svc_xprt.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. /*
  2. * linux/net/sunrpc/svc_xprt.c
  3. *
  4. * Author: Tom Tucker <tom@opengridcomputing.com>
  5. */
  6. #include <linux/sched.h>
  7. #include <linux/errno.h>
  8. #include <linux/freezer.h>
  9. #include <linux/kthread.h>
  10. #include <linux/slab.h>
  11. #include <net/sock.h>
  12. #include <linux/sunrpc/stats.h>
  13. #include <linux/sunrpc/svc_xprt.h>
  14. #include <linux/sunrpc/svcsock.h>
  15. #include <linux/sunrpc/xprt.h>
  16. #include <linux/module.h>
  17. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  18. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  19. static int svc_deferred_recv(struct svc_rqst *rqstp);
  20. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  21. static void svc_age_temp_xprts(unsigned long closure);
  22. static void svc_delete_xprt(struct svc_xprt *xprt);
  23. /* apparently the "standard" is that clients close
  24. * idle connections after 5 minutes, servers after
  25. * 6 minutes
  26. * http://www.connectathon.org/talks96/nfstcp.pdf
  27. */
  28. static int svc_conn_age_period = 6*60;
  29. /* List of registered transport classes */
  30. static DEFINE_SPINLOCK(svc_xprt_class_lock);
  31. static LIST_HEAD(svc_xprt_class_list);
  32. /* SMP locking strategy:
  33. *
  34. * svc_pool->sp_lock protects most of the fields of that pool.
  35. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  36. * when both need to be taken (rare), svc_serv->sv_lock is first.
  37. * BKL protects svc_serv->sv_nrthread.
  38. * svc_sock->sk_lock protects the svc_sock->sk_deferred list
  39. * and the ->sk_info_authunix cache.
  40. *
  41. * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  42. * enqueued multiply. During normal transport processing this bit
  43. * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  44. * Providers should not manipulate this bit directly.
  45. *
  46. * Some flags can be set to certain values at any time
  47. * providing that certain rules are followed:
  48. *
  49. * XPT_CONN, XPT_DATA:
  50. * - Can be set or cleared at any time.
  51. * - After a set, svc_xprt_enqueue must be called to enqueue
  52. * the transport for processing.
  53. * - After a clear, the transport must be read/accepted.
  54. * If this succeeds, it must be set again.
  55. * XPT_CLOSE:
  56. * - Can set at any time. It is never cleared.
  57. * XPT_DEAD:
  58. * - Can only be set while XPT_BUSY is held which ensures
  59. * that no other thread will be using the transport or will
  60. * try to set XPT_DEAD.
  61. */
  62. int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  63. {
  64. struct svc_xprt_class *cl;
  65. int res = -EEXIST;
  66. dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  67. INIT_LIST_HEAD(&xcl->xcl_list);
  68. spin_lock(&svc_xprt_class_lock);
  69. /* Make sure there isn't already a class with the same name */
  70. list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  71. if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  72. goto out;
  73. }
  74. list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  75. res = 0;
  76. out:
  77. spin_unlock(&svc_xprt_class_lock);
  78. return res;
  79. }
  80. EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  81. void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  82. {
  83. dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
  84. spin_lock(&svc_xprt_class_lock);
  85. list_del_init(&xcl->xcl_list);
  86. spin_unlock(&svc_xprt_class_lock);
  87. }
  88. EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
  89. /*
  90. * Format the transport list for printing
  91. */
  92. int svc_print_xprts(char *buf, int maxlen)
  93. {
  94. struct svc_xprt_class *xcl;
  95. char tmpstr[80];
  96. int len = 0;
  97. buf[0] = '\0';
  98. spin_lock(&svc_xprt_class_lock);
  99. list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
  100. int slen;
  101. sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
  102. slen = strlen(tmpstr);
  103. if (len + slen > maxlen)
  104. break;
  105. len += slen;
  106. strcat(buf, tmpstr);
  107. }
  108. spin_unlock(&svc_xprt_class_lock);
  109. return len;
  110. }
  111. static void svc_xprt_free(struct kref *kref)
  112. {
  113. struct svc_xprt *xprt =
  114. container_of(kref, struct svc_xprt, xpt_ref);
  115. struct module *owner = xprt->xpt_class->xcl_owner;
  116. if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
  117. svcauth_unix_info_release(xprt);
  118. put_net(xprt->xpt_net);
  119. /* See comment on corresponding get in xs_setup_bc_tcp(): */
  120. if (xprt->xpt_bc_xprt)
  121. xprt_put(xprt->xpt_bc_xprt);
  122. xprt->xpt_ops->xpo_free(xprt);
  123. module_put(owner);
  124. }
  125. void svc_xprt_put(struct svc_xprt *xprt)
  126. {
  127. kref_put(&xprt->xpt_ref, svc_xprt_free);
  128. }
  129. EXPORT_SYMBOL_GPL(svc_xprt_put);
  130. /*
  131. * Called by transport drivers to initialize the transport independent
  132. * portion of the transport instance.
  133. */
  134. void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
  135. struct svc_xprt *xprt, struct svc_serv *serv)
  136. {
  137. memset(xprt, 0, sizeof(*xprt));
  138. xprt->xpt_class = xcl;
  139. xprt->xpt_ops = xcl->xcl_ops;
  140. kref_init(&xprt->xpt_ref);
  141. xprt->xpt_server = serv;
  142. INIT_LIST_HEAD(&xprt->xpt_list);
  143. INIT_LIST_HEAD(&xprt->xpt_ready);
  144. INIT_LIST_HEAD(&xprt->xpt_deferred);
  145. INIT_LIST_HEAD(&xprt->xpt_users);
  146. mutex_init(&xprt->xpt_mutex);
  147. spin_lock_init(&xprt->xpt_lock);
  148. set_bit(XPT_BUSY, &xprt->xpt_flags);
  149. rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
  150. xprt->xpt_net = get_net(net);
  151. }
  152. EXPORT_SYMBOL_GPL(svc_xprt_init);
  153. static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
  154. struct svc_serv *serv,
  155. struct net *net,
  156. const int family,
  157. const unsigned short port,
  158. int flags)
  159. {
  160. struct sockaddr_in sin = {
  161. .sin_family = AF_INET,
  162. .sin_addr.s_addr = htonl(INADDR_ANY),
  163. .sin_port = htons(port),
  164. };
  165. #if IS_ENABLED(CONFIG_IPV6)
  166. struct sockaddr_in6 sin6 = {
  167. .sin6_family = AF_INET6,
  168. .sin6_addr = IN6ADDR_ANY_INIT,
  169. .sin6_port = htons(port),
  170. };
  171. #endif
  172. struct sockaddr *sap;
  173. size_t len;
  174. switch (family) {
  175. case PF_INET:
  176. sap = (struct sockaddr *)&sin;
  177. len = sizeof(sin);
  178. break;
  179. #if IS_ENABLED(CONFIG_IPV6)
  180. case PF_INET6:
  181. sap = (struct sockaddr *)&sin6;
  182. len = sizeof(sin6);
  183. break;
  184. #endif
  185. default:
  186. return ERR_PTR(-EAFNOSUPPORT);
  187. }
  188. return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
  189. }
  190. /*
  191. * svc_xprt_received conditionally queues the transport for processing
  192. * by another thread. The caller must hold the XPT_BUSY bit and must
  193. * not thereafter touch transport data.
  194. *
  195. * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
  196. * insufficient) data.
  197. */
  198. static void svc_xprt_received(struct svc_xprt *xprt)
  199. {
  200. BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
  201. /* As soon as we clear busy, the xprt could be closed and
  202. * 'put', so we need a reference to call svc_xprt_enqueue with:
  203. */
  204. svc_xprt_get(xprt);
  205. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  206. svc_xprt_enqueue(xprt);
  207. svc_xprt_put(xprt);
  208. }
  209. void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
  210. {
  211. clear_bit(XPT_TEMP, &new->xpt_flags);
  212. spin_lock_bh(&serv->sv_lock);
  213. list_add(&new->xpt_list, &serv->sv_permsocks);
  214. spin_unlock_bh(&serv->sv_lock);
  215. svc_xprt_received(new);
  216. }
  217. int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
  218. struct net *net, const int family,
  219. const unsigned short port, int flags)
  220. {
  221. struct svc_xprt_class *xcl;
  222. dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
  223. spin_lock(&svc_xprt_class_lock);
  224. list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
  225. struct svc_xprt *newxprt;
  226. unsigned short newport;
  227. if (strcmp(xprt_name, xcl->xcl_name))
  228. continue;
  229. if (!try_module_get(xcl->xcl_owner))
  230. goto err;
  231. spin_unlock(&svc_xprt_class_lock);
  232. newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
  233. if (IS_ERR(newxprt)) {
  234. module_put(xcl->xcl_owner);
  235. return PTR_ERR(newxprt);
  236. }
  237. svc_add_new_perm_xprt(serv, newxprt);
  238. newport = svc_xprt_local_port(newxprt);
  239. return newport;
  240. }
  241. err:
  242. spin_unlock(&svc_xprt_class_lock);
  243. dprintk("svc: transport %s not found\n", xprt_name);
  244. /* This errno is exposed to user space. Provide a reasonable
  245. * perror msg for a bad transport. */
  246. return -EPROTONOSUPPORT;
  247. }
  248. EXPORT_SYMBOL_GPL(svc_create_xprt);
  249. /*
  250. * Copy the local and remote xprt addresses to the rqstp structure
  251. */
  252. void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
  253. {
  254. memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
  255. rqstp->rq_addrlen = xprt->xpt_remotelen;
  256. /*
  257. * Destination address in request is needed for binding the
  258. * source address in RPC replies/callbacks later.
  259. */
  260. memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
  261. rqstp->rq_daddrlen = xprt->xpt_locallen;
  262. }
  263. EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
  264. /**
  265. * svc_print_addr - Format rq_addr field for printing
  266. * @rqstp: svc_rqst struct containing address to print
  267. * @buf: target buffer for formatted address
  268. * @len: length of target buffer
  269. *
  270. */
  271. char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
  272. {
  273. return __svc_print_addr(svc_addr(rqstp), buf, len);
  274. }
  275. EXPORT_SYMBOL_GPL(svc_print_addr);
  276. /*
  277. * Queue up an idle server thread. Must have pool->sp_lock held.
  278. * Note: this is really a stack rather than a queue, so that we only
  279. * use as many different threads as we need, and the rest don't pollute
  280. * the cache.
  281. */
  282. static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
  283. {
  284. list_add(&rqstp->rq_list, &pool->sp_threads);
  285. }
  286. /*
  287. * Dequeue an nfsd thread. Must have pool->sp_lock held.
  288. */
  289. static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
  290. {
  291. list_del(&rqstp->rq_list);
  292. }
  293. static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
  294. {
  295. if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
  296. return true;
  297. if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
  298. return xprt->xpt_ops->xpo_has_wspace(xprt);
  299. return false;
  300. }
  301. /*
  302. * Queue up a transport with data pending. If there are idle nfsd
  303. * processes, wake 'em up.
  304. *
  305. */
  306. void svc_xprt_enqueue(struct svc_xprt *xprt)
  307. {
  308. struct svc_pool *pool;
  309. struct svc_rqst *rqstp;
  310. int cpu;
  311. if (!svc_xprt_has_something_to_do(xprt))
  312. return;
  313. cpu = get_cpu();
  314. pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
  315. put_cpu();
  316. spin_lock_bh(&pool->sp_lock);
  317. if (!list_empty(&pool->sp_threads) &&
  318. !list_empty(&pool->sp_sockets))
  319. printk(KERN_ERR
  320. "svc_xprt_enqueue: "
  321. "threads and transports both waiting??\n");
  322. pool->sp_stats.packets++;
  323. /* Mark transport as busy. It will remain in this state until
  324. * the provider calls svc_xprt_received. We update XPT_BUSY
  325. * atomically because it also guards against trying to enqueue
  326. * the transport twice.
  327. */
  328. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
  329. /* Don't enqueue transport while already enqueued */
  330. dprintk("svc: transport %p busy, not enqueued\n", xprt);
  331. goto out_unlock;
  332. }
  333. if (!list_empty(&pool->sp_threads)) {
  334. rqstp = list_entry(pool->sp_threads.next,
  335. struct svc_rqst,
  336. rq_list);
  337. dprintk("svc: transport %p served by daemon %p\n",
  338. xprt, rqstp);
  339. svc_thread_dequeue(pool, rqstp);
  340. if (rqstp->rq_xprt)
  341. printk(KERN_ERR
  342. "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
  343. rqstp, rqstp->rq_xprt);
  344. rqstp->rq_xprt = xprt;
  345. svc_xprt_get(xprt);
  346. pool->sp_stats.threads_woken++;
  347. wake_up(&rqstp->rq_wait);
  348. } else {
  349. dprintk("svc: transport %p put into queue\n", xprt);
  350. list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
  351. pool->sp_stats.sockets_queued++;
  352. }
  353. out_unlock:
  354. spin_unlock_bh(&pool->sp_lock);
  355. }
  356. EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
  357. /*
  358. * Dequeue the first transport. Must be called with the pool->sp_lock held.
  359. */
  360. static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
  361. {
  362. struct svc_xprt *xprt;
  363. if (list_empty(&pool->sp_sockets))
  364. return NULL;
  365. xprt = list_entry(pool->sp_sockets.next,
  366. struct svc_xprt, xpt_ready);
  367. list_del_init(&xprt->xpt_ready);
  368. dprintk("svc: transport %p dequeued, inuse=%d\n",
  369. xprt, atomic_read(&xprt->xpt_ref.refcount));
  370. return xprt;
  371. }
  372. /**
  373. * svc_reserve - change the space reserved for the reply to a request.
  374. * @rqstp: The request in question
  375. * @space: new max space to reserve
  376. *
  377. * Each request reserves some space on the output queue of the transport
  378. * to make sure the reply fits. This function reduces that reserved
  379. * space to be the amount of space used already, plus @space.
  380. *
  381. */
  382. void svc_reserve(struct svc_rqst *rqstp, int space)
  383. {
  384. space += rqstp->rq_res.head[0].iov_len;
  385. if (space < rqstp->rq_reserved) {
  386. struct svc_xprt *xprt = rqstp->rq_xprt;
  387. atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
  388. rqstp->rq_reserved = space;
  389. svc_xprt_enqueue(xprt);
  390. }
  391. }
  392. EXPORT_SYMBOL_GPL(svc_reserve);
  393. static void svc_xprt_release(struct svc_rqst *rqstp)
  394. {
  395. struct svc_xprt *xprt = rqstp->rq_xprt;
  396. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  397. kfree(rqstp->rq_deferred);
  398. rqstp->rq_deferred = NULL;
  399. svc_free_res_pages(rqstp);
  400. rqstp->rq_res.page_len = 0;
  401. rqstp->rq_res.page_base = 0;
  402. /* Reset response buffer and release
  403. * the reservation.
  404. * But first, check that enough space was reserved
  405. * for the reply, otherwise we have a bug!
  406. */
  407. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  408. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  409. rqstp->rq_reserved,
  410. rqstp->rq_res.len);
  411. rqstp->rq_res.head[0].iov_len = 0;
  412. svc_reserve(rqstp, 0);
  413. rqstp->rq_xprt = NULL;
  414. svc_xprt_put(xprt);
  415. }
  416. /*
  417. * External function to wake up a server waiting for data
  418. * This really only makes sense for services like lockd
  419. * which have exactly one thread anyway.
  420. */
  421. void svc_wake_up(struct svc_serv *serv)
  422. {
  423. struct svc_rqst *rqstp;
  424. unsigned int i;
  425. struct svc_pool *pool;
  426. for (i = 0; i < serv->sv_nrpools; i++) {
  427. pool = &serv->sv_pools[i];
  428. spin_lock_bh(&pool->sp_lock);
  429. if (!list_empty(&pool->sp_threads)) {
  430. rqstp = list_entry(pool->sp_threads.next,
  431. struct svc_rqst,
  432. rq_list);
  433. dprintk("svc: daemon %p woken up.\n", rqstp);
  434. /*
  435. svc_thread_dequeue(pool, rqstp);
  436. rqstp->rq_xprt = NULL;
  437. */
  438. wake_up(&rqstp->rq_wait);
  439. }
  440. spin_unlock_bh(&pool->sp_lock);
  441. }
  442. }
  443. EXPORT_SYMBOL_GPL(svc_wake_up);
  444. int svc_port_is_privileged(struct sockaddr *sin)
  445. {
  446. switch (sin->sa_family) {
  447. case AF_INET:
  448. return ntohs(((struct sockaddr_in *)sin)->sin_port)
  449. < PROT_SOCK;
  450. case AF_INET6:
  451. return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
  452. < PROT_SOCK;
  453. default:
  454. return 0;
  455. }
  456. }
  457. /*
  458. * Make sure that we don't have too many active connections. If we have,
  459. * something must be dropped. It's not clear what will happen if we allow
  460. * "too many" connections, but when dealing with network-facing software,
  461. * we have to code defensively. Here we do that by imposing hard limits.
  462. *
  463. * There's no point in trying to do random drop here for DoS
  464. * prevention. The NFS clients does 1 reconnect in 15 seconds. An
  465. * attacker can easily beat that.
  466. *
  467. * The only somewhat efficient mechanism would be if drop old
  468. * connections from the same IP first. But right now we don't even
  469. * record the client IP in svc_sock.
  470. *
  471. * single-threaded services that expect a lot of clients will probably
  472. * need to set sv_maxconn to override the default value which is based
  473. * on the number of threads
  474. */
  475. static void svc_check_conn_limits(struct svc_serv *serv)
  476. {
  477. unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
  478. (serv->sv_nrthreads+3) * 20;
  479. if (serv->sv_tmpcnt > limit) {
  480. struct svc_xprt *xprt = NULL;
  481. spin_lock_bh(&serv->sv_lock);
  482. if (!list_empty(&serv->sv_tempsocks)) {
  483. /* Try to help the admin */
  484. net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
  485. serv->sv_name, serv->sv_maxconn ?
  486. "max number of connections" :
  487. "number of threads");
  488. /*
  489. * Always select the oldest connection. It's not fair,
  490. * but so is life
  491. */
  492. xprt = list_entry(serv->sv_tempsocks.prev,
  493. struct svc_xprt,
  494. xpt_list);
  495. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  496. svc_xprt_get(xprt);
  497. }
  498. spin_unlock_bh(&serv->sv_lock);
  499. if (xprt) {
  500. svc_xprt_enqueue(xprt);
  501. svc_xprt_put(xprt);
  502. }
  503. }
  504. }
  505. /*
  506. * Receive the next request on any transport. This code is carefully
  507. * organised not to touch any cachelines in the shared svc_serv
  508. * structure, only cachelines in the local svc_pool.
  509. */
  510. int svc_recv(struct svc_rqst *rqstp, long timeout)
  511. {
  512. struct svc_xprt *xprt = NULL;
  513. struct svc_serv *serv = rqstp->rq_server;
  514. struct svc_pool *pool = rqstp->rq_pool;
  515. int len, i;
  516. int pages;
  517. struct xdr_buf *arg;
  518. DECLARE_WAITQUEUE(wait, current);
  519. long time_left;
  520. dprintk("svc: server %p waiting for data (to = %ld)\n",
  521. rqstp, timeout);
  522. if (rqstp->rq_xprt)
  523. printk(KERN_ERR
  524. "svc_recv: service %p, transport not NULL!\n",
  525. rqstp);
  526. if (waitqueue_active(&rqstp->rq_wait))
  527. printk(KERN_ERR
  528. "svc_recv: service %p, wait queue active!\n",
  529. rqstp);
  530. /* now allocate needed pages. If we get a failure, sleep briefly */
  531. pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
  532. BUG_ON(pages >= RPCSVC_MAXPAGES);
  533. for (i = 0; i < pages ; i++)
  534. while (rqstp->rq_pages[i] == NULL) {
  535. struct page *p = alloc_page(GFP_KERNEL);
  536. if (!p) {
  537. set_current_state(TASK_INTERRUPTIBLE);
  538. if (signalled() || kthread_should_stop()) {
  539. set_current_state(TASK_RUNNING);
  540. return -EINTR;
  541. }
  542. schedule_timeout(msecs_to_jiffies(500));
  543. }
  544. rqstp->rq_pages[i] = p;
  545. }
  546. rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
  547. /* Make arg->head point to first page and arg->pages point to rest */
  548. arg = &rqstp->rq_arg;
  549. arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
  550. arg->head[0].iov_len = PAGE_SIZE;
  551. arg->pages = rqstp->rq_pages + 1;
  552. arg->page_base = 0;
  553. /* save at least one page for response */
  554. arg->page_len = (pages-2)*PAGE_SIZE;
  555. arg->len = (pages-1)*PAGE_SIZE;
  556. arg->tail[0].iov_len = 0;
  557. try_to_freeze();
  558. cond_resched();
  559. if (signalled() || kthread_should_stop())
  560. return -EINTR;
  561. /* Normally we will wait up to 5 seconds for any required
  562. * cache information to be provided.
  563. */
  564. rqstp->rq_chandle.thread_wait = 5*HZ;
  565. spin_lock_bh(&pool->sp_lock);
  566. xprt = svc_xprt_dequeue(pool);
  567. if (xprt) {
  568. rqstp->rq_xprt = xprt;
  569. svc_xprt_get(xprt);
  570. /* As there is a shortage of threads and this request
  571. * had to be queued, don't allow the thread to wait so
  572. * long for cache updates.
  573. */
  574. rqstp->rq_chandle.thread_wait = 1*HZ;
  575. } else {
  576. /* No data pending. Go to sleep */
  577. svc_thread_enqueue(pool, rqstp);
  578. /*
  579. * We have to be able to interrupt this wait
  580. * to bring down the daemons ...
  581. */
  582. set_current_state(TASK_INTERRUPTIBLE);
  583. /*
  584. * checking kthread_should_stop() here allows us to avoid
  585. * locking and signalling when stopping kthreads that call
  586. * svc_recv. If the thread has already been woken up, then
  587. * we can exit here without sleeping. If not, then it
  588. * it'll be woken up quickly during the schedule_timeout
  589. */
  590. if (kthread_should_stop()) {
  591. set_current_state(TASK_RUNNING);
  592. spin_unlock_bh(&pool->sp_lock);
  593. return -EINTR;
  594. }
  595. add_wait_queue(&rqstp->rq_wait, &wait);
  596. spin_unlock_bh(&pool->sp_lock);
  597. time_left = schedule_timeout(timeout);
  598. try_to_freeze();
  599. spin_lock_bh(&pool->sp_lock);
  600. remove_wait_queue(&rqstp->rq_wait, &wait);
  601. if (!time_left)
  602. pool->sp_stats.threads_timedout++;
  603. xprt = rqstp->rq_xprt;
  604. if (!xprt) {
  605. svc_thread_dequeue(pool, rqstp);
  606. spin_unlock_bh(&pool->sp_lock);
  607. dprintk("svc: server %p, no data yet\n", rqstp);
  608. if (signalled() || kthread_should_stop())
  609. return -EINTR;
  610. else
  611. return -EAGAIN;
  612. }
  613. }
  614. spin_unlock_bh(&pool->sp_lock);
  615. len = 0;
  616. if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
  617. dprintk("svc_recv: found XPT_CLOSE\n");
  618. svc_delete_xprt(xprt);
  619. /* Leave XPT_BUSY set on the dead xprt: */
  620. goto out;
  621. }
  622. if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
  623. struct svc_xprt *newxpt;
  624. newxpt = xprt->xpt_ops->xpo_accept(xprt);
  625. if (newxpt) {
  626. /*
  627. * We know this module_get will succeed because the
  628. * listener holds a reference too
  629. */
  630. __module_get(newxpt->xpt_class->xcl_owner);
  631. svc_check_conn_limits(xprt->xpt_server);
  632. spin_lock_bh(&serv->sv_lock);
  633. set_bit(XPT_TEMP, &newxpt->xpt_flags);
  634. list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
  635. serv->sv_tmpcnt++;
  636. if (serv->sv_temptimer.function == NULL) {
  637. /* setup timer to age temp transports */
  638. setup_timer(&serv->sv_temptimer,
  639. svc_age_temp_xprts,
  640. (unsigned long)serv);
  641. mod_timer(&serv->sv_temptimer,
  642. jiffies + svc_conn_age_period * HZ);
  643. }
  644. spin_unlock_bh(&serv->sv_lock);
  645. svc_xprt_received(newxpt);
  646. }
  647. } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
  648. dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
  649. rqstp, pool->sp_id, xprt,
  650. atomic_read(&xprt->xpt_ref.refcount));
  651. rqstp->rq_deferred = svc_deferred_dequeue(xprt);
  652. if (rqstp->rq_deferred)
  653. len = svc_deferred_recv(rqstp);
  654. else
  655. len = xprt->xpt_ops->xpo_recvfrom(rqstp);
  656. dprintk("svc: got len=%d\n", len);
  657. rqstp->rq_reserved = serv->sv_max_mesg;
  658. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  659. }
  660. svc_xprt_received(xprt);
  661. /* No data, incomplete (TCP) read, or accept() */
  662. if (len <= 0)
  663. goto out;
  664. clear_bit(XPT_OLD, &xprt->xpt_flags);
  665. rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
  666. rqstp->rq_chandle.defer = svc_defer;
  667. if (serv->sv_stats)
  668. serv->sv_stats->netcnt++;
  669. return len;
  670. out:
  671. rqstp->rq_res.len = 0;
  672. svc_xprt_release(rqstp);
  673. return -EAGAIN;
  674. }
  675. EXPORT_SYMBOL_GPL(svc_recv);
  676. /*
  677. * Drop request
  678. */
  679. void svc_drop(struct svc_rqst *rqstp)
  680. {
  681. dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
  682. svc_xprt_release(rqstp);
  683. }
  684. EXPORT_SYMBOL_GPL(svc_drop);
  685. /*
  686. * Return reply to client.
  687. */
  688. int svc_send(struct svc_rqst *rqstp)
  689. {
  690. struct svc_xprt *xprt;
  691. int len;
  692. struct xdr_buf *xb;
  693. xprt = rqstp->rq_xprt;
  694. if (!xprt)
  695. return -EFAULT;
  696. /* release the receive skb before sending the reply */
  697. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  698. /* calculate over-all length */
  699. xb = &rqstp->rq_res;
  700. xb->len = xb->head[0].iov_len +
  701. xb->page_len +
  702. xb->tail[0].iov_len;
  703. /* Grab mutex to serialize outgoing data. */
  704. mutex_lock(&xprt->xpt_mutex);
  705. if (test_bit(XPT_DEAD, &xprt->xpt_flags)
  706. || test_bit(XPT_CLOSE, &xprt->xpt_flags))
  707. len = -ENOTCONN;
  708. else
  709. len = xprt->xpt_ops->xpo_sendto(rqstp);
  710. mutex_unlock(&xprt->xpt_mutex);
  711. rpc_wake_up(&xprt->xpt_bc_pending);
  712. svc_xprt_release(rqstp);
  713. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  714. return 0;
  715. return len;
  716. }
  717. /*
  718. * Timer function to close old temporary transports, using
  719. * a mark-and-sweep algorithm.
  720. */
  721. static void svc_age_temp_xprts(unsigned long closure)
  722. {
  723. struct svc_serv *serv = (struct svc_serv *)closure;
  724. struct svc_xprt *xprt;
  725. struct list_head *le, *next;
  726. LIST_HEAD(to_be_aged);
  727. dprintk("svc_age_temp_xprts\n");
  728. if (!spin_trylock_bh(&serv->sv_lock)) {
  729. /* busy, try again 1 sec later */
  730. dprintk("svc_age_temp_xprts: busy\n");
  731. mod_timer(&serv->sv_temptimer, jiffies + HZ);
  732. return;
  733. }
  734. list_for_each_safe(le, next, &serv->sv_tempsocks) {
  735. xprt = list_entry(le, struct svc_xprt, xpt_list);
  736. /* First time through, just mark it OLD. Second time
  737. * through, close it. */
  738. if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
  739. continue;
  740. if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
  741. test_bit(XPT_BUSY, &xprt->xpt_flags))
  742. continue;
  743. svc_xprt_get(xprt);
  744. list_move(le, &to_be_aged);
  745. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  746. set_bit(XPT_DETACHED, &xprt->xpt_flags);
  747. }
  748. spin_unlock_bh(&serv->sv_lock);
  749. while (!list_empty(&to_be_aged)) {
  750. le = to_be_aged.next;
  751. /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
  752. list_del_init(le);
  753. xprt = list_entry(le, struct svc_xprt, xpt_list);
  754. dprintk("queuing xprt %p for closing\n", xprt);
  755. /* a thread will dequeue and close it soon */
  756. svc_xprt_enqueue(xprt);
  757. svc_xprt_put(xprt);
  758. }
  759. mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
  760. }
  761. static void call_xpt_users(struct svc_xprt *xprt)
  762. {
  763. struct svc_xpt_user *u;
  764. spin_lock(&xprt->xpt_lock);
  765. while (!list_empty(&xprt->xpt_users)) {
  766. u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
  767. list_del(&u->list);
  768. u->callback(u);
  769. }
  770. spin_unlock(&xprt->xpt_lock);
  771. }
  772. /*
  773. * Remove a dead transport
  774. */
  775. static void svc_delete_xprt(struct svc_xprt *xprt)
  776. {
  777. struct svc_serv *serv = xprt->xpt_server;
  778. struct svc_deferred_req *dr;
  779. /* Only do this once */
  780. if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
  781. BUG();
  782. dprintk("svc: svc_delete_xprt(%p)\n", xprt);
  783. xprt->xpt_ops->xpo_detach(xprt);
  784. spin_lock_bh(&serv->sv_lock);
  785. if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
  786. list_del_init(&xprt->xpt_list);
  787. BUG_ON(!list_empty(&xprt->xpt_ready));
  788. if (test_bit(XPT_TEMP, &xprt->xpt_flags))
  789. serv->sv_tmpcnt--;
  790. spin_unlock_bh(&serv->sv_lock);
  791. while ((dr = svc_deferred_dequeue(xprt)) != NULL)
  792. kfree(dr);
  793. call_xpt_users(xprt);
  794. svc_xprt_put(xprt);
  795. }
  796. void svc_close_xprt(struct svc_xprt *xprt)
  797. {
  798. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  799. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
  800. /* someone else will have to effect the close */
  801. return;
  802. /*
  803. * We expect svc_close_xprt() to work even when no threads are
  804. * running (e.g., while configuring the server before starting
  805. * any threads), so if the transport isn't busy, we delete
  806. * it ourself:
  807. */
  808. svc_delete_xprt(xprt);
  809. }
  810. EXPORT_SYMBOL_GPL(svc_close_xprt);
  811. static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
  812. {
  813. struct svc_xprt *xprt;
  814. spin_lock(&serv->sv_lock);
  815. list_for_each_entry(xprt, xprt_list, xpt_list) {
  816. if (xprt->xpt_net != net)
  817. continue;
  818. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  819. set_bit(XPT_BUSY, &xprt->xpt_flags);
  820. }
  821. spin_unlock(&serv->sv_lock);
  822. }
  823. static void svc_clear_pools(struct svc_serv *serv, struct net *net)
  824. {
  825. struct svc_pool *pool;
  826. struct svc_xprt *xprt;
  827. struct svc_xprt *tmp;
  828. int i;
  829. for (i = 0; i < serv->sv_nrpools; i++) {
  830. pool = &serv->sv_pools[i];
  831. spin_lock_bh(&pool->sp_lock);
  832. list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
  833. if (xprt->xpt_net != net)
  834. continue;
  835. list_del_init(&xprt->xpt_ready);
  836. }
  837. spin_unlock_bh(&pool->sp_lock);
  838. }
  839. }
  840. static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
  841. {
  842. struct svc_xprt *xprt;
  843. struct svc_xprt *tmp;
  844. LIST_HEAD(victims);
  845. spin_lock(&serv->sv_lock);
  846. list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
  847. if (xprt->xpt_net != net)
  848. continue;
  849. list_move(&xprt->xpt_list, &victims);
  850. }
  851. spin_unlock(&serv->sv_lock);
  852. list_for_each_entry_safe(xprt, tmp, &victims, xpt_list)
  853. svc_delete_xprt(xprt);
  854. }
  855. void svc_close_net(struct svc_serv *serv, struct net *net)
  856. {
  857. svc_close_list(serv, &serv->sv_tempsocks, net);
  858. svc_close_list(serv, &serv->sv_permsocks, net);
  859. svc_clear_pools(serv, net);
  860. /*
  861. * At this point the sp_sockets lists will stay empty, since
  862. * svc_xprt_enqueue will not add new entries without taking the
  863. * sp_lock and checking XPT_BUSY.
  864. */
  865. svc_clear_list(serv, &serv->sv_tempsocks, net);
  866. svc_clear_list(serv, &serv->sv_permsocks, net);
  867. }
  868. /*
  869. * Handle defer and revisit of requests
  870. */
  871. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  872. {
  873. struct svc_deferred_req *dr =
  874. container_of(dreq, struct svc_deferred_req, handle);
  875. struct svc_xprt *xprt = dr->xprt;
  876. spin_lock(&xprt->xpt_lock);
  877. set_bit(XPT_DEFERRED, &xprt->xpt_flags);
  878. if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  879. spin_unlock(&xprt->xpt_lock);
  880. dprintk("revisit canceled\n");
  881. svc_xprt_put(xprt);
  882. kfree(dr);
  883. return;
  884. }
  885. dprintk("revisit queued\n");
  886. dr->xprt = NULL;
  887. list_add(&dr->handle.recent, &xprt->xpt_deferred);
  888. spin_unlock(&xprt->xpt_lock);
  889. svc_xprt_enqueue(xprt);
  890. svc_xprt_put(xprt);
  891. }
  892. /*
  893. * Save the request off for later processing. The request buffer looks
  894. * like this:
  895. *
  896. * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
  897. *
  898. * This code can only handle requests that consist of an xprt-header
  899. * and rpc-header.
  900. */
  901. static struct cache_deferred_req *svc_defer(struct cache_req *req)
  902. {
  903. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  904. struct svc_deferred_req *dr;
  905. if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
  906. return NULL; /* if more than a page, give up FIXME */
  907. if (rqstp->rq_deferred) {
  908. dr = rqstp->rq_deferred;
  909. rqstp->rq_deferred = NULL;
  910. } else {
  911. size_t skip;
  912. size_t size;
  913. /* FIXME maybe discard if size too large */
  914. size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
  915. dr = kmalloc(size, GFP_KERNEL);
  916. if (dr == NULL)
  917. return NULL;
  918. dr->handle.owner = rqstp->rq_server;
  919. dr->prot = rqstp->rq_prot;
  920. memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
  921. dr->addrlen = rqstp->rq_addrlen;
  922. dr->daddr = rqstp->rq_daddr;
  923. dr->argslen = rqstp->rq_arg.len >> 2;
  924. dr->xprt_hlen = rqstp->rq_xprt_hlen;
  925. /* back up head to the start of the buffer and copy */
  926. skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  927. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
  928. dr->argslen << 2);
  929. }
  930. svc_xprt_get(rqstp->rq_xprt);
  931. dr->xprt = rqstp->rq_xprt;
  932. rqstp->rq_dropme = true;
  933. dr->handle.revisit = svc_revisit;
  934. return &dr->handle;
  935. }
  936. /*
  937. * recv data from a deferred request into an active one
  938. */
  939. static int svc_deferred_recv(struct svc_rqst *rqstp)
  940. {
  941. struct svc_deferred_req *dr = rqstp->rq_deferred;
  942. /* setup iov_base past transport header */
  943. rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
  944. /* The iov_len does not include the transport header bytes */
  945. rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
  946. rqstp->rq_arg.page_len = 0;
  947. /* The rq_arg.len includes the transport header bytes */
  948. rqstp->rq_arg.len = dr->argslen<<2;
  949. rqstp->rq_prot = dr->prot;
  950. memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
  951. rqstp->rq_addrlen = dr->addrlen;
  952. /* Save off transport header len in case we get deferred again */
  953. rqstp->rq_xprt_hlen = dr->xprt_hlen;
  954. rqstp->rq_daddr = dr->daddr;
  955. rqstp->rq_respages = rqstp->rq_pages;
  956. return (dr->argslen<<2) - dr->xprt_hlen;
  957. }
  958. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
  959. {
  960. struct svc_deferred_req *dr = NULL;
  961. if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
  962. return NULL;
  963. spin_lock(&xprt->xpt_lock);
  964. if (!list_empty(&xprt->xpt_deferred)) {
  965. dr = list_entry(xprt->xpt_deferred.next,
  966. struct svc_deferred_req,
  967. handle.recent);
  968. list_del_init(&dr->handle.recent);
  969. } else
  970. clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
  971. spin_unlock(&xprt->xpt_lock);
  972. return dr;
  973. }
  974. /**
  975. * svc_find_xprt - find an RPC transport instance
  976. * @serv: pointer to svc_serv to search
  977. * @xcl_name: C string containing transport's class name
  978. * @net: owner net pointer
  979. * @af: Address family of transport's local address
  980. * @port: transport's IP port number
  981. *
  982. * Return the transport instance pointer for the endpoint accepting
  983. * connections/peer traffic from the specified transport class,
  984. * address family and port.
  985. *
  986. * Specifying 0 for the address family or port is effectively a
  987. * wild-card, and will result in matching the first transport in the
  988. * service's list that has a matching class name.
  989. */
  990. struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
  991. struct net *net, const sa_family_t af,
  992. const unsigned short port)
  993. {
  994. struct svc_xprt *xprt;
  995. struct svc_xprt *found = NULL;
  996. /* Sanity check the args */
  997. if (serv == NULL || xcl_name == NULL)
  998. return found;
  999. spin_lock_bh(&serv->sv_lock);
  1000. list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
  1001. if (xprt->xpt_net != net)
  1002. continue;
  1003. if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
  1004. continue;
  1005. if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
  1006. continue;
  1007. if (port != 0 && port != svc_xprt_local_port(xprt))
  1008. continue;
  1009. found = xprt;
  1010. svc_xprt_get(xprt);
  1011. break;
  1012. }
  1013. spin_unlock_bh(&serv->sv_lock);
  1014. return found;
  1015. }
  1016. EXPORT_SYMBOL_GPL(svc_find_xprt);
  1017. static int svc_one_xprt_name(const struct svc_xprt *xprt,
  1018. char *pos, int remaining)
  1019. {
  1020. int len;
  1021. len = snprintf(pos, remaining, "%s %u\n",
  1022. xprt->xpt_class->xcl_name,
  1023. svc_xprt_local_port(xprt));
  1024. if (len >= remaining)
  1025. return -ENAMETOOLONG;
  1026. return len;
  1027. }
  1028. /**
  1029. * svc_xprt_names - format a buffer with a list of transport names
  1030. * @serv: pointer to an RPC service
  1031. * @buf: pointer to a buffer to be filled in
  1032. * @buflen: length of buffer to be filled in
  1033. *
  1034. * Fills in @buf with a string containing a list of transport names,
  1035. * each name terminated with '\n'.
  1036. *
  1037. * Returns positive length of the filled-in string on success; otherwise
  1038. * a negative errno value is returned if an error occurs.
  1039. */
  1040. int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
  1041. {
  1042. struct svc_xprt *xprt;
  1043. int len, totlen;
  1044. char *pos;
  1045. /* Sanity check args */
  1046. if (!serv)
  1047. return 0;
  1048. spin_lock_bh(&serv->sv_lock);
  1049. pos = buf;
  1050. totlen = 0;
  1051. list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
  1052. len = svc_one_xprt_name(xprt, pos, buflen - totlen);
  1053. if (len < 0) {
  1054. *buf = '\0';
  1055. totlen = len;
  1056. }
  1057. if (len <= 0)
  1058. break;
  1059. pos += len;
  1060. totlen += len;
  1061. }
  1062. spin_unlock_bh(&serv->sv_lock);
  1063. return totlen;
  1064. }
  1065. EXPORT_SYMBOL_GPL(svc_xprt_names);
  1066. /*----------------------------------------------------------------------------*/
  1067. static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
  1068. {
  1069. unsigned int pidx = (unsigned int)*pos;
  1070. struct svc_serv *serv = m->private;
  1071. dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
  1072. if (!pidx)
  1073. return SEQ_START_TOKEN;
  1074. return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
  1075. }
  1076. static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
  1077. {
  1078. struct svc_pool *pool = p;
  1079. struct svc_serv *serv = m->private;
  1080. dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
  1081. if (p == SEQ_START_TOKEN) {
  1082. pool = &serv->sv_pools[0];
  1083. } else {
  1084. unsigned int pidx = (pool - &serv->sv_pools[0]);
  1085. if (pidx < serv->sv_nrpools-1)
  1086. pool = &serv->sv_pools[pidx+1];
  1087. else
  1088. pool = NULL;
  1089. }
  1090. ++*pos;
  1091. return pool;
  1092. }
  1093. static void svc_pool_stats_stop(struct seq_file *m, void *p)
  1094. {
  1095. }
  1096. static int svc_pool_stats_show(struct seq_file *m, void *p)
  1097. {
  1098. struct svc_pool *pool = p;
  1099. if (p == SEQ_START_TOKEN) {
  1100. seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
  1101. return 0;
  1102. }
  1103. seq_printf(m, "%u %lu %lu %lu %lu\n",
  1104. pool->sp_id,
  1105. pool->sp_stats.packets,
  1106. pool->sp_stats.sockets_queued,
  1107. pool->sp_stats.threads_woken,
  1108. pool->sp_stats.threads_timedout);
  1109. return 0;
  1110. }
  1111. static const struct seq_operations svc_pool_stats_seq_ops = {
  1112. .start = svc_pool_stats_start,
  1113. .next = svc_pool_stats_next,
  1114. .stop = svc_pool_stats_stop,
  1115. .show = svc_pool_stats_show,
  1116. };
  1117. int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
  1118. {
  1119. int err;
  1120. err = seq_open(file, &svc_pool_stats_seq_ops);
  1121. if (!err)
  1122. ((struct seq_file *) file->private_data)->private = serv;
  1123. return err;
  1124. }
  1125. EXPORT_SYMBOL(svc_pool_stats_open);
  1126. /*----------------------------------------------------------------------------*/