  5774. I915_WRITE(CURBASE(pipe), base);
  5775. }
  5776. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5777. {
  5778. struct drm_device *dev = crtc->dev;
  5779. struct drm_i915_private *dev_priv = dev->dev_private;
  5780. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5781. int pipe = intel_crtc->pipe;
  5782. bool visible = base != 0;
  5783. if (intel_crtc->cursor_visible != visible) {
  5784. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5785. if (base) {
  5786. cntl &= ~CURSOR_MODE;
  5787. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5788. } else {
  5789. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5790. cntl |= CURSOR_MODE_DISABLE;
  5791. }
  5792. if (IS_HASWELL(dev)) {
  5793. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5794. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5795. }
  5796. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5797. intel_crtc->cursor_visible = visible;
  5798. }
  5799. /* and commit changes on next vblank */
  5800. I915_WRITE(CURBASE_IVB(pipe), base);
  5801. }
  5802. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5803. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5804. bool on)
  5805. {
  5806. struct drm_device *dev = crtc->dev;
  5807. struct drm_i915_private *dev_priv = dev->dev_private;
  5808. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5809. int pipe = intel_crtc->pipe;
  5810. int x = intel_crtc->cursor_x;
  5811. int y = intel_crtc->cursor_y;
  5812. u32 base = 0, pos = 0;
  5813. bool visible;
  5814. if (on)
  5815. base = intel_crtc->cursor_addr;
  5816. if (x >= intel_crtc->config.pipe_src_w)
  5817. base = 0;
  5818. if (y >= intel_crtc->config.pipe_src_h)
  5819. base = 0;
  5820. if (x < 0) {
  5821. if (x + intel_crtc->cursor_width <= 0)
  5822. base = 0;
  5823. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5824. x = -x;
  5825. }
  5826. pos |= x << CURSOR_X_SHIFT;
  5827. if (y < 0) {
  5828. if (y + intel_crtc->cursor_height <= 0)
  5829. base = 0;
  5830. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5831. y = -y;
  5832. }
  5833. pos |= y << CURSOR_Y_SHIFT;
  5834. visible = base != 0;
  5835. if (!visible && !intel_crtc->cursor_visible)
  5836. return;
  5837. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5838. I915_WRITE(CURPOS_IVB(pipe), pos);
  5839. ivb_update_cursor(crtc, base);
  5840. } else {
  5841. I915_WRITE(CURPOS(pipe), pos);
  5842. if (IS_845G(dev) || IS_I865G(dev))
  5843. i845_update_cursor(crtc, base);
  5844. else
  5845. i9xx_update_cursor(crtc, base);
  5846. }
  5847. }
  5848. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5849. struct drm_file *file,
  5850. uint32_t handle,
  5851. uint32_t width, uint32_t height)
  5852. {
  5853. struct drm_device *dev = crtc->dev;
  5854. struct drm_i915_private *dev_priv = dev->dev_private;
  5855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5856. struct drm_i915_gem_object *obj;
  5857. uint32_t addr;
  5858. int ret;
  5859. /* if we want to turn off the cursor ignore width and height */
  5860. if (!handle) {
  5861. DRM_DEBUG_KMS("cursor off\n");
  5862. addr = 0;
  5863. obj = NULL;
  5864. mutex_lock(&dev->struct_mutex);
  5865. goto finish;
  5866. }
  5867. /* Currently we only support 64x64 cursors */
  5868. if (width != 64 || height != 64) {
  5869. DRM_ERROR("we currently only support 64x64 cursors\n");
  5870. return -EINVAL;
  5871. }
  5872. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5873. if (&obj->base == NULL)
  5874. return -ENOENT;
  5875. if (obj->base.size < width * height * 4) {
  5876. DRM_ERROR("buffer is to small\n");
  5877. ret = -ENOMEM;
  5878. goto fail;
  5879. }
  5880. /* we only need to pin inside GTT if cursor is non-phy */
  5881. mutex_lock(&dev->struct_mutex);
  5882. if (!dev_priv->info->cursor_needs_physical) {
  5883. unsigned alignment;
  5884. if (obj->tiling_mode) {
  5885. DRM_ERROR("cursor cannot be tiled\n");
  5886. ret = -EINVAL;
  5887. goto fail_locked;
  5888. }
  5889. /* Note that the w/a also requires 2 PTE of padding following
  5890. * the bo. We currently fill all unused PTE with the shadow
  5891. * page and so we should always have valid PTE following the
  5892. * cursor preventing the VT-d warning.
  5893. */
  5894. alignment = 0;
  5895. if (need_vtd_wa(dev))
  5896. alignment = 64*1024;
  5897. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5898. if (ret) {
  5899. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5900. goto fail_locked;
  5901. }
  5902. ret = i915_gem_object_put_fence(obj);
  5903. if (ret) {
  5904. DRM_ERROR("failed to release fence for cursor");
  5905. goto fail_unpin;
  5906. }
  5907. addr = i915_gem_obj_ggtt_offset(obj);
  5908. } else {
  5909. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5910. ret = i915_gem_attach_phys_object(dev, obj,
  5911. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5912. align);
  5913. if (ret) {
  5914. DRM_ERROR("failed to attach phys object\n");
  5915. goto fail_locked;
  5916. }
  5917. addr = obj->phys_obj->handle->busaddr;
  5918. }
  5919. if (IS_GEN2(dev))
  5920. I915_WRITE(CURSIZE, (height << 12) | width);
  5921. finish:
  5922. if (intel_crtc->cursor_bo) {
  5923. if (dev_priv->info->cursor_needs_physical) {
  5924. if (intel_crtc->cursor_bo != obj)
  5925. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5926. } else
  5927. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5928. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5929. }
  5930. mutex_unlock(&dev->struct_mutex);
  5931. intel_crtc->cursor_addr = addr;
  5932. intel_crtc->cursor_bo = obj;
  5933. intel_crtc->cursor_width = width;
  5934. intel_crtc->cursor_height = height;
  5935. if (intel_crtc->active)
  5936. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5937. return 0;
  5938. fail_unpin:
  5939. i915_gem_object_unpin_from_display_plane(obj);
  5940. fail_locked:
  5941. mutex_unlock(&dev->struct_mutex);
  5942. fail:
  5943. drm_gem_object_unreference_unlocked(&obj->base);
  5944. return ret;
  5945. }
  5946. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5947. {
  5948. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5949. intel_crtc->cursor_x = x;
  5950. intel_crtc->cursor_y = y;
  5951. if (intel_crtc->active)
  5952. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5953. return 0;
  5954. }
  5955. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5956. u16 *blue, uint32_t start, uint32_t size)
  5957. {
  5958. int end = (start + size > 256) ? 256 : start + size, i;
  5959. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5960. for (i = start; i < end; i++) {
  5961. intel_crtc->lut_r[i] = red[i] >> 8;
  5962. intel_crtc->lut_g[i] = green[i] >> 8;
  5963. intel_crtc->lut_b[i] = blue[i] >> 8;
  5964. }
  5965. intel_crtc_load_lut(crtc);
  5966. }
  5967. /* VESA 640x480x72Hz mode to set on the pipe */
  5968. static struct drm_display_mode load_detect_mode = {
  5969. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5970. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5971. };
  5972. static struct drm_framebuffer *
  5973. intel_framebuffer_create(struct drm_device *dev,
  5974. struct drm_mode_fb_cmd2 *mode_cmd,
  5975. struct drm_i915_gem_object *obj)
  5976. {
  5977. struct intel_framebuffer *intel_fb;
  5978. int ret;
  5979. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5980. if (!intel_fb) {
  5981. drm_gem_object_unreference_unlocked(&obj->base);
  5982. return ERR_PTR(-ENOMEM);
  5983. }
  5984. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5985. if (ret) {
  5986. drm_gem_object_unreference_unlocked(&obj->base);
  5987. kfree(intel_fb);
  5988. return ERR_PTR(ret);
  5989. }
  5990. return &intel_fb->base;
  5991. }
  5992. static u32
  5993. intel_framebuffer_pitch_for_width(int width, int bpp)
  5994. {
  5995. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5996. return ALIGN(pitch, 64);
  5997. }
  5998. static u32
  5999. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6000. {
  6001. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6002. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6003. }
  6004. static struct drm_framebuffer *
  6005. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6006. struct drm_display_mode *mode,
  6007. int depth, int bpp)
  6008. {
  6009. struct drm_i915_gem_object *obj;
  6010. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6011. obj = i915_gem_alloc_object(dev,
  6012. intel_framebuffer_size_for_mode(mode, bpp));
  6013. if (obj == NULL)
  6014. return ERR_PTR(-ENOMEM);
  6015. mode_cmd.width = mode->hdisplay;
  6016. mode_cmd.height = mode->vdisplay;
  6017. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6018. bpp);
  6019. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6020. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6021. }
  6022. static struct drm_framebuffer *
  6023. mode_fits_in_fbdev(struct drm_device *dev,
  6024. struct drm_display_mode *mode)
  6025. {
  6026. struct drm_i915_private *dev_priv = dev->dev_private;
  6027. struct drm_i915_gem_object *obj;
  6028. struct drm_framebuffer *fb;
  6029. if (dev_priv->fbdev == NULL)
  6030. return NULL;
  6031. obj = dev_priv->fbdev->ifb.obj;
  6032. if (obj == NULL)
  6033. return NULL;
  6034. fb = &dev_priv->fbdev->ifb.base;
  6035. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6036. fb->bits_per_pixel))
  6037. return NULL;
  6038. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6039. return NULL;
  6040. return fb;
  6041. }
  6042. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6043. struct drm_display_mode *mode,
  6044. struct intel_load_detect_pipe *old)
  6045. {
  6046. struct intel_crtc *intel_crtc;
  6047. struct intel_encoder *intel_encoder =
  6048. intel_attached_encoder(connector);
  6049. struct drm_crtc *possible_crtc;
  6050. struct drm_encoder *encoder = &intel_encoder->base;
  6051. struct drm_crtc *crtc = NULL;
  6052. struct drm_device *dev = encoder->dev;
  6053. struct drm_framebuffer *fb;
  6054. int i = -1;
  6055. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6056. connector->base.id, drm_get_connector_name(connector),
  6057. encoder->base.id, drm_get_encoder_name(encoder));
  6058. /*
  6059. * Algorithm gets a little messy:
  6060. *
  6061. * - if the connector already has an assigned crtc, use it (but make
  6062. * sure it's on first)
  6063. *
  6064. * - try to find the first unused crtc that can drive this connector,
  6065. * and use that if we find one
  6066. */
  6067. /* See if we already have a CRTC for this connector */
  6068. if (encoder->crtc) {
  6069. crtc = encoder->crtc;
  6070. mutex_lock(&crtc->mutex);
  6071. old->dpms_mode = connector->dpms;
  6072. old->load_detect_temp = false;
  6073. /* Make sure the crtc and connector are running */
  6074. if (connector->dpms != DRM_MODE_DPMS_ON)
  6075. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6076. return true;
  6077. }
  6078. /* Find an unused one (if possible) */
  6079. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6080. i++;
  6081. if (!(encoder->possible_crtcs & (1 << i)))
  6082. continue;
  6083. if (!possible_crtc->enabled) {
  6084. crtc = possible_crtc;
  6085. break;
  6086. }
  6087. }
  6088. /*
  6089. * If we didn't find an unused CRTC, don't use any.
  6090. */
  6091. if (!crtc) {
  6092. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6093. return false;
  6094. }
  6095. mutex_lock(&crtc->mutex);
  6096. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6097. to_intel_connector(connector)->new_encoder = intel_encoder;
  6098. intel_crtc = to_intel_crtc(crtc);
  6099. old->dpms_mode = connector->dpms;
  6100. old->load_detect_temp = true;
  6101. old->release_fb = NULL;
  6102. if (!mode)
  6103. mode = &load_detect_mode;
  6104. /* We need a framebuffer large enough to accommodate all accesses
  6105. * that the plane may generate whilst we perform load detection.
  6106. * We can not rely on the fbcon either being present (we get called
  6107. * during its initialisation to detect all boot displays, or it may
  6108. * not even exist) or that it is large enough to satisfy the
  6109. * requested mode.
  6110. */
  6111. fb = mode_fits_in_fbdev(dev, mode);
  6112. if (fb == NULL) {
  6113. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6114. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6115. old->release_fb = fb;
  6116. } else
  6117. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6118. if (IS_ERR(fb)) {
  6119. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6120. mutex_unlock(&crtc->mutex);
  6121. return false;
  6122. }
  6123. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6124. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6125. if (old->release_fb)
  6126. old->release_fb->funcs->destroy(old->release_fb);
  6127. mutex_unlock(&crtc->mutex);
  6128. return false;
  6129. }
  6130. /* let the connector get through one full cycle before testing */
  6131. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6132. return true;
  6133. }
  6134. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6135. struct intel_load_detect_pipe *old)
  6136. {
  6137. struct intel_encoder *intel_encoder =
  6138. intel_attached_encoder(connector);
  6139. struct drm_encoder *encoder = &intel_encoder->base;
  6140. struct drm_crtc *crtc = encoder->crtc;
  6141. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6142. connector->base.id, drm_get_connector_name(connector),
  6143. encoder->base.id, drm_get_encoder_name(encoder));
  6144. if (old->load_detect_temp) {
  6145. to_intel_connector(connector)->new_encoder = NULL;
  6146. intel_encoder->new_crtc = NULL;
  6147. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6148. if (old->release_fb) {
  6149. drm_framebuffer_unregister_private(old->release_fb);
  6150. drm_framebuffer_unreference(old->release_fb);
  6151. }
  6152. mutex_unlock(&crtc->mutex);
  6153. return;
  6154. }
  6155. /* Switch crtc and encoder back off if necessary */
  6156. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6157. connector->funcs->dpms(connector, old->dpms_mode);
  6158. mutex_unlock(&crtc->mutex);
  6159. }
  6160. static int i9xx_pll_refclk(struct drm_device *dev,
  6161. const struct intel_crtc_config *pipe_config)
  6162. {
  6163. struct drm_i915_private *dev_priv = dev->dev_private;
  6164. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6165. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6166. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6167. else if (HAS_PCH_SPLIT(dev))
  6168. return 120000;
  6169. else if (!IS_GEN2(dev))
  6170. return 96000;
  6171. else
  6172. return 48000;
  6173. }
  6174. /* Returns the clock of the currently programmed mode of the given pipe. */
  6175. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6176. struct intel_crtc_config *pipe_config)
  6177. {
  6178. struct drm_device *dev = crtc->base.dev;
  6179. struct drm_i915_private *dev_priv = dev->dev_private;
  6180. int pipe = pipe_config->cpu_transcoder;
  6181. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6182. u32 fp;
  6183. intel_clock_t clock;
  6184. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6185. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6186. fp = pipe_config->dpll_hw_state.fp0;
  6187. else
  6188. fp = pipe_config->dpll_hw_state.fp1;
  6189. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6190. if (IS_PINEVIEW(dev)) {
  6191. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6192. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6193. } else {
  6194. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6195. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6196. }
  6197. if (!IS_GEN2(dev)) {
  6198. if (IS_PINEVIEW(dev))
  6199. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6200. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6201. else
  6202. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6203. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6204. switch (dpll & DPLL_MODE_MASK) {
  6205. case DPLLB_MODE_DAC_SERIAL:
  6206. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6207. 5 : 10;
  6208. break;
  6209. case DPLLB_MODE_LVDS:
  6210. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6211. 7 : 14;
  6212. break;
  6213. default:
  6214. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6215. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6216. return;
  6217. }
  6218. if (IS_PINEVIEW(dev))
  6219. pineview_clock(refclk, &clock);
  6220. else
  6221. i9xx_clock(refclk, &clock);
  6222. } else {
  6223. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6224. if (is_lvds) {
  6225. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6226. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6227. clock.p2 = 14;
  6228. } else {
  6229. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6230. clock.p1 = 2;
  6231. else {
  6232. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6233. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6234. }
  6235. if (dpll & PLL_P2_DIVIDE_BY_4)
  6236. clock.p2 = 4;
  6237. else
  6238. clock.p2 = 2;
  6239. }
  6240. i9xx_clock(refclk, &clock);
  6241. }
  6242. /*
  6243. * This value includes pixel_multiplier. We will use
  6244. * port_clock to compute adjusted_mode.clock in the
  6245. * encoder's get_config() function.
  6246. */
  6247. pipe_config->port_clock = clock.dot;
  6248. }
  6249. int intel_dotclock_calculate(int link_freq,
  6250. const struct intel_link_m_n *m_n)
  6251. {
  6252. /*
  6253. * The calculation for the data clock is:
  6254. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6255. * But we want to avoid losing precison if possible, so:
  6256. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6257. *
  6258. * and the link clock is simpler:
  6259. * link_clock = (m * link_clock) / n
  6260. */
  6261. if (!m_n->link_n)
  6262. return 0;
  6263. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6264. }
  6265. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6266. struct intel_crtc_config *pipe_config)
  6267. {
  6268. struct drm_device *dev = crtc->base.dev;
  6269. /* read out port_clock from the DPLL */
  6270. i9xx_crtc_clock_get(crtc, pipe_config);
  6271. /*
  6272. * This value does not include pixel_multiplier.
  6273. * We will check that port_clock and adjusted_mode.clock
  6274. * agree once we know their relationship in the encoder's
  6275. * get_config() function.
  6276. */
  6277. pipe_config->adjusted_mode.clock =
  6278. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6279. &pipe_config->fdi_m_n);
  6280. }
  6281. /** Returns the currently programmed mode of the given pipe. */
  6282. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6283. struct drm_crtc *crtc)
  6284. {
  6285. struct drm_i915_private *dev_priv = dev->dev_private;
  6286. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6287. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6288. struct drm_display_mode *mode;
  6289. struct intel_crtc_config pipe_config;
  6290. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6291. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6292. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6293. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6294. enum pipe pipe = intel_crtc->pipe;
  6295. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6296. if (!mode)
  6297. return NULL;
  6298. /*
  6299. * Construct a pipe_config sufficient for getting the clock info
  6300. * back out of crtc_clock_get.
  6301. *
  6302. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6303. * to use a real value here instead.
  6304. */
  6305. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6306. pipe_config.pixel_multiplier = 1;
  6307. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6308. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6309. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6310. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6311. mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  6312. mode->hdisplay = (htot & 0xffff) + 1;
  6313. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6314. mode->hsync_start = (hsync & 0xffff) + 1;
  6315. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6316. mode->vdisplay = (vtot & 0xffff) + 1;
  6317. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6318. mode->vsync_start = (vsync & 0xffff) + 1;
  6319. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6320. drm_mode_set_name(mode);
  6321. return mode;
  6322. }
  6323. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6324. {
  6325. struct drm_device *dev = crtc->dev;
  6326. drm_i915_private_t *dev_priv = dev->dev_private;
  6327. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6328. int pipe = intel_crtc->pipe;
  6329. int dpll_reg = DPLL(pipe);
  6330. int dpll;
  6331. if (HAS_PCH_SPLIT(dev))
  6332. return;
  6333. if (!dev_priv->lvds_downclock_avail)
  6334. return;
  6335. dpll = I915_READ(dpll_reg);
  6336. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6337. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6338. assert_panel_unlocked(dev_priv, pipe);
  6339. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6340. I915_WRITE(dpll_reg, dpll);
  6341. intel_wait_for_vblank(dev, pipe);
  6342. dpll = I915_READ(dpll_reg);
  6343. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6344. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6345. }
  6346. }
  6347. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6348. {
  6349. struct drm_device *dev = crtc->dev;
  6350. drm_i915_private_t *dev_priv = dev->dev_private;
  6351. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6352. if (HAS_PCH_SPLIT(dev))
  6353. return;
  6354. if (!dev_priv->lvds_downclock_avail)
  6355. return;
  6356. /*
  6357. * Since this is called by a timer, we should never get here in
  6358. * the manual case.
  6359. */
  6360. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6361. int pipe = intel_crtc->pipe;
  6362. int dpll_reg = DPLL(pipe);
  6363. int dpll;
  6364. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6365. assert_panel_unlocked(dev_priv, pipe);
  6366. dpll = I915_READ(dpll_reg);
  6367. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6368. I915_WRITE(dpll_reg, dpll);
  6369. intel_wait_for_vblank(dev, pipe);
  6370. dpll = I915_READ(dpll_reg);
  6371. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6372. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6373. }
  6374. }
  6375. void intel_mark_busy(struct drm_device *dev)
  6376. {
  6377. struct drm_i915_private *dev_priv = dev->dev_private;
  6378. hsw_package_c8_gpu_busy(dev_priv);
  6379. i915_update_gfx_val(dev_priv);
  6380. }
  6381. void intel_mark_idle(struct drm_device *dev)
  6382. {
  6383. struct drm_i915_private *dev_priv = dev->dev_private;
  6384. struct drm_crtc *crtc;
  6385. hsw_package_c8_gpu_idle(dev_priv);
  6386. if (!i915_powersave)
  6387. return;
  6388. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6389. if (!crtc->fb)
  6390. continue;
  6391. intel_decrease_pllclock(crtc);
  6392. }
  6393. }
  6394. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6395. struct intel_ring_buffer *ring)
  6396. {
  6397. struct drm_device *dev = obj->base.dev;
  6398. struct drm_crtc *crtc;
  6399. if (!i915_powersave)
  6400. return;
  6401. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6402. if (!crtc->fb)
  6403. continue;
  6404. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6405. continue;
  6406. intel_increase_pllclock(crtc);
  6407. if (ring && intel_fbc_enabled(dev))
  6408. ring->fbc_dirty = true;
  6409. }
  6410. }
  6411. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6412. {
  6413. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6414. struct drm_device *dev = crtc->dev;
  6415. struct intel_unpin_work *work;
  6416. unsigned long flags;
  6417. spin_lock_irqsave(&dev->event_lock, flags);
  6418. work = intel_crtc->unpin_work;
  6419. intel_crtc->unpin_work = NULL;
  6420. spin_unlock_irqrestore(&dev->event_lock, flags);
  6421. if (work) {
  6422. cancel_work_sync(&work->work);
  6423. kfree(work);
  6424. }
  6425. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6426. drm_crtc_cleanup(crtc);
  6427. kfree(intel_crtc);
  6428. }
  6429. static void intel_unpin_work_fn(struct work_struct *__work)
  6430. {
  6431. struct intel_unpin_work *work =
  6432. container_of(__work, struct intel_unpin_work, work);
  6433. struct drm_device *dev = work->crtc->dev;
  6434. mutex_lock(&dev->struct_mutex);
  6435. intel_unpin_fb_obj(work->old_fb_obj);
  6436. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6437. drm_gem_object_unreference(&work->old_fb_obj->base);
  6438. intel_update_fbc(dev);
  6439. mutex_unlock(&dev->struct_mutex);
  6440. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6441. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6442. kfree(work);
  6443. }
  6444. static void do_intel_finish_page_flip(struct drm_device *dev,
  6445. struct drm_crtc *crtc)
  6446. {
  6447. drm_i915_private_t *dev_priv = dev->dev_private;
  6448. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6449. struct intel_unpin_work *work;
  6450. unsigned long flags;
  6451. /* Ignore early vblank irqs */
  6452. if (intel_crtc == NULL)
  6453. return;
  6454. spin_lock_irqsave(&dev->event_lock, flags);
  6455. work = intel_crtc->unpin_work;
  6456. /* Ensure we don't miss a work->pending update ... */
  6457. smp_rmb();
  6458. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6459. spin_unlock_irqrestore(&dev->event_lock, flags);
  6460. return;
  6461. }
  6462. /* and that the unpin work is consistent wrt ->pending. */
  6463. smp_rmb();
  6464. intel_crtc->unpin_work = NULL;
  6465. if (work->event)
  6466. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6467. drm_vblank_put(dev, intel_crtc->pipe);
  6468. spin_unlock_irqrestore(&dev->event_lock, flags);
  6469. wake_up_all(&dev_priv->pending_flip_queue);
  6470. queue_work(dev_priv->wq, &work->work);
  6471. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6472. }
  6473. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6474. {
  6475. drm_i915_private_t *dev_priv = dev->dev_private;
  6476. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6477. do_intel_finish_page_flip(dev, crtc);
  6478. }
  6479. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6480. {
  6481. drm_i915_private_t *dev_priv = dev->dev_private;
  6482. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6483. do_intel_finish_page_flip(dev, crtc);
  6484. }
  6485. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6486. {
  6487. drm_i915_private_t *dev_priv = dev->dev_private;
  6488. struct intel_crtc *intel_crtc =
  6489. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6490. unsigned long flags;
  6491. /* NB: An MMIO update of the plane base pointer will also
  6492. * generate a page-flip completion irq, i.e. every modeset
  6493. * is also accompanied by a spurious intel_prepare_page_flip().
  6494. */
  6495. spin_lock_irqsave(&dev->event_lock, flags);
  6496. if (intel_crtc->unpin_work)
  6497. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6498. spin_unlock_irqrestore(&dev->event_lock, flags);
  6499. }
  6500. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6501. {
  6502. /* Ensure that the work item is consistent when activating it ... */
  6503. smp_wmb();
  6504. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6505. /* and that it is marked active as soon as the irq could fire. */
  6506. smp_wmb();
  6507. }
  6508. static int intel_gen2_queue_flip(struct drm_device *dev,
  6509. struct drm_crtc *crtc,
  6510. struct drm_framebuffer *fb,
  6511. struct drm_i915_gem_object *obj,
  6512. uint32_t flags)
  6513. {
  6514. struct drm_i915_private *dev_priv = dev->dev_private;
  6515. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6516. u32 flip_mask;
  6517. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6518. int ret;
  6519. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6520. if (ret)
  6521. goto err;
  6522. ret = intel_ring_begin(ring, 6);
  6523. if (ret)
  6524. goto err_unpin;
  6525. /* Can't queue multiple flips, so wait for the previous
  6526. * one to finish before executing the next.
  6527. */
  6528. if (intel_crtc->plane)
  6529. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6530. else
  6531. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6532. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6533. intel_ring_emit(ring, MI_NOOP);
  6534. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6535. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6536. intel_ring_emit(ring, fb->pitches[0]);
  6537. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6538. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6539. intel_mark_page_flip_active(intel_crtc);
  6540. __intel_ring_advance(ring);
  6541. return 0;
  6542. err_unpin:
  6543. intel_unpin_fb_obj(obj);
  6544. err:
  6545. return ret;
  6546. }
  6547. static int intel_gen3_queue_flip(struct drm_device *dev,
  6548. struct drm_crtc *crtc,
  6549. struct drm_framebuffer *fb,
  6550. struct drm_i915_gem_object *obj,
  6551. uint32_t flags)
  6552. {
  6553. struct drm_i915_private *dev_priv = dev->dev_private;
  6554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6555. u32 flip_mask;
  6556. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6557. int ret;
  6558. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6559. if (ret)
  6560. goto err;
  6561. ret = intel_ring_begin(ring, 6);
  6562. if (ret)
  6563. goto err_unpin;
  6564. if (intel_crtc->plane)
  6565. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6566. else
  6567. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6568. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6569. intel_ring_emit(ring, MI_NOOP);
  6570. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6571. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6572. intel_ring_emit(ring, fb->pitches[0]);
  6573. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6574. intel_ring_emit(ring, MI_NOOP);
  6575. intel_mark_page_flip_active(intel_crtc);
  6576. __intel_ring_advance(ring);
  6577. return 0;
  6578. err_unpin:
  6579. intel_unpin_fb_obj(obj);
  6580. err:
  6581. return ret;
  6582. }
  6583. static int intel_gen4_queue_flip(struct drm_device *dev,
  6584. struct drm_crtc *crtc,
  6585. struct drm_framebuffer *fb,
  6586. struct drm_i915_gem_object *obj,
  6587. uint32_t flags)
  6588. {
  6589. struct drm_i915_private *dev_priv = dev->dev_private;
  6590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6591. uint32_t pf, pipesrc;
  6592. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6593. int ret;
  6594. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6595. if (ret)
  6596. goto err;
  6597. ret = intel_ring_begin(ring, 4);
  6598. if (ret)
  6599. goto err_unpin;
  6600. /* i965+ uses the linear or tiled offsets from the
  6601. * Display Registers (which do not change across a page-flip)
  6602. * so we need only reprogram the base address.
  6603. */
  6604. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6605. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6606. intel_ring_emit(ring, fb->pitches[0]);
  6607. intel_ring_emit(ring,
  6608. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6609. obj->tiling_mode);
  6610. /* XXX Enabling the panel-fitter across page-flip is so far
  6611. * untested on non-native modes, so ignore it for now.
  6612. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6613. */
  6614. pf = 0;
  6615. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6616. intel_ring_emit(ring, pf | pipesrc);
  6617. intel_mark_page_flip_active(intel_crtc);
  6618. __intel_ring_advance(ring);
  6619. return 0;
  6620. err_unpin:
  6621. intel_unpin_fb_obj(obj);
  6622. err:
  6623. return ret;
  6624. }
  6625. static int intel_gen6_queue_flip(struct drm_device *dev,
  6626. struct drm_crtc *crtc,
  6627. struct drm_framebuffer *fb,
  6628. struct drm_i915_gem_object *obj,
  6629. uint32_t flags)
  6630. {
  6631. struct drm_i915_private *dev_priv = dev->dev_private;
  6632. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6633. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6634. uint32_t pf, pipesrc;
  6635. int ret;
  6636. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6637. if (ret)
  6638. goto err;
  6639. ret = intel_ring_begin(ring, 4);
  6640. if (ret)
  6641. goto err_unpin;
  6642. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6643. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6644. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6645. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6646. /* Contrary to the suggestions in the documentation,
  6647. * "Enable Panel Fitter" does not seem to be required when page
  6648. * flipping with a non-native mode, and worse causes a normal
  6649. * modeset to fail.
  6650. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6651. */
  6652. pf = 0;
  6653. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6654. intel_ring_emit(ring, pf | pipesrc);
  6655. intel_mark_page_flip_active(intel_crtc);
  6656. __intel_ring_advance(ring);
  6657. return 0;
  6658. err_unpin:
  6659. intel_unpin_fb_obj(obj);
  6660. err:
  6661. return ret;
  6662. }
  6663. static int intel_gen7_queue_flip(struct drm_device *dev,
  6664. struct drm_crtc *crtc,
  6665. struct drm_framebuffer *fb,
  6666. struct drm_i915_gem_object *obj,
  6667. uint32_t flags)
  6668. {
  6669. struct drm_i915_private *dev_priv = dev->dev_private;
  6670. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6671. struct intel_ring_buffer *ring;
  6672. uint32_t plane_bit = 0;
  6673. int len, ret;
  6674. ring = obj->ring;
  6675. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6676. ring = &dev_priv->ring[BCS];
  6677. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6678. if (ret)
  6679. goto err;
  6680. switch(intel_crtc->plane) {
  6681. case PLANE_A:
  6682. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6683. break;
  6684. case PLANE_B:
  6685. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6686. break;
  6687. case PLANE_C:
  6688. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6689. break;
  6690. default:
  6691. WARN_ONCE(1, "unknown plane in flip command\n");
  6692. ret = -ENODEV;
  6693. goto err_unpin;
  6694. }
  6695. len = 4;
  6696. if (ring->id == RCS)
  6697. len += 6;
  6698. ret = intel_ring_begin(ring, len);
  6699. if (ret)
  6700. goto err_unpin;
  6701. /* Unmask the flip-done completion message. Note that the bspec says that
  6702. * we should do this for both the BCS and RCS, and that we must not unmask
  6703. * more than one flip event at any time (or ensure that one flip message
  6704. * can be sent by waiting for flip-done prior to queueing new flips).
  6705. * Experimentation says that BCS works despite DERRMR masking all
  6706. * flip-done completion events and that unmasking all planes at once
  6707. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6708. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6709. */
  6710. if (ring->id == RCS) {
  6711. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6712. intel_ring_emit(ring, DERRMR);
  6713. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6714. DERRMR_PIPEB_PRI_FLIP_DONE |
  6715. DERRMR_PIPEC_PRI_FLIP_DONE));
  6716. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6717. intel_ring_emit(ring, DERRMR);
  6718. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6719. }
  6720. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6721. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6722. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6723. intel_ring_emit(ring, (MI_NOOP));
  6724. intel_mark_page_flip_active(intel_crtc);
  6725. __intel_ring_advance(ring);
  6726. return 0;
  6727. err_unpin:
  6728. intel_unpin_fb_obj(obj);
  6729. err:
  6730. return ret;
  6731. }
  6732. static int intel_default_queue_flip(struct drm_device *dev,
  6733. struct drm_crtc *crtc,
  6734. struct drm_framebuffer *fb,
  6735. struct drm_i915_gem_object *obj,
  6736. uint32_t flags)
  6737. {
  6738. return -ENODEV;
  6739. }
  6740. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6741. struct drm_framebuffer *fb,
  6742. struct drm_pending_vblank_event *event,
  6743. uint32_t page_flip_flags)
  6744. {
  6745. struct drm_device *dev = crtc->dev;
  6746. struct drm_i915_private *dev_priv = dev->dev_private;
  6747. struct drm_framebuffer *old_fb = crtc->fb;
  6748. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6749. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6750. struct intel_unpin_work *work;
  6751. unsigned long flags;
  6752. int ret;
  6753. /* Can't change pixel format via MI display flips. */
  6754. if (fb->pixel_format != crtc->fb->pixel_format)
  6755. return -EINVAL;
  6756. /*
  6757. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6758. * Note that pitch changes could also affect these register.
  6759. */
  6760. if (INTEL_INFO(dev)->gen > 3 &&
  6761. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6762. fb->pitches[0] != crtc->fb->pitches[0]))
  6763. return -EINVAL;
  6764. work = kzalloc(sizeof(*work), GFP_KERNEL);
  6765. if (work == NULL)
  6766. return -ENOMEM;
  6767. work->event = event;
  6768. work->crtc = crtc;
  6769. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6770. INIT_WORK(&work->work, intel_unpin_work_fn);
  6771. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6772. if (ret)
  6773. goto free_work;
  6774. /* We borrow the event spin lock for protecting unpin_work */
  6775. spin_lock_irqsave(&dev->event_lock, flags);
  6776. if (intel_crtc->unpin_work) {
  6777. spin_unlock_irqrestore(&dev->event_lock, flags);
  6778. kfree(work);
  6779. drm_vblank_put(dev, intel_crtc->pipe);
  6780. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6781. return -EBUSY;
  6782. }
  6783. intel_crtc->unpin_work = work;
  6784. spin_unlock_irqrestore(&dev->event_lock, flags);
  6785. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6786. flush_workqueue(dev_priv->wq);
  6787. ret = i915_mutex_lock_interruptible(dev);
  6788. if (ret)
  6789. goto cleanup;
  6790. /* Reference the objects for the scheduled work. */
  6791. drm_gem_object_reference(&work->old_fb_obj->base);
  6792. drm_gem_object_reference(&obj->base);
  6793. crtc->fb = fb;
  6794. work->pending_flip_obj = obj;
  6795. work->enable_stall_check = true;
  6796. atomic_inc(&intel_crtc->unpin_work_count);
  6797. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6798. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6799. if (ret)
  6800. goto cleanup_pending;
  6801. intel_disable_fbc(dev);
  6802. intel_mark_fb_busy(obj, NULL);
  6803. mutex_unlock(&dev->struct_mutex);
  6804. trace_i915_flip_request(intel_crtc->plane, obj);
  6805. return 0;
  6806. cleanup_pending:
  6807. atomic_dec(&intel_crtc->unpin_work_count);
  6808. crtc->fb = old_fb;
  6809. drm_gem_object_unreference(&work->old_fb_obj->base);
  6810. drm_gem_object_unreference(&obj->base);
  6811. mutex_unlock(&dev->struct_mutex);
  6812. cleanup:
  6813. spin_lock_irqsave(&dev->event_lock, flags);
  6814. intel_crtc->unpin_work = NULL;
  6815. spin_unlock_irqrestore(&dev->event_lock, flags);
  6816. drm_vblank_put(dev, intel_crtc->pipe);
  6817. free_work:
  6818. kfree(work);
  6819. return ret;
  6820. }
  6821. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6822. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6823. .load_lut = intel_crtc_load_lut,
  6824. };
  6825. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6826. struct drm_crtc *crtc)
  6827. {
  6828. struct drm_device *dev;
  6829. struct drm_crtc *tmp;
  6830. int crtc_mask = 1;
  6831. WARN(!crtc, "checking null crtc?\n");
  6832. dev = crtc->dev;
  6833. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6834. if (tmp == crtc)
  6835. break;
  6836. crtc_mask <<= 1;
  6837. }
  6838. if (encoder->possible_crtcs & crtc_mask)
  6839. return true;
  6840. return false;
  6841. }
  6842. /**
  6843. * intel_modeset_update_staged_output_state
  6844. *
  6845. * Updates the staged output configuration state, e.g. after we've read out the
  6846. * current hw state.
  6847. */
  6848. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6849. {
  6850. struct intel_encoder *encoder;
  6851. struct intel_connector *connector;
  6852. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6853. base.head) {
  6854. connector->new_encoder =
  6855. to_intel_encoder(connector->base.encoder);
  6856. }
  6857. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6858. base.head) {
  6859. encoder->new_crtc =
  6860. to_intel_crtc(encoder->base.crtc);
  6861. }
  6862. }
  6863. /**
  6864. * intel_modeset_commit_output_state
  6865. *
  6866. * This function copies the stage display pipe configuration to the real one.
  6867. */
  6868. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6869. {
  6870. struct intel_encoder *encoder;
  6871. struct intel_connector *connector;
  6872. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6873. base.head) {
  6874. connector->base.encoder = &connector->new_encoder->base;
  6875. }
  6876. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6877. base.head) {
  6878. encoder->base.crtc = &encoder->new_crtc->base;
  6879. }
  6880. }
  6881. static void
  6882. connected_sink_compute_bpp(struct intel_connector * connector,
  6883. struct intel_crtc_config *pipe_config)
  6884. {
  6885. int bpp = pipe_config->pipe_bpp;
  6886. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6887. connector->base.base.id,
  6888. drm_get_connector_name(&connector->base));
  6889. /* Don't use an invalid EDID bpc value */
  6890. if (connector->base.display_info.bpc &&
  6891. connector->base.display_info.bpc * 3 < bpp) {
  6892. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6893. bpp, connector->base.display_info.bpc*3);
  6894. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6895. }
  6896. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6897. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6898. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6899. bpp);
  6900. pipe_config->pipe_bpp = 24;
  6901. }
  6902. }
  6903. static int
  6904. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6905. struct drm_framebuffer *fb,
  6906. struct intel_crtc_config *pipe_config)
  6907. {
  6908. struct drm_device *dev = crtc->base.dev;
  6909. struct intel_connector *connector;
  6910. int bpp;
  6911. switch (fb->pixel_format) {
  6912. case DRM_FORMAT_C8:
  6913. bpp = 8*3; /* since we go through a colormap */
  6914. break;
  6915. case DRM_FORMAT_XRGB1555:
  6916. case DRM_FORMAT_ARGB1555:
  6917. /* checked in intel_framebuffer_init already */
  6918. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6919. return -EINVAL;
  6920. case DRM_FORMAT_RGB565:
  6921. bpp = 6*3; /* min is 18bpp */
  6922. break;
  6923. case DRM_FORMAT_XBGR8888:
  6924. case DRM_FORMAT_ABGR8888:
  6925. /* checked in intel_framebuffer_init already */
  6926. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6927. return -EINVAL;
  6928. case DRM_FORMAT_XRGB8888:
  6929. case DRM_FORMAT_ARGB8888:
  6930. bpp = 8*3;
  6931. break;
  6932. case DRM_FORMAT_XRGB2101010:
  6933. case DRM_FORMAT_ARGB2101010:
  6934. case DRM_FORMAT_XBGR2101010:
  6935. case DRM_FORMAT_ABGR2101010:
  6936. /* checked in intel_framebuffer_init already */
  6937. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6938. return -EINVAL;
  6939. bpp = 10*3;
  6940. break;
  6941. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6942. default:
  6943. DRM_DEBUG_KMS("unsupported depth\n");
  6944. return -EINVAL;
  6945. }
  6946. pipe_config->pipe_bpp = bpp;
  6947. /* Clamp display bpp to EDID value */
  6948. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6949. base.head) {
  6950. if (!connector->new_encoder ||
  6951. connector->new_encoder->new_crtc != crtc)
  6952. continue;
  6953. connected_sink_compute_bpp(connector, pipe_config);
  6954. }
  6955. return bpp;
  6956. }
  6957. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  6958. {
  6959. DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  6960. "type: 0x%x flags: 0x%x\n",
  6961. mode->clock,
  6962. mode->crtc_hdisplay, mode->crtc_hsync_start,
  6963. mode->crtc_hsync_end, mode->crtc_htotal,
  6964. mode->crtc_vdisplay, mode->crtc_vsync_start,
  6965. mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  6966. }
  6967. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6968. struct intel_crtc_config *pipe_config,
  6969. const char *context)
  6970. {
  6971. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6972. context, pipe_name(crtc->pipe));
  6973. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6974. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6975. pipe_config->pipe_bpp, pipe_config->dither);
  6976. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6977. pipe_config->has_pch_encoder,
  6978. pipe_config->fdi_lanes,
  6979. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6980. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6981. pipe_config->fdi_m_n.tu);
  6982. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6983. pipe_config->has_dp_encoder,
  6984. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  6985. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  6986. pipe_config->dp_m_n.tu);
  6987. DRM_DEBUG_KMS("requested mode:\n");
  6988. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6989. DRM_DEBUG_KMS("adjusted mode:\n");
  6990. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6991. intel_dump_crtc_timings(&pipe_config->adjusted_mode);
  6992. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  6993. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  6994. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  6995. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6996. pipe_config->gmch_pfit.control,
  6997. pipe_config->gmch_pfit.pgm_ratios,
  6998. pipe_config->gmch_pfit.lvds_border_bits);
  6999. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  7000. pipe_config->pch_pfit.pos,
  7001. pipe_config->pch_pfit.size,
  7002. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  7003. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7004. DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  7005. }
  7006. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7007. {
  7008. int num_encoders = 0;
  7009. bool uncloneable_encoders = false;
  7010. struct intel_encoder *encoder;
  7011. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7012. base.head) {
  7013. if (&encoder->new_crtc->base != crtc)
  7014. continue;
  7015. num_encoders++;
  7016. if (!encoder->cloneable)
  7017. uncloneable_encoders = true;
  7018. }
  7019. return !(num_encoders > 1 && uncloneable_encoders);
  7020. }
  7021. static struct intel_crtc_config *
  7022. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7023. struct drm_framebuffer *fb,
  7024. struct drm_display_mode *mode)
  7025. {
  7026. struct drm_device *dev = crtc->dev;
  7027. struct intel_encoder *encoder;
  7028. struct intel_crtc_config *pipe_config;
  7029. int plane_bpp, ret = -EINVAL;
  7030. bool retry = true;
  7031. if (!check_encoder_cloning(crtc)) {
  7032. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7033. return ERR_PTR(-EINVAL);
  7034. }
  7035. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7036. if (!pipe_config)
  7037. return ERR_PTR(-ENOMEM);
  7038. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7039. drm_mode_copy(&pipe_config->requested_mode, mode);
  7040. pipe_config->pipe_src_w = mode->hdisplay;
  7041. pipe_config->pipe_src_h = mode->vdisplay;
  7042. pipe_config->cpu_transcoder =
  7043. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7044. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7045. /*
  7046. * Sanitize sync polarity flags based on requested ones. If neither
  7047. * positive or negative polarity is requested, treat this as meaning
  7048. * negative polarity.
  7049. */
  7050. if (!(pipe_config->adjusted_mode.flags &
  7051. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7052. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7053. if (!(pipe_config->adjusted_mode.flags &
  7054. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7055. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7056. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7057. * plane pixel format and any sink constraints into account. Returns the
  7058. * source plane bpp so that dithering can be selected on mismatches
  7059. * after encoders and crtc also have had their say. */
  7060. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7061. fb, pipe_config);
  7062. if (plane_bpp < 0)
  7063. goto fail;
  7064. encoder_retry:
  7065. /* Ensure the port clock defaults are reset when retrying. */
  7066. pipe_config->port_clock = 0;
  7067. pipe_config->pixel_multiplier = 1;
  7068. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7069. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7070. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7071. * adjust it according to limitations or connector properties, and also
  7072. * a chance to reject the mode entirely.
  7073. */
  7074. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7075. base.head) {
  7076. if (&encoder->new_crtc->base != crtc)
  7077. continue;
  7078. if (!(encoder->compute_config(encoder, pipe_config))) {
  7079. DRM_DEBUG_KMS("Encoder config failure\n");
  7080. goto fail;
  7081. }
  7082. }
  7083. /* Set default port clock if not overwritten by the encoder. Needs to be
  7084. * done afterwards in case the encoder adjusts the mode. */
  7085. if (!pipe_config->port_clock)
  7086. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7087. pipe_config->pixel_multiplier;
  7088. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7089. if (ret < 0) {
  7090. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7091. goto fail;
  7092. }
  7093. if (ret == RETRY) {
  7094. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7095. ret = -EINVAL;
  7096. goto fail;
  7097. }
  7098. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7099. retry = false;
  7100. goto encoder_retry;
  7101. }
  7102. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7103. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7104. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7105. return pipe_config;
  7106. fail:
  7107. kfree(pipe_config);
  7108. return ERR_PTR(ret);
  7109. }
  7110. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7111. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7112. static void
  7113. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7114. unsigned *prepare_pipes, unsigned *disable_pipes)
  7115. {
  7116. struct intel_crtc *intel_crtc;
  7117. struct drm_device *dev = crtc->dev;
  7118. struct intel_encoder *encoder;
  7119. struct intel_connector *connector;
  7120. struct drm_crtc *tmp_crtc;
  7121. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7122. /* Check which crtcs have changed outputs connected to them, these need
  7123. * to be part of the prepare_pipes mask. We don't (yet) support global
  7124. * modeset across multiple crtcs, so modeset_pipes will only have one
  7125. * bit set at most. */
  7126. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7127. base.head) {
  7128. if (connector->base.encoder == &connector->new_encoder->base)
  7129. continue;
  7130. if (connector->base.encoder) {
  7131. tmp_crtc = connector->base.encoder->crtc;
  7132. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7133. }
  7134. if (connector->new_encoder)
  7135. *prepare_pipes |=
  7136. 1 << connector->new_encoder->new_crtc->pipe;
  7137. }
  7138. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7139. base.head) {
  7140. if (encoder->base.crtc == &encoder->new_crtc->base)
  7141. continue;
  7142. if (encoder->base.crtc) {
  7143. tmp_crtc = encoder->base.crtc;
  7144. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7145. }
  7146. if (encoder->new_crtc)
  7147. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7148. }
  7149. /* Check for any pipes that will be fully disabled ... */
  7150. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7151. base.head) {
  7152. bool used = false;
  7153. /* Don't try to disable disabled crtcs. */
  7154. if (!intel_crtc->base.enabled)
  7155. continue;
  7156. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7157. base.head) {
  7158. if (encoder->new_crtc == intel_crtc)
  7159. used = true;
  7160. }
  7161. if (!used)
  7162. *disable_pipes |= 1 << intel_crtc->pipe;
  7163. }
  7164. /* set_mode is also used to update properties on life display pipes. */
  7165. intel_crtc = to_intel_crtc(crtc);
  7166. if (crtc->enabled)
  7167. *prepare_pipes |= 1 << intel_crtc->pipe;
  7168. /*
  7169. * For simplicity do a full modeset on any pipe where the output routing
  7170. * changed. We could be more clever, but that would require us to be
  7171. * more careful with calling the relevant encoder->mode_set functions.
  7172. */
  7173. if (*prepare_pipes)
  7174. *modeset_pipes = *prepare_pipes;
  7175. /* ... and mask these out. */
  7176. *modeset_pipes &= ~(*disable_pipes);
  7177. *prepare_pipes &= ~(*disable_pipes);
  7178. /*
  7179. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7180. * obies this rule, but the modeset restore mode of
  7181. * intel_modeset_setup_hw_state does not.
  7182. */
  7183. *modeset_pipes &= 1 << intel_crtc->pipe;
  7184. *prepare_pipes &= 1 << intel_crtc->pipe;
  7185. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7186. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7187. }
  7188. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7189. {
  7190. struct drm_encoder *encoder;
  7191. struct drm_device *dev = crtc->dev;
  7192. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7193. if (encoder->crtc == crtc)
  7194. return true;
  7195. return false;
  7196. }
  7197. static void
  7198. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7199. {
  7200. struct intel_encoder *intel_encoder;
  7201. struct intel_crtc *intel_crtc;
  7202. struct drm_connector *connector;
  7203. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7204. base.head) {
  7205. if (!intel_encoder->base.crtc)
  7206. continue;
  7207. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7208. if (prepare_pipes & (1 << intel_crtc->pipe))
  7209. intel_encoder->connectors_active = false;
  7210. }
  7211. intel_modeset_commit_output_state(dev);
  7212. /* Update computed state. */
  7213. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7214. base.head) {
  7215. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7216. }
  7217. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7218. if (!connector->encoder || !connector->encoder->crtc)
  7219. continue;
  7220. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7221. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7222. struct drm_property *dpms_property =
  7223. dev->mode_config.dpms_property;
  7224. connector->dpms = DRM_MODE_DPMS_ON;
  7225. drm_object_property_set_value(&connector->base,
  7226. dpms_property,
  7227. DRM_MODE_DPMS_ON);
  7228. intel_encoder = to_intel_encoder(connector->encoder);
  7229. intel_encoder->connectors_active = true;
  7230. }
  7231. }
  7232. }
  7233. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7234. {
  7235. int diff;
  7236. if (clock1 == clock2)
  7237. return true;
  7238. if (!clock1 || !clock2)
  7239. return false;
  7240. diff = abs(clock1 - clock2);
  7241. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7242. return true;
  7243. return false;
  7244. }
  7245. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7246. list_for_each_entry((intel_crtc), \
  7247. &(dev)->mode_config.crtc_list, \
  7248. base.head) \
  7249. if (mask & (1 <<(intel_crtc)->pipe))
  7250. static bool
  7251. intel_pipe_config_compare(struct drm_device *dev,
  7252. struct intel_crtc_config *current_config,
  7253. struct intel_crtc_config *pipe_config)
  7254. {
  7255. #define PIPE_CONF_CHECK_X(name) \
  7256. if (current_config->name != pipe_config->name) { \
  7257. DRM_ERROR("mismatch in " #name " " \
  7258. "(expected 0x%08x, found 0x%08x)\n", \
  7259. current_config->name, \
  7260. pipe_config->name); \
  7261. return false; \
  7262. }
  7263. #define PIPE_CONF_CHECK_I(name) \
  7264. if (current_config->name != pipe_config->name) { \
  7265. DRM_ERROR("mismatch in " #name " " \
  7266. "(expected %i, found %i)\n", \
  7267. current_config->name, \
  7268. pipe_config->name); \
  7269. return false; \
  7270. }
  7271. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7272. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7273. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7274. "(expected %i, found %i)\n", \
  7275. current_config->name & (mask), \
  7276. pipe_config->name & (mask)); \
  7277. return false; \
  7278. }
  7279. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7280. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7281. DRM_ERROR("mismatch in " #name " " \
  7282. "(expected %i, found %i)\n", \
  7283. current_config->name, \
  7284. pipe_config->name); \
  7285. return false; \
  7286. }
  7287. #define PIPE_CONF_QUIRK(quirk) \
  7288. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7289. PIPE_CONF_CHECK_I(cpu_transcoder);
  7290. PIPE_CONF_CHECK_I(has_pch_encoder);
  7291. PIPE_CONF_CHECK_I(fdi_lanes);
  7292. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7293. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7294. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7295. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7296. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7297. PIPE_CONF_CHECK_I(has_dp_encoder);
  7298. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7299. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7300. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7301. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7302. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7303. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7304. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7305. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7306. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7307. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7308. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7309. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7310. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7311. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7312. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7313. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7314. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7315. PIPE_CONF_CHECK_I(pixel_multiplier);
  7316. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7317. DRM_MODE_FLAG_INTERLACE);
  7318. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7319. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7320. DRM_MODE_FLAG_PHSYNC);
  7321. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7322. DRM_MODE_FLAG_NHSYNC);
  7323. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7324. DRM_MODE_FLAG_PVSYNC);
  7325. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7326. DRM_MODE_FLAG_NVSYNC);
  7327. }
  7328. PIPE_CONF_CHECK_I(pipe_src_w);
  7329. PIPE_CONF_CHECK_I(pipe_src_h);
  7330. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7331. /* pfit ratios are autocomputed by the hw on gen4+ */
  7332. if (INTEL_INFO(dev)->gen < 4)
  7333. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7334. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7335. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7336. if (current_config->pch_pfit.enabled) {
  7337. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7338. PIPE_CONF_CHECK_I(pch_pfit.size);
  7339. }
  7340. PIPE_CONF_CHECK_I(ips_enabled);
  7341. PIPE_CONF_CHECK_I(double_wide);
  7342. PIPE_CONF_CHECK_I(shared_dpll);
  7343. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7344. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7345. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7346. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7347. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7348. PIPE_CONF_CHECK_I(pipe_bpp);
  7349. if (!IS_HASWELL(dev)) {
  7350. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
  7351. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7352. }
  7353. #undef PIPE_CONF_CHECK_X
  7354. #undef PIPE_CONF_CHECK_I
  7355. #undef PIPE_CONF_CHECK_FLAGS
  7356. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7357. #undef PIPE_CONF_QUIRK
  7358. return true;
  7359. }
  7360. static void
  7361. check_connector_state(struct drm_device *dev)
  7362. {
  7363. struct intel_connector *connector;
  7364. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7365. base.head) {
  7366. /* This also checks the encoder/connector hw state with the
  7367. * ->get_hw_state callbacks. */
  7368. intel_connector_check_state(connector);
  7369. WARN(&connector->new_encoder->base != connector->base.encoder,
  7370. "connector's staged encoder doesn't match current encoder\n");
  7371. }
  7372. }
  7373. static void
  7374. check_encoder_state(struct drm_device *dev)
  7375. {
  7376. struct intel_encoder *encoder;
  7377. struct intel_connector *connector;
  7378. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7379. base.head) {
  7380. bool enabled = false;
  7381. bool active = false;
  7382. enum pipe pipe, tracked_pipe;
  7383. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7384. encoder->base.base.id,
  7385. drm_get_encoder_name(&encoder->base));
  7386. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7387. "encoder's stage crtc doesn't match current crtc\n");
  7388. WARN(encoder->connectors_active && !encoder->base.crtc,
  7389. "encoder's active_connectors set, but no crtc\n");
  7390. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7391. base.head) {
  7392. if (connector->base.encoder != &encoder->base)
  7393. continue;
  7394. enabled = true;
  7395. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7396. active = true;
  7397. }
  7398. WARN(!!encoder->base.crtc != enabled,
  7399. "encoder's enabled state mismatch "
  7400. "(expected %i, found %i)\n",
  7401. !!encoder->base.crtc, enabled);
  7402. WARN(active && !encoder->base.crtc,
  7403. "active encoder with no crtc\n");
  7404. WARN(encoder->connectors_active != active,
  7405. "encoder's computed active state doesn't match tracked active state "
  7406. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7407. active = encoder->get_hw_state(encoder, &pipe);
  7408. WARN(active != encoder->connectors_active,
  7409. "encoder's hw state doesn't match sw tracking "
  7410. "(expected %i, found %i)\n",
  7411. encoder->connectors_active, active);
  7412. if (!encoder->base.crtc)
  7413. continue;
  7414. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7415. WARN(active && pipe != tracked_pipe,
  7416. "active encoder's pipe doesn't match"
  7417. "(expected %i, found %i)\n",
  7418. tracked_pipe, pipe);
  7419. }
  7420. }
  7421. static void
  7422. check_crtc_state(struct drm_device *dev)
  7423. {
  7424. drm_i915_private_t *dev_priv = dev->dev_private;
  7425. struct intel_crtc *crtc;
  7426. struct intel_encoder *encoder;
  7427. struct intel_crtc_config pipe_config;
  7428. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7429. base.head) {
  7430. bool enabled = false;
  7431. bool active = false;
  7432. memset(&pipe_config, 0, sizeof(pipe_config));
  7433. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7434. crtc->base.base.id);
  7435. WARN(crtc->active && !crtc->base.enabled,
  7436. "active crtc, but not enabled in sw tracking\n");
  7437. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7438. base.head) {
  7439. if (encoder->base.crtc != &crtc->base)
  7440. continue;
  7441. enabled = true;
  7442. if (encoder->connectors_active)
  7443. active = true;
  7444. }
  7445. WARN(active != crtc->active,
  7446. "crtc's computed active state doesn't match tracked active state "
  7447. "(expected %i, found %i)\n", active, crtc->active);
  7448. WARN(enabled != crtc->base.enabled,
  7449. "crtc's computed enabled state doesn't match tracked enabled state "
  7450. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7451. active = dev_priv->display.get_pipe_config(crtc,
  7452. &pipe_config);
  7453. /* hw state is inconsistent with the pipe A quirk */
  7454. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7455. active = crtc->active;
  7456. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7457. base.head) {
  7458. enum pipe pipe;
  7459. if (encoder->base.crtc != &crtc->base)
  7460. continue;
  7461. if (encoder->get_config &&
  7462. encoder->get_hw_state(encoder, &pipe))
  7463. encoder->get_config(encoder, &pipe_config);
  7464. }
  7465. WARN(crtc->active != active,
  7466. "crtc active state doesn't match with hw state "
  7467. "(expected %i, found %i)\n", crtc->active, active);
  7468. if (active &&
  7469. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7470. WARN(1, "pipe state doesn't match!\n");
  7471. intel_dump_pipe_config(crtc, &pipe_config,
  7472. "[hw state]");
  7473. intel_dump_pipe_config(crtc, &crtc->config,
  7474. "[sw state]");
  7475. }
  7476. }
  7477. }
  7478. static void
  7479. check_shared_dpll_state(struct drm_device *dev)
  7480. {
  7481. drm_i915_private_t *dev_priv = dev->dev_private;
  7482. struct intel_crtc *crtc;
  7483. struct intel_dpll_hw_state dpll_hw_state;
  7484. int i;
  7485. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7486. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7487. int enabled_crtcs = 0, active_crtcs = 0;
  7488. bool active;
  7489. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7490. DRM_DEBUG_KMS("%s\n", pll->name);
  7491. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7492. WARN(pll->active > pll->refcount,
  7493. "more active pll users than references: %i vs %i\n",
  7494. pll->active, pll->refcount);
  7495. WARN(pll->active && !pll->on,
  7496. "pll in active use but not on in sw tracking\n");
  7497. WARN(pll->on && !pll->active,
  7498. "pll in on but not on in use in sw tracking\n");
  7499. WARN(pll->on != active,
  7500. "pll on state mismatch (expected %i, found %i)\n",
  7501. pll->on, active);
  7502. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7503. base.head) {
  7504. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7505. enabled_crtcs++;
  7506. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7507. active_crtcs++;
  7508. }
  7509. WARN(pll->active != active_crtcs,
  7510. "pll active crtcs mismatch (expected %i, found %i)\n",
  7511. pll->active, active_crtcs);
  7512. WARN(pll->refcount != enabled_crtcs,
  7513. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7514. pll->refcount, enabled_crtcs);
  7515. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7516. sizeof(dpll_hw_state)),
  7517. "pll hw state mismatch\n");
  7518. }
  7519. }
  7520. void
  7521. intel_modeset_check_state(struct drm_device *dev)
  7522. {
  7523. check_connector_state(dev);
  7524. check_encoder_state(dev);
  7525. check_crtc_state(dev);
  7526. check_shared_dpll_state(dev);
  7527. }
  7528. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7529. int dotclock)
  7530. {
  7531. /*
  7532. * FDI already provided one idea for the dotclock.
  7533. * Yell if the encoder disagrees.
  7534. */
  7535. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
  7536. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7537. pipe_config->adjusted_mode.clock, dotclock);
  7538. }
  7539. static int __intel_set_mode(struct drm_crtc *crtc,
  7540. struct drm_display_mode *mode,
  7541. int x, int y, struct drm_framebuffer *fb)
  7542. {
  7543. struct drm_device *dev = crtc->dev;
  7544. drm_i915_private_t *dev_priv = dev->dev_private;
  7545. struct drm_display_mode *saved_mode, *saved_hwmode;
  7546. struct intel_crtc_config *pipe_config = NULL;
  7547. struct intel_crtc *intel_crtc;
  7548. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7549. int ret = 0;
  7550. saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
  7551. if (!saved_mode)
  7552. return -ENOMEM;
  7553. saved_hwmode = saved_mode + 1;
  7554. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7555. &prepare_pipes, &disable_pipes);
  7556. *saved_hwmode = crtc->hwmode;
  7557. *saved_mode = crtc->mode;
  7558. /* Hack: Because we don't (yet) support global modeset on multiple
  7559. * crtcs, we don't keep track of the new mode for more than one crtc.
  7560. * Hence simply check whether any bit is set in modeset_pipes in all the
  7561. * pieces of code that are not yet converted to deal with mutliple crtcs
  7562. * changing their mode at the same time. */
  7563. if (modeset_pipes) {
  7564. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7565. if (IS_ERR(pipe_config)) {
  7566. ret = PTR_ERR(pipe_config);
  7567. pipe_config = NULL;
  7568. goto out;
  7569. }
  7570. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7571. "[modeset]");
  7572. }
  7573. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7574. intel_crtc_disable(&intel_crtc->base);
  7575. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7576. if (intel_crtc->base.enabled)
  7577. dev_priv->display.crtc_disable(&intel_crtc->base);
  7578. }
  7579. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7580. * to set it here already despite that we pass it down the callchain.
  7581. */
  7582. if (modeset_pipes) {
  7583. crtc->mode = *mode;
  7584. /* mode_set/enable/disable functions rely on a correct pipe
  7585. * config. */
  7586. to_intel_crtc(crtc)->config = *pipe_config;
  7587. }
  7588. /* Only after disabling all output pipelines that will be changed can we
  7589. * update the the output configuration. */
  7590. intel_modeset_update_state(dev, prepare_pipes);
  7591. if (dev_priv->display.modeset_global_resources)
  7592. dev_priv->display.modeset_global_resources(dev);
  7593. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7594. * on the DPLL.
  7595. */
  7596. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7597. ret = intel_crtc_mode_set(&intel_crtc->base,
  7598. x, y, fb);
  7599. if (ret)
  7600. goto done;
  7601. }
  7602. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7603. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7604. dev_priv->display.crtc_enable(&intel_crtc->base);
  7605. if (modeset_pipes) {
  7606. /* Store real post-adjustment hardware mode. */
  7607. crtc->hwmode = pipe_config->adjusted_mode;
  7608. /* Calculate and store various constants which
  7609. * are later needed by vblank and swap-completion
  7610. * timestamping. They are derived from true hwmode.
  7611. */
  7612. drm_calc_timestamping_constants(crtc);
  7613. }
  7614. /* FIXME: add subpixel order */
  7615. done:
  7616. if (ret && crtc->enabled) {
  7617. crtc->hwmode = *saved_hwmode;
  7618. crtc->mode = *saved_mode;
  7619. }
  7620. out:
  7621. kfree(pipe_config);
  7622. kfree(saved_mode);
  7623. return ret;
  7624. }
  7625. static int intel_set_mode(struct drm_crtc *crtc,
  7626. struct drm_display_mode *mode,
  7627. int x, int y, struct drm_framebuffer *fb)
  7628. {
  7629. int ret;
  7630. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7631. if (ret == 0)
  7632. intel_modeset_check_state(crtc->dev);
  7633. return ret;
  7634. }
  7635. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7636. {
  7637. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7638. }
  7639. #undef for_each_intel_crtc_masked
  7640. static void intel_set_config_free(struct intel_set_config *config)
  7641. {
  7642. if (!config)
  7643. return;
  7644. kfree(config->save_connector_encoders);
  7645. kfree(config->save_encoder_crtcs);
  7646. kfree(config);
  7647. }
  7648. static int intel_set_config_save_state(struct drm_device *dev,
  7649. struct intel_set_config *config)
  7650. {
  7651. struct drm_encoder *encoder;
  7652. struct drm_connector *connector;
  7653. int count;
  7654. config->save_encoder_crtcs =
  7655. kcalloc(dev->mode_config.num_encoder,
  7656. sizeof(struct drm_crtc *), GFP_KERNEL);
  7657. if (!config->save_encoder_crtcs)
  7658. return -ENOMEM;
  7659. config->save_connector_encoders =
  7660. kcalloc(dev->mode_config.num_connector,
  7661. sizeof(struct drm_encoder *), GFP_KERNEL);
  7662. if (!config->save_connector_encoders)
  7663. return -ENOMEM;
  7664. /* Copy data. Note that driver private data is not affected.
  7665. * Should anything bad happen only the expected state is
  7666. * restored, not the drivers personal bookkeeping.
  7667. */
  7668. count = 0;
  7669. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7670. config->save_encoder_crtcs[count++] = encoder->crtc;
  7671. }
  7672. count = 0;
  7673. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7674. config->save_connector_encoders[count++] = connector->encoder;
  7675. }
  7676. return 0;
  7677. }
  7678. static void intel_set_config_restore_state(struct drm_device *dev,
  7679. struct intel_set_config *config)
  7680. {
  7681. struct intel_encoder *encoder;
  7682. struct intel_connector *connector;
  7683. int count;
  7684. count = 0;
  7685. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7686. encoder->new_crtc =
  7687. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7688. }
  7689. count = 0;
  7690. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7691. connector->new_encoder =
  7692. to_intel_encoder(config->save_connector_encoders[count++]);
  7693. }
  7694. }
  7695. static bool
  7696. is_crtc_connector_off(struct drm_mode_set *set)
  7697. {
  7698. int i;
  7699. if (set->num_connectors == 0)
  7700. return false;
  7701. if (WARN_ON(set->connectors == NULL))
  7702. return false;
  7703. for (i = 0; i < set->num_connectors; i++)
  7704. if (set->connectors[i]->encoder &&
  7705. set->connectors[i]->encoder->crtc == set->crtc &&
  7706. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7707. return true;
  7708. return false;
  7709. }
  7710. static void
  7711. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7712. struct intel_set_config *config)
  7713. {
  7714. /* We should be able to check here if the fb has the same properties
  7715. * and then just flip_or_move it */
  7716. if (is_crtc_connector_off(set)) {
  7717. config->mode_changed = true;
  7718. } else if (set->crtc->fb != set->fb) {
  7719. /* If we have no fb then treat it as a full mode set */
  7720. if (set->crtc->fb == NULL) {
  7721. struct intel_crtc *intel_crtc =
  7722. to_intel_crtc(set->crtc);
  7723. if (intel_crtc->active && i915_fastboot) {
  7724. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7725. config->fb_changed = true;
  7726. } else {
  7727. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7728. config->mode_changed = true;
  7729. }
  7730. } else if (set->fb == NULL) {
  7731. config->mode_changed = true;
  7732. } else if (set->fb->pixel_format !=
  7733. set->crtc->fb->pixel_format) {
  7734. config->mode_changed = true;
  7735. } else {
  7736. config->fb_changed = true;
  7737. }
  7738. }
  7739. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7740. config->fb_changed = true;
  7741. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7742. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7743. drm_mode_debug_printmodeline(&set->crtc->mode);
  7744. drm_mode_debug_printmodeline(set->mode);
  7745. config->mode_changed = true;
  7746. }
  7747. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7748. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7749. }
  7750. static int
  7751. intel_modeset_stage_output_state(struct drm_device *dev,
  7752. struct drm_mode_set *set,
  7753. struct intel_set_config *config)
  7754. {
  7755. struct drm_crtc *new_crtc;
  7756. struct intel_connector *connector;
  7757. struct intel_encoder *encoder;
  7758. int ro;
  7759. /* The upper layers ensure that we either disable a crtc or have a list
  7760. * of connectors. For paranoia, double-check this. */
  7761. WARN_ON(!set->fb && (set->num_connectors != 0));
  7762. WARN_ON(set->fb && (set->num_connectors == 0));
  7763. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7764. base.head) {
  7765. /* Otherwise traverse passed in connector list and get encoders
  7766. * for them. */
  7767. for (ro = 0; ro < set->num_connectors; ro++) {
  7768. if (set->connectors[ro] == &connector->base) {
  7769. connector->new_encoder = connector->encoder;
  7770. break;
  7771. }
  7772. }
  7773. /* If we disable the crtc, disable all its connectors. Also, if
  7774. * the connector is on the changing crtc but not on the new
  7775. * connector list, disable it. */
  7776. if ((!set->fb || ro == set->num_connectors) &&
  7777. connector->base.encoder &&
  7778. connector->base.encoder->crtc == set->crtc) {
  7779. connector->new_encoder = NULL;
  7780. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7781. connector->base.base.id,
  7782. drm_get_connector_name(&connector->base));
  7783. }
  7784. if (&connector->new_encoder->base != connector->base.encoder) {
  7785. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7786. config->mode_changed = true;
  7787. }
  7788. }
  7789. /* connector->new_encoder is now updated for all connectors. */
  7790. /* Update crtc of enabled connectors. */
  7791. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7792. base.head) {
  7793. if (!connector->new_encoder)
  7794. continue;
  7795. new_crtc = connector->new_encoder->base.crtc;
  7796. for (ro = 0; ro < set->num_connectors; ro++) {
  7797. if (set->connectors[ro] == &connector->base)
  7798. new_crtc = set->crtc;
  7799. }
  7800. /* Make sure the new CRTC will work with the encoder */
  7801. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7802. new_crtc)) {
  7803. return -EINVAL;
  7804. }
  7805. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7806. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7807. connector->base.base.id,
  7808. drm_get_connector_name(&connector->base),
  7809. new_crtc->base.id);
  7810. }
  7811. /* Check for any encoders that needs to be disabled. */
  7812. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7813. base.head) {
  7814. list_for_each_entry(connector,
  7815. &dev->mode_config.connector_list,
  7816. base.head) {
  7817. if (connector->new_encoder == encoder) {
  7818. WARN_ON(!connector->new_encoder->new_crtc);
  7819. goto next_encoder;
  7820. }
  7821. }
  7822. encoder->new_crtc = NULL;
  7823. next_encoder:
  7824. /* Only now check for crtc changes so we don't miss encoders
  7825. * that will be disabled. */
  7826. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7827. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7828. config->mode_changed = true;
  7829. }
  7830. }
  7831. /* Now we've also updated encoder->new_crtc for all encoders. */
  7832. return 0;
  7833. }
  7834. static int intel_crtc_set_config(struct drm_mode_set *set)
  7835. {
  7836. struct drm_device *dev;
  7837. struct drm_mode_set save_set;
  7838. struct intel_set_config *config;
  7839. int ret;
  7840. BUG_ON(!set);
  7841. BUG_ON(!set->crtc);
  7842. BUG_ON(!set->crtc->helper_private);
  7843. /* Enforce sane interface api - has been abused by the fb helper. */
  7844. BUG_ON(!set->mode && set->fb);
  7845. BUG_ON(set->fb && set->num_connectors == 0);
  7846. if (set->fb) {
  7847. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7848. set->crtc->base.id, set->fb->base.id,
  7849. (int)set->num_connectors, set->x, set->y);
  7850. } else {
  7851. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7852. }
  7853. dev = set->crtc->dev;
  7854. ret = -ENOMEM;
  7855. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7856. if (!config)
  7857. goto out_config;
  7858. ret = intel_set_config_save_state(dev, config);
  7859. if (ret)
  7860. goto out_config;
  7861. save_set.crtc = set->crtc;
  7862. save_set.mode = &set->crtc->mode;
  7863. save_set.x = set->crtc->x;
  7864. save_set.y = set->crtc->y;
  7865. save_set.fb = set->crtc->fb;
  7866. /* Compute whether we need a full modeset, only an fb base update or no
  7867. * change at all. In the future we might also check whether only the
  7868. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7869. * such cases. */
  7870. intel_set_config_compute_mode_changes(set, config);
  7871. ret = intel_modeset_stage_output_state(dev, set, config);
  7872. if (ret)
  7873. goto fail;
  7874. if (config->mode_changed) {
  7875. ret = intel_set_mode(set->crtc, set->mode,
  7876. set->x, set->y, set->fb);
  7877. } else if (config->fb_changed) {
  7878. intel_crtc_wait_for_pending_flips(set->crtc);
  7879. ret = intel_pipe_set_base(set->crtc,
  7880. set->x, set->y, set->fb);
  7881. }
  7882. if (ret) {
  7883. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7884. set->crtc->base.id, ret);
  7885. fail:
  7886. intel_set_config_restore_state(dev, config);
  7887. /* Try to restore the config */
  7888. if (config->mode_changed &&
  7889. intel_set_mode(save_set.crtc, save_set.mode,
  7890. save_set.x, save_set.y, save_set.fb))
  7891. DRM_ERROR("failed to restore config after modeset failure\n");
  7892. }
  7893. out_config:
  7894. intel_set_config_free(config);
  7895. return ret;
  7896. }
  7897. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7898. .cursor_set = intel_crtc_cursor_set,
  7899. .cursor_move = intel_crtc_cursor_move,
  7900. .gamma_set = intel_crtc_gamma_set,
  7901. .set_config = intel_crtc_set_config,
  7902. .destroy = intel_crtc_destroy,
  7903. .page_flip = intel_crtc_page_flip,
  7904. };
  7905. static void intel_cpu_pll_init(struct drm_device *dev)
  7906. {
  7907. if (HAS_DDI(dev))
  7908. intel_ddi_pll_init(dev);
  7909. }
  7910. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7911. struct intel_shared_dpll *pll,
  7912. struct intel_dpll_hw_state *hw_state)
  7913. {
  7914. uint32_t val;
  7915. val = I915_READ(PCH_DPLL(pll->id));
  7916. hw_state->dpll = val;
  7917. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7918. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7919. return val & DPLL_VCO_ENABLE;
  7920. }
  7921. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7922. struct intel_shared_dpll *pll)
  7923. {
  7924. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7925. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7926. }
  7927. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7928. struct intel_shared_dpll *pll)
  7929. {
  7930. /* PCH refclock must be enabled first */
  7931. assert_pch_refclk_enabled(dev_priv);
  7932. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7933. /* Wait for the clocks to stabilize. */
  7934. POSTING_READ(PCH_DPLL(pll->id));
  7935. udelay(150);
  7936. /* The pixel multiplier can only be updated once the
  7937. * DPLL is enabled and the clocks are stable.
  7938. *
  7939. * So write it again.
  7940. */
  7941. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7942. POSTING_READ(PCH_DPLL(pll->id));
  7943. udelay(200);
  7944. }
  7945. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7946. struct intel_shared_dpll *pll)
  7947. {
  7948. struct drm_device *dev = dev_priv->dev;
  7949. struct intel_crtc *crtc;
  7950. /* Make sure no transcoder isn't still depending on us. */
  7951. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7952. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7953. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7954. }
  7955. I915_WRITE(PCH_DPLL(pll->id), 0);
  7956. POSTING_READ(PCH_DPLL(pll->id));
  7957. udelay(200);
  7958. }
  7959. static char *ibx_pch_dpll_names[] = {
  7960. "PCH DPLL A",
  7961. "PCH DPLL B",
  7962. };
  7963. static void ibx_pch_dpll_init(struct drm_device *dev)
  7964. {
  7965. struct drm_i915_private *dev_priv = dev->dev_private;
  7966. int i;
  7967. dev_priv->num_shared_dpll = 2;
  7968. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7969. dev_priv->shared_dplls[i].id = i;
  7970. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7971. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7972. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7973. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7974. dev_priv->shared_dplls[i].get_hw_state =
  7975. ibx_pch_dpll_get_hw_state;
  7976. }
  7977. }
  7978. static void intel_shared_dpll_init(struct drm_device *dev)
  7979. {
  7980. struct drm_i915_private *dev_priv = dev->dev_private;
  7981. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7982. ibx_pch_dpll_init(dev);
  7983. else
  7984. dev_priv->num_shared_dpll = 0;
  7985. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7986. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7987. dev_priv->num_shared_dpll);
  7988. }
  7989. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7990. {
  7991. drm_i915_private_t *dev_priv = dev->dev_private;
  7992. struct intel_crtc *intel_crtc;
  7993. int i;
  7994. intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  7995. if (intel_crtc == NULL)
  7996. return;
  7997. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7998. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7999. for (i = 0; i < 256; i++) {
  8000. intel_crtc->lut_r[i] = i;
  8001. intel_crtc->lut_g[i] = i;
  8002. intel_crtc->lut_b[i] = i;
  8003. }
  8004. /* Swap pipes & planes for FBC on pre-965 */
  8005. intel_crtc->pipe = pipe;
  8006. intel_crtc->plane = pipe;
  8007. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  8008. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8009. intel_crtc->plane = !pipe;
  8010. }
  8011. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8012. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8013. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8014. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8015. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8016. }
  8017. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8018. struct drm_file *file)
  8019. {
  8020. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8021. struct drm_mode_object *drmmode_obj;
  8022. struct intel_crtc *crtc;
  8023. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8024. return -ENODEV;
  8025. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8026. DRM_MODE_OBJECT_CRTC);
  8027. if (!drmmode_obj) {
  8028. DRM_ERROR("no such CRTC id\n");
  8029. return -EINVAL;
  8030. }
  8031. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8032. pipe_from_crtc_id->pipe = crtc->pipe;
  8033. return 0;
  8034. }
  8035. static int intel_encoder_clones(struct intel_encoder *encoder)
  8036. {
  8037. struct drm_device *dev = encoder->base.dev;
  8038. struct intel_encoder *source_encoder;
  8039. int index_mask = 0;
  8040. int entry = 0;
  8041. list_for_each_entry(source_encoder,
  8042. &dev->mode_config.encoder_list, base.head) {
  8043. if (encoder == source_encoder)
  8044. index_mask |= (1 << entry);
  8045. /* Intel hw has only one MUX where enocoders could be cloned. */
  8046. if (encoder->cloneable && source_encoder->cloneable)
  8047. index_mask |= (1 << entry);
  8048. entry++;
  8049. }
  8050. return index_mask;
  8051. }
  8052. static bool has_edp_a(struct drm_device *dev)
  8053. {
  8054. struct drm_i915_private *dev_priv = dev->dev_private;
  8055. if (!IS_MOBILE(dev))
  8056. return false;
  8057. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8058. return false;
  8059. if (IS_GEN5(dev) &&
  8060. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8061. return false;
  8062. return true;
  8063. }
  8064. static void intel_setup_outputs(struct drm_device *dev)
  8065. {
  8066. struct drm_i915_private *dev_priv = dev->dev_private;
  8067. struct intel_encoder *encoder;
  8068. bool dpd_is_edp = false;
  8069. intel_lvds_init(dev);
  8070. if (!IS_ULT(dev))
  8071. intel_crt_init(dev);
  8072. if (HAS_DDI(dev)) {
  8073. int found;
  8074. /* Haswell uses DDI functions to detect digital outputs */
  8075. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8076. /* DDI A only supports eDP */
  8077. if (found)
  8078. intel_ddi_init(dev, PORT_A);
  8079. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8080. * register */
  8081. found = I915_READ(SFUSE_STRAP);
  8082. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8083. intel_ddi_init(dev, PORT_B);
  8084. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8085. intel_ddi_init(dev, PORT_C);
  8086. if (found & SFUSE_STRAP_DDID_DETECTED)
  8087. intel_ddi_init(dev, PORT_D);
  8088. } else if (HAS_PCH_SPLIT(dev)) {
  8089. int found;
  8090. dpd_is_edp = intel_dpd_is_edp(dev);
  8091. if (has_edp_a(dev))
  8092. intel_dp_init(dev, DP_A, PORT_A);
  8093. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8094. /* PCH SDVOB multiplex with HDMIB */
  8095. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8096. if (!found)
  8097. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8098. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8099. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8100. }
  8101. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8102. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8103. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8104. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8105. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8106. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8107. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8108. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8109. } else if (IS_VALLEYVIEW(dev)) {
  8110. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8111. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8112. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8113. PORT_C);
  8114. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8115. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8116. PORT_C);
  8117. }
  8118. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8119. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8120. PORT_B);
  8121. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8122. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8123. }
  8124. intel_dsi_init(dev);
  8125. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8126. bool found = false;
  8127. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8128. DRM_DEBUG_KMS("probing SDVOB\n");
  8129. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8130. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8131. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8132. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8133. }
  8134. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8135. intel_dp_init(dev, DP_B, PORT_B);
  8136. }
  8137. /* Before G4X SDVOC doesn't have its own detect register */
  8138. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8139. DRM_DEBUG_KMS("probing SDVOC\n");
  8140. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8141. }
  8142. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8143. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8144. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8145. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8146. }
  8147. if (SUPPORTS_INTEGRATED_DP(dev))
  8148. intel_dp_init(dev, DP_C, PORT_C);
  8149. }
  8150. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8151. (I915_READ(DP_D) & DP_DETECTED))
  8152. intel_dp_init(dev, DP_D, PORT_D);
  8153. } else if (IS_GEN2(dev))
  8154. intel_dvo_init(dev);
  8155. if (SUPPORTS_TV(dev))
  8156. intel_tv_init(dev);
  8157. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8158. encoder->base.possible_crtcs = encoder->crtc_mask;
  8159. encoder->base.possible_clones =
  8160. intel_encoder_clones(encoder);
  8161. }
  8162. intel_init_pch_refclk(dev);
  8163. drm_helper_move_panel_connectors_to_head(dev);
  8164. }
  8165. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8166. {
  8167. drm_framebuffer_cleanup(&fb->base);
  8168. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8169. }
  8170. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8171. {
  8172. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8173. intel_framebuffer_fini(intel_fb);
  8174. kfree(intel_fb);
  8175. }
  8176. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8177. struct drm_file *file,
  8178. unsigned int *handle)
  8179. {
  8180. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8181. struct drm_i915_gem_object *obj = intel_fb->obj;
  8182. return drm_gem_handle_create(file, &obj->base, handle);
  8183. }
  8184. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8185. .destroy = intel_user_framebuffer_destroy,
  8186. .create_handle = intel_user_framebuffer_create_handle,
  8187. };
  8188. int intel_framebuffer_init(struct drm_device *dev,
  8189. struct intel_framebuffer *intel_fb,
  8190. struct drm_mode_fb_cmd2 *mode_cmd,
  8191. struct drm_i915_gem_object *obj)
  8192. {
  8193. int pitch_limit;
  8194. int ret;
  8195. if (obj->tiling_mode == I915_TILING_Y) {
  8196. DRM_DEBUG("hardware does not support tiling Y\n");
  8197. return -EINVAL;
  8198. }
  8199. if (mode_cmd->pitches[0] & 63) {
  8200. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8201. mode_cmd->pitches[0]);
  8202. return -EINVAL;
  8203. }
  8204. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8205. pitch_limit = 32*1024;
  8206. } else if (INTEL_INFO(dev)->gen >= 4) {
  8207. if (obj->tiling_mode)
  8208. pitch_limit = 16*1024;
  8209. else
  8210. pitch_limit = 32*1024;
  8211. } else if (INTEL_INFO(dev)->gen >= 3) {
  8212. if (obj->tiling_mode)
  8213. pitch_limit = 8*1024;
  8214. else
  8215. pitch_limit = 16*1024;
  8216. } else
  8217. /* XXX DSPC is limited to 4k tiled */
  8218. pitch_limit = 8*1024;
  8219. if (mode_cmd->pitches[0] > pitch_limit) {
  8220. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8221. obj->tiling_mode ? "tiled" : "linear",
  8222. mode_cmd->pitches[0], pitch_limit);
  8223. return -EINVAL;
  8224. }
  8225. if (obj->tiling_mode != I915_TILING_NONE &&
  8226. mode_cmd->pitches[0] != obj->stride) {
  8227. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8228. mode_cmd->pitches[0], obj->stride);
  8229. return -EINVAL;
  8230. }
  8231. /* Reject formats not supported by any plane early. */
  8232. switch (mode_cmd->pixel_format) {
  8233. case DRM_FORMAT_C8:
  8234. case DRM_FORMAT_RGB565:
  8235. case DRM_FORMAT_XRGB8888:
  8236. case DRM_FORMAT_ARGB8888:
  8237. break;
  8238. case DRM_FORMAT_XRGB1555:
  8239. case DRM_FORMAT_ARGB1555:
  8240. if (INTEL_INFO(dev)->gen > 3) {
  8241. DRM_DEBUG("unsupported pixel format: %s\n",
  8242. drm_get_format_name(mode_cmd->pixel_format));
  8243. return -EINVAL;
  8244. }
  8245. break;
  8246. case DRM_FORMAT_XBGR8888:
  8247. case DRM_FORMAT_ABGR8888:
  8248. case DRM_FORMAT_XRGB2101010:
  8249. case DRM_FORMAT_ARGB2101010:
  8250. case DRM_FORMAT_XBGR2101010:
  8251. case DRM_FORMAT_ABGR2101010:
  8252. if (INTEL_INFO(dev)->gen < 4) {
  8253. DRM_DEBUG("unsupported pixel format: %s\n",
  8254. drm_get_format_name(mode_cmd->pixel_format));
  8255. return -EINVAL;
  8256. }
  8257. break;
  8258. case DRM_FORMAT_YUYV:
  8259. case DRM_FORMAT_UYVY:
  8260. case DRM_FORMAT_YVYU:
  8261. case DRM_FORMAT_VYUY:
  8262. if (INTEL_INFO(dev)->gen < 5) {
  8263. DRM_DEBUG("unsupported pixel format: %s\n",
  8264. drm_get_format_name(mode_cmd->pixel_format));
  8265. return -EINVAL;
  8266. }
  8267. break;
  8268. default:
  8269. DRM_DEBUG("unsupported pixel format: %s\n",
  8270. drm_get_format_name(mode_cmd->pixel_format));
  8271. return -EINVAL;
  8272. }
  8273. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8274. if (mode_cmd->offsets[0] != 0)
  8275. return -EINVAL;
  8276. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8277. intel_fb->obj = obj;
  8278. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8279. if (ret) {
  8280. DRM_ERROR("framebuffer init failed %d\n", ret);
  8281. return ret;
  8282. }
  8283. return 0;
  8284. }
  8285. static struct drm_framebuffer *
  8286. intel_user_framebuffer_create(struct drm_device *dev,
  8287. struct drm_file *filp,
  8288. struct drm_mode_fb_cmd2 *mode_cmd)
  8289. {
  8290. struct drm_i915_gem_object *obj;
  8291. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8292. mode_cmd->handles[0]));
  8293. if (&obj->base == NULL)
  8294. return ERR_PTR(-ENOENT);
  8295. return intel_framebuffer_create(dev, mode_cmd, obj);
  8296. }
  8297. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8298. .fb_create = intel_user_framebuffer_create,
  8299. .output_poll_changed = intel_fb_output_poll_changed,
  8300. };
  8301. /* Set up chip specific display functions */
  8302. static void intel_init_display(struct drm_device *dev)
  8303. {
  8304. struct drm_i915_private *dev_priv = dev->dev_private;
  8305. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8306. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8307. else if (IS_VALLEYVIEW(dev))
  8308. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8309. else if (IS_PINEVIEW(dev))
  8310. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8311. else
  8312. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8313. if (HAS_DDI(dev)) {
  8314. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8315. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8316. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8317. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8318. dev_priv->display.off = haswell_crtc_off;
  8319. dev_priv->display.update_plane = ironlake_update_plane;
  8320. } else if (HAS_PCH_SPLIT(dev)) {
  8321. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8322. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8323. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8324. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8325. dev_priv->display.off = ironlake_crtc_off;
  8326. dev_priv->display.update_plane = ironlake_update_plane;
  8327. } else if (IS_VALLEYVIEW(dev)) {
  8328. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8329. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8330. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8331. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8332. dev_priv->display.off = i9xx_crtc_off;
  8333. dev_priv->display.update_plane = i9xx_update_plane;
  8334. } else {
  8335. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8336. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8337. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8338. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8339. dev_priv->display.off = i9xx_crtc_off;
  8340. dev_priv->display.update_plane = i9xx_update_plane;
  8341. }
  8342. /* Returns the core display clock speed */
  8343. if (IS_VALLEYVIEW(dev))
  8344. dev_priv->display.get_display_clock_speed =
  8345. valleyview_get_display_clock_speed;
  8346. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8347. dev_priv->display.get_display_clock_speed =
  8348. i945_get_display_clock_speed;
  8349. else if (IS_I915G(dev))
  8350. dev_priv->display.get_display_clock_speed =
  8351. i915_get_display_clock_speed;
  8352. else if (IS_I945GM(dev) || IS_845G(dev))
  8353. dev_priv->display.get_display_clock_speed =
  8354. i9xx_misc_get_display_clock_speed;
  8355. else if (IS_PINEVIEW(dev))
  8356. dev_priv->display.get_display_clock_speed =
  8357. pnv_get_display_clock_speed;
  8358. else if (IS_I915GM(dev))
  8359. dev_priv->display.get_display_clock_speed =
  8360. i915gm_get_display_clock_speed;
  8361. else if (IS_I865G(dev))
  8362. dev_priv->display.get_display_clock_speed =
  8363. i865_get_display_clock_speed;
  8364. else if (IS_I85X(dev))
  8365. dev_priv->display.get_display_clock_speed =
  8366. i855_get_display_clock_speed;
  8367. else /* 852, 830 */
  8368. dev_priv->display.get_display_clock_speed =
  8369. i830_get_display_clock_speed;
  8370. if (HAS_PCH_SPLIT(dev)) {
  8371. if (IS_GEN5(dev)) {
  8372. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8373. dev_priv->display.write_eld = ironlake_write_eld;
  8374. } else if (IS_GEN6(dev)) {
  8375. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8376. dev_priv->display.write_eld = ironlake_write_eld;
  8377. } else if (IS_IVYBRIDGE(dev)) {
  8378. /* FIXME: detect B0+ stepping and use auto training */
  8379. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8380. dev_priv->display.write_eld = ironlake_write_eld;
  8381. dev_priv->display.modeset_global_resources =
  8382. ivb_modeset_global_resources;
  8383. } else if (IS_HASWELL(dev)) {
  8384. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8385. dev_priv->display.write_eld = haswell_write_eld;
  8386. dev_priv->display.modeset_global_resources =
  8387. haswell_modeset_global_resources;
  8388. }
  8389. } else if (IS_G4X(dev)) {
  8390. dev_priv->display.write_eld = g4x_write_eld;
  8391. }
  8392. /* Default just returns -ENODEV to indicate unsupported */
  8393. dev_priv->display.queue_flip = intel_default_queue_flip;
  8394. switch (INTEL_INFO(dev)->gen) {
  8395. case 2:
  8396. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8397. break;
  8398. case 3:
  8399. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8400. break;
  8401. case 4:
  8402. case 5:
  8403. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8404. break;
  8405. case 6:
  8406. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8407. break;
  8408. case 7:
  8409. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8410. break;
  8411. }
  8412. }
  8413. /*
  8414. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8415. * resume, or other times. This quirk makes sure that's the case for
  8416. * affected systems.
  8417. */
  8418. static void quirk_pipea_force(struct drm_device *dev)
  8419. {
  8420. struct drm_i915_private *dev_priv = dev->dev_private;
  8421. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8422. DRM_INFO("applying pipe a force quirk\n");
  8423. }
  8424. /*
  8425. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8426. */
  8427. static void quirk_ssc_force_disable(struct drm_device *dev)
  8428. {
  8429. struct drm_i915_private *dev_priv = dev->dev_private;
  8430. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8431. DRM_INFO("applying lvds SSC disable quirk\n");
  8432. }
  8433. /*
  8434. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8435. * brightness value
  8436. */
  8437. static void quirk_invert_brightness(struct drm_device *dev)
  8438. {
  8439. struct drm_i915_private *dev_priv = dev->dev_private;
  8440. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8441. DRM_INFO("applying inverted panel brightness quirk\n");
  8442. }
  8443. /*
  8444. * Some machines (Dell XPS13) suffer broken backlight controls if
  8445. * BLM_PCH_PWM_ENABLE is set.
  8446. */
  8447. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8448. {
  8449. struct drm_i915_private *dev_priv = dev->dev_private;
  8450. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8451. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8452. }
  8453. struct intel_quirk {
  8454. int device;
  8455. int subsystem_vendor;
  8456. int subsystem_device;
  8457. void (*hook)(struct drm_device *dev);
  8458. };
  8459. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8460. struct intel_dmi_quirk {
  8461. void (*hook)(struct drm_device *dev);
  8462. const struct dmi_system_id (*dmi_id_list)[];
  8463. };
  8464. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8465. {
  8466. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8467. return 1;
  8468. }
  8469. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8470. {
  8471. .dmi_id_list = &(const struct dmi_system_id[]) {
  8472. {
  8473. .callback = intel_dmi_reverse_brightness,
  8474. .ident = "NCR Corporation",
  8475. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8476. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8477. },
  8478. },
  8479. { } /* terminating entry */
  8480. },
  8481. .hook = quirk_invert_brightness,
  8482. },
  8483. };
  8484. static struct intel_quirk intel_quirks[] = {
  8485. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8486. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8487. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8488. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8489. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8490. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8491. /* 830/845 need to leave pipe A & dpll A up */
  8492. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8493. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8494. /* Lenovo U160 cannot use SSC on LVDS */
  8495. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8496. /* Sony Vaio Y cannot use SSC on LVDS */
  8497. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8498. /*
  8499. * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
  8500. * seem to use inverted backlight PWM.
  8501. */
  8502. { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
  8503. /* Dell XPS13 HD Sandy Bridge */
  8504. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8505. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8506. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8507. };
  8508. static void intel_init_quirks(struct drm_device *dev)
  8509. {
  8510. struct pci_dev *d = dev->pdev;
  8511. int i;
  8512. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8513. struct intel_quirk *q = &intel_quirks[i];
  8514. if (d->device == q->device &&
  8515. (d->subsystem_vendor == q->subsystem_vendor ||
  8516. q->subsystem_vendor == PCI_ANY_ID) &&
  8517. (d->subsystem_device == q->subsystem_device ||
  8518. q->subsystem_device == PCI_ANY_ID))
  8519. q->hook(dev);
  8520. }
  8521. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8522. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8523. intel_dmi_quirks[i].hook(dev);
  8524. }
  8525. }
  8526. /* Disable the VGA plane that we never use */
  8527. static void i915_disable_vga(struct drm_device *dev)
  8528. {
  8529. struct drm_i915_private *dev_priv = dev->dev_private;
  8530. u8 sr1;
  8531. u32 vga_reg = i915_vgacntrl_reg(dev);
  8532. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8533. outb(SR01, VGA_SR_INDEX);
  8534. sr1 = inb(VGA_SR_DATA);
  8535. outb(sr1 | 1<<5, VGA_SR_DATA);
  8536. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8537. udelay(300);
  8538. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8539. POSTING_READ(vga_reg);
  8540. }
  8541. static void i915_enable_vga_mem(struct drm_device *dev)
  8542. {
  8543. /* Enable VGA memory on Intel HD */
  8544. if (HAS_PCH_SPLIT(dev)) {
  8545. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8546. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8547. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8548. VGA_RSRC_LEGACY_MEM |
  8549. VGA_RSRC_NORMAL_IO |
  8550. VGA_RSRC_NORMAL_MEM);
  8551. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8552. }
  8553. }
  8554. void i915_disable_vga_mem(struct drm_device *dev)
  8555. {
  8556. /* Disable VGA memory on Intel HD */
  8557. if (HAS_PCH_SPLIT(dev)) {
  8558. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8559. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8560. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8561. VGA_RSRC_NORMAL_IO |
  8562. VGA_RSRC_NORMAL_MEM);
  8563. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8564. }
  8565. }
  8566. void intel_modeset_init_hw(struct drm_device *dev)
  8567. {
  8568. intel_prepare_ddi(dev);
  8569. intel_init_clock_gating(dev);
  8570. mutex_lock(&dev->struct_mutex);
  8571. intel_enable_gt_powersave(dev);
  8572. mutex_unlock(&dev->struct_mutex);
  8573. }
  8574. void intel_modeset_suspend_hw(struct drm_device *dev)
  8575. {
  8576. intel_suspend_hw(dev);
  8577. }
  8578. void intel_modeset_init(struct drm_device *dev)
  8579. {
  8580. struct drm_i915_private *dev_priv = dev->dev_private;
  8581. int i, j, ret;
  8582. drm_mode_config_init(dev);
  8583. dev->mode_config.min_width = 0;
  8584. dev->mode_config.min_height = 0;
  8585. dev->mode_config.preferred_depth = 24;
  8586. dev->mode_config.prefer_shadow = 1;
  8587. dev->mode_config.funcs = &intel_mode_funcs;
  8588. intel_init_quirks(dev);
  8589. intel_init_pm(dev);
  8590. if (INTEL_INFO(dev)->num_pipes == 0)
  8591. return;
  8592. intel_init_display(dev);
  8593. if (IS_GEN2(dev)) {
  8594. dev->mode_config.max_width = 2048;
  8595. dev->mode_config.max_height = 2048;
  8596. } else if (IS_GEN3(dev)) {
  8597. dev->mode_config.max_width = 4096;
  8598. dev->mode_config.max_height = 4096;
  8599. } else {
  8600. dev->mode_config.max_width = 8192;
  8601. dev->mode_config.max_height = 8192;
  8602. }
  8603. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8604. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8605. INTEL_INFO(dev)->num_pipes,
  8606. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8607. for_each_pipe(i) {
  8608. intel_crtc_init(dev, i);
  8609. for (j = 0; j < dev_priv->num_plane; j++) {
  8610. ret = intel_plane_init(dev, i, j);
  8611. if (ret)
  8612. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8613. pipe_name(i), sprite_name(i, j), ret);
  8614. }
  8615. }
  8616. intel_cpu_pll_init(dev);
  8617. intel_shared_dpll_init(dev);
  8618. /* Just disable it once at startup */
  8619. i915_disable_vga(dev);
  8620. intel_setup_outputs(dev);
  8621. /* Just in case the BIOS is doing something questionable. */
  8622. intel_disable_fbc(dev);
  8623. }
  8624. static void
  8625. intel_connector_break_all_links(struct intel_connector *connector)
  8626. {
  8627. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8628. connector->base.encoder = NULL;
  8629. connector->encoder->connectors_active = false;
  8630. connector->encoder->base.crtc = NULL;
  8631. }
  8632. static void intel_enable_pipe_a(struct drm_device *dev)
  8633. {
  8634. struct intel_connector *connector;
  8635. struct drm_connector *crt = NULL;
  8636. struct intel_load_detect_pipe load_detect_temp;
  8637. /* We can't just switch on the pipe A, we need to set things up with a
  8638. * proper mode and output configuration. As a gross hack, enable pipe A
  8639. * by enabling the load detect pipe once. */
  8640. list_for_each_entry(connector,
  8641. &dev->mode_config.connector_list,
  8642. base.head) {
  8643. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8644. crt = &connector->base;
  8645. break;
  8646. }
  8647. }
  8648. if (!crt)
  8649. return;
  8650. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8651. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8652. }
  8653. static bool
  8654. intel_check_plane_mapping(struct intel_crtc *crtc)
  8655. {
  8656. struct drm_device *dev = crtc->base.dev;
  8657. struct drm_i915_private *dev_priv = dev->dev_private;
  8658. u32 reg, val;
  8659. if (INTEL_INFO(dev)->num_pipes == 1)
  8660. return true;
  8661. reg = DSPCNTR(!crtc->plane);
  8662. val = I915_READ(reg);
  8663. if ((val & DISPLAY_PLANE_ENABLE) &&
  8664. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8665. return false;
  8666. return true;
  8667. }
  8668. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8669. {
  8670. struct drm_device *dev = crtc->base.dev;
  8671. struct drm_i915_private *dev_priv = dev->dev_private;
  8672. u32 reg;
  8673. /* Clear any frame start delays used for debugging left by the BIOS */
  8674. reg = PIPECONF(crtc->config.cpu_transcoder);
  8675. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8676. /* We need to sanitize the plane -> pipe mapping first because this will
  8677. * disable the crtc (and hence change the state) if it is wrong. Note
  8678. * that gen4+ has a fixed plane -> pipe mapping. */
  8679. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8680. struct intel_connector *connector;
  8681. bool plane;
  8682. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8683. crtc->base.base.id);
  8684. /* Pipe has the wrong plane attached and the plane is active.
  8685. * Temporarily change the plane mapping and disable everything
  8686. * ... */
  8687. plane = crtc->plane;
  8688. crtc->plane = !plane;
  8689. dev_priv->display.crtc_disable(&crtc->base);
  8690. crtc->plane = plane;
  8691. /* ... and break all links. */
  8692. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8693. base.head) {
  8694. if (connector->encoder->base.crtc != &crtc->base)
  8695. continue;
  8696. intel_connector_break_all_links(connector);
  8697. }
  8698. WARN_ON(crtc->active);
  8699. crtc->base.enabled = false;
  8700. }
  8701. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8702. crtc->pipe == PIPE_A && !crtc->active) {
  8703. /* BIOS forgot to enable pipe A, this mostly happens after
  8704. * resume. Force-enable the pipe to fix this, the update_dpms
  8705. * call below we restore the pipe to the right state, but leave
  8706. * the required bits on. */
  8707. intel_enable_pipe_a(dev);
  8708. }
  8709. /* Adjust the state of the output pipe according to whether we
  8710. * have active connectors/encoders. */
  8711. intel_crtc_update_dpms(&crtc->base);
  8712. if (crtc->active != crtc->base.enabled) {
  8713. struct intel_encoder *encoder;
  8714. /* This can happen either due to bugs in the get_hw_state
  8715. * functions or because the pipe is force-enabled due to the
  8716. * pipe A quirk. */
  8717. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8718. crtc->base.base.id,
  8719. crtc->base.enabled ? "enabled" : "disabled",
  8720. crtc->active ? "enabled" : "disabled");
  8721. crtc->base.enabled = crtc->active;
  8722. /* Because we only establish the connector -> encoder ->
  8723. * crtc links if something is active, this means the
  8724. * crtc is now deactivated. Break the links. connector
  8725. * -> encoder links are only establish when things are
  8726. * actually up, hence no need to break them. */
  8727. WARN_ON(crtc->active);
  8728. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8729. WARN_ON(encoder->connectors_active);
  8730. encoder->base.crtc = NULL;
  8731. }
  8732. }
  8733. }
  8734. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8735. {
  8736. struct intel_connector *connector;
  8737. struct drm_device *dev = encoder->base.dev;
  8738. /* We need to check both for a crtc link (meaning that the
  8739. * encoder is active and trying to read from a pipe) and the
  8740. * pipe itself being active. */
  8741. bool has_active_crtc = encoder->base.crtc &&
  8742. to_intel_crtc(encoder->base.crtc)->active;
  8743. if (encoder->connectors_active && !has_active_crtc) {
  8744. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8745. encoder->base.base.id,
  8746. drm_get_encoder_name(&encoder->base));
  8747. /* Connector is active, but has no active pipe. This is
  8748. * fallout from our resume register restoring. Disable
  8749. * the encoder manually again. */
  8750. if (encoder->base.crtc) {
  8751. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8752. encoder->base.base.id,
  8753. drm_get_encoder_name(&encoder->base));
  8754. encoder->disable(encoder);
  8755. }
  8756. /* Inconsistent output/port/pipe state happens presumably due to
  8757. * a bug in one of the get_hw_state functions. Or someplace else
  8758. * in our code, like the register restore mess on resume. Clamp
  8759. * things to off as a safer default. */
  8760. list_for_each_entry(connector,
  8761. &dev->mode_config.connector_list,
  8762. base.head) {
  8763. if (connector->encoder != encoder)
  8764. continue;
  8765. intel_connector_break_all_links(connector);
  8766. }
  8767. }
  8768. /* Enabled encoders without active connectors will be fixed in
  8769. * the crtc fixup. */
  8770. }
  8771. void i915_redisable_vga(struct drm_device *dev)
  8772. {
  8773. struct drm_i915_private *dev_priv = dev->dev_private;
  8774. u32 vga_reg = i915_vgacntrl_reg(dev);
  8775. /* This function can be called both from intel_modeset_setup_hw_state or
  8776. * at a very early point in our resume sequence, where the power well
  8777. * structures are not yet restored. Since this function is at a very
  8778. * paranoid "someone might have enabled VGA while we were not looking"
  8779. * level, just check if the power well is enabled instead of trying to
  8780. * follow the "don't touch the power well if we don't need it" policy
  8781. * the rest of the driver uses. */
  8782. if (HAS_POWER_WELL(dev) &&
  8783. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8784. return;
  8785. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8786. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8787. i915_disable_vga(dev);
  8788. i915_disable_vga_mem(dev);
  8789. }
  8790. }
  8791. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8792. {
  8793. struct drm_i915_private *dev_priv = dev->dev_private;
  8794. enum pipe pipe;
  8795. struct intel_crtc *crtc;
  8796. struct intel_encoder *encoder;
  8797. struct intel_connector *connector;
  8798. int i;
  8799. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8800. base.head) {
  8801. memset(&crtc->config, 0, sizeof(crtc->config));
  8802. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8803. &crtc->config);
  8804. crtc->base.enabled = crtc->active;
  8805. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8806. crtc->base.base.id,
  8807. crtc->active ? "enabled" : "disabled");
  8808. }
  8809. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8810. if (HAS_DDI(dev))
  8811. intel_ddi_setup_hw_pll_state(dev);
  8812. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8813. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8814. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8815. pll->active = 0;
  8816. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8817. base.head) {
  8818. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8819. pll->active++;
  8820. }
  8821. pll->refcount = pll->active;
  8822. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8823. pll->name, pll->refcount, pll->on);
  8824. }
  8825. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8826. base.head) {
  8827. pipe = 0;
  8828. if (encoder->get_hw_state(encoder, &pipe)) {
  8829. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8830. encoder->base.crtc = &crtc->base;
  8831. if (encoder->get_config)
  8832. encoder->get_config(encoder, &crtc->config);
  8833. } else {
  8834. encoder->base.crtc = NULL;
  8835. }
  8836. encoder->connectors_active = false;
  8837. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8838. encoder->base.base.id,
  8839. drm_get_encoder_name(&encoder->base),
  8840. encoder->base.crtc ? "enabled" : "disabled",
  8841. pipe);
  8842. }
  8843. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8844. base.head) {
  8845. if (connector->get_hw_state(connector)) {
  8846. connector->base.dpms = DRM_MODE_DPMS_ON;
  8847. connector->encoder->connectors_active = true;
  8848. connector->base.encoder = &connector->encoder->base;
  8849. } else {
  8850. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8851. connector->base.encoder = NULL;
  8852. }
  8853. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8854. connector->base.base.id,
  8855. drm_get_connector_name(&connector->base),
  8856. connector->base.encoder ? "enabled" : "disabled");
  8857. }
  8858. }
  8859. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8860. * and i915 state tracking structures. */
  8861. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8862. bool force_restore)
  8863. {
  8864. struct drm_i915_private *dev_priv = dev->dev_private;
  8865. enum pipe pipe;
  8866. struct intel_crtc *crtc;
  8867. struct intel_encoder *encoder;
  8868. int i;
  8869. intel_modeset_readout_hw_state(dev);
  8870. /*
  8871. * Now that we have the config, copy it to each CRTC struct
  8872. * Note that this could go away if we move to using crtc_config
  8873. * checking everywhere.
  8874. */
  8875. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8876. base.head) {
  8877. if (crtc->active && i915_fastboot) {
  8878. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8879. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8880. crtc->base.base.id);
  8881. drm_mode_debug_printmodeline(&crtc->base.mode);
  8882. }
  8883. }
  8884. /* HW state is read out, now we need to sanitize this mess. */
  8885. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8886. base.head) {
  8887. intel_sanitize_encoder(encoder);
  8888. }
  8889. for_each_pipe(pipe) {
  8890. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8891. intel_sanitize_crtc(crtc);
  8892. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8893. }
  8894. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8895. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8896. if (!pll->on || pll->active)
  8897. continue;
  8898. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8899. pll->disable(dev_priv, pll);
  8900. pll->on = false;
  8901. }
  8902. if (force_restore) {
  8903. i915_redisable_vga(dev);
  8904. /*
  8905. * We need to use raw interfaces for restoring state to avoid
  8906. * checking (bogus) intermediate states.
  8907. */
  8908. for_each_pipe(pipe) {
  8909. struct drm_crtc *crtc =
  8910. dev_priv->pipe_to_crtc_mapping[pipe];
  8911. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8912. crtc->fb);
  8913. }
  8914. } else {
  8915. intel_modeset_update_staged_output_state(dev);
  8916. }
  8917. intel_modeset_check_state(dev);
  8918. drm_mode_config_reset(dev);
  8919. }
  8920. void intel_modeset_gem_init(struct drm_device *dev)
  8921. {
  8922. intel_modeset_init_hw(dev);
  8923. intel_setup_overlay(dev);
  8924. intel_modeset_setup_hw_state(dev, false);
  8925. }
  8926. void intel_modeset_cleanup(struct drm_device *dev)
  8927. {
  8928. struct drm_i915_private *dev_priv = dev->dev_private;
  8929. struct drm_crtc *crtc;
  8930. /*
  8931. * Interrupts and polling as the first thing to avoid creating havoc.
  8932. * Too much stuff here (turning of rps, connectors, ...) would
  8933. * experience fancy races otherwise.
  8934. */
  8935. drm_irq_uninstall(dev);
  8936. cancel_work_sync(&dev_priv->hotplug_work);
  8937. /*
  8938. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8939. * poll handlers. Hence disable polling after hpd handling is shut down.
  8940. */
  8941. drm_kms_helper_poll_fini(dev);
  8942. mutex_lock(&dev->struct_mutex);
  8943. intel_unregister_dsm_handler();
  8944. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8945. /* Skip inactive CRTCs */
  8946. if (!crtc->fb)
  8947. continue;
  8948. intel_increase_pllclock(crtc);
  8949. }
  8950. intel_disable_fbc(dev);
  8951. i915_enable_vga_mem(dev);
  8952. intel_disable_gt_powersave(dev);
  8953. ironlake_teardown_rc6(dev);
  8954. mutex_unlock(&dev->struct_mutex);
  8955. /* flush any delayed tasks or pending work */
  8956. flush_scheduled_work();
  8957. /* destroy backlight, if any, before the connectors */
  8958. intel_panel_destroy_backlight(dev);
  8959. drm_mode_config_cleanup(dev);
  8960. intel_cleanup_overlay(dev);
  8961. }
  8962. /*
  8963. * Return which encoder is currently attached for connector.
  8964. */
  8965. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8966. {
  8967. return &intel_attached_encoder(connector)->base;
  8968. }
  8969. void intel_connector_attach_encoder(struct intel_connector *connector,
  8970. struct intel_encoder *encoder)
  8971. {
  8972. connector->encoder = encoder;
  8973. drm_mode_connector_attach_encoder(&connector->base,
  8974. &encoder->base);
  8975. }
  8976. /*
  8977. * set vga decode state - true == enable VGA decode
  8978. */
  8979. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8980. {
  8981. struct drm_i915_private *dev_priv = dev->dev_private;
  8982. u16 gmch_ctrl;
  8983. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8984. if (state)
  8985. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8986. else
  8987. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8988. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8989. return 0;
  8990. }
  8991. struct intel_display_error_state {
  8992. u32 power_well_driver;
  8993. int num_transcoders;
  8994. struct intel_cursor_error_state {
  8995. u32 control;
  8996. u32 position;
  8997. u32 base;
  8998. u32 size;
  8999. } cursor[I915_MAX_PIPES];
  9000. struct intel_pipe_error_state {
  9001. u32 source;
  9002. } pipe[I915_MAX_PIPES];
  9003. struct intel_plane_error_state {
  9004. u32 control;
  9005. u32 stride;
  9006. u32 size;
  9007. u32 pos;
  9008. u32 addr;
  9009. u32 surface;
  9010. u32 tile_offset;
  9011. } plane[I915_MAX_PIPES];
  9012. struct intel_transcoder_error_state {
  9013. enum transcoder cpu_transcoder;
  9014. u32 conf;
  9015. u32 htotal;
  9016. u32 hblank;
  9017. u32 hsync;
  9018. u32 vtotal;
  9019. u32 vblank;
  9020. u32 vsync;
  9021. } transcoder[4];
  9022. };
  9023. struct intel_display_error_state *
  9024. intel_display_capture_error_state(struct drm_device *dev)
  9025. {
  9026. drm_i915_private_t *dev_priv = dev->dev_private;
  9027. struct intel_display_error_state *error;
  9028. int transcoders[] = {
  9029. TRANSCODER_A,
  9030. TRANSCODER_B,
  9031. TRANSCODER_C,
  9032. TRANSCODER_EDP,
  9033. };
  9034. int i;
  9035. if (INTEL_INFO(dev)->num_pipes == 0)
  9036. return NULL;
  9037. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9038. if (error == NULL)
  9039. return NULL;
  9040. if (HAS_POWER_WELL(dev))
  9041. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9042. for_each_pipe(i) {
  9043. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9044. error->cursor[i].control = I915_READ(CURCNTR(i));
  9045. error->cursor[i].position = I915_READ(CURPOS(i));
  9046. error->cursor[i].base = I915_READ(CURBASE(i));
  9047. } else {
  9048. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9049. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9050. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9051. }
  9052. error->plane[i].control = I915_READ(DSPCNTR(i));
  9053. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9054. if (INTEL_INFO(dev)->gen <= 3) {
  9055. error->plane[i].size = I915_READ(DSPSIZE(i));
  9056. error->plane[i].pos = I915_READ(DSPPOS(i));
  9057. }
  9058. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9059. error->plane[i].addr = I915_READ(DSPADDR(i));
  9060. if (INTEL_INFO(dev)->gen >= 4) {
  9061. error->plane[i].surface = I915_READ(DSPSURF(i));
  9062. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9063. }
  9064. error->pipe[i].source = I915_READ(PIPESRC(i));
  9065. }
  9066. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9067. if (HAS_DDI(dev_priv->dev))
  9068. error->num_transcoders++; /* Account for eDP. */
  9069. for (i = 0; i < error->num_transcoders; i++) {
  9070. enum transcoder cpu_transcoder = transcoders[i];
  9071. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9072. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9073. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9074. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9075. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9076. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9077. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9078. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9079. }
  9080. /* In the code above we read the registers without checking if the power
  9081. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9082. * prevent the next I915_WRITE from detecting it and printing an error
  9083. * message. */
  9084. intel_uncore_clear_errors(dev);
  9085. return error;
  9086. }
  9087. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9088. void
  9089. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9090. struct drm_device *dev,
  9091. struct intel_display_error_state *error)
  9092. {
  9093. int i;
  9094. if (!error)
  9095. return;
  9096. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9097. if (HAS_POWER_WELL(dev))
  9098. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9099. error->power_well_driver);
  9100. for_each_pipe(i) {
  9101. err_printf(m, "Pipe [%d]:\n", i);
  9102. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9103. err_printf(m, "Plane [%d]:\n", i);
  9104. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9105. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9106. if (INTEL_INFO(dev)->gen <= 3) {
  9107. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9108. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9109. }
  9110. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9111. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9112. if (INTEL_INFO(dev)->gen >= 4) {
  9113. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9114. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9115. }
  9116. err_printf(m, "Cursor [%d]:\n", i);
  9117. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9118. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9119. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9120. }
  9121. for (i = 0; i < error->num_transcoders; i++) {
  9122. err_printf(m, " CPU transcoder: %c\n",
  9123. transcoder_name(error->transcoder[i].cpu_transcoder));
  9124. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9125. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9126. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9127. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9128. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9129. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9130. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9131. }
  9132. }