mmu.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 1;
  57. #endif
  58. #ifndef MMU_DEBUG
  59. #define ASSERT(x) do { } while (0)
  60. #else
  61. #define ASSERT(x) \
  62. if (!(x)) { \
  63. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  64. __FILE__, __LINE__, #x); \
  65. }
  66. #endif
  67. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  68. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  69. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  70. #define PT64_LEVEL_BITS 9
  71. #define PT64_LEVEL_SHIFT(level) \
  72. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  73. #define PT64_LEVEL_MASK(level) \
  74. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LEVEL_MASK(level) \
  81. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  82. #define PT32_INDEX(address, level)\
  83. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  84. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  85. #define PT64_DIR_BASE_ADDR_MASK \
  86. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  87. #define PT32_BASE_ADDR_MASK PAGE_MASK
  88. #define PT32_DIR_BASE_ADDR_MASK \
  89. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  90. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  91. | PT64_NX_MASK)
  92. #define PFERR_PRESENT_MASK (1U << 0)
  93. #define PFERR_WRITE_MASK (1U << 1)
  94. #define PFERR_USER_MASK (1U << 2)
  95. #define PFERR_FETCH_MASK (1U << 4)
  96. #define PT_DIRECTORY_LEVEL 2
  97. #define PT_PAGE_TABLE_LEVEL 1
  98. #define RMAP_EXT 4
  99. #define ACC_EXEC_MASK 1
  100. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  101. #define ACC_USER_MASK PT_USER_MASK
  102. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  103. struct kvm_pv_mmu_op_buffer {
  104. void *ptr;
  105. unsigned len;
  106. unsigned processed;
  107. char buf[512] __aligned(sizeof(long));
  108. };
  109. struct kvm_rmap_desc {
  110. u64 *shadow_ptes[RMAP_EXT];
  111. struct kvm_rmap_desc *more;
  112. };
  113. static struct kmem_cache *pte_chain_cache;
  114. static struct kmem_cache *rmap_desc_cache;
  115. static struct kmem_cache *mmu_page_header_cache;
  116. static u64 __read_mostly shadow_trap_nonpresent_pte;
  117. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  118. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  119. {
  120. shadow_trap_nonpresent_pte = trap_pte;
  121. shadow_notrap_nonpresent_pte = notrap_pte;
  122. }
  123. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  124. static int is_write_protection(struct kvm_vcpu *vcpu)
  125. {
  126. return vcpu->arch.cr0 & X86_CR0_WP;
  127. }
  128. static int is_cpuid_PSE36(void)
  129. {
  130. return 1;
  131. }
  132. static int is_nx(struct kvm_vcpu *vcpu)
  133. {
  134. return vcpu->arch.shadow_efer & EFER_NX;
  135. }
  136. static int is_present_pte(unsigned long pte)
  137. {
  138. return pte & PT_PRESENT_MASK;
  139. }
  140. static int is_shadow_present_pte(u64 pte)
  141. {
  142. return pte != shadow_trap_nonpresent_pte
  143. && pte != shadow_notrap_nonpresent_pte;
  144. }
  145. static int is_large_pte(u64 pte)
  146. {
  147. return pte & PT_PAGE_SIZE_MASK;
  148. }
  149. static int is_writeble_pte(unsigned long pte)
  150. {
  151. return pte & PT_WRITABLE_MASK;
  152. }
  153. static int is_dirty_pte(unsigned long pte)
  154. {
  155. return pte & PT_DIRTY_MASK;
  156. }
  157. static int is_rmap_pte(u64 pte)
  158. {
  159. return is_shadow_present_pte(pte);
  160. }
  161. static pfn_t spte_to_pfn(u64 pte)
  162. {
  163. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  164. }
  165. static gfn_t pse36_gfn_delta(u32 gpte)
  166. {
  167. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  168. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  169. }
  170. static void set_shadow_pte(u64 *sptep, u64 spte)
  171. {
  172. #ifdef CONFIG_X86_64
  173. set_64bit((unsigned long *)sptep, spte);
  174. #else
  175. set_64bit((unsigned long long *)sptep, spte);
  176. #endif
  177. }
  178. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  179. struct kmem_cache *base_cache, int min)
  180. {
  181. void *obj;
  182. if (cache->nobjs >= min)
  183. return 0;
  184. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  185. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  186. if (!obj)
  187. return -ENOMEM;
  188. cache->objects[cache->nobjs++] = obj;
  189. }
  190. return 0;
  191. }
  192. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  193. {
  194. while (mc->nobjs)
  195. kfree(mc->objects[--mc->nobjs]);
  196. }
  197. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  198. int min)
  199. {
  200. struct page *page;
  201. if (cache->nobjs >= min)
  202. return 0;
  203. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  204. page = alloc_page(GFP_KERNEL);
  205. if (!page)
  206. return -ENOMEM;
  207. set_page_private(page, 0);
  208. cache->objects[cache->nobjs++] = page_address(page);
  209. }
  210. return 0;
  211. }
  212. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  213. {
  214. while (mc->nobjs)
  215. free_page((unsigned long)mc->objects[--mc->nobjs]);
  216. }
  217. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  218. {
  219. int r;
  220. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  221. pte_chain_cache, 4);
  222. if (r)
  223. goto out;
  224. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  225. rmap_desc_cache, 1);
  226. if (r)
  227. goto out;
  228. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  229. if (r)
  230. goto out;
  231. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  232. mmu_page_header_cache, 4);
  233. out:
  234. return r;
  235. }
  236. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  237. {
  238. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  239. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  240. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  241. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  242. }
  243. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  244. size_t size)
  245. {
  246. void *p;
  247. BUG_ON(!mc->nobjs);
  248. p = mc->objects[--mc->nobjs];
  249. memset(p, 0, size);
  250. return p;
  251. }
  252. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  253. {
  254. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  255. sizeof(struct kvm_pte_chain));
  256. }
  257. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  258. {
  259. kfree(pc);
  260. }
  261. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  262. {
  263. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  264. sizeof(struct kvm_rmap_desc));
  265. }
  266. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  267. {
  268. kfree(rd);
  269. }
  270. /*
  271. * Return the pointer to the largepage write count for a given
  272. * gfn, handling slots that are not large page aligned.
  273. */
  274. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  275. {
  276. unsigned long idx;
  277. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  278. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  279. return &slot->lpage_info[idx].write_count;
  280. }
  281. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  282. {
  283. int *write_count;
  284. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  285. *write_count += 1;
  286. WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
  287. }
  288. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  289. {
  290. int *write_count;
  291. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  292. *write_count -= 1;
  293. WARN_ON(*write_count < 0);
  294. }
  295. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  296. {
  297. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  298. int *largepage_idx;
  299. if (slot) {
  300. largepage_idx = slot_largepage_idx(gfn, slot);
  301. return *largepage_idx;
  302. }
  303. return 1;
  304. }
  305. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  306. {
  307. struct vm_area_struct *vma;
  308. unsigned long addr;
  309. addr = gfn_to_hva(kvm, gfn);
  310. if (kvm_is_error_hva(addr))
  311. return 0;
  312. vma = find_vma(current->mm, addr);
  313. if (vma && is_vm_hugetlb_page(vma))
  314. return 1;
  315. return 0;
  316. }
  317. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  318. {
  319. struct kvm_memory_slot *slot;
  320. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  321. return 0;
  322. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  323. return 0;
  324. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  325. if (slot && slot->dirty_bitmap)
  326. return 0;
  327. return 1;
  328. }
  329. /*
  330. * Take gfn and return the reverse mapping to it.
  331. * Note: gfn must be unaliased before this function get called
  332. */
  333. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  334. {
  335. struct kvm_memory_slot *slot;
  336. unsigned long idx;
  337. slot = gfn_to_memslot(kvm, gfn);
  338. if (!lpage)
  339. return &slot->rmap[gfn - slot->base_gfn];
  340. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  341. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  342. return &slot->lpage_info[idx].rmap_pde;
  343. }
  344. /*
  345. * Reverse mapping data structures:
  346. *
  347. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  348. * that points to page_address(page).
  349. *
  350. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  351. * containing more mappings.
  352. */
  353. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  354. {
  355. struct kvm_mmu_page *sp;
  356. struct kvm_rmap_desc *desc;
  357. unsigned long *rmapp;
  358. int i;
  359. if (!is_rmap_pte(*spte))
  360. return;
  361. gfn = unalias_gfn(vcpu->kvm, gfn);
  362. sp = page_header(__pa(spte));
  363. sp->gfns[spte - sp->spt] = gfn;
  364. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  365. if (!*rmapp) {
  366. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  367. *rmapp = (unsigned long)spte;
  368. } else if (!(*rmapp & 1)) {
  369. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  370. desc = mmu_alloc_rmap_desc(vcpu);
  371. desc->shadow_ptes[0] = (u64 *)*rmapp;
  372. desc->shadow_ptes[1] = spte;
  373. *rmapp = (unsigned long)desc | 1;
  374. } else {
  375. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  376. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  377. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  378. desc = desc->more;
  379. if (desc->shadow_ptes[RMAP_EXT-1]) {
  380. desc->more = mmu_alloc_rmap_desc(vcpu);
  381. desc = desc->more;
  382. }
  383. for (i = 0; desc->shadow_ptes[i]; ++i)
  384. ;
  385. desc->shadow_ptes[i] = spte;
  386. }
  387. }
  388. static void rmap_desc_remove_entry(unsigned long *rmapp,
  389. struct kvm_rmap_desc *desc,
  390. int i,
  391. struct kvm_rmap_desc *prev_desc)
  392. {
  393. int j;
  394. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  395. ;
  396. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  397. desc->shadow_ptes[j] = NULL;
  398. if (j != 0)
  399. return;
  400. if (!prev_desc && !desc->more)
  401. *rmapp = (unsigned long)desc->shadow_ptes[0];
  402. else
  403. if (prev_desc)
  404. prev_desc->more = desc->more;
  405. else
  406. *rmapp = (unsigned long)desc->more | 1;
  407. mmu_free_rmap_desc(desc);
  408. }
  409. static void rmap_remove(struct kvm *kvm, u64 *spte)
  410. {
  411. struct kvm_rmap_desc *desc;
  412. struct kvm_rmap_desc *prev_desc;
  413. struct kvm_mmu_page *sp;
  414. pfn_t pfn;
  415. unsigned long *rmapp;
  416. int i;
  417. if (!is_rmap_pte(*spte))
  418. return;
  419. sp = page_header(__pa(spte));
  420. pfn = spte_to_pfn(*spte);
  421. if (*spte & PT_ACCESSED_MASK)
  422. kvm_set_pfn_accessed(pfn);
  423. if (is_writeble_pte(*spte))
  424. kvm_release_pfn_dirty(pfn);
  425. else
  426. kvm_release_pfn_clean(pfn);
  427. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  428. if (!*rmapp) {
  429. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  430. BUG();
  431. } else if (!(*rmapp & 1)) {
  432. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  433. if ((u64 *)*rmapp != spte) {
  434. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  435. spte, *spte);
  436. BUG();
  437. }
  438. *rmapp = 0;
  439. } else {
  440. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  441. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  442. prev_desc = NULL;
  443. while (desc) {
  444. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  445. if (desc->shadow_ptes[i] == spte) {
  446. rmap_desc_remove_entry(rmapp,
  447. desc, i,
  448. prev_desc);
  449. return;
  450. }
  451. prev_desc = desc;
  452. desc = desc->more;
  453. }
  454. BUG();
  455. }
  456. }
  457. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  458. {
  459. struct kvm_rmap_desc *desc;
  460. struct kvm_rmap_desc *prev_desc;
  461. u64 *prev_spte;
  462. int i;
  463. if (!*rmapp)
  464. return NULL;
  465. else if (!(*rmapp & 1)) {
  466. if (!spte)
  467. return (u64 *)*rmapp;
  468. return NULL;
  469. }
  470. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  471. prev_desc = NULL;
  472. prev_spte = NULL;
  473. while (desc) {
  474. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  475. if (prev_spte == spte)
  476. return desc->shadow_ptes[i];
  477. prev_spte = desc->shadow_ptes[i];
  478. }
  479. desc = desc->more;
  480. }
  481. return NULL;
  482. }
  483. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  484. {
  485. unsigned long *rmapp;
  486. u64 *spte;
  487. int write_protected = 0;
  488. gfn = unalias_gfn(kvm, gfn);
  489. rmapp = gfn_to_rmap(kvm, gfn, 0);
  490. spte = rmap_next(kvm, rmapp, NULL);
  491. while (spte) {
  492. BUG_ON(!spte);
  493. BUG_ON(!(*spte & PT_PRESENT_MASK));
  494. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  495. if (is_writeble_pte(*spte)) {
  496. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  497. write_protected = 1;
  498. }
  499. spte = rmap_next(kvm, rmapp, spte);
  500. }
  501. if (write_protected) {
  502. pfn_t pfn;
  503. spte = rmap_next(kvm, rmapp, NULL);
  504. pfn = spte_to_pfn(*spte);
  505. kvm_set_pfn_dirty(pfn);
  506. }
  507. /* check for huge page mappings */
  508. rmapp = gfn_to_rmap(kvm, gfn, 1);
  509. spte = rmap_next(kvm, rmapp, NULL);
  510. while (spte) {
  511. BUG_ON(!spte);
  512. BUG_ON(!(*spte & PT_PRESENT_MASK));
  513. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  514. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  515. if (is_writeble_pte(*spte)) {
  516. rmap_remove(kvm, spte);
  517. --kvm->stat.lpages;
  518. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  519. write_protected = 1;
  520. }
  521. spte = rmap_next(kvm, rmapp, spte);
  522. }
  523. if (write_protected)
  524. kvm_flush_remote_tlbs(kvm);
  525. account_shadowed(kvm, gfn);
  526. }
  527. #ifdef MMU_DEBUG
  528. static int is_empty_shadow_page(u64 *spt)
  529. {
  530. u64 *pos;
  531. u64 *end;
  532. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  533. if (*pos != shadow_trap_nonpresent_pte) {
  534. printk(KERN_ERR "%s: %p %llx\n", __func__,
  535. pos, *pos);
  536. return 0;
  537. }
  538. return 1;
  539. }
  540. #endif
  541. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  542. {
  543. ASSERT(is_empty_shadow_page(sp->spt));
  544. list_del(&sp->link);
  545. __free_page(virt_to_page(sp->spt));
  546. __free_page(virt_to_page(sp->gfns));
  547. kfree(sp);
  548. ++kvm->arch.n_free_mmu_pages;
  549. }
  550. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  551. {
  552. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  553. }
  554. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  555. u64 *parent_pte)
  556. {
  557. struct kvm_mmu_page *sp;
  558. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  559. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  560. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  561. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  562. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  563. ASSERT(is_empty_shadow_page(sp->spt));
  564. sp->slot_bitmap = 0;
  565. sp->multimapped = 0;
  566. sp->parent_pte = parent_pte;
  567. --vcpu->kvm->arch.n_free_mmu_pages;
  568. return sp;
  569. }
  570. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  571. struct kvm_mmu_page *sp, u64 *parent_pte)
  572. {
  573. struct kvm_pte_chain *pte_chain;
  574. struct hlist_node *node;
  575. int i;
  576. if (!parent_pte)
  577. return;
  578. if (!sp->multimapped) {
  579. u64 *old = sp->parent_pte;
  580. if (!old) {
  581. sp->parent_pte = parent_pte;
  582. return;
  583. }
  584. sp->multimapped = 1;
  585. pte_chain = mmu_alloc_pte_chain(vcpu);
  586. INIT_HLIST_HEAD(&sp->parent_ptes);
  587. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  588. pte_chain->parent_ptes[0] = old;
  589. }
  590. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  591. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  592. continue;
  593. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  594. if (!pte_chain->parent_ptes[i]) {
  595. pte_chain->parent_ptes[i] = parent_pte;
  596. return;
  597. }
  598. }
  599. pte_chain = mmu_alloc_pte_chain(vcpu);
  600. BUG_ON(!pte_chain);
  601. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  602. pte_chain->parent_ptes[0] = parent_pte;
  603. }
  604. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  605. u64 *parent_pte)
  606. {
  607. struct kvm_pte_chain *pte_chain;
  608. struct hlist_node *node;
  609. int i;
  610. if (!sp->multimapped) {
  611. BUG_ON(sp->parent_pte != parent_pte);
  612. sp->parent_pte = NULL;
  613. return;
  614. }
  615. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  616. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  617. if (!pte_chain->parent_ptes[i])
  618. break;
  619. if (pte_chain->parent_ptes[i] != parent_pte)
  620. continue;
  621. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  622. && pte_chain->parent_ptes[i + 1]) {
  623. pte_chain->parent_ptes[i]
  624. = pte_chain->parent_ptes[i + 1];
  625. ++i;
  626. }
  627. pte_chain->parent_ptes[i] = NULL;
  628. if (i == 0) {
  629. hlist_del(&pte_chain->link);
  630. mmu_free_pte_chain(pte_chain);
  631. if (hlist_empty(&sp->parent_ptes)) {
  632. sp->multimapped = 0;
  633. sp->parent_pte = NULL;
  634. }
  635. }
  636. return;
  637. }
  638. BUG();
  639. }
  640. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  641. {
  642. unsigned index;
  643. struct hlist_head *bucket;
  644. struct kvm_mmu_page *sp;
  645. struct hlist_node *node;
  646. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  647. index = kvm_page_table_hashfn(gfn);
  648. bucket = &kvm->arch.mmu_page_hash[index];
  649. hlist_for_each_entry(sp, node, bucket, hash_link)
  650. if (sp->gfn == gfn && !sp->role.metaphysical
  651. && !sp->role.invalid) {
  652. pgprintk("%s: found role %x\n",
  653. __func__, sp->role.word);
  654. return sp;
  655. }
  656. return NULL;
  657. }
  658. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  659. gfn_t gfn,
  660. gva_t gaddr,
  661. unsigned level,
  662. int metaphysical,
  663. unsigned access,
  664. u64 *parent_pte)
  665. {
  666. union kvm_mmu_page_role role;
  667. unsigned index;
  668. unsigned quadrant;
  669. struct hlist_head *bucket;
  670. struct kvm_mmu_page *sp;
  671. struct hlist_node *node;
  672. role.word = 0;
  673. role.glevels = vcpu->arch.mmu.root_level;
  674. role.level = level;
  675. role.metaphysical = metaphysical;
  676. role.access = access;
  677. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  678. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  679. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  680. role.quadrant = quadrant;
  681. }
  682. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  683. gfn, role.word);
  684. index = kvm_page_table_hashfn(gfn);
  685. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  686. hlist_for_each_entry(sp, node, bucket, hash_link)
  687. if (sp->gfn == gfn && sp->role.word == role.word) {
  688. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  689. pgprintk("%s: found\n", __func__);
  690. return sp;
  691. }
  692. ++vcpu->kvm->stat.mmu_cache_miss;
  693. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  694. if (!sp)
  695. return sp;
  696. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  697. sp->gfn = gfn;
  698. sp->role = role;
  699. hlist_add_head(&sp->hash_link, bucket);
  700. if (!metaphysical)
  701. rmap_write_protect(vcpu->kvm, gfn);
  702. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  703. return sp;
  704. }
  705. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  706. struct kvm_mmu_page *sp)
  707. {
  708. unsigned i;
  709. u64 *pt;
  710. u64 ent;
  711. pt = sp->spt;
  712. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  713. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  714. if (is_shadow_present_pte(pt[i]))
  715. rmap_remove(kvm, &pt[i]);
  716. pt[i] = shadow_trap_nonpresent_pte;
  717. }
  718. kvm_flush_remote_tlbs(kvm);
  719. return;
  720. }
  721. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  722. ent = pt[i];
  723. if (is_shadow_present_pte(ent)) {
  724. if (!is_large_pte(ent)) {
  725. ent &= PT64_BASE_ADDR_MASK;
  726. mmu_page_remove_parent_pte(page_header(ent),
  727. &pt[i]);
  728. } else {
  729. --kvm->stat.lpages;
  730. rmap_remove(kvm, &pt[i]);
  731. }
  732. }
  733. pt[i] = shadow_trap_nonpresent_pte;
  734. }
  735. kvm_flush_remote_tlbs(kvm);
  736. }
  737. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  738. {
  739. mmu_page_remove_parent_pte(sp, parent_pte);
  740. }
  741. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  742. {
  743. int i;
  744. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  745. if (kvm->vcpus[i])
  746. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  747. }
  748. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  749. {
  750. u64 *parent_pte;
  751. ++kvm->stat.mmu_shadow_zapped;
  752. while (sp->multimapped || sp->parent_pte) {
  753. if (!sp->multimapped)
  754. parent_pte = sp->parent_pte;
  755. else {
  756. struct kvm_pte_chain *chain;
  757. chain = container_of(sp->parent_ptes.first,
  758. struct kvm_pte_chain, link);
  759. parent_pte = chain->parent_ptes[0];
  760. }
  761. BUG_ON(!parent_pte);
  762. kvm_mmu_put_page(sp, parent_pte);
  763. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  764. }
  765. kvm_mmu_page_unlink_children(kvm, sp);
  766. if (!sp->root_count) {
  767. if (!sp->role.metaphysical)
  768. unaccount_shadowed(kvm, sp->gfn);
  769. hlist_del(&sp->hash_link);
  770. kvm_mmu_free_page(kvm, sp);
  771. } else {
  772. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  773. sp->role.invalid = 1;
  774. kvm_reload_remote_mmus(kvm);
  775. }
  776. kvm_mmu_reset_last_pte_updated(kvm);
  777. }
  778. /*
  779. * Changing the number of mmu pages allocated to the vm
  780. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  781. */
  782. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  783. {
  784. /*
  785. * If we set the number of mmu pages to be smaller be than the
  786. * number of actived pages , we must to free some mmu pages before we
  787. * change the value
  788. */
  789. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  790. kvm_nr_mmu_pages) {
  791. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  792. - kvm->arch.n_free_mmu_pages;
  793. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  794. struct kvm_mmu_page *page;
  795. page = container_of(kvm->arch.active_mmu_pages.prev,
  796. struct kvm_mmu_page, link);
  797. kvm_mmu_zap_page(kvm, page);
  798. n_used_mmu_pages--;
  799. }
  800. kvm->arch.n_free_mmu_pages = 0;
  801. }
  802. else
  803. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  804. - kvm->arch.n_alloc_mmu_pages;
  805. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  806. }
  807. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  808. {
  809. unsigned index;
  810. struct hlist_head *bucket;
  811. struct kvm_mmu_page *sp;
  812. struct hlist_node *node, *n;
  813. int r;
  814. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  815. r = 0;
  816. index = kvm_page_table_hashfn(gfn);
  817. bucket = &kvm->arch.mmu_page_hash[index];
  818. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  819. if (sp->gfn == gfn && !sp->role.metaphysical) {
  820. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  821. sp->role.word);
  822. kvm_mmu_zap_page(kvm, sp);
  823. r = 1;
  824. }
  825. return r;
  826. }
  827. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  828. {
  829. struct kvm_mmu_page *sp;
  830. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  831. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  832. kvm_mmu_zap_page(kvm, sp);
  833. }
  834. }
  835. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  836. {
  837. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  838. struct kvm_mmu_page *sp = page_header(__pa(pte));
  839. __set_bit(slot, &sp->slot_bitmap);
  840. }
  841. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  842. {
  843. struct page *page;
  844. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  845. if (gpa == UNMAPPED_GVA)
  846. return NULL;
  847. down_read(&current->mm->mmap_sem);
  848. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  849. up_read(&current->mm->mmap_sem);
  850. return page;
  851. }
  852. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  853. unsigned pt_access, unsigned pte_access,
  854. int user_fault, int write_fault, int dirty,
  855. int *ptwrite, int largepage, gfn_t gfn,
  856. pfn_t pfn, bool speculative)
  857. {
  858. u64 spte;
  859. int was_rmapped = 0;
  860. int was_writeble = is_writeble_pte(*shadow_pte);
  861. pgprintk("%s: spte %llx access %x write_fault %d"
  862. " user_fault %d gfn %lx\n",
  863. __func__, *shadow_pte, pt_access,
  864. write_fault, user_fault, gfn);
  865. if (is_rmap_pte(*shadow_pte)) {
  866. /*
  867. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  868. * the parent of the now unreachable PTE.
  869. */
  870. if (largepage && !is_large_pte(*shadow_pte)) {
  871. struct kvm_mmu_page *child;
  872. u64 pte = *shadow_pte;
  873. child = page_header(pte & PT64_BASE_ADDR_MASK);
  874. mmu_page_remove_parent_pte(child, shadow_pte);
  875. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  876. pgprintk("hfn old %lx new %lx\n",
  877. spte_to_pfn(*shadow_pte), pfn);
  878. rmap_remove(vcpu->kvm, shadow_pte);
  879. } else {
  880. if (largepage)
  881. was_rmapped = is_large_pte(*shadow_pte);
  882. else
  883. was_rmapped = 1;
  884. }
  885. }
  886. /*
  887. * We don't set the accessed bit, since we sometimes want to see
  888. * whether the guest actually used the pte (in order to detect
  889. * demand paging).
  890. */
  891. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  892. if (!speculative)
  893. pte_access |= PT_ACCESSED_MASK;
  894. if (!dirty)
  895. pte_access &= ~ACC_WRITE_MASK;
  896. if (!(pte_access & ACC_EXEC_MASK))
  897. spte |= PT64_NX_MASK;
  898. spte |= PT_PRESENT_MASK;
  899. if (pte_access & ACC_USER_MASK)
  900. spte |= PT_USER_MASK;
  901. if (largepage)
  902. spte |= PT_PAGE_SIZE_MASK;
  903. spte |= (u64)pfn << PAGE_SHIFT;
  904. if ((pte_access & ACC_WRITE_MASK)
  905. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  906. struct kvm_mmu_page *shadow;
  907. spte |= PT_WRITABLE_MASK;
  908. if (user_fault) {
  909. mmu_unshadow(vcpu->kvm, gfn);
  910. goto unshadowed;
  911. }
  912. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  913. if (shadow ||
  914. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  915. pgprintk("%s: found shadow page for %lx, marking ro\n",
  916. __func__, gfn);
  917. pte_access &= ~ACC_WRITE_MASK;
  918. if (is_writeble_pte(spte)) {
  919. spte &= ~PT_WRITABLE_MASK;
  920. kvm_x86_ops->tlb_flush(vcpu);
  921. }
  922. if (write_fault)
  923. *ptwrite = 1;
  924. }
  925. }
  926. unshadowed:
  927. if (pte_access & ACC_WRITE_MASK)
  928. mark_page_dirty(vcpu->kvm, gfn);
  929. pgprintk("%s: setting spte %llx\n", __func__, spte);
  930. pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
  931. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  932. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  933. set_shadow_pte(shadow_pte, spte);
  934. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  935. && (spte & PT_PRESENT_MASK))
  936. ++vcpu->kvm->stat.lpages;
  937. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  938. if (!was_rmapped) {
  939. rmap_add(vcpu, shadow_pte, gfn, largepage);
  940. if (!is_rmap_pte(*shadow_pte))
  941. kvm_release_pfn_clean(pfn);
  942. } else {
  943. if (was_writeble)
  944. kvm_release_pfn_dirty(pfn);
  945. else
  946. kvm_release_pfn_clean(pfn);
  947. }
  948. if (!ptwrite || !*ptwrite)
  949. vcpu->arch.last_pte_updated = shadow_pte;
  950. }
  951. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  952. {
  953. }
  954. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  955. int largepage, gfn_t gfn, pfn_t pfn,
  956. int level)
  957. {
  958. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  959. int pt_write = 0;
  960. for (; ; level--) {
  961. u32 index = PT64_INDEX(v, level);
  962. u64 *table;
  963. ASSERT(VALID_PAGE(table_addr));
  964. table = __va(table_addr);
  965. if (level == 1) {
  966. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  967. 0, write, 1, &pt_write, 0, gfn, pfn, false);
  968. return pt_write;
  969. }
  970. if (largepage && level == 2) {
  971. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  972. 0, write, 1, &pt_write, 1, gfn, pfn, false);
  973. return pt_write;
  974. }
  975. if (table[index] == shadow_trap_nonpresent_pte) {
  976. struct kvm_mmu_page *new_table;
  977. gfn_t pseudo_gfn;
  978. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  979. >> PAGE_SHIFT;
  980. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  981. v, level - 1,
  982. 1, ACC_ALL, &table[index]);
  983. if (!new_table) {
  984. pgprintk("nonpaging_map: ENOMEM\n");
  985. kvm_release_pfn_clean(pfn);
  986. return -ENOMEM;
  987. }
  988. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  989. | PT_WRITABLE_MASK | PT_USER_MASK;
  990. }
  991. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  992. }
  993. }
  994. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  995. {
  996. int r;
  997. int largepage = 0;
  998. pfn_t pfn;
  999. down_read(&current->mm->mmap_sem);
  1000. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1001. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1002. largepage = 1;
  1003. }
  1004. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1005. up_read(&current->mm->mmap_sem);
  1006. /* mmio */
  1007. if (is_error_pfn(pfn)) {
  1008. kvm_release_pfn_clean(pfn);
  1009. return 1;
  1010. }
  1011. spin_lock(&vcpu->kvm->mmu_lock);
  1012. kvm_mmu_free_some_pages(vcpu);
  1013. r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
  1014. PT32E_ROOT_LEVEL);
  1015. spin_unlock(&vcpu->kvm->mmu_lock);
  1016. return r;
  1017. }
  1018. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1019. struct kvm_mmu_page *sp)
  1020. {
  1021. int i;
  1022. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1023. sp->spt[i] = shadow_trap_nonpresent_pte;
  1024. }
  1025. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1026. {
  1027. int i;
  1028. struct kvm_mmu_page *sp;
  1029. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1030. return;
  1031. spin_lock(&vcpu->kvm->mmu_lock);
  1032. #ifdef CONFIG_X86_64
  1033. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1034. hpa_t root = vcpu->arch.mmu.root_hpa;
  1035. sp = page_header(root);
  1036. --sp->root_count;
  1037. if (!sp->root_count && sp->role.invalid)
  1038. kvm_mmu_zap_page(vcpu->kvm, sp);
  1039. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1040. spin_unlock(&vcpu->kvm->mmu_lock);
  1041. return;
  1042. }
  1043. #endif
  1044. for (i = 0; i < 4; ++i) {
  1045. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1046. if (root) {
  1047. root &= PT64_BASE_ADDR_MASK;
  1048. sp = page_header(root);
  1049. --sp->root_count;
  1050. if (!sp->root_count && sp->role.invalid)
  1051. kvm_mmu_zap_page(vcpu->kvm, sp);
  1052. }
  1053. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1054. }
  1055. spin_unlock(&vcpu->kvm->mmu_lock);
  1056. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1057. }
  1058. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1059. {
  1060. int i;
  1061. gfn_t root_gfn;
  1062. struct kvm_mmu_page *sp;
  1063. int metaphysical = 0;
  1064. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1065. #ifdef CONFIG_X86_64
  1066. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1067. hpa_t root = vcpu->arch.mmu.root_hpa;
  1068. ASSERT(!VALID_PAGE(root));
  1069. if (tdp_enabled)
  1070. metaphysical = 1;
  1071. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1072. PT64_ROOT_LEVEL, metaphysical,
  1073. ACC_ALL, NULL);
  1074. root = __pa(sp->spt);
  1075. ++sp->root_count;
  1076. vcpu->arch.mmu.root_hpa = root;
  1077. return;
  1078. }
  1079. #endif
  1080. metaphysical = !is_paging(vcpu);
  1081. if (tdp_enabled)
  1082. metaphysical = 1;
  1083. for (i = 0; i < 4; ++i) {
  1084. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1085. ASSERT(!VALID_PAGE(root));
  1086. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1087. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1088. vcpu->arch.mmu.pae_root[i] = 0;
  1089. continue;
  1090. }
  1091. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1092. } else if (vcpu->arch.mmu.root_level == 0)
  1093. root_gfn = 0;
  1094. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1095. PT32_ROOT_LEVEL, metaphysical,
  1096. ACC_ALL, NULL);
  1097. root = __pa(sp->spt);
  1098. ++sp->root_count;
  1099. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1100. }
  1101. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1102. }
  1103. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1104. {
  1105. return vaddr;
  1106. }
  1107. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1108. u32 error_code)
  1109. {
  1110. gfn_t gfn;
  1111. int r;
  1112. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1113. r = mmu_topup_memory_caches(vcpu);
  1114. if (r)
  1115. return r;
  1116. ASSERT(vcpu);
  1117. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1118. gfn = gva >> PAGE_SHIFT;
  1119. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1120. error_code & PFERR_WRITE_MASK, gfn);
  1121. }
  1122. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1123. u32 error_code)
  1124. {
  1125. pfn_t pfn;
  1126. int r;
  1127. int largepage = 0;
  1128. gfn_t gfn = gpa >> PAGE_SHIFT;
  1129. ASSERT(vcpu);
  1130. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1131. r = mmu_topup_memory_caches(vcpu);
  1132. if (r)
  1133. return r;
  1134. down_read(&current->mm->mmap_sem);
  1135. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1136. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1137. largepage = 1;
  1138. }
  1139. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1140. up_read(&current->mm->mmap_sem);
  1141. if (is_error_pfn(pfn)) {
  1142. kvm_release_pfn_clean(pfn);
  1143. return 1;
  1144. }
  1145. spin_lock(&vcpu->kvm->mmu_lock);
  1146. kvm_mmu_free_some_pages(vcpu);
  1147. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1148. largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
  1149. spin_unlock(&vcpu->kvm->mmu_lock);
  1150. return r;
  1151. }
  1152. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1153. {
  1154. mmu_free_roots(vcpu);
  1155. }
  1156. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1157. {
  1158. struct kvm_mmu *context = &vcpu->arch.mmu;
  1159. context->new_cr3 = nonpaging_new_cr3;
  1160. context->page_fault = nonpaging_page_fault;
  1161. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1162. context->free = nonpaging_free;
  1163. context->prefetch_page = nonpaging_prefetch_page;
  1164. context->root_level = 0;
  1165. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1166. context->root_hpa = INVALID_PAGE;
  1167. return 0;
  1168. }
  1169. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1170. {
  1171. ++vcpu->stat.tlb_flush;
  1172. kvm_x86_ops->tlb_flush(vcpu);
  1173. }
  1174. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1175. {
  1176. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1177. mmu_free_roots(vcpu);
  1178. }
  1179. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1180. u64 addr,
  1181. u32 err_code)
  1182. {
  1183. kvm_inject_page_fault(vcpu, addr, err_code);
  1184. }
  1185. static void paging_free(struct kvm_vcpu *vcpu)
  1186. {
  1187. nonpaging_free(vcpu);
  1188. }
  1189. #define PTTYPE 64
  1190. #include "paging_tmpl.h"
  1191. #undef PTTYPE
  1192. #define PTTYPE 32
  1193. #include "paging_tmpl.h"
  1194. #undef PTTYPE
  1195. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1196. {
  1197. struct kvm_mmu *context = &vcpu->arch.mmu;
  1198. ASSERT(is_pae(vcpu));
  1199. context->new_cr3 = paging_new_cr3;
  1200. context->page_fault = paging64_page_fault;
  1201. context->gva_to_gpa = paging64_gva_to_gpa;
  1202. context->prefetch_page = paging64_prefetch_page;
  1203. context->free = paging_free;
  1204. context->root_level = level;
  1205. context->shadow_root_level = level;
  1206. context->root_hpa = INVALID_PAGE;
  1207. return 0;
  1208. }
  1209. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1210. {
  1211. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1212. }
  1213. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1214. {
  1215. struct kvm_mmu *context = &vcpu->arch.mmu;
  1216. context->new_cr3 = paging_new_cr3;
  1217. context->page_fault = paging32_page_fault;
  1218. context->gva_to_gpa = paging32_gva_to_gpa;
  1219. context->free = paging_free;
  1220. context->prefetch_page = paging32_prefetch_page;
  1221. context->root_level = PT32_ROOT_LEVEL;
  1222. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1223. context->root_hpa = INVALID_PAGE;
  1224. return 0;
  1225. }
  1226. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1227. {
  1228. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1229. }
  1230. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1231. {
  1232. struct kvm_mmu *context = &vcpu->arch.mmu;
  1233. context->new_cr3 = nonpaging_new_cr3;
  1234. context->page_fault = tdp_page_fault;
  1235. context->free = nonpaging_free;
  1236. context->prefetch_page = nonpaging_prefetch_page;
  1237. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1238. context->root_hpa = INVALID_PAGE;
  1239. if (!is_paging(vcpu)) {
  1240. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1241. context->root_level = 0;
  1242. } else if (is_long_mode(vcpu)) {
  1243. context->gva_to_gpa = paging64_gva_to_gpa;
  1244. context->root_level = PT64_ROOT_LEVEL;
  1245. } else if (is_pae(vcpu)) {
  1246. context->gva_to_gpa = paging64_gva_to_gpa;
  1247. context->root_level = PT32E_ROOT_LEVEL;
  1248. } else {
  1249. context->gva_to_gpa = paging32_gva_to_gpa;
  1250. context->root_level = PT32_ROOT_LEVEL;
  1251. }
  1252. return 0;
  1253. }
  1254. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1255. {
  1256. ASSERT(vcpu);
  1257. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1258. if (!is_paging(vcpu))
  1259. return nonpaging_init_context(vcpu);
  1260. else if (is_long_mode(vcpu))
  1261. return paging64_init_context(vcpu);
  1262. else if (is_pae(vcpu))
  1263. return paging32E_init_context(vcpu);
  1264. else
  1265. return paging32_init_context(vcpu);
  1266. }
  1267. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1268. {
  1269. vcpu->arch.update_pte.pfn = bad_pfn;
  1270. if (tdp_enabled)
  1271. return init_kvm_tdp_mmu(vcpu);
  1272. else
  1273. return init_kvm_softmmu(vcpu);
  1274. }
  1275. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1276. {
  1277. ASSERT(vcpu);
  1278. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1279. vcpu->arch.mmu.free(vcpu);
  1280. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1281. }
  1282. }
  1283. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1284. {
  1285. destroy_kvm_mmu(vcpu);
  1286. return init_kvm_mmu(vcpu);
  1287. }
  1288. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1289. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1290. {
  1291. int r;
  1292. r = mmu_topup_memory_caches(vcpu);
  1293. if (r)
  1294. goto out;
  1295. spin_lock(&vcpu->kvm->mmu_lock);
  1296. kvm_mmu_free_some_pages(vcpu);
  1297. mmu_alloc_roots(vcpu);
  1298. spin_unlock(&vcpu->kvm->mmu_lock);
  1299. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1300. kvm_mmu_flush_tlb(vcpu);
  1301. out:
  1302. return r;
  1303. }
  1304. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1305. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1306. {
  1307. mmu_free_roots(vcpu);
  1308. }
  1309. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1310. struct kvm_mmu_page *sp,
  1311. u64 *spte)
  1312. {
  1313. u64 pte;
  1314. struct kvm_mmu_page *child;
  1315. pte = *spte;
  1316. if (is_shadow_present_pte(pte)) {
  1317. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1318. is_large_pte(pte))
  1319. rmap_remove(vcpu->kvm, spte);
  1320. else {
  1321. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1322. mmu_page_remove_parent_pte(child, spte);
  1323. }
  1324. }
  1325. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1326. if (is_large_pte(pte))
  1327. --vcpu->kvm->stat.lpages;
  1328. }
  1329. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1330. struct kvm_mmu_page *sp,
  1331. u64 *spte,
  1332. const void *new)
  1333. {
  1334. if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
  1335. && !vcpu->arch.update_pte.largepage) {
  1336. ++vcpu->kvm->stat.mmu_pde_zapped;
  1337. return;
  1338. }
  1339. ++vcpu->kvm->stat.mmu_pte_updated;
  1340. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1341. paging32_update_pte(vcpu, sp, spte, new);
  1342. else
  1343. paging64_update_pte(vcpu, sp, spte, new);
  1344. }
  1345. static bool need_remote_flush(u64 old, u64 new)
  1346. {
  1347. if (!is_shadow_present_pte(old))
  1348. return false;
  1349. if (!is_shadow_present_pte(new))
  1350. return true;
  1351. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1352. return true;
  1353. old ^= PT64_NX_MASK;
  1354. new ^= PT64_NX_MASK;
  1355. return (old & ~new & PT64_PERM_MASK) != 0;
  1356. }
  1357. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1358. {
  1359. if (need_remote_flush(old, new))
  1360. kvm_flush_remote_tlbs(vcpu->kvm);
  1361. else
  1362. kvm_mmu_flush_tlb(vcpu);
  1363. }
  1364. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1365. {
  1366. u64 *spte = vcpu->arch.last_pte_updated;
  1367. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1368. }
  1369. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1370. const u8 *new, int bytes)
  1371. {
  1372. gfn_t gfn;
  1373. int r;
  1374. u64 gpte = 0;
  1375. pfn_t pfn;
  1376. vcpu->arch.update_pte.largepage = 0;
  1377. if (bytes != 4 && bytes != 8)
  1378. return;
  1379. /*
  1380. * Assume that the pte write on a page table of the same type
  1381. * as the current vcpu paging mode. This is nearly always true
  1382. * (might be false while changing modes). Note it is verified later
  1383. * by update_pte().
  1384. */
  1385. if (is_pae(vcpu)) {
  1386. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1387. if ((bytes == 4) && (gpa % 4 == 0)) {
  1388. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1389. if (r)
  1390. return;
  1391. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1392. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1393. memcpy((void *)&gpte, new, 8);
  1394. }
  1395. } else {
  1396. if ((bytes == 4) && (gpa % 4 == 0))
  1397. memcpy((void *)&gpte, new, 4);
  1398. }
  1399. if (!is_present_pte(gpte))
  1400. return;
  1401. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1402. down_read(&current->mm->mmap_sem);
  1403. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1404. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1405. vcpu->arch.update_pte.largepage = 1;
  1406. }
  1407. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1408. up_read(&current->mm->mmap_sem);
  1409. if (is_error_pfn(pfn)) {
  1410. kvm_release_pfn_clean(pfn);
  1411. return;
  1412. }
  1413. vcpu->arch.update_pte.gfn = gfn;
  1414. vcpu->arch.update_pte.pfn = pfn;
  1415. }
  1416. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1417. const u8 *new, int bytes)
  1418. {
  1419. gfn_t gfn = gpa >> PAGE_SHIFT;
  1420. struct kvm_mmu_page *sp;
  1421. struct hlist_node *node, *n;
  1422. struct hlist_head *bucket;
  1423. unsigned index;
  1424. u64 entry, gentry;
  1425. u64 *spte;
  1426. unsigned offset = offset_in_page(gpa);
  1427. unsigned pte_size;
  1428. unsigned page_offset;
  1429. unsigned misaligned;
  1430. unsigned quadrant;
  1431. int level;
  1432. int flooded = 0;
  1433. int npte;
  1434. int r;
  1435. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1436. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1437. spin_lock(&vcpu->kvm->mmu_lock);
  1438. kvm_mmu_free_some_pages(vcpu);
  1439. ++vcpu->kvm->stat.mmu_pte_write;
  1440. kvm_mmu_audit(vcpu, "pre pte write");
  1441. if (gfn == vcpu->arch.last_pt_write_gfn
  1442. && !last_updated_pte_accessed(vcpu)) {
  1443. ++vcpu->arch.last_pt_write_count;
  1444. if (vcpu->arch.last_pt_write_count >= 3)
  1445. flooded = 1;
  1446. } else {
  1447. vcpu->arch.last_pt_write_gfn = gfn;
  1448. vcpu->arch.last_pt_write_count = 1;
  1449. vcpu->arch.last_pte_updated = NULL;
  1450. }
  1451. index = kvm_page_table_hashfn(gfn);
  1452. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1453. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1454. if (sp->gfn != gfn || sp->role.metaphysical)
  1455. continue;
  1456. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1457. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1458. misaligned |= bytes < 4;
  1459. if (misaligned || flooded) {
  1460. /*
  1461. * Misaligned accesses are too much trouble to fix
  1462. * up; also, they usually indicate a page is not used
  1463. * as a page table.
  1464. *
  1465. * If we're seeing too many writes to a page,
  1466. * it may no longer be a page table, or we may be
  1467. * forking, in which case it is better to unmap the
  1468. * page.
  1469. */
  1470. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1471. gpa, bytes, sp->role.word);
  1472. kvm_mmu_zap_page(vcpu->kvm, sp);
  1473. ++vcpu->kvm->stat.mmu_flooded;
  1474. continue;
  1475. }
  1476. page_offset = offset;
  1477. level = sp->role.level;
  1478. npte = 1;
  1479. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1480. page_offset <<= 1; /* 32->64 */
  1481. /*
  1482. * A 32-bit pde maps 4MB while the shadow pdes map
  1483. * only 2MB. So we need to double the offset again
  1484. * and zap two pdes instead of one.
  1485. */
  1486. if (level == PT32_ROOT_LEVEL) {
  1487. page_offset &= ~7; /* kill rounding error */
  1488. page_offset <<= 1;
  1489. npte = 2;
  1490. }
  1491. quadrant = page_offset >> PAGE_SHIFT;
  1492. page_offset &= ~PAGE_MASK;
  1493. if (quadrant != sp->role.quadrant)
  1494. continue;
  1495. }
  1496. spte = &sp->spt[page_offset / sizeof(*spte)];
  1497. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1498. gentry = 0;
  1499. r = kvm_read_guest_atomic(vcpu->kvm,
  1500. gpa & ~(u64)(pte_size - 1),
  1501. &gentry, pte_size);
  1502. new = (const void *)&gentry;
  1503. if (r < 0)
  1504. new = NULL;
  1505. }
  1506. while (npte--) {
  1507. entry = *spte;
  1508. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1509. if (new)
  1510. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1511. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1512. ++spte;
  1513. }
  1514. }
  1515. kvm_mmu_audit(vcpu, "post pte write");
  1516. spin_unlock(&vcpu->kvm->mmu_lock);
  1517. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1518. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1519. vcpu->arch.update_pte.pfn = bad_pfn;
  1520. }
  1521. }
  1522. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1523. {
  1524. gpa_t gpa;
  1525. int r;
  1526. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1527. spin_lock(&vcpu->kvm->mmu_lock);
  1528. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1529. spin_unlock(&vcpu->kvm->mmu_lock);
  1530. return r;
  1531. }
  1532. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1533. {
  1534. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1535. struct kvm_mmu_page *sp;
  1536. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1537. struct kvm_mmu_page, link);
  1538. kvm_mmu_zap_page(vcpu->kvm, sp);
  1539. ++vcpu->kvm->stat.mmu_recycled;
  1540. }
  1541. }
  1542. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1543. {
  1544. int r;
  1545. enum emulation_result er;
  1546. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1547. if (r < 0)
  1548. goto out;
  1549. if (!r) {
  1550. r = 1;
  1551. goto out;
  1552. }
  1553. r = mmu_topup_memory_caches(vcpu);
  1554. if (r)
  1555. goto out;
  1556. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1557. switch (er) {
  1558. case EMULATE_DONE:
  1559. return 1;
  1560. case EMULATE_DO_MMIO:
  1561. ++vcpu->stat.mmio_exits;
  1562. return 0;
  1563. case EMULATE_FAIL:
  1564. kvm_report_emulation_failure(vcpu, "pagetable");
  1565. return 1;
  1566. default:
  1567. BUG();
  1568. }
  1569. out:
  1570. return r;
  1571. }
  1572. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1573. void kvm_enable_tdp(void)
  1574. {
  1575. tdp_enabled = true;
  1576. }
  1577. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1578. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1579. {
  1580. struct kvm_mmu_page *sp;
  1581. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1582. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1583. struct kvm_mmu_page, link);
  1584. kvm_mmu_zap_page(vcpu->kvm, sp);
  1585. }
  1586. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1587. }
  1588. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1589. {
  1590. struct page *page;
  1591. int i;
  1592. ASSERT(vcpu);
  1593. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1594. vcpu->kvm->arch.n_free_mmu_pages =
  1595. vcpu->kvm->arch.n_requested_mmu_pages;
  1596. else
  1597. vcpu->kvm->arch.n_free_mmu_pages =
  1598. vcpu->kvm->arch.n_alloc_mmu_pages;
  1599. /*
  1600. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1601. * Therefore we need to allocate shadow page tables in the first
  1602. * 4GB of memory, which happens to fit the DMA32 zone.
  1603. */
  1604. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1605. if (!page)
  1606. goto error_1;
  1607. vcpu->arch.mmu.pae_root = page_address(page);
  1608. for (i = 0; i < 4; ++i)
  1609. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1610. return 0;
  1611. error_1:
  1612. free_mmu_pages(vcpu);
  1613. return -ENOMEM;
  1614. }
  1615. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1616. {
  1617. ASSERT(vcpu);
  1618. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1619. return alloc_mmu_pages(vcpu);
  1620. }
  1621. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1622. {
  1623. ASSERT(vcpu);
  1624. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1625. return init_kvm_mmu(vcpu);
  1626. }
  1627. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1628. {
  1629. ASSERT(vcpu);
  1630. destroy_kvm_mmu(vcpu);
  1631. free_mmu_pages(vcpu);
  1632. mmu_free_memory_caches(vcpu);
  1633. }
  1634. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1635. {
  1636. struct kvm_mmu_page *sp;
  1637. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1638. int i;
  1639. u64 *pt;
  1640. if (!test_bit(slot, &sp->slot_bitmap))
  1641. continue;
  1642. pt = sp->spt;
  1643. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1644. /* avoid RMW */
  1645. if (pt[i] & PT_WRITABLE_MASK)
  1646. pt[i] &= ~PT_WRITABLE_MASK;
  1647. }
  1648. }
  1649. void kvm_mmu_zap_all(struct kvm *kvm)
  1650. {
  1651. struct kvm_mmu_page *sp, *node;
  1652. spin_lock(&kvm->mmu_lock);
  1653. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1654. kvm_mmu_zap_page(kvm, sp);
  1655. spin_unlock(&kvm->mmu_lock);
  1656. kvm_flush_remote_tlbs(kvm);
  1657. }
  1658. void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1659. {
  1660. struct kvm_mmu_page *page;
  1661. page = container_of(kvm->arch.active_mmu_pages.prev,
  1662. struct kvm_mmu_page, link);
  1663. kvm_mmu_zap_page(kvm, page);
  1664. }
  1665. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1666. {
  1667. struct kvm *kvm;
  1668. struct kvm *kvm_freed = NULL;
  1669. int cache_count = 0;
  1670. spin_lock(&kvm_lock);
  1671. list_for_each_entry(kvm, &vm_list, vm_list) {
  1672. int npages;
  1673. spin_lock(&kvm->mmu_lock);
  1674. npages = kvm->arch.n_alloc_mmu_pages -
  1675. kvm->arch.n_free_mmu_pages;
  1676. cache_count += npages;
  1677. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1678. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1679. cache_count--;
  1680. kvm_freed = kvm;
  1681. }
  1682. nr_to_scan--;
  1683. spin_unlock(&kvm->mmu_lock);
  1684. }
  1685. if (kvm_freed)
  1686. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1687. spin_unlock(&kvm_lock);
  1688. return cache_count;
  1689. }
  1690. static struct shrinker mmu_shrinker = {
  1691. .shrink = mmu_shrink,
  1692. .seeks = DEFAULT_SEEKS * 10,
  1693. };
  1694. void mmu_destroy_caches(void)
  1695. {
  1696. if (pte_chain_cache)
  1697. kmem_cache_destroy(pte_chain_cache);
  1698. if (rmap_desc_cache)
  1699. kmem_cache_destroy(rmap_desc_cache);
  1700. if (mmu_page_header_cache)
  1701. kmem_cache_destroy(mmu_page_header_cache);
  1702. }
  1703. void kvm_mmu_module_exit(void)
  1704. {
  1705. mmu_destroy_caches();
  1706. unregister_shrinker(&mmu_shrinker);
  1707. }
  1708. int kvm_mmu_module_init(void)
  1709. {
  1710. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1711. sizeof(struct kvm_pte_chain),
  1712. 0, 0, NULL);
  1713. if (!pte_chain_cache)
  1714. goto nomem;
  1715. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1716. sizeof(struct kvm_rmap_desc),
  1717. 0, 0, NULL);
  1718. if (!rmap_desc_cache)
  1719. goto nomem;
  1720. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1721. sizeof(struct kvm_mmu_page),
  1722. 0, 0, NULL);
  1723. if (!mmu_page_header_cache)
  1724. goto nomem;
  1725. register_shrinker(&mmu_shrinker);
  1726. return 0;
  1727. nomem:
  1728. mmu_destroy_caches();
  1729. return -ENOMEM;
  1730. }
  1731. /*
  1732. * Caculate mmu pages needed for kvm.
  1733. */
  1734. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1735. {
  1736. int i;
  1737. unsigned int nr_mmu_pages;
  1738. unsigned int nr_pages = 0;
  1739. for (i = 0; i < kvm->nmemslots; i++)
  1740. nr_pages += kvm->memslots[i].npages;
  1741. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1742. nr_mmu_pages = max(nr_mmu_pages,
  1743. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1744. return nr_mmu_pages;
  1745. }
  1746. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1747. unsigned len)
  1748. {
  1749. if (len > buffer->len)
  1750. return NULL;
  1751. return buffer->ptr;
  1752. }
  1753. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1754. unsigned len)
  1755. {
  1756. void *ret;
  1757. ret = pv_mmu_peek_buffer(buffer, len);
  1758. if (!ret)
  1759. return ret;
  1760. buffer->ptr += len;
  1761. buffer->len -= len;
  1762. buffer->processed += len;
  1763. return ret;
  1764. }
  1765. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1766. gpa_t addr, gpa_t value)
  1767. {
  1768. int bytes = 8;
  1769. int r;
  1770. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1771. bytes = 4;
  1772. r = mmu_topup_memory_caches(vcpu);
  1773. if (r)
  1774. return r;
  1775. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1776. return -EFAULT;
  1777. return 1;
  1778. }
  1779. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1780. {
  1781. kvm_x86_ops->tlb_flush(vcpu);
  1782. return 1;
  1783. }
  1784. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1785. {
  1786. spin_lock(&vcpu->kvm->mmu_lock);
  1787. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1788. spin_unlock(&vcpu->kvm->mmu_lock);
  1789. return 1;
  1790. }
  1791. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1792. struct kvm_pv_mmu_op_buffer *buffer)
  1793. {
  1794. struct kvm_mmu_op_header *header;
  1795. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1796. if (!header)
  1797. return 0;
  1798. switch (header->op) {
  1799. case KVM_MMU_OP_WRITE_PTE: {
  1800. struct kvm_mmu_op_write_pte *wpte;
  1801. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1802. if (!wpte)
  1803. return 0;
  1804. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1805. wpte->pte_val);
  1806. }
  1807. case KVM_MMU_OP_FLUSH_TLB: {
  1808. struct kvm_mmu_op_flush_tlb *ftlb;
  1809. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1810. if (!ftlb)
  1811. return 0;
  1812. return kvm_pv_mmu_flush_tlb(vcpu);
  1813. }
  1814. case KVM_MMU_OP_RELEASE_PT: {
  1815. struct kvm_mmu_op_release_pt *rpt;
  1816. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1817. if (!rpt)
  1818. return 0;
  1819. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1820. }
  1821. default: return 0;
  1822. }
  1823. }
  1824. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1825. gpa_t addr, unsigned long *ret)
  1826. {
  1827. int r;
  1828. struct kvm_pv_mmu_op_buffer buffer;
  1829. buffer.ptr = buffer.buf;
  1830. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1831. buffer.processed = 0;
  1832. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1833. if (r)
  1834. goto out;
  1835. while (buffer.len) {
  1836. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1837. if (r < 0)
  1838. goto out;
  1839. if (r == 0)
  1840. break;
  1841. }
  1842. r = 1;
  1843. out:
  1844. *ret = buffer.processed;
  1845. return r;
  1846. }
  1847. #ifdef AUDIT
  1848. static const char *audit_msg;
  1849. static gva_t canonicalize(gva_t gva)
  1850. {
  1851. #ifdef CONFIG_X86_64
  1852. gva = (long long)(gva << 16) >> 16;
  1853. #endif
  1854. return gva;
  1855. }
  1856. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1857. gva_t va, int level)
  1858. {
  1859. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1860. int i;
  1861. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1862. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1863. u64 ent = pt[i];
  1864. if (ent == shadow_trap_nonpresent_pte)
  1865. continue;
  1866. va = canonicalize(va);
  1867. if (level > 1) {
  1868. if (ent == shadow_notrap_nonpresent_pte)
  1869. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1870. " in nonleaf level: levels %d gva %lx"
  1871. " level %d pte %llx\n", audit_msg,
  1872. vcpu->arch.mmu.root_level, va, level, ent);
  1873. audit_mappings_page(vcpu, ent, va, level - 1);
  1874. } else {
  1875. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1876. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  1877. if (is_shadow_present_pte(ent)
  1878. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1879. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1880. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1881. audit_msg, vcpu->arch.mmu.root_level,
  1882. va, gpa, hpa, ent,
  1883. is_shadow_present_pte(ent));
  1884. else if (ent == shadow_notrap_nonpresent_pte
  1885. && !is_error_hpa(hpa))
  1886. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1887. " valid guest gva %lx\n", audit_msg, va);
  1888. kvm_release_pfn_clean(pfn);
  1889. }
  1890. }
  1891. }
  1892. static void audit_mappings(struct kvm_vcpu *vcpu)
  1893. {
  1894. unsigned i;
  1895. if (vcpu->arch.mmu.root_level == 4)
  1896. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1897. else
  1898. for (i = 0; i < 4; ++i)
  1899. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1900. audit_mappings_page(vcpu,
  1901. vcpu->arch.mmu.pae_root[i],
  1902. i << 30,
  1903. 2);
  1904. }
  1905. static int count_rmaps(struct kvm_vcpu *vcpu)
  1906. {
  1907. int nmaps = 0;
  1908. int i, j, k;
  1909. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1910. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1911. struct kvm_rmap_desc *d;
  1912. for (j = 0; j < m->npages; ++j) {
  1913. unsigned long *rmapp = &m->rmap[j];
  1914. if (!*rmapp)
  1915. continue;
  1916. if (!(*rmapp & 1)) {
  1917. ++nmaps;
  1918. continue;
  1919. }
  1920. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1921. while (d) {
  1922. for (k = 0; k < RMAP_EXT; ++k)
  1923. if (d->shadow_ptes[k])
  1924. ++nmaps;
  1925. else
  1926. break;
  1927. d = d->more;
  1928. }
  1929. }
  1930. }
  1931. return nmaps;
  1932. }
  1933. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1934. {
  1935. int nmaps = 0;
  1936. struct kvm_mmu_page *sp;
  1937. int i;
  1938. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1939. u64 *pt = sp->spt;
  1940. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1941. continue;
  1942. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1943. u64 ent = pt[i];
  1944. if (!(ent & PT_PRESENT_MASK))
  1945. continue;
  1946. if (!(ent & PT_WRITABLE_MASK))
  1947. continue;
  1948. ++nmaps;
  1949. }
  1950. }
  1951. return nmaps;
  1952. }
  1953. static void audit_rmap(struct kvm_vcpu *vcpu)
  1954. {
  1955. int n_rmap = count_rmaps(vcpu);
  1956. int n_actual = count_writable_mappings(vcpu);
  1957. if (n_rmap != n_actual)
  1958. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1959. __func__, audit_msg, n_rmap, n_actual);
  1960. }
  1961. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1962. {
  1963. struct kvm_mmu_page *sp;
  1964. struct kvm_memory_slot *slot;
  1965. unsigned long *rmapp;
  1966. gfn_t gfn;
  1967. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1968. if (sp->role.metaphysical)
  1969. continue;
  1970. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1971. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1972. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1973. if (*rmapp)
  1974. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1975. " mappings: gfn %lx role %x\n",
  1976. __func__, audit_msg, sp->gfn,
  1977. sp->role.word);
  1978. }
  1979. }
  1980. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1981. {
  1982. int olddbg = dbg;
  1983. dbg = 0;
  1984. audit_msg = msg;
  1985. audit_rmap(vcpu);
  1986. audit_write_protection(vcpu);
  1987. audit_mappings(vcpu);
  1988. dbg = olddbg;
  1989. }
  1990. #endif