wa-xfer.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870
  1. /*
  2. * WUSB Wire Adapter
  3. * Data transfer and URB enqueing
  4. *
  5. * Copyright (C) 2005-2006 Intel Corporation
  6. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. *
  23. * How transfers work: get a buffer, break it up in segments (segment
  24. * size is a multiple of the maxpacket size). For each segment issue a
  25. * segment request (struct wa_xfer_*), then send the data buffer if
  26. * out or nothing if in (all over the DTO endpoint).
  27. *
  28. * For each submitted segment request, a notification will come over
  29. * the NEP endpoint and a transfer result (struct xfer_result) will
  30. * arrive in the DTI URB. Read it, get the xfer ID, see if there is
  31. * data coming (inbound transfer), schedule a read and handle it.
  32. *
  33. * Sounds simple, it is a pain to implement.
  34. *
  35. *
  36. * ENTRY POINTS
  37. *
  38. * FIXME
  39. *
  40. * LIFE CYCLE / STATE DIAGRAM
  41. *
  42. * FIXME
  43. *
  44. * THIS CODE IS DISGUSTING
  45. *
  46. * Warned you are; it's my second try and still not happy with it.
  47. *
  48. * NOTES:
  49. *
  50. * - No iso
  51. *
  52. * - Supports DMA xfers, control, bulk and maybe interrupt
  53. *
  54. * - Does not recycle unused rpipes
  55. *
  56. * An rpipe is assigned to an endpoint the first time it is used,
  57. * and then it's there, assigned, until the endpoint is disabled
  58. * (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the
  59. * rpipe to the endpoint is done under the wa->rpipe_sem semaphore
  60. * (should be a mutex).
  61. *
  62. * Two methods it could be done:
  63. *
  64. * (a) set up a timer every time an rpipe's use count drops to 1
  65. * (which means unused) or when a transfer ends. Reset the
  66. * timer when a xfer is queued. If the timer expires, release
  67. * the rpipe [see rpipe_ep_disable()].
  68. *
  69. * (b) when looking for free rpipes to attach [rpipe_get_by_ep()],
  70. * when none are found go over the list, check their endpoint
  71. * and their activity record (if no last-xfer-done-ts in the
  72. * last x seconds) take it
  73. *
  74. * However, due to the fact that we have a set of limited
  75. * resources (max-segments-at-the-same-time per xfer,
  76. * xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end
  77. * we are going to have to rebuild all this based on an scheduler,
  78. * to where we have a list of transactions to do and based on the
  79. * availability of the different required components (blocks,
  80. * rpipes, segment slots, etc), we go scheduling them. Painful.
  81. */
  82. #include <linux/init.h>
  83. #include <linux/spinlock.h>
  84. #include <linux/slab.h>
  85. #include <linux/hash.h>
  86. #include <linux/ratelimit.h>
  87. #include <linux/export.h>
  88. #include <linux/scatterlist.h>
  89. #include "wa-hc.h"
  90. #include "wusbhc.h"
  91. enum {
  92. WA_SEGS_MAX = 255,
  93. };
  94. enum wa_seg_status {
  95. WA_SEG_NOTREADY,
  96. WA_SEG_READY,
  97. WA_SEG_DELAYED,
  98. WA_SEG_SUBMITTED,
  99. WA_SEG_PENDING,
  100. WA_SEG_DTI_PENDING,
  101. WA_SEG_DONE,
  102. WA_SEG_ERROR,
  103. WA_SEG_ABORTED,
  104. };
  105. static void wa_xfer_delayed_run(struct wa_rpipe *);
  106. /*
  107. * Life cycle governed by 'struct urb' (the refcount of the struct is
  108. * that of the 'struct urb' and usb_free_urb() would free the whole
  109. * struct).
  110. */
  111. struct wa_seg {
  112. struct urb tr_urb; /* transfer request urb. */
  113. struct urb *dto_urb; /* for data output. */
  114. struct list_head list_node; /* for rpipe->req_list */
  115. struct wa_xfer *xfer; /* out xfer */
  116. u8 index; /* which segment we are */
  117. enum wa_seg_status status;
  118. ssize_t result; /* bytes xfered or error */
  119. struct wa_xfer_hdr xfer_hdr;
  120. u8 xfer_extra[]; /* xtra space for xfer_hdr_ctl */
  121. };
  122. static inline void wa_seg_init(struct wa_seg *seg)
  123. {
  124. usb_init_urb(&seg->tr_urb);
  125. /* set the remaining memory to 0. */
  126. memset(((void *)seg) + sizeof(seg->tr_urb), 0,
  127. sizeof(*seg) - sizeof(seg->tr_urb));
  128. }
  129. /*
  130. * Protected by xfer->lock
  131. *
  132. */
  133. struct wa_xfer {
  134. struct kref refcnt;
  135. struct list_head list_node;
  136. spinlock_t lock;
  137. u32 id;
  138. struct wahc *wa; /* Wire adapter we are plugged to */
  139. struct usb_host_endpoint *ep;
  140. struct urb *urb; /* URB we are transferring for */
  141. struct wa_seg **seg; /* transfer segments */
  142. u8 segs, segs_submitted, segs_done;
  143. unsigned is_inbound:1;
  144. unsigned is_dma:1;
  145. size_t seg_size;
  146. int result;
  147. gfp_t gfp; /* allocation mask */
  148. struct wusb_dev *wusb_dev; /* for activity timestamps */
  149. };
  150. static inline void wa_xfer_init(struct wa_xfer *xfer)
  151. {
  152. kref_init(&xfer->refcnt);
  153. INIT_LIST_HEAD(&xfer->list_node);
  154. spin_lock_init(&xfer->lock);
  155. }
  156. /*
  157. * Destroy a transfer structure
  158. *
  159. * Note that freeing xfer->seg[cnt]->urb will free the containing
  160. * xfer->seg[cnt] memory that was allocated by __wa_xfer_setup_segs.
  161. */
  162. static void wa_xfer_destroy(struct kref *_xfer)
  163. {
  164. struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt);
  165. if (xfer->seg) {
  166. unsigned cnt;
  167. for (cnt = 0; cnt < xfer->segs; cnt++) {
  168. if (xfer->seg[cnt]) {
  169. if (xfer->seg[cnt]->dto_urb) {
  170. kfree(xfer->seg[cnt]->dto_urb->sg);
  171. usb_free_urb(xfer->seg[cnt]->dto_urb);
  172. }
  173. usb_free_urb(&xfer->seg[cnt]->tr_urb);
  174. }
  175. }
  176. kfree(xfer->seg);
  177. }
  178. kfree(xfer);
  179. }
  180. static void wa_xfer_get(struct wa_xfer *xfer)
  181. {
  182. kref_get(&xfer->refcnt);
  183. }
  184. static void wa_xfer_put(struct wa_xfer *xfer)
  185. {
  186. kref_put(&xfer->refcnt, wa_xfer_destroy);
  187. }
  188. /*
  189. * xfer is referenced
  190. *
  191. * xfer->lock has to be unlocked
  192. *
  193. * We take xfer->lock for setting the result; this is a barrier
  194. * against drivers/usb/core/hcd.c:unlink1() being called after we call
  195. * usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a
  196. * reference to the transfer.
  197. */
  198. static void wa_xfer_giveback(struct wa_xfer *xfer)
  199. {
  200. unsigned long flags;
  201. spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags);
  202. list_del_init(&xfer->list_node);
  203. spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags);
  204. /* FIXME: segmentation broken -- kills DWA */
  205. wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result);
  206. wa_put(xfer->wa);
  207. wa_xfer_put(xfer);
  208. }
  209. /*
  210. * xfer is referenced
  211. *
  212. * xfer->lock has to be unlocked
  213. */
  214. static void wa_xfer_completion(struct wa_xfer *xfer)
  215. {
  216. if (xfer->wusb_dev)
  217. wusb_dev_put(xfer->wusb_dev);
  218. rpipe_put(xfer->ep->hcpriv);
  219. wa_xfer_giveback(xfer);
  220. }
  221. /*
  222. * If transfer is done, wrap it up and return true
  223. *
  224. * xfer->lock has to be locked
  225. */
  226. static unsigned __wa_xfer_is_done(struct wa_xfer *xfer)
  227. {
  228. struct device *dev = &xfer->wa->usb_iface->dev;
  229. unsigned result, cnt;
  230. struct wa_seg *seg;
  231. struct urb *urb = xfer->urb;
  232. unsigned found_short = 0;
  233. result = xfer->segs_done == xfer->segs_submitted;
  234. if (result == 0)
  235. goto out;
  236. urb->actual_length = 0;
  237. for (cnt = 0; cnt < xfer->segs; cnt++) {
  238. seg = xfer->seg[cnt];
  239. switch (seg->status) {
  240. case WA_SEG_DONE:
  241. if (found_short && seg->result > 0) {
  242. dev_dbg(dev, "xfer %p#%u: bad short segments (%zu)\n",
  243. xfer, cnt, seg->result);
  244. urb->status = -EINVAL;
  245. goto out;
  246. }
  247. urb->actual_length += seg->result;
  248. if (seg->result < xfer->seg_size
  249. && cnt != xfer->segs-1)
  250. found_short = 1;
  251. dev_dbg(dev, "xfer %p#%u: DONE short %d "
  252. "result %zu urb->actual_length %d\n",
  253. xfer, seg->index, found_short, seg->result,
  254. urb->actual_length);
  255. break;
  256. case WA_SEG_ERROR:
  257. xfer->result = seg->result;
  258. dev_dbg(dev, "xfer %p#%u: ERROR result %zu\n",
  259. xfer, seg->index, seg->result);
  260. goto out;
  261. case WA_SEG_ABORTED:
  262. dev_dbg(dev, "xfer %p#%u ABORTED: result %d\n",
  263. xfer, seg->index, urb->status);
  264. xfer->result = urb->status;
  265. goto out;
  266. default:
  267. dev_warn(dev, "xfer %p#%u: is_done bad state %d\n",
  268. xfer, cnt, seg->status);
  269. xfer->result = -EINVAL;
  270. goto out;
  271. }
  272. }
  273. xfer->result = 0;
  274. out:
  275. return result;
  276. }
  277. /*
  278. * Initialize a transfer's ID
  279. *
  280. * We need to use a sequential number; if we use the pointer or the
  281. * hash of the pointer, it can repeat over sequential transfers and
  282. * then it will confuse the HWA....wonder why in hell they put a 32
  283. * bit handle in there then.
  284. */
  285. static void wa_xfer_id_init(struct wa_xfer *xfer)
  286. {
  287. xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count);
  288. }
  289. /*
  290. * Return the xfer's ID associated with xfer
  291. *
  292. * Need to generate a
  293. */
  294. static u32 wa_xfer_id(struct wa_xfer *xfer)
  295. {
  296. return xfer->id;
  297. }
  298. /*
  299. * Search for a transfer list ID on the HCD's URB list
  300. *
  301. * For 32 bit architectures, we use the pointer itself; for 64 bits, a
  302. * 32-bit hash of the pointer.
  303. *
  304. * @returns NULL if not found.
  305. */
  306. static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id)
  307. {
  308. unsigned long flags;
  309. struct wa_xfer *xfer_itr;
  310. spin_lock_irqsave(&wa->xfer_list_lock, flags);
  311. list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) {
  312. if (id == xfer_itr->id) {
  313. wa_xfer_get(xfer_itr);
  314. goto out;
  315. }
  316. }
  317. xfer_itr = NULL;
  318. out:
  319. spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
  320. return xfer_itr;
  321. }
  322. struct wa_xfer_abort_buffer {
  323. struct urb urb;
  324. struct wa_xfer_abort cmd;
  325. };
  326. static void __wa_xfer_abort_cb(struct urb *urb)
  327. {
  328. struct wa_xfer_abort_buffer *b = urb->context;
  329. usb_put_urb(&b->urb);
  330. }
  331. /*
  332. * Aborts an ongoing transaction
  333. *
  334. * Assumes the transfer is referenced and locked and in a submitted
  335. * state (mainly that there is an endpoint/rpipe assigned).
  336. *
  337. * The callback (see above) does nothing but freeing up the data by
  338. * putting the URB. Because the URB is allocated at the head of the
  339. * struct, the whole space we allocated is kfreed.
  340. *
  341. * We'll get an 'aborted transaction' xfer result on DTI, that'll
  342. * politely ignore because at this point the transaction has been
  343. * marked as aborted already.
  344. */
  345. static void __wa_xfer_abort(struct wa_xfer *xfer)
  346. {
  347. int result;
  348. struct device *dev = &xfer->wa->usb_iface->dev;
  349. struct wa_xfer_abort_buffer *b;
  350. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  351. b = kmalloc(sizeof(*b), GFP_ATOMIC);
  352. if (b == NULL)
  353. goto error_kmalloc;
  354. b->cmd.bLength = sizeof(b->cmd);
  355. b->cmd.bRequestType = WA_XFER_ABORT;
  356. b->cmd.wRPipe = rpipe->descr.wRPipeIndex;
  357. b->cmd.dwTransferID = wa_xfer_id(xfer);
  358. usb_init_urb(&b->urb);
  359. usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev,
  360. usb_sndbulkpipe(xfer->wa->usb_dev,
  361. xfer->wa->dto_epd->bEndpointAddress),
  362. &b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b);
  363. result = usb_submit_urb(&b->urb, GFP_ATOMIC);
  364. if (result < 0)
  365. goto error_submit;
  366. return; /* callback frees! */
  367. error_submit:
  368. if (printk_ratelimit())
  369. dev_err(dev, "xfer %p: Can't submit abort request: %d\n",
  370. xfer, result);
  371. kfree(b);
  372. error_kmalloc:
  373. return;
  374. }
  375. /*
  376. *
  377. * @returns < 0 on error, transfer segment request size if ok
  378. */
  379. static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer,
  380. enum wa_xfer_type *pxfer_type)
  381. {
  382. ssize_t result;
  383. struct device *dev = &xfer->wa->usb_iface->dev;
  384. size_t maxpktsize;
  385. struct urb *urb = xfer->urb;
  386. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  387. switch (rpipe->descr.bmAttribute & 0x3) {
  388. case USB_ENDPOINT_XFER_CONTROL:
  389. *pxfer_type = WA_XFER_TYPE_CTL;
  390. result = sizeof(struct wa_xfer_ctl);
  391. break;
  392. case USB_ENDPOINT_XFER_INT:
  393. case USB_ENDPOINT_XFER_BULK:
  394. *pxfer_type = WA_XFER_TYPE_BI;
  395. result = sizeof(struct wa_xfer_bi);
  396. break;
  397. case USB_ENDPOINT_XFER_ISOC:
  398. dev_err(dev, "FIXME: ISOC not implemented\n");
  399. result = -ENOSYS;
  400. goto error;
  401. default:
  402. /* never happens */
  403. BUG();
  404. result = -EINVAL; /* shut gcc up */
  405. };
  406. xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0;
  407. xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0;
  408. xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks)
  409. * 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1);
  410. /* Compute the segment size and make sure it is a multiple of
  411. * the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of
  412. * a check (FIXME) */
  413. maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize);
  414. if (xfer->seg_size < maxpktsize) {
  415. dev_err(dev, "HW BUG? seg_size %zu smaller than maxpktsize "
  416. "%zu\n", xfer->seg_size, maxpktsize);
  417. result = -EINVAL;
  418. goto error;
  419. }
  420. xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize;
  421. xfer->segs = DIV_ROUND_UP(urb->transfer_buffer_length, xfer->seg_size);
  422. if (xfer->segs >= WA_SEGS_MAX) {
  423. dev_err(dev, "BUG? ops, number of segments %d bigger than %d\n",
  424. (int)(urb->transfer_buffer_length / xfer->seg_size),
  425. WA_SEGS_MAX);
  426. result = -EINVAL;
  427. goto error;
  428. }
  429. if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL)
  430. xfer->segs = 1;
  431. error:
  432. return result;
  433. }
  434. /* Fill in the common request header and xfer-type specific data. */
  435. static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer,
  436. struct wa_xfer_hdr *xfer_hdr0,
  437. enum wa_xfer_type xfer_type,
  438. size_t xfer_hdr_size)
  439. {
  440. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  441. xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
  442. xfer_hdr0->bLength = xfer_hdr_size;
  443. xfer_hdr0->bRequestType = xfer_type;
  444. xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex;
  445. xfer_hdr0->dwTransferID = wa_xfer_id(xfer);
  446. xfer_hdr0->bTransferSegment = 0;
  447. switch (xfer_type) {
  448. case WA_XFER_TYPE_CTL: {
  449. struct wa_xfer_ctl *xfer_ctl =
  450. container_of(xfer_hdr0, struct wa_xfer_ctl, hdr);
  451. xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0;
  452. memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet,
  453. sizeof(xfer_ctl->baSetupData));
  454. break;
  455. }
  456. case WA_XFER_TYPE_BI:
  457. break;
  458. case WA_XFER_TYPE_ISO:
  459. printk(KERN_ERR "FIXME: ISOC not implemented\n");
  460. default:
  461. BUG();
  462. };
  463. }
  464. /*
  465. * Callback for the OUT data phase of the segment request
  466. *
  467. * Check wa_seg_tr_cb(); most comments also apply here because this
  468. * function does almost the same thing and they work closely
  469. * together.
  470. *
  471. * If the seg request has failed but this DTO phase has succeeded,
  472. * wa_seg_tr_cb() has already failed the segment and moved the
  473. * status to WA_SEG_ERROR, so this will go through 'case 0' and
  474. * effectively do nothing.
  475. */
  476. static void wa_seg_dto_cb(struct urb *urb)
  477. {
  478. struct wa_seg *seg = urb->context;
  479. struct wa_xfer *xfer = seg->xfer;
  480. struct wahc *wa;
  481. struct device *dev;
  482. struct wa_rpipe *rpipe;
  483. unsigned long flags;
  484. unsigned rpipe_ready = 0;
  485. u8 done = 0;
  486. /* free the sg if it was used. */
  487. kfree(urb->sg);
  488. urb->sg = NULL;
  489. switch (urb->status) {
  490. case 0:
  491. spin_lock_irqsave(&xfer->lock, flags);
  492. wa = xfer->wa;
  493. dev = &wa->usb_iface->dev;
  494. dev_dbg(dev, "xfer %p#%u: data out done (%d bytes)\n",
  495. xfer, seg->index, urb->actual_length);
  496. if (seg->status < WA_SEG_PENDING)
  497. seg->status = WA_SEG_PENDING;
  498. seg->result = urb->actual_length;
  499. spin_unlock_irqrestore(&xfer->lock, flags);
  500. break;
  501. case -ECONNRESET: /* URB unlinked; no need to do anything */
  502. case -ENOENT: /* as it was done by the who unlinked us */
  503. break;
  504. default: /* Other errors ... */
  505. spin_lock_irqsave(&xfer->lock, flags);
  506. wa = xfer->wa;
  507. dev = &wa->usb_iface->dev;
  508. rpipe = xfer->ep->hcpriv;
  509. dev_dbg(dev, "xfer %p#%u: data out error %d\n",
  510. xfer, seg->index, urb->status);
  511. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  512. EDC_ERROR_TIMEFRAME)){
  513. dev_err(dev, "DTO: URB max acceptable errors "
  514. "exceeded, resetting device\n");
  515. wa_reset_all(wa);
  516. }
  517. if (seg->status != WA_SEG_ERROR) {
  518. seg->status = WA_SEG_ERROR;
  519. seg->result = urb->status;
  520. xfer->segs_done++;
  521. __wa_xfer_abort(xfer);
  522. rpipe_ready = rpipe_avail_inc(rpipe);
  523. done = __wa_xfer_is_done(xfer);
  524. }
  525. spin_unlock_irqrestore(&xfer->lock, flags);
  526. if (done)
  527. wa_xfer_completion(xfer);
  528. if (rpipe_ready)
  529. wa_xfer_delayed_run(rpipe);
  530. }
  531. }
  532. /*
  533. * Callback for the segment request
  534. *
  535. * If successful transition state (unless already transitioned or
  536. * outbound transfer); otherwise, take a note of the error, mark this
  537. * segment done and try completion.
  538. *
  539. * Note we don't access until we are sure that the transfer hasn't
  540. * been cancelled (ECONNRESET, ENOENT), which could mean that
  541. * seg->xfer could be already gone.
  542. *
  543. * We have to check before setting the status to WA_SEG_PENDING
  544. * because sometimes the xfer result callback arrives before this
  545. * callback (geeeeeeze), so it might happen that we are already in
  546. * another state. As well, we don't set it if the transfer is inbound,
  547. * as in that case, wa_seg_dto_cb will do it when the OUT data phase
  548. * finishes.
  549. */
  550. static void wa_seg_tr_cb(struct urb *urb)
  551. {
  552. struct wa_seg *seg = urb->context;
  553. struct wa_xfer *xfer = seg->xfer;
  554. struct wahc *wa;
  555. struct device *dev;
  556. struct wa_rpipe *rpipe;
  557. unsigned long flags;
  558. unsigned rpipe_ready;
  559. u8 done = 0;
  560. switch (urb->status) {
  561. case 0:
  562. spin_lock_irqsave(&xfer->lock, flags);
  563. wa = xfer->wa;
  564. dev = &wa->usb_iface->dev;
  565. dev_dbg(dev, "xfer %p#%u: request done\n", xfer, seg->index);
  566. if (xfer->is_inbound && seg->status < WA_SEG_PENDING)
  567. seg->status = WA_SEG_PENDING;
  568. spin_unlock_irqrestore(&xfer->lock, flags);
  569. break;
  570. case -ECONNRESET: /* URB unlinked; no need to do anything */
  571. case -ENOENT: /* as it was done by the who unlinked us */
  572. break;
  573. default: /* Other errors ... */
  574. spin_lock_irqsave(&xfer->lock, flags);
  575. wa = xfer->wa;
  576. dev = &wa->usb_iface->dev;
  577. rpipe = xfer->ep->hcpriv;
  578. if (printk_ratelimit())
  579. dev_err(dev, "xfer %p#%u: request error %d\n",
  580. xfer, seg->index, urb->status);
  581. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  582. EDC_ERROR_TIMEFRAME)){
  583. dev_err(dev, "DTO: URB max acceptable errors "
  584. "exceeded, resetting device\n");
  585. wa_reset_all(wa);
  586. }
  587. usb_unlink_urb(seg->dto_urb);
  588. seg->status = WA_SEG_ERROR;
  589. seg->result = urb->status;
  590. xfer->segs_done++;
  591. __wa_xfer_abort(xfer);
  592. rpipe_ready = rpipe_avail_inc(rpipe);
  593. done = __wa_xfer_is_done(xfer);
  594. spin_unlock_irqrestore(&xfer->lock, flags);
  595. if (done)
  596. wa_xfer_completion(xfer);
  597. if (rpipe_ready)
  598. wa_xfer_delayed_run(rpipe);
  599. }
  600. }
  601. /*
  602. * Allocate an SG list to store bytes_to_transfer bytes and copy the
  603. * subset of the in_sg that matches the buffer subset
  604. * we are about to transfer.
  605. */
  606. static struct scatterlist *wa_xfer_create_subset_sg(struct scatterlist *in_sg,
  607. const unsigned int bytes_transferred,
  608. const unsigned int bytes_to_transfer, unsigned int *out_num_sgs)
  609. {
  610. struct scatterlist *out_sg;
  611. unsigned int bytes_processed = 0, offset_into_current_page_data = 0,
  612. nents;
  613. struct scatterlist *current_xfer_sg = in_sg;
  614. struct scatterlist *current_seg_sg, *last_seg_sg;
  615. /* skip previously transferred pages. */
  616. while ((current_xfer_sg) &&
  617. (bytes_processed < bytes_transferred)) {
  618. bytes_processed += current_xfer_sg->length;
  619. /* advance the sg if current segment starts on or past the
  620. next page. */
  621. if (bytes_processed <= bytes_transferred)
  622. current_xfer_sg = sg_next(current_xfer_sg);
  623. }
  624. /* the data for the current segment starts in current_xfer_sg.
  625. calculate the offset. */
  626. if (bytes_processed > bytes_transferred) {
  627. offset_into_current_page_data = current_xfer_sg->length -
  628. (bytes_processed - bytes_transferred);
  629. }
  630. /* calculate the number of pages needed by this segment. */
  631. nents = DIV_ROUND_UP((bytes_to_transfer +
  632. offset_into_current_page_data +
  633. current_xfer_sg->offset),
  634. PAGE_SIZE);
  635. out_sg = kmalloc((sizeof(struct scatterlist) * nents), GFP_ATOMIC);
  636. if (out_sg) {
  637. sg_init_table(out_sg, nents);
  638. /* copy the portion of the incoming SG that correlates to the
  639. * data to be transferred by this segment to the segment SG. */
  640. last_seg_sg = current_seg_sg = out_sg;
  641. bytes_processed = 0;
  642. /* reset nents and calculate the actual number of sg entries
  643. needed. */
  644. nents = 0;
  645. while ((bytes_processed < bytes_to_transfer) &&
  646. current_seg_sg && current_xfer_sg) {
  647. unsigned int page_len = min((current_xfer_sg->length -
  648. offset_into_current_page_data),
  649. (bytes_to_transfer - bytes_processed));
  650. sg_set_page(current_seg_sg, sg_page(current_xfer_sg),
  651. page_len,
  652. current_xfer_sg->offset +
  653. offset_into_current_page_data);
  654. bytes_processed += page_len;
  655. last_seg_sg = current_seg_sg;
  656. current_seg_sg = sg_next(current_seg_sg);
  657. current_xfer_sg = sg_next(current_xfer_sg);
  658. /* only the first page may require additional offset. */
  659. offset_into_current_page_data = 0;
  660. nents++;
  661. }
  662. /* update num_sgs and terminate the list since we may have
  663. * concatenated pages. */
  664. sg_mark_end(last_seg_sg);
  665. *out_num_sgs = nents;
  666. }
  667. return out_sg;
  668. }
  669. /*
  670. * Populate buffer ptr and size, DMA buffer or SG list for the dto urb.
  671. */
  672. static int __wa_populate_dto_urb(struct wa_xfer *xfer,
  673. struct wa_seg *seg, size_t buf_itr_offset, size_t buf_itr_size)
  674. {
  675. int result = 0;
  676. if (xfer->is_dma) {
  677. seg->dto_urb->transfer_dma =
  678. xfer->urb->transfer_dma + buf_itr_offset;
  679. seg->dto_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  680. seg->dto_urb->sg = NULL;
  681. seg->dto_urb->num_sgs = 0;
  682. } else {
  683. /* do buffer or SG processing. */
  684. seg->dto_urb->transfer_flags &=
  685. ~URB_NO_TRANSFER_DMA_MAP;
  686. /* this should always be 0 before a resubmit. */
  687. seg->dto_urb->num_mapped_sgs = 0;
  688. if (xfer->urb->transfer_buffer) {
  689. seg->dto_urb->transfer_buffer =
  690. xfer->urb->transfer_buffer +
  691. buf_itr_offset;
  692. seg->dto_urb->sg = NULL;
  693. seg->dto_urb->num_sgs = 0;
  694. } else {
  695. seg->dto_urb->transfer_buffer = NULL;
  696. /*
  697. * allocate an SG list to store seg_size bytes
  698. * and copy the subset of the xfer->urb->sg that
  699. * matches the buffer subset we are about to
  700. * read.
  701. */
  702. seg->dto_urb->sg = wa_xfer_create_subset_sg(
  703. xfer->urb->sg,
  704. buf_itr_offset, buf_itr_size,
  705. &(seg->dto_urb->num_sgs));
  706. if (!(seg->dto_urb->sg))
  707. result = -ENOMEM;
  708. }
  709. }
  710. seg->dto_urb->transfer_buffer_length = buf_itr_size;
  711. return result;
  712. }
  713. /*
  714. * Allocate the segs array and initialize each of them
  715. *
  716. * The segments are freed by wa_xfer_destroy() when the xfer use count
  717. * drops to zero; however, because each segment is given the same life
  718. * cycle as the USB URB it contains, it is actually freed by
  719. * usb_put_urb() on the contained USB URB (twisted, eh?).
  720. */
  721. static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size)
  722. {
  723. int result, cnt;
  724. size_t alloc_size = sizeof(*xfer->seg[0])
  725. - sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size;
  726. struct usb_device *usb_dev = xfer->wa->usb_dev;
  727. const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd;
  728. struct wa_seg *seg;
  729. size_t buf_itr, buf_size, buf_itr_size;
  730. result = -ENOMEM;
  731. xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC);
  732. if (xfer->seg == NULL)
  733. goto error_segs_kzalloc;
  734. buf_itr = 0;
  735. buf_size = xfer->urb->transfer_buffer_length;
  736. for (cnt = 0; cnt < xfer->segs; cnt++) {
  737. seg = xfer->seg[cnt] = kmalloc(alloc_size, GFP_ATOMIC);
  738. if (seg == NULL)
  739. goto error_seg_kmalloc;
  740. wa_seg_init(seg);
  741. seg->xfer = xfer;
  742. seg->index = cnt;
  743. usb_fill_bulk_urb(&seg->tr_urb, usb_dev,
  744. usb_sndbulkpipe(usb_dev,
  745. dto_epd->bEndpointAddress),
  746. &seg->xfer_hdr, xfer_hdr_size,
  747. wa_seg_tr_cb, seg);
  748. buf_itr_size = min(buf_size, xfer->seg_size);
  749. if (xfer->is_inbound == 0 && buf_size > 0) {
  750. /* outbound data. */
  751. seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC);
  752. if (seg->dto_urb == NULL)
  753. goto error_dto_alloc;
  754. usb_fill_bulk_urb(
  755. seg->dto_urb, usb_dev,
  756. usb_sndbulkpipe(usb_dev,
  757. dto_epd->bEndpointAddress),
  758. NULL, 0, wa_seg_dto_cb, seg);
  759. /* fill in the xfer buffer information. */
  760. result = __wa_populate_dto_urb(xfer, seg,
  761. buf_itr, buf_itr_size);
  762. if (result < 0)
  763. goto error_seg_outbound_populate;
  764. }
  765. seg->status = WA_SEG_READY;
  766. buf_itr += buf_itr_size;
  767. buf_size -= buf_itr_size;
  768. }
  769. return 0;
  770. /*
  771. * Free the memory for the current segment which failed to init.
  772. * Use the fact that cnt is left at were it failed. The remaining
  773. * segments will be cleaned up by wa_xfer_destroy.
  774. */
  775. error_seg_outbound_populate:
  776. usb_free_urb(xfer->seg[cnt]->dto_urb);
  777. error_dto_alloc:
  778. kfree(xfer->seg[cnt]);
  779. xfer->seg[cnt] = NULL;
  780. error_seg_kmalloc:
  781. error_segs_kzalloc:
  782. return result;
  783. }
  784. /*
  785. * Allocates all the stuff needed to submit a transfer
  786. *
  787. * Breaks the whole data buffer in a list of segments, each one has a
  788. * structure allocated to it and linked in xfer->seg[index]
  789. *
  790. * FIXME: merge setup_segs() and the last part of this function, no
  791. * need to do two for loops when we could run everything in a
  792. * single one
  793. */
  794. static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb)
  795. {
  796. int result;
  797. struct device *dev = &xfer->wa->usb_iface->dev;
  798. enum wa_xfer_type xfer_type = 0; /* shut up GCC */
  799. size_t xfer_hdr_size, cnt, transfer_size;
  800. struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr;
  801. result = __wa_xfer_setup_sizes(xfer, &xfer_type);
  802. if (result < 0)
  803. goto error_setup_sizes;
  804. xfer_hdr_size = result;
  805. result = __wa_xfer_setup_segs(xfer, xfer_hdr_size);
  806. if (result < 0) {
  807. dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n",
  808. xfer, xfer->segs, result);
  809. goto error_setup_segs;
  810. }
  811. /* Fill the first header */
  812. xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
  813. wa_xfer_id_init(xfer);
  814. __wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size);
  815. /* Fill remainig headers */
  816. xfer_hdr = xfer_hdr0;
  817. transfer_size = urb->transfer_buffer_length;
  818. xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ?
  819. xfer->seg_size : transfer_size;
  820. transfer_size -= xfer->seg_size;
  821. for (cnt = 1; cnt < xfer->segs; cnt++) {
  822. xfer_hdr = &xfer->seg[cnt]->xfer_hdr;
  823. memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
  824. xfer_hdr->bTransferSegment = cnt;
  825. xfer_hdr->dwTransferLength = transfer_size > xfer->seg_size ?
  826. cpu_to_le32(xfer->seg_size)
  827. : cpu_to_le32(transfer_size);
  828. xfer->seg[cnt]->status = WA_SEG_READY;
  829. transfer_size -= xfer->seg_size;
  830. }
  831. xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */
  832. result = 0;
  833. error_setup_segs:
  834. error_setup_sizes:
  835. return result;
  836. }
  837. /*
  838. *
  839. *
  840. * rpipe->seg_lock is held!
  841. */
  842. static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer,
  843. struct wa_seg *seg)
  844. {
  845. int result;
  846. /* submit the transfer request. */
  847. result = usb_submit_urb(&seg->tr_urb, GFP_ATOMIC);
  848. if (result < 0) {
  849. printk(KERN_ERR "xfer %p#%u: REQ submit failed: %d\n",
  850. xfer, seg->index, result);
  851. goto error_seg_submit;
  852. }
  853. /* submit the out data if this is an out request. */
  854. if (seg->dto_urb) {
  855. result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
  856. if (result < 0) {
  857. printk(KERN_ERR "xfer %p#%u: DTO submit failed: %d\n",
  858. xfer, seg->index, result);
  859. goto error_dto_submit;
  860. }
  861. }
  862. seg->status = WA_SEG_SUBMITTED;
  863. rpipe_avail_dec(rpipe);
  864. return 0;
  865. error_dto_submit:
  866. usb_unlink_urb(&seg->tr_urb);
  867. error_seg_submit:
  868. seg->status = WA_SEG_ERROR;
  869. seg->result = result;
  870. return result;
  871. }
  872. /*
  873. * Execute more queued request segments until the maximum concurrent allowed
  874. *
  875. * The ugly unlock/lock sequence on the error path is needed as the
  876. * xfer->lock normally nests the seg_lock and not viceversa.
  877. *
  878. */
  879. static void wa_xfer_delayed_run(struct wa_rpipe *rpipe)
  880. {
  881. int result;
  882. struct device *dev = &rpipe->wa->usb_iface->dev;
  883. struct wa_seg *seg;
  884. struct wa_xfer *xfer;
  885. unsigned long flags;
  886. spin_lock_irqsave(&rpipe->seg_lock, flags);
  887. while (atomic_read(&rpipe->segs_available) > 0
  888. && !list_empty(&rpipe->seg_list)) {
  889. seg = list_first_entry(&(rpipe->seg_list), struct wa_seg,
  890. list_node);
  891. list_del(&seg->list_node);
  892. xfer = seg->xfer;
  893. result = __wa_seg_submit(rpipe, xfer, seg);
  894. dev_dbg(dev, "xfer %p#%u submitted from delayed [%d segments available] %d\n",
  895. xfer, seg->index, atomic_read(&rpipe->segs_available), result);
  896. if (unlikely(result < 0)) {
  897. spin_unlock_irqrestore(&rpipe->seg_lock, flags);
  898. spin_lock_irqsave(&xfer->lock, flags);
  899. __wa_xfer_abort(xfer);
  900. xfer->segs_done++;
  901. spin_unlock_irqrestore(&xfer->lock, flags);
  902. spin_lock_irqsave(&rpipe->seg_lock, flags);
  903. }
  904. }
  905. spin_unlock_irqrestore(&rpipe->seg_lock, flags);
  906. }
  907. /*
  908. *
  909. * xfer->lock is taken
  910. *
  911. * On failure submitting we just stop submitting and return error;
  912. * wa_urb_enqueue_b() will execute the completion path
  913. */
  914. static int __wa_xfer_submit(struct wa_xfer *xfer)
  915. {
  916. int result;
  917. struct wahc *wa = xfer->wa;
  918. struct device *dev = &wa->usb_iface->dev;
  919. unsigned cnt;
  920. struct wa_seg *seg;
  921. unsigned long flags;
  922. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  923. size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests);
  924. u8 available;
  925. u8 empty;
  926. spin_lock_irqsave(&wa->xfer_list_lock, flags);
  927. list_add_tail(&xfer->list_node, &wa->xfer_list);
  928. spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
  929. BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests);
  930. result = 0;
  931. spin_lock_irqsave(&rpipe->seg_lock, flags);
  932. for (cnt = 0; cnt < xfer->segs; cnt++) {
  933. available = atomic_read(&rpipe->segs_available);
  934. empty = list_empty(&rpipe->seg_list);
  935. seg = xfer->seg[cnt];
  936. dev_dbg(dev, "xfer %p#%u: available %u empty %u (%s)\n",
  937. xfer, cnt, available, empty,
  938. available == 0 || !empty ? "delayed" : "submitted");
  939. if (available == 0 || !empty) {
  940. dev_dbg(dev, "xfer %p#%u: delayed\n", xfer, cnt);
  941. seg->status = WA_SEG_DELAYED;
  942. list_add_tail(&seg->list_node, &rpipe->seg_list);
  943. } else {
  944. result = __wa_seg_submit(rpipe, xfer, seg);
  945. if (result < 0) {
  946. __wa_xfer_abort(xfer);
  947. goto error_seg_submit;
  948. }
  949. }
  950. xfer->segs_submitted++;
  951. }
  952. error_seg_submit:
  953. spin_unlock_irqrestore(&rpipe->seg_lock, flags);
  954. return result;
  955. }
  956. /*
  957. * Second part of a URB/transfer enqueuement
  958. *
  959. * Assumes this comes from wa_urb_enqueue() [maybe through
  960. * wa_urb_enqueue_run()]. At this point:
  961. *
  962. * xfer->wa filled and refcounted
  963. * xfer->ep filled with rpipe refcounted if
  964. * delayed == 0
  965. * xfer->urb filled and refcounted (this is the case when called
  966. * from wa_urb_enqueue() as we come from usb_submit_urb()
  967. * and when called by wa_urb_enqueue_run(), as we took an
  968. * extra ref dropped by _run() after we return).
  969. * xfer->gfp filled
  970. *
  971. * If we fail at __wa_xfer_submit(), then we just check if we are done
  972. * and if so, we run the completion procedure. However, if we are not
  973. * yet done, we do nothing and wait for the completion handlers from
  974. * the submitted URBs or from the xfer-result path to kick in. If xfer
  975. * result never kicks in, the xfer will timeout from the USB code and
  976. * dequeue() will be called.
  977. */
  978. static void wa_urb_enqueue_b(struct wa_xfer *xfer)
  979. {
  980. int result;
  981. unsigned long flags;
  982. struct urb *urb = xfer->urb;
  983. struct wahc *wa = xfer->wa;
  984. struct wusbhc *wusbhc = wa->wusb;
  985. struct wusb_dev *wusb_dev;
  986. unsigned done;
  987. result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp);
  988. if (result < 0)
  989. goto error_rpipe_get;
  990. result = -ENODEV;
  991. /* FIXME: segmentation broken -- kills DWA */
  992. mutex_lock(&wusbhc->mutex); /* get a WUSB dev */
  993. if (urb->dev == NULL) {
  994. mutex_unlock(&wusbhc->mutex);
  995. goto error_dev_gone;
  996. }
  997. wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev);
  998. if (wusb_dev == NULL) {
  999. mutex_unlock(&wusbhc->mutex);
  1000. goto error_dev_gone;
  1001. }
  1002. mutex_unlock(&wusbhc->mutex);
  1003. spin_lock_irqsave(&xfer->lock, flags);
  1004. xfer->wusb_dev = wusb_dev;
  1005. result = urb->status;
  1006. if (urb->status != -EINPROGRESS)
  1007. goto error_dequeued;
  1008. result = __wa_xfer_setup(xfer, urb);
  1009. if (result < 0)
  1010. goto error_xfer_setup;
  1011. result = __wa_xfer_submit(xfer);
  1012. if (result < 0)
  1013. goto error_xfer_submit;
  1014. spin_unlock_irqrestore(&xfer->lock, flags);
  1015. return;
  1016. /* this is basically wa_xfer_completion() broken up wa_xfer_giveback()
  1017. * does a wa_xfer_put() that will call wa_xfer_destroy() and clean
  1018. * upundo setup().
  1019. */
  1020. error_xfer_setup:
  1021. error_dequeued:
  1022. spin_unlock_irqrestore(&xfer->lock, flags);
  1023. /* FIXME: segmentation broken, kills DWA */
  1024. if (wusb_dev)
  1025. wusb_dev_put(wusb_dev);
  1026. error_dev_gone:
  1027. rpipe_put(xfer->ep->hcpriv);
  1028. error_rpipe_get:
  1029. xfer->result = result;
  1030. wa_xfer_giveback(xfer);
  1031. return;
  1032. error_xfer_submit:
  1033. done = __wa_xfer_is_done(xfer);
  1034. xfer->result = result;
  1035. spin_unlock_irqrestore(&xfer->lock, flags);
  1036. if (done)
  1037. wa_xfer_completion(xfer);
  1038. }
  1039. /*
  1040. * Execute the delayed transfers in the Wire Adapter @wa
  1041. *
  1042. * We need to be careful here, as dequeue() could be called in the
  1043. * middle. That's why we do the whole thing under the
  1044. * wa->xfer_list_lock. If dequeue() jumps in, it first locks xfer->lock
  1045. * and then checks the list -- so as we would be acquiring in inverse
  1046. * order, we move the delayed list to a separate list while locked and then
  1047. * submit them without the list lock held.
  1048. */
  1049. void wa_urb_enqueue_run(struct work_struct *ws)
  1050. {
  1051. struct wahc *wa = container_of(ws, struct wahc, xfer_enqueue_work);
  1052. struct wa_xfer *xfer, *next;
  1053. struct urb *urb;
  1054. LIST_HEAD(tmp_list);
  1055. /* Create a copy of the wa->xfer_delayed_list while holding the lock */
  1056. spin_lock_irq(&wa->xfer_list_lock);
  1057. list_cut_position(&tmp_list, &wa->xfer_delayed_list,
  1058. wa->xfer_delayed_list.prev);
  1059. spin_unlock_irq(&wa->xfer_list_lock);
  1060. /*
  1061. * enqueue from temp list without list lock held since wa_urb_enqueue_b
  1062. * can take xfer->lock as well as lock mutexes.
  1063. */
  1064. list_for_each_entry_safe(xfer, next, &tmp_list, list_node) {
  1065. list_del_init(&xfer->list_node);
  1066. urb = xfer->urb;
  1067. wa_urb_enqueue_b(xfer);
  1068. usb_put_urb(urb); /* taken when queuing */
  1069. }
  1070. }
  1071. EXPORT_SYMBOL_GPL(wa_urb_enqueue_run);
  1072. /*
  1073. * Process the errored transfers on the Wire Adapter outside of interrupt.
  1074. */
  1075. void wa_process_errored_transfers_run(struct work_struct *ws)
  1076. {
  1077. struct wahc *wa = container_of(ws, struct wahc, xfer_error_work);
  1078. struct wa_xfer *xfer, *next;
  1079. LIST_HEAD(tmp_list);
  1080. pr_info("%s: Run delayed STALL processing.\n", __func__);
  1081. /* Create a copy of the wa->xfer_errored_list while holding the lock */
  1082. spin_lock_irq(&wa->xfer_list_lock);
  1083. list_cut_position(&tmp_list, &wa->xfer_errored_list,
  1084. wa->xfer_errored_list.prev);
  1085. spin_unlock_irq(&wa->xfer_list_lock);
  1086. /*
  1087. * run rpipe_clear_feature_stalled from temp list without list lock
  1088. * held.
  1089. */
  1090. list_for_each_entry_safe(xfer, next, &tmp_list, list_node) {
  1091. struct usb_host_endpoint *ep;
  1092. unsigned long flags;
  1093. struct wa_rpipe *rpipe;
  1094. spin_lock_irqsave(&xfer->lock, flags);
  1095. ep = xfer->ep;
  1096. rpipe = ep->hcpriv;
  1097. spin_unlock_irqrestore(&xfer->lock, flags);
  1098. /* clear RPIPE feature stalled without holding a lock. */
  1099. rpipe_clear_feature_stalled(wa, ep);
  1100. /* complete the xfer. This removes it from the tmp list. */
  1101. wa_xfer_completion(xfer);
  1102. /* check for work. */
  1103. wa_xfer_delayed_run(rpipe);
  1104. }
  1105. }
  1106. EXPORT_SYMBOL_GPL(wa_process_errored_transfers_run);
  1107. /*
  1108. * Submit a transfer to the Wire Adapter in a delayed way
  1109. *
  1110. * The process of enqueuing involves possible sleeps() [see
  1111. * enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are
  1112. * in an atomic section, we defer the enqueue_b() call--else we call direct.
  1113. *
  1114. * @urb: We own a reference to it done by the HCI Linux USB stack that
  1115. * will be given up by calling usb_hcd_giveback_urb() or by
  1116. * returning error from this function -> ergo we don't have to
  1117. * refcount it.
  1118. */
  1119. int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep,
  1120. struct urb *urb, gfp_t gfp)
  1121. {
  1122. int result;
  1123. struct device *dev = &wa->usb_iface->dev;
  1124. struct wa_xfer *xfer;
  1125. unsigned long my_flags;
  1126. unsigned cant_sleep = irqs_disabled() | in_atomic();
  1127. if ((urb->transfer_buffer == NULL)
  1128. && (urb->sg == NULL)
  1129. && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
  1130. && urb->transfer_buffer_length != 0) {
  1131. dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb);
  1132. dump_stack();
  1133. }
  1134. result = -ENOMEM;
  1135. xfer = kzalloc(sizeof(*xfer), gfp);
  1136. if (xfer == NULL)
  1137. goto error_kmalloc;
  1138. result = -ENOENT;
  1139. if (urb->status != -EINPROGRESS) /* cancelled */
  1140. goto error_dequeued; /* before starting? */
  1141. wa_xfer_init(xfer);
  1142. xfer->wa = wa_get(wa);
  1143. xfer->urb = urb;
  1144. xfer->gfp = gfp;
  1145. xfer->ep = ep;
  1146. urb->hcpriv = xfer;
  1147. dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n",
  1148. xfer, urb, urb->pipe, urb->transfer_buffer_length,
  1149. urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma",
  1150. urb->pipe & USB_DIR_IN ? "inbound" : "outbound",
  1151. cant_sleep ? "deferred" : "inline");
  1152. if (cant_sleep) {
  1153. usb_get_urb(urb);
  1154. spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
  1155. list_add_tail(&xfer->list_node, &wa->xfer_delayed_list);
  1156. spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
  1157. queue_work(wusbd, &wa->xfer_enqueue_work);
  1158. } else {
  1159. wa_urb_enqueue_b(xfer);
  1160. }
  1161. return 0;
  1162. error_dequeued:
  1163. kfree(xfer);
  1164. error_kmalloc:
  1165. return result;
  1166. }
  1167. EXPORT_SYMBOL_GPL(wa_urb_enqueue);
  1168. /*
  1169. * Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion
  1170. * handler] is called.
  1171. *
  1172. * Until a transfer goes successfully through wa_urb_enqueue() it
  1173. * needs to be dequeued with completion calling; when stuck in delayed
  1174. * or before wa_xfer_setup() is called, we need to do completion.
  1175. *
  1176. * not setup If there is no hcpriv yet, that means that that enqueue
  1177. * still had no time to set the xfer up. Because
  1178. * urb->status should be other than -EINPROGRESS,
  1179. * enqueue() will catch that and bail out.
  1180. *
  1181. * If the transfer has gone through setup, we just need to clean it
  1182. * up. If it has gone through submit(), we have to abort it [with an
  1183. * asynch request] and then make sure we cancel each segment.
  1184. *
  1185. */
  1186. int wa_urb_dequeue(struct wahc *wa, struct urb *urb)
  1187. {
  1188. unsigned long flags, flags2;
  1189. struct wa_xfer *xfer;
  1190. struct wa_seg *seg;
  1191. struct wa_rpipe *rpipe;
  1192. unsigned cnt;
  1193. unsigned rpipe_ready = 0;
  1194. xfer = urb->hcpriv;
  1195. if (xfer == NULL) {
  1196. /*
  1197. * Nothing setup yet enqueue will see urb->status !=
  1198. * -EINPROGRESS (by hcd layer) and bail out with
  1199. * error, no need to do completion
  1200. */
  1201. BUG_ON(urb->status == -EINPROGRESS);
  1202. goto out;
  1203. }
  1204. spin_lock_irqsave(&xfer->lock, flags);
  1205. rpipe = xfer->ep->hcpriv;
  1206. if (rpipe == NULL) {
  1207. pr_debug("%s: xfer id 0x%08X has no RPIPE. %s",
  1208. __func__, wa_xfer_id(xfer),
  1209. "Probably already aborted.\n" );
  1210. goto out_unlock;
  1211. }
  1212. /* Check the delayed list -> if there, release and complete */
  1213. spin_lock_irqsave(&wa->xfer_list_lock, flags2);
  1214. if (!list_empty(&xfer->list_node) && xfer->seg == NULL)
  1215. goto dequeue_delayed;
  1216. spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
  1217. if (xfer->seg == NULL) /* still hasn't reached */
  1218. goto out_unlock; /* setup(), enqueue_b() completes */
  1219. /* Ok, the xfer is in flight already, it's been setup and submitted.*/
  1220. __wa_xfer_abort(xfer);
  1221. for (cnt = 0; cnt < xfer->segs; cnt++) {
  1222. seg = xfer->seg[cnt];
  1223. switch (seg->status) {
  1224. case WA_SEG_NOTREADY:
  1225. case WA_SEG_READY:
  1226. printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n",
  1227. xfer, cnt, seg->status);
  1228. WARN_ON(1);
  1229. break;
  1230. case WA_SEG_DELAYED:
  1231. seg->status = WA_SEG_ABORTED;
  1232. spin_lock_irqsave(&rpipe->seg_lock, flags2);
  1233. list_del(&seg->list_node);
  1234. xfer->segs_done++;
  1235. rpipe_ready = rpipe_avail_inc(rpipe);
  1236. spin_unlock_irqrestore(&rpipe->seg_lock, flags2);
  1237. break;
  1238. case WA_SEG_SUBMITTED:
  1239. seg->status = WA_SEG_ABORTED;
  1240. usb_unlink_urb(&seg->tr_urb);
  1241. if (xfer->is_inbound == 0)
  1242. usb_unlink_urb(seg->dto_urb);
  1243. xfer->segs_done++;
  1244. rpipe_ready = rpipe_avail_inc(rpipe);
  1245. break;
  1246. case WA_SEG_PENDING:
  1247. seg->status = WA_SEG_ABORTED;
  1248. xfer->segs_done++;
  1249. rpipe_ready = rpipe_avail_inc(rpipe);
  1250. break;
  1251. case WA_SEG_DTI_PENDING:
  1252. usb_unlink_urb(wa->dti_urb);
  1253. seg->status = WA_SEG_ABORTED;
  1254. xfer->segs_done++;
  1255. rpipe_ready = rpipe_avail_inc(rpipe);
  1256. break;
  1257. case WA_SEG_DONE:
  1258. case WA_SEG_ERROR:
  1259. case WA_SEG_ABORTED:
  1260. break;
  1261. }
  1262. }
  1263. xfer->result = urb->status; /* -ENOENT or -ECONNRESET */
  1264. __wa_xfer_is_done(xfer);
  1265. spin_unlock_irqrestore(&xfer->lock, flags);
  1266. wa_xfer_completion(xfer);
  1267. if (rpipe_ready)
  1268. wa_xfer_delayed_run(rpipe);
  1269. return 0;
  1270. out_unlock:
  1271. spin_unlock_irqrestore(&xfer->lock, flags);
  1272. out:
  1273. return 0;
  1274. dequeue_delayed:
  1275. list_del_init(&xfer->list_node);
  1276. spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
  1277. xfer->result = urb->status;
  1278. spin_unlock_irqrestore(&xfer->lock, flags);
  1279. wa_xfer_giveback(xfer);
  1280. usb_put_urb(urb); /* we got a ref in enqueue() */
  1281. return 0;
  1282. }
  1283. EXPORT_SYMBOL_GPL(wa_urb_dequeue);
  1284. /*
  1285. * Translation from WA status codes (WUSB1.0 Table 8.15) to errno
  1286. * codes
  1287. *
  1288. * Positive errno values are internal inconsistencies and should be
  1289. * flagged louder. Negative are to be passed up to the user in the
  1290. * normal way.
  1291. *
  1292. * @status: USB WA status code -- high two bits are stripped.
  1293. */
  1294. static int wa_xfer_status_to_errno(u8 status)
  1295. {
  1296. int errno;
  1297. u8 real_status = status;
  1298. static int xlat[] = {
  1299. [WA_XFER_STATUS_SUCCESS] = 0,
  1300. [WA_XFER_STATUS_HALTED] = -EPIPE,
  1301. [WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS,
  1302. [WA_XFER_STATUS_BABBLE] = -EOVERFLOW,
  1303. [WA_XFER_RESERVED] = EINVAL,
  1304. [WA_XFER_STATUS_NOT_FOUND] = 0,
  1305. [WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM,
  1306. [WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ,
  1307. [WA_XFER_STATUS_ABORTED] = -EINTR,
  1308. [WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL,
  1309. [WA_XFER_INVALID_FORMAT] = EINVAL,
  1310. [WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL,
  1311. [WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL,
  1312. };
  1313. status &= 0x3f;
  1314. if (status == 0)
  1315. return 0;
  1316. if (status >= ARRAY_SIZE(xlat)) {
  1317. printk_ratelimited(KERN_ERR "%s(): BUG? "
  1318. "Unknown WA transfer status 0x%02x\n",
  1319. __func__, real_status);
  1320. return -EINVAL;
  1321. }
  1322. errno = xlat[status];
  1323. if (unlikely(errno > 0)) {
  1324. printk_ratelimited(KERN_ERR "%s(): BUG? "
  1325. "Inconsistent WA status: 0x%02x\n",
  1326. __func__, real_status);
  1327. errno = -errno;
  1328. }
  1329. return errno;
  1330. }
  1331. /*
  1332. * Process a xfer result completion message
  1333. *
  1334. * inbound transfers: need to schedule a DTI read
  1335. *
  1336. * FIXME: this function needs to be broken up in parts
  1337. */
  1338. static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer,
  1339. struct wa_xfer_result *xfer_result)
  1340. {
  1341. int result;
  1342. struct device *dev = &wa->usb_iface->dev;
  1343. unsigned long flags;
  1344. u8 seg_idx;
  1345. struct wa_seg *seg;
  1346. struct wa_rpipe *rpipe;
  1347. unsigned done = 0;
  1348. u8 usb_status;
  1349. unsigned rpipe_ready = 0;
  1350. spin_lock_irqsave(&xfer->lock, flags);
  1351. seg_idx = xfer_result->bTransferSegment & 0x7f;
  1352. if (unlikely(seg_idx >= xfer->segs))
  1353. goto error_bad_seg;
  1354. seg = xfer->seg[seg_idx];
  1355. rpipe = xfer->ep->hcpriv;
  1356. usb_status = xfer_result->bTransferStatus;
  1357. dev_dbg(dev, "xfer %p#%u: bTransferStatus 0x%02x (seg status %u)\n",
  1358. xfer, seg_idx, usb_status, seg->status);
  1359. if (seg->status == WA_SEG_ABORTED
  1360. || seg->status == WA_SEG_ERROR) /* already handled */
  1361. goto segment_aborted;
  1362. if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */
  1363. seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */
  1364. if (seg->status != WA_SEG_PENDING) {
  1365. if (printk_ratelimit())
  1366. dev_err(dev, "xfer %p#%u: Bad segment state %u\n",
  1367. xfer, seg_idx, seg->status);
  1368. seg->status = WA_SEG_PENDING; /* workaround/"fix" it */
  1369. }
  1370. if (usb_status & 0x80) {
  1371. seg->result = wa_xfer_status_to_errno(usb_status);
  1372. dev_err(dev, "DTI: xfer %p#:%08X:%u failed (0x%02x)\n",
  1373. xfer, xfer->id, seg->index, usb_status);
  1374. goto error_complete;
  1375. }
  1376. /* FIXME: we ignore warnings, tally them for stats */
  1377. if (usb_status & 0x40) /* Warning?... */
  1378. usb_status = 0; /* ... pass */
  1379. if (xfer->is_inbound) { /* IN data phase: read to buffer */
  1380. seg->status = WA_SEG_DTI_PENDING;
  1381. BUG_ON(wa->buf_in_urb->status == -EINPROGRESS);
  1382. /* this should always be 0 before a resubmit. */
  1383. wa->buf_in_urb->num_mapped_sgs = 0;
  1384. if (xfer->is_dma) {
  1385. wa->buf_in_urb->transfer_dma =
  1386. xfer->urb->transfer_dma
  1387. + (seg_idx * xfer->seg_size);
  1388. wa->buf_in_urb->transfer_flags
  1389. |= URB_NO_TRANSFER_DMA_MAP;
  1390. wa->buf_in_urb->transfer_buffer = NULL;
  1391. wa->buf_in_urb->sg = NULL;
  1392. wa->buf_in_urb->num_sgs = 0;
  1393. } else {
  1394. /* do buffer or SG processing. */
  1395. wa->buf_in_urb->transfer_flags
  1396. &= ~URB_NO_TRANSFER_DMA_MAP;
  1397. if (xfer->urb->transfer_buffer) {
  1398. wa->buf_in_urb->transfer_buffer =
  1399. xfer->urb->transfer_buffer
  1400. + (seg_idx * xfer->seg_size);
  1401. wa->buf_in_urb->sg = NULL;
  1402. wa->buf_in_urb->num_sgs = 0;
  1403. } else {
  1404. /* allocate an SG list to store seg_size bytes
  1405. and copy the subset of the xfer->urb->sg
  1406. that matches the buffer subset we are
  1407. about to read. */
  1408. wa->buf_in_urb->sg = wa_xfer_create_subset_sg(
  1409. xfer->urb->sg,
  1410. seg_idx * xfer->seg_size,
  1411. le32_to_cpu(
  1412. xfer_result->dwTransferLength),
  1413. &(wa->buf_in_urb->num_sgs));
  1414. if (!(wa->buf_in_urb->sg)) {
  1415. wa->buf_in_urb->num_sgs = 0;
  1416. goto error_sg_alloc;
  1417. }
  1418. wa->buf_in_urb->transfer_buffer = NULL;
  1419. }
  1420. }
  1421. wa->buf_in_urb->transfer_buffer_length =
  1422. le32_to_cpu(xfer_result->dwTransferLength);
  1423. wa->buf_in_urb->context = seg;
  1424. result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC);
  1425. if (result < 0)
  1426. goto error_submit_buf_in;
  1427. } else {
  1428. /* OUT data phase, complete it -- */
  1429. seg->status = WA_SEG_DONE;
  1430. seg->result = le32_to_cpu(xfer_result->dwTransferLength);
  1431. xfer->segs_done++;
  1432. rpipe_ready = rpipe_avail_inc(rpipe);
  1433. done = __wa_xfer_is_done(xfer);
  1434. }
  1435. spin_unlock_irqrestore(&xfer->lock, flags);
  1436. if (done)
  1437. wa_xfer_completion(xfer);
  1438. if (rpipe_ready)
  1439. wa_xfer_delayed_run(rpipe);
  1440. return;
  1441. error_submit_buf_in:
  1442. if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
  1443. dev_err(dev, "DTI: URB max acceptable errors "
  1444. "exceeded, resetting device\n");
  1445. wa_reset_all(wa);
  1446. }
  1447. if (printk_ratelimit())
  1448. dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n",
  1449. xfer, seg_idx, result);
  1450. seg->result = result;
  1451. kfree(wa->buf_in_urb->sg);
  1452. wa->buf_in_urb->sg = NULL;
  1453. error_sg_alloc:
  1454. __wa_xfer_abort(xfer);
  1455. error_complete:
  1456. seg->status = WA_SEG_ERROR;
  1457. xfer->segs_done++;
  1458. rpipe_ready = rpipe_avail_inc(rpipe);
  1459. done = __wa_xfer_is_done(xfer);
  1460. /*
  1461. * queue work item to clear STALL for control endpoints.
  1462. * Otherwise, let endpoint_reset take care of it.
  1463. */
  1464. if (((usb_status & 0x3f) == WA_XFER_STATUS_HALTED) &&
  1465. usb_endpoint_xfer_control(&xfer->ep->desc) &&
  1466. done) {
  1467. dev_info(dev, "Control EP stall. Queue delayed work.\n");
  1468. spin_lock_irq(&wa->xfer_list_lock);
  1469. /* move xfer from xfer_list to xfer_errored_list. */
  1470. list_move_tail(&xfer->list_node, &wa->xfer_errored_list);
  1471. spin_unlock_irq(&wa->xfer_list_lock);
  1472. spin_unlock_irqrestore(&xfer->lock, flags);
  1473. queue_work(wusbd, &wa->xfer_error_work);
  1474. } else {
  1475. spin_unlock_irqrestore(&xfer->lock, flags);
  1476. if (done)
  1477. wa_xfer_completion(xfer);
  1478. if (rpipe_ready)
  1479. wa_xfer_delayed_run(rpipe);
  1480. }
  1481. return;
  1482. error_bad_seg:
  1483. spin_unlock_irqrestore(&xfer->lock, flags);
  1484. wa_urb_dequeue(wa, xfer->urb);
  1485. if (printk_ratelimit())
  1486. dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx);
  1487. if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
  1488. dev_err(dev, "DTI: URB max acceptable errors "
  1489. "exceeded, resetting device\n");
  1490. wa_reset_all(wa);
  1491. }
  1492. return;
  1493. segment_aborted:
  1494. /* nothing to do, as the aborter did the completion */
  1495. spin_unlock_irqrestore(&xfer->lock, flags);
  1496. }
  1497. /*
  1498. * Callback for the IN data phase
  1499. *
  1500. * If successful transition state; otherwise, take a note of the
  1501. * error, mark this segment done and try completion.
  1502. *
  1503. * Note we don't access until we are sure that the transfer hasn't
  1504. * been cancelled (ECONNRESET, ENOENT), which could mean that
  1505. * seg->xfer could be already gone.
  1506. */
  1507. static void wa_buf_in_cb(struct urb *urb)
  1508. {
  1509. struct wa_seg *seg = urb->context;
  1510. struct wa_xfer *xfer = seg->xfer;
  1511. struct wahc *wa;
  1512. struct device *dev;
  1513. struct wa_rpipe *rpipe;
  1514. unsigned rpipe_ready;
  1515. unsigned long flags;
  1516. u8 done = 0;
  1517. /* free the sg if it was used. */
  1518. kfree(urb->sg);
  1519. urb->sg = NULL;
  1520. switch (urb->status) {
  1521. case 0:
  1522. spin_lock_irqsave(&xfer->lock, flags);
  1523. wa = xfer->wa;
  1524. dev = &wa->usb_iface->dev;
  1525. rpipe = xfer->ep->hcpriv;
  1526. dev_dbg(dev, "xfer %p#%u: data in done (%zu bytes)\n",
  1527. xfer, seg->index, (size_t)urb->actual_length);
  1528. seg->status = WA_SEG_DONE;
  1529. seg->result = urb->actual_length;
  1530. xfer->segs_done++;
  1531. rpipe_ready = rpipe_avail_inc(rpipe);
  1532. done = __wa_xfer_is_done(xfer);
  1533. spin_unlock_irqrestore(&xfer->lock, flags);
  1534. if (done)
  1535. wa_xfer_completion(xfer);
  1536. if (rpipe_ready)
  1537. wa_xfer_delayed_run(rpipe);
  1538. break;
  1539. case -ECONNRESET: /* URB unlinked; no need to do anything */
  1540. case -ENOENT: /* as it was done by the who unlinked us */
  1541. break;
  1542. default: /* Other errors ... */
  1543. spin_lock_irqsave(&xfer->lock, flags);
  1544. wa = xfer->wa;
  1545. dev = &wa->usb_iface->dev;
  1546. rpipe = xfer->ep->hcpriv;
  1547. if (printk_ratelimit())
  1548. dev_err(dev, "xfer %p#%u: data in error %d\n",
  1549. xfer, seg->index, urb->status);
  1550. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  1551. EDC_ERROR_TIMEFRAME)){
  1552. dev_err(dev, "DTO: URB max acceptable errors "
  1553. "exceeded, resetting device\n");
  1554. wa_reset_all(wa);
  1555. }
  1556. seg->status = WA_SEG_ERROR;
  1557. seg->result = urb->status;
  1558. xfer->segs_done++;
  1559. rpipe_ready = rpipe_avail_inc(rpipe);
  1560. __wa_xfer_abort(xfer);
  1561. done = __wa_xfer_is_done(xfer);
  1562. spin_unlock_irqrestore(&xfer->lock, flags);
  1563. if (done)
  1564. wa_xfer_completion(xfer);
  1565. if (rpipe_ready)
  1566. wa_xfer_delayed_run(rpipe);
  1567. }
  1568. }
  1569. /*
  1570. * Handle an incoming transfer result buffer
  1571. *
  1572. * Given a transfer result buffer, it completes the transfer (possibly
  1573. * scheduling and buffer in read) and then resubmits the DTI URB for a
  1574. * new transfer result read.
  1575. *
  1576. *
  1577. * The xfer_result DTI URB state machine
  1578. *
  1579. * States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In)
  1580. *
  1581. * We start in OFF mode, the first xfer_result notification [through
  1582. * wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to
  1583. * read.
  1584. *
  1585. * We receive a buffer -- if it is not a xfer_result, we complain and
  1586. * repost the DTI-URB. If it is a xfer_result then do the xfer seg
  1587. * request accounting. If it is an IN segment, we move to RBI and post
  1588. * a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will
  1589. * repost the DTI-URB and move to RXR state. if there was no IN
  1590. * segment, it will repost the DTI-URB.
  1591. *
  1592. * We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many
  1593. * errors) in the URBs.
  1594. */
  1595. static void wa_dti_cb(struct urb *urb)
  1596. {
  1597. int result;
  1598. struct wahc *wa = urb->context;
  1599. struct device *dev = &wa->usb_iface->dev;
  1600. struct wa_xfer_result *xfer_result;
  1601. u32 xfer_id;
  1602. struct wa_xfer *xfer;
  1603. u8 usb_status;
  1604. BUG_ON(wa->dti_urb != urb);
  1605. switch (wa->dti_urb->status) {
  1606. case 0:
  1607. /* We have a xfer result buffer; check it */
  1608. dev_dbg(dev, "DTI: xfer result %d bytes at %p\n",
  1609. urb->actual_length, urb->transfer_buffer);
  1610. if (wa->dti_urb->actual_length != sizeof(*xfer_result)) {
  1611. dev_err(dev, "DTI Error: xfer result--bad size "
  1612. "xfer result (%d bytes vs %zu needed)\n",
  1613. urb->actual_length, sizeof(*xfer_result));
  1614. break;
  1615. }
  1616. xfer_result = (struct wa_xfer_result *)(wa->dti_buf);
  1617. if (xfer_result->hdr.bLength != sizeof(*xfer_result)) {
  1618. dev_err(dev, "DTI Error: xfer result--"
  1619. "bad header length %u\n",
  1620. xfer_result->hdr.bLength);
  1621. break;
  1622. }
  1623. if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) {
  1624. dev_err(dev, "DTI Error: xfer result--"
  1625. "bad header type 0x%02x\n",
  1626. xfer_result->hdr.bNotifyType);
  1627. break;
  1628. }
  1629. usb_status = xfer_result->bTransferStatus & 0x3f;
  1630. if (usb_status == WA_XFER_STATUS_NOT_FOUND)
  1631. /* taken care of already */
  1632. break;
  1633. xfer_id = xfer_result->dwTransferID;
  1634. xfer = wa_xfer_get_by_id(wa, xfer_id);
  1635. if (xfer == NULL) {
  1636. /* FIXME: transaction might have been cancelled */
  1637. dev_err(dev, "DTI Error: xfer result--"
  1638. "unknown xfer 0x%08x (status 0x%02x)\n",
  1639. xfer_id, usb_status);
  1640. break;
  1641. }
  1642. wa_xfer_result_chew(wa, xfer, xfer_result);
  1643. wa_xfer_put(xfer);
  1644. break;
  1645. case -ENOENT: /* (we killed the URB)...so, no broadcast */
  1646. case -ESHUTDOWN: /* going away! */
  1647. dev_dbg(dev, "DTI: going down! %d\n", urb->status);
  1648. goto out;
  1649. default:
  1650. /* Unknown error */
  1651. if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS,
  1652. EDC_ERROR_TIMEFRAME)) {
  1653. dev_err(dev, "DTI: URB max acceptable errors "
  1654. "exceeded, resetting device\n");
  1655. wa_reset_all(wa);
  1656. goto out;
  1657. }
  1658. if (printk_ratelimit())
  1659. dev_err(dev, "DTI: URB error %d\n", urb->status);
  1660. break;
  1661. }
  1662. /* Resubmit the DTI URB */
  1663. result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
  1664. if (result < 0) {
  1665. dev_err(dev, "DTI Error: Could not submit DTI URB (%d), "
  1666. "resetting\n", result);
  1667. wa_reset_all(wa);
  1668. }
  1669. out:
  1670. return;
  1671. }
  1672. /*
  1673. * Transfer complete notification
  1674. *
  1675. * Called from the notif.c code. We get a notification on EP2 saying
  1676. * that some endpoint has some transfer result data available. We are
  1677. * about to read it.
  1678. *
  1679. * To speed up things, we always have a URB reading the DTI URB; we
  1680. * don't really set it up and start it until the first xfer complete
  1681. * notification arrives, which is what we do here.
  1682. *
  1683. * Follow up in wa_dti_cb(), as that's where the whole state
  1684. * machine starts.
  1685. *
  1686. * So here we just initialize the DTI URB for reading transfer result
  1687. * notifications and also the buffer-in URB, for reading buffers. Then
  1688. * we just submit the DTI URB.
  1689. *
  1690. * @wa shall be referenced
  1691. */
  1692. void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr)
  1693. {
  1694. int result;
  1695. struct device *dev = &wa->usb_iface->dev;
  1696. struct wa_notif_xfer *notif_xfer;
  1697. const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd;
  1698. notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr);
  1699. BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER);
  1700. if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) {
  1701. /* FIXME: hardcoded limitation, adapt */
  1702. dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n",
  1703. notif_xfer->bEndpoint, dti_epd->bEndpointAddress);
  1704. goto error;
  1705. }
  1706. if (wa->dti_urb != NULL) /* DTI URB already started */
  1707. goto out;
  1708. wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL);
  1709. if (wa->dti_urb == NULL) {
  1710. dev_err(dev, "Can't allocate DTI URB\n");
  1711. goto error_dti_urb_alloc;
  1712. }
  1713. usb_fill_bulk_urb(
  1714. wa->dti_urb, wa->usb_dev,
  1715. usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
  1716. wa->dti_buf, wa->dti_buf_size,
  1717. wa_dti_cb, wa);
  1718. wa->buf_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  1719. if (wa->buf_in_urb == NULL) {
  1720. dev_err(dev, "Can't allocate BUF-IN URB\n");
  1721. goto error_buf_in_urb_alloc;
  1722. }
  1723. usb_fill_bulk_urb(
  1724. wa->buf_in_urb, wa->usb_dev,
  1725. usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
  1726. NULL, 0, wa_buf_in_cb, wa);
  1727. result = usb_submit_urb(wa->dti_urb, GFP_KERNEL);
  1728. if (result < 0) {
  1729. dev_err(dev, "DTI Error: Could not submit DTI URB (%d), "
  1730. "resetting\n", result);
  1731. goto error_dti_urb_submit;
  1732. }
  1733. out:
  1734. return;
  1735. error_dti_urb_submit:
  1736. usb_put_urb(wa->buf_in_urb);
  1737. wa->buf_in_urb = NULL;
  1738. error_buf_in_urb_alloc:
  1739. usb_put_urb(wa->dti_urb);
  1740. wa->dti_urb = NULL;
  1741. error_dti_urb_alloc:
  1742. error:
  1743. wa_reset_all(wa);
  1744. }