vmx.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <asm/io.h>
  24. #include <asm/desc.h>
  25. #include "segment_descriptor.h"
  26. #define MSR_IA32_FEATURE_CONTROL 0x03a
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  82. {
  83. int i;
  84. for (i = 0; i < vcpu->nmsrs; ++i)
  85. if (vcpu->guest_msrs[i].index == msr)
  86. return &vcpu->guest_msrs[i];
  87. return 0;
  88. }
  89. static void vmcs_clear(struct vmcs *vmcs)
  90. {
  91. u64 phys_addr = __pa(vmcs);
  92. u8 error;
  93. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  94. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  95. : "cc", "memory");
  96. if (error)
  97. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  98. vmcs, phys_addr);
  99. }
  100. static void __vcpu_clear(void *arg)
  101. {
  102. struct kvm_vcpu *vcpu = arg;
  103. int cpu = smp_processor_id();
  104. if (vcpu->cpu == cpu)
  105. vmcs_clear(vcpu->vmcs);
  106. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  107. per_cpu(current_vmcs, cpu) = NULL;
  108. }
  109. static unsigned long vmcs_readl(unsigned long field)
  110. {
  111. unsigned long value;
  112. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  113. : "=a"(value) : "d"(field) : "cc");
  114. return value;
  115. }
  116. static u16 vmcs_read16(unsigned long field)
  117. {
  118. return vmcs_readl(field);
  119. }
  120. static u32 vmcs_read32(unsigned long field)
  121. {
  122. return vmcs_readl(field);
  123. }
  124. static u64 vmcs_read64(unsigned long field)
  125. {
  126. #ifdef CONFIG_X86_64
  127. return vmcs_readl(field);
  128. #else
  129. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  130. #endif
  131. }
  132. static void vmcs_writel(unsigned long field, unsigned long value)
  133. {
  134. u8 error;
  135. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  136. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  137. if (error)
  138. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  139. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  140. }
  141. static void vmcs_write16(unsigned long field, u16 value)
  142. {
  143. vmcs_writel(field, value);
  144. }
  145. static void vmcs_write32(unsigned long field, u32 value)
  146. {
  147. vmcs_writel(field, value);
  148. }
  149. static void vmcs_write64(unsigned long field, u64 value)
  150. {
  151. #ifdef CONFIG_X86_64
  152. vmcs_writel(field, value);
  153. #else
  154. vmcs_writel(field, value);
  155. asm volatile ("");
  156. vmcs_writel(field+1, value >> 32);
  157. #endif
  158. }
  159. /*
  160. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  161. * vcpu mutex is already taken.
  162. */
  163. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  164. {
  165. u64 phys_addr = __pa(vcpu->vmcs);
  166. int cpu;
  167. cpu = get_cpu();
  168. if (vcpu->cpu != cpu) {
  169. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  170. vcpu->launched = 0;
  171. }
  172. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  173. u8 error;
  174. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  175. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  176. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  177. : "cc");
  178. if (error)
  179. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  180. vcpu->vmcs, phys_addr);
  181. }
  182. if (vcpu->cpu != cpu) {
  183. struct descriptor_table dt;
  184. unsigned long sysenter_esp;
  185. vcpu->cpu = cpu;
  186. /*
  187. * Linux uses per-cpu TSS and GDT, so set these when switching
  188. * processors.
  189. */
  190. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  191. get_gdt(&dt);
  192. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  193. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  194. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  195. }
  196. return vcpu;
  197. }
  198. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  199. {
  200. put_cpu();
  201. }
  202. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  203. {
  204. return vmcs_readl(GUEST_RFLAGS);
  205. }
  206. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  207. {
  208. vmcs_writel(GUEST_RFLAGS, rflags);
  209. }
  210. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  211. {
  212. unsigned long rip;
  213. u32 interruptibility;
  214. rip = vmcs_readl(GUEST_RIP);
  215. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  216. vmcs_writel(GUEST_RIP, rip);
  217. /*
  218. * We emulated an instruction, so temporary interrupt blocking
  219. * should be removed, if set.
  220. */
  221. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  222. if (interruptibility & 3)
  223. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  224. interruptibility & ~3);
  225. }
  226. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  227. {
  228. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  229. vmcs_readl(GUEST_RIP));
  230. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  231. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  232. GP_VECTOR |
  233. INTR_TYPE_EXCEPTION |
  234. INTR_INFO_DELIEVER_CODE_MASK |
  235. INTR_INFO_VALID_MASK);
  236. }
  237. /*
  238. * reads and returns guest's timestamp counter "register"
  239. * guest_tsc = host_tsc + tsc_offset -- 21.3
  240. */
  241. static u64 guest_read_tsc(void)
  242. {
  243. u64 host_tsc, tsc_offset;
  244. rdtscll(host_tsc);
  245. tsc_offset = vmcs_read64(TSC_OFFSET);
  246. return host_tsc + tsc_offset;
  247. }
  248. /*
  249. * writes 'guest_tsc' into guest's timestamp counter "register"
  250. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  251. */
  252. static void guest_write_tsc(u64 guest_tsc)
  253. {
  254. u64 host_tsc;
  255. rdtscll(host_tsc);
  256. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  257. }
  258. static void reload_tss(void)
  259. {
  260. #ifndef CONFIG_X86_64
  261. /*
  262. * VT restores TR but not its size. Useless.
  263. */
  264. struct descriptor_table gdt;
  265. struct segment_descriptor *descs;
  266. get_gdt(&gdt);
  267. descs = (void *)gdt.base;
  268. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  269. load_TR_desc();
  270. #endif
  271. }
  272. /*
  273. * Reads an msr value (of 'msr_index') into 'pdata'.
  274. * Returns 0 on success, non-0 otherwise.
  275. * Assumes vcpu_load() was already called.
  276. */
  277. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  278. {
  279. u64 data;
  280. struct vmx_msr_entry *msr;
  281. if (!pdata) {
  282. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  283. return -EINVAL;
  284. }
  285. switch (msr_index) {
  286. #ifdef CONFIG_X86_64
  287. case MSR_FS_BASE:
  288. data = vmcs_readl(GUEST_FS_BASE);
  289. break;
  290. case MSR_GS_BASE:
  291. data = vmcs_readl(GUEST_GS_BASE);
  292. break;
  293. case MSR_EFER:
  294. data = vcpu->shadow_efer;
  295. break;
  296. #endif
  297. case MSR_IA32_TIME_STAMP_COUNTER:
  298. data = guest_read_tsc();
  299. break;
  300. case MSR_IA32_SYSENTER_CS:
  301. data = vmcs_read32(GUEST_SYSENTER_CS);
  302. break;
  303. case MSR_IA32_SYSENTER_EIP:
  304. data = vmcs_read32(GUEST_SYSENTER_EIP);
  305. break;
  306. case MSR_IA32_SYSENTER_ESP:
  307. data = vmcs_read32(GUEST_SYSENTER_ESP);
  308. break;
  309. case 0xc0010010: /* SYSCFG */
  310. case 0xc0010015: /* HWCR */
  311. case MSR_IA32_PLATFORM_ID:
  312. case MSR_IA32_P5_MC_ADDR:
  313. case MSR_IA32_P5_MC_TYPE:
  314. case MSR_IA32_MC0_CTL:
  315. case MSR_IA32_MCG_STATUS:
  316. case MSR_IA32_MCG_CAP:
  317. case MSR_IA32_MC0_MISC:
  318. case MSR_IA32_MC0_MISC+4:
  319. case MSR_IA32_MC0_MISC+8:
  320. case MSR_IA32_MC0_MISC+12:
  321. case MSR_IA32_MC0_MISC+16:
  322. case MSR_IA32_UCODE_REV:
  323. /* MTRR registers */
  324. case 0xfe:
  325. case 0x200 ... 0x2ff:
  326. data = 0;
  327. break;
  328. case MSR_IA32_APICBASE:
  329. data = vcpu->apic_base;
  330. break;
  331. default:
  332. msr = find_msr_entry(vcpu, msr_index);
  333. if (!msr) {
  334. printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
  335. return 1;
  336. }
  337. data = msr->data;
  338. break;
  339. }
  340. *pdata = data;
  341. return 0;
  342. }
  343. /*
  344. * Writes msr value into into the appropriate "register".
  345. * Returns 0 on success, non-0 otherwise.
  346. * Assumes vcpu_load() was already called.
  347. */
  348. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  349. {
  350. struct vmx_msr_entry *msr;
  351. switch (msr_index) {
  352. #ifdef CONFIG_X86_64
  353. case MSR_FS_BASE:
  354. vmcs_writel(GUEST_FS_BASE, data);
  355. break;
  356. case MSR_GS_BASE:
  357. vmcs_writel(GUEST_GS_BASE, data);
  358. break;
  359. #endif
  360. case MSR_IA32_SYSENTER_CS:
  361. vmcs_write32(GUEST_SYSENTER_CS, data);
  362. break;
  363. case MSR_IA32_SYSENTER_EIP:
  364. vmcs_write32(GUEST_SYSENTER_EIP, data);
  365. break;
  366. case MSR_IA32_SYSENTER_ESP:
  367. vmcs_write32(GUEST_SYSENTER_ESP, data);
  368. break;
  369. #ifdef __x86_64
  370. case MSR_EFER:
  371. set_efer(vcpu, data);
  372. break;
  373. case MSR_IA32_MC0_STATUS:
  374. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
  375. , __FUNCTION__, data);
  376. break;
  377. #endif
  378. case MSR_IA32_TIME_STAMP_COUNTER: {
  379. guest_write_tsc(data);
  380. break;
  381. }
  382. case MSR_IA32_UCODE_REV:
  383. case MSR_IA32_UCODE_WRITE:
  384. case 0x200 ... 0x2ff: /* MTRRs */
  385. break;
  386. case MSR_IA32_APICBASE:
  387. vcpu->apic_base = data;
  388. break;
  389. default:
  390. msr = find_msr_entry(vcpu, msr_index);
  391. if (!msr) {
  392. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
  393. return 1;
  394. }
  395. msr->data = data;
  396. break;
  397. }
  398. return 0;
  399. }
  400. /*
  401. * Sync the rsp and rip registers into the vcpu structure. This allows
  402. * registers to be accessed by indexing vcpu->regs.
  403. */
  404. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  405. {
  406. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  407. vcpu->rip = vmcs_readl(GUEST_RIP);
  408. }
  409. /*
  410. * Syncs rsp and rip back into the vmcs. Should be called after possible
  411. * modification.
  412. */
  413. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  414. {
  415. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  416. vmcs_writel(GUEST_RIP, vcpu->rip);
  417. }
  418. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  419. {
  420. unsigned long dr7 = 0x400;
  421. u32 exception_bitmap;
  422. int old_singlestep;
  423. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  424. old_singlestep = vcpu->guest_debug.singlestep;
  425. vcpu->guest_debug.enabled = dbg->enabled;
  426. if (vcpu->guest_debug.enabled) {
  427. int i;
  428. dr7 |= 0x200; /* exact */
  429. for (i = 0; i < 4; ++i) {
  430. if (!dbg->breakpoints[i].enabled)
  431. continue;
  432. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  433. dr7 |= 2 << (i*2); /* global enable */
  434. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  435. }
  436. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  437. vcpu->guest_debug.singlestep = dbg->singlestep;
  438. } else {
  439. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  440. vcpu->guest_debug.singlestep = 0;
  441. }
  442. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  443. unsigned long flags;
  444. flags = vmcs_readl(GUEST_RFLAGS);
  445. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  446. vmcs_writel(GUEST_RFLAGS, flags);
  447. }
  448. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  449. vmcs_writel(GUEST_DR7, dr7);
  450. return 0;
  451. }
  452. static __init int cpu_has_kvm_support(void)
  453. {
  454. unsigned long ecx = cpuid_ecx(1);
  455. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  456. }
  457. static __init int vmx_disabled_by_bios(void)
  458. {
  459. u64 msr;
  460. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  461. return (msr & 5) == 1; /* locked but not enabled */
  462. }
  463. static __init void hardware_enable(void *garbage)
  464. {
  465. int cpu = raw_smp_processor_id();
  466. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  467. u64 old;
  468. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  469. if ((old & 5) != 5)
  470. /* enable and lock */
  471. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  472. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  473. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  474. : "memory", "cc");
  475. }
  476. static void hardware_disable(void *garbage)
  477. {
  478. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  479. }
  480. static __init void setup_vmcs_descriptor(void)
  481. {
  482. u32 vmx_msr_low, vmx_msr_high;
  483. rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
  484. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  485. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  486. vmcs_descriptor.revision_id = vmx_msr_low;
  487. };
  488. static struct vmcs *alloc_vmcs_cpu(int cpu)
  489. {
  490. int node = cpu_to_node(cpu);
  491. struct page *pages;
  492. struct vmcs *vmcs;
  493. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  494. if (!pages)
  495. return NULL;
  496. vmcs = page_address(pages);
  497. memset(vmcs, 0, vmcs_descriptor.size);
  498. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  499. return vmcs;
  500. }
  501. static struct vmcs *alloc_vmcs(void)
  502. {
  503. return alloc_vmcs_cpu(smp_processor_id());
  504. }
  505. static void free_vmcs(struct vmcs *vmcs)
  506. {
  507. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  508. }
  509. static __exit void free_kvm_area(void)
  510. {
  511. int cpu;
  512. for_each_online_cpu(cpu)
  513. free_vmcs(per_cpu(vmxarea, cpu));
  514. }
  515. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  516. static __init int alloc_kvm_area(void)
  517. {
  518. int cpu;
  519. for_each_online_cpu(cpu) {
  520. struct vmcs *vmcs;
  521. vmcs = alloc_vmcs_cpu(cpu);
  522. if (!vmcs) {
  523. free_kvm_area();
  524. return -ENOMEM;
  525. }
  526. per_cpu(vmxarea, cpu) = vmcs;
  527. }
  528. return 0;
  529. }
  530. static __init int hardware_setup(void)
  531. {
  532. setup_vmcs_descriptor();
  533. return alloc_kvm_area();
  534. }
  535. static __exit void hardware_unsetup(void)
  536. {
  537. free_kvm_area();
  538. }
  539. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  540. {
  541. if (vcpu->rmode.active)
  542. vmcs_write32(EXCEPTION_BITMAP, ~0);
  543. else
  544. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  545. }
  546. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  547. {
  548. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  549. if (vmcs_readl(sf->base) == save->base) {
  550. vmcs_write16(sf->selector, save->selector);
  551. vmcs_writel(sf->base, save->base);
  552. vmcs_write32(sf->limit, save->limit);
  553. vmcs_write32(sf->ar_bytes, save->ar);
  554. } else {
  555. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  556. << AR_DPL_SHIFT;
  557. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  558. }
  559. }
  560. static void enter_pmode(struct kvm_vcpu *vcpu)
  561. {
  562. unsigned long flags;
  563. vcpu->rmode.active = 0;
  564. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  565. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  566. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  567. flags = vmcs_readl(GUEST_RFLAGS);
  568. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  569. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  570. vmcs_writel(GUEST_RFLAGS, flags);
  571. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  572. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  573. update_exception_bitmap(vcpu);
  574. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  575. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  576. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  577. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  578. vmcs_write16(GUEST_SS_SELECTOR, 0);
  579. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  580. vmcs_write16(GUEST_CS_SELECTOR,
  581. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  582. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  583. }
  584. static int rmode_tss_base(struct kvm* kvm)
  585. {
  586. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  587. return base_gfn << PAGE_SHIFT;
  588. }
  589. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  590. {
  591. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  592. save->selector = vmcs_read16(sf->selector);
  593. save->base = vmcs_readl(sf->base);
  594. save->limit = vmcs_read32(sf->limit);
  595. save->ar = vmcs_read32(sf->ar_bytes);
  596. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  597. vmcs_write32(sf->limit, 0xffff);
  598. vmcs_write32(sf->ar_bytes, 0xf3);
  599. }
  600. static void enter_rmode(struct kvm_vcpu *vcpu)
  601. {
  602. unsigned long flags;
  603. vcpu->rmode.active = 1;
  604. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  605. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  606. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  607. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  608. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  609. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  610. flags = vmcs_readl(GUEST_RFLAGS);
  611. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  612. flags |= IOPL_MASK | X86_EFLAGS_VM;
  613. vmcs_writel(GUEST_RFLAGS, flags);
  614. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  615. update_exception_bitmap(vcpu);
  616. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  617. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  618. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  619. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  620. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  621. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  622. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  623. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  624. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  625. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  626. }
  627. #ifdef CONFIG_X86_64
  628. static void enter_lmode(struct kvm_vcpu *vcpu)
  629. {
  630. u32 guest_tr_ar;
  631. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  632. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  633. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  634. __FUNCTION__);
  635. vmcs_write32(GUEST_TR_AR_BYTES,
  636. (guest_tr_ar & ~AR_TYPE_MASK)
  637. | AR_TYPE_BUSY_64_TSS);
  638. }
  639. vcpu->shadow_efer |= EFER_LMA;
  640. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  641. vmcs_write32(VM_ENTRY_CONTROLS,
  642. vmcs_read32(VM_ENTRY_CONTROLS)
  643. | VM_ENTRY_CONTROLS_IA32E_MASK);
  644. }
  645. static void exit_lmode(struct kvm_vcpu *vcpu)
  646. {
  647. vcpu->shadow_efer &= ~EFER_LMA;
  648. vmcs_write32(VM_ENTRY_CONTROLS,
  649. vmcs_read32(VM_ENTRY_CONTROLS)
  650. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  651. }
  652. #endif
  653. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  654. {
  655. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  656. enter_pmode(vcpu);
  657. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  658. enter_rmode(vcpu);
  659. #ifdef CONFIG_X86_64
  660. if (vcpu->shadow_efer & EFER_LME) {
  661. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  662. enter_lmode(vcpu);
  663. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  664. exit_lmode(vcpu);
  665. }
  666. #endif
  667. vmcs_writel(CR0_READ_SHADOW, cr0);
  668. vmcs_writel(GUEST_CR0,
  669. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  670. vcpu->cr0 = cr0;
  671. }
  672. /*
  673. * Used when restoring the VM to avoid corrupting segment registers
  674. */
  675. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  676. {
  677. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  678. update_exception_bitmap(vcpu);
  679. vmcs_writel(CR0_READ_SHADOW, cr0);
  680. vmcs_writel(GUEST_CR0,
  681. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  682. vcpu->cr0 = cr0;
  683. }
  684. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  685. {
  686. vmcs_writel(GUEST_CR3, cr3);
  687. }
  688. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  689. {
  690. vmcs_writel(CR4_READ_SHADOW, cr4);
  691. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  692. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  693. vcpu->cr4 = cr4;
  694. }
  695. #ifdef CONFIG_X86_64
  696. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  697. {
  698. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  699. vcpu->shadow_efer = efer;
  700. if (efer & EFER_LMA) {
  701. vmcs_write32(VM_ENTRY_CONTROLS,
  702. vmcs_read32(VM_ENTRY_CONTROLS) |
  703. VM_ENTRY_CONTROLS_IA32E_MASK);
  704. msr->data = efer;
  705. } else {
  706. vmcs_write32(VM_ENTRY_CONTROLS,
  707. vmcs_read32(VM_ENTRY_CONTROLS) &
  708. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  709. msr->data = efer & ~EFER_LME;
  710. }
  711. }
  712. #endif
  713. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  714. {
  715. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  716. return vmcs_readl(sf->base);
  717. }
  718. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  719. struct kvm_segment *var, int seg)
  720. {
  721. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  722. u32 ar;
  723. var->base = vmcs_readl(sf->base);
  724. var->limit = vmcs_read32(sf->limit);
  725. var->selector = vmcs_read16(sf->selector);
  726. ar = vmcs_read32(sf->ar_bytes);
  727. if (ar & AR_UNUSABLE_MASK)
  728. ar = 0;
  729. var->type = ar & 15;
  730. var->s = (ar >> 4) & 1;
  731. var->dpl = (ar >> 5) & 3;
  732. var->present = (ar >> 7) & 1;
  733. var->avl = (ar >> 12) & 1;
  734. var->l = (ar >> 13) & 1;
  735. var->db = (ar >> 14) & 1;
  736. var->g = (ar >> 15) & 1;
  737. var->unusable = (ar >> 16) & 1;
  738. }
  739. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  740. struct kvm_segment *var, int seg)
  741. {
  742. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  743. u32 ar;
  744. vmcs_writel(sf->base, var->base);
  745. vmcs_write32(sf->limit, var->limit);
  746. vmcs_write16(sf->selector, var->selector);
  747. if (var->unusable)
  748. ar = 1 << 16;
  749. else {
  750. ar = var->type & 15;
  751. ar |= (var->s & 1) << 4;
  752. ar |= (var->dpl & 3) << 5;
  753. ar |= (var->present & 1) << 7;
  754. ar |= (var->avl & 1) << 12;
  755. ar |= (var->l & 1) << 13;
  756. ar |= (var->db & 1) << 14;
  757. ar |= (var->g & 1) << 15;
  758. }
  759. if (ar == 0) /* a 0 value means unusable */
  760. ar = AR_UNUSABLE_MASK;
  761. vmcs_write32(sf->ar_bytes, ar);
  762. }
  763. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  764. {
  765. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  766. *db = (ar >> 14) & 1;
  767. *l = (ar >> 13) & 1;
  768. }
  769. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  770. {
  771. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  772. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  773. }
  774. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  775. {
  776. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  777. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  778. }
  779. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  780. {
  781. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  782. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  783. }
  784. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  785. {
  786. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  787. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  788. }
  789. static int init_rmode_tss(struct kvm* kvm)
  790. {
  791. struct page *p1, *p2, *p3;
  792. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  793. char *page;
  794. p1 = _gfn_to_page(kvm, fn++);
  795. p2 = _gfn_to_page(kvm, fn++);
  796. p3 = _gfn_to_page(kvm, fn);
  797. if (!p1 || !p2 || !p3) {
  798. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  799. return 0;
  800. }
  801. page = kmap_atomic(p1, KM_USER0);
  802. memset(page, 0, PAGE_SIZE);
  803. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  804. kunmap_atomic(page, KM_USER0);
  805. page = kmap_atomic(p2, KM_USER0);
  806. memset(page, 0, PAGE_SIZE);
  807. kunmap_atomic(page, KM_USER0);
  808. page = kmap_atomic(p3, KM_USER0);
  809. memset(page, 0, PAGE_SIZE);
  810. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  811. kunmap_atomic(page, KM_USER0);
  812. return 1;
  813. }
  814. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  815. {
  816. u32 msr_high, msr_low;
  817. rdmsr(msr, msr_low, msr_high);
  818. val &= msr_high;
  819. val |= msr_low;
  820. vmcs_write32(vmcs_field, val);
  821. }
  822. static void seg_setup(int seg)
  823. {
  824. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  825. vmcs_write16(sf->selector, 0);
  826. vmcs_writel(sf->base, 0);
  827. vmcs_write32(sf->limit, 0xffff);
  828. vmcs_write32(sf->ar_bytes, 0x93);
  829. }
  830. /*
  831. * Sets up the vmcs for emulated real mode.
  832. */
  833. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  834. {
  835. u32 host_sysenter_cs;
  836. u32 junk;
  837. unsigned long a;
  838. struct descriptor_table dt;
  839. int i;
  840. int ret = 0;
  841. int nr_good_msrs;
  842. extern asmlinkage void kvm_vmx_return(void);
  843. if (!init_rmode_tss(vcpu->kvm)) {
  844. ret = -ENOMEM;
  845. goto out;
  846. }
  847. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  848. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  849. vcpu->cr8 = 0;
  850. vcpu->apic_base = 0xfee00000 |
  851. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  852. MSR_IA32_APICBASE_ENABLE;
  853. fx_init(vcpu);
  854. /*
  855. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  856. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  857. */
  858. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  859. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  860. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  861. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  862. seg_setup(VCPU_SREG_DS);
  863. seg_setup(VCPU_SREG_ES);
  864. seg_setup(VCPU_SREG_FS);
  865. seg_setup(VCPU_SREG_GS);
  866. seg_setup(VCPU_SREG_SS);
  867. vmcs_write16(GUEST_TR_SELECTOR, 0);
  868. vmcs_writel(GUEST_TR_BASE, 0);
  869. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  870. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  871. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  872. vmcs_writel(GUEST_LDTR_BASE, 0);
  873. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  874. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  875. vmcs_write32(GUEST_SYSENTER_CS, 0);
  876. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  877. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  878. vmcs_writel(GUEST_RFLAGS, 0x02);
  879. vmcs_writel(GUEST_RIP, 0xfff0);
  880. vmcs_writel(GUEST_RSP, 0);
  881. vmcs_writel(GUEST_CR3, 0);
  882. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  883. vmcs_writel(GUEST_DR7, 0x400);
  884. vmcs_writel(GUEST_GDTR_BASE, 0);
  885. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  886. vmcs_writel(GUEST_IDTR_BASE, 0);
  887. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  888. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  889. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  890. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  891. /* I/O */
  892. vmcs_write64(IO_BITMAP_A, 0);
  893. vmcs_write64(IO_BITMAP_B, 0);
  894. guest_write_tsc(0);
  895. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  896. /* Special registers */
  897. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  898. /* Control */
  899. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
  900. PIN_BASED_VM_EXEC_CONTROL,
  901. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  902. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  903. );
  904. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
  905. CPU_BASED_VM_EXEC_CONTROL,
  906. CPU_BASED_HLT_EXITING /* 20.6.2 */
  907. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  908. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  909. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  910. | CPU_BASED_INVDPG_EXITING
  911. | CPU_BASED_MOV_DR_EXITING
  912. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  913. );
  914. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  915. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  916. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  917. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  918. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  919. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  920. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  921. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  922. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  923. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  924. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  925. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  926. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  927. #ifdef CONFIG_X86_64
  928. rdmsrl(MSR_FS_BASE, a);
  929. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  930. rdmsrl(MSR_GS_BASE, a);
  931. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  932. #else
  933. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  934. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  935. #endif
  936. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  937. get_idt(&dt);
  938. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  939. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  940. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  941. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  942. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  943. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  944. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  945. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  946. ret = -ENOMEM;
  947. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  948. if (!vcpu->guest_msrs)
  949. goto out;
  950. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  951. if (!vcpu->host_msrs)
  952. goto out_free_guest_msrs;
  953. for (i = 0; i < NR_VMX_MSR; ++i) {
  954. u32 index = vmx_msr_index[i];
  955. u32 data_low, data_high;
  956. u64 data;
  957. int j = vcpu->nmsrs;
  958. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  959. continue;
  960. data = data_low | ((u64)data_high << 32);
  961. vcpu->host_msrs[j].index = index;
  962. vcpu->host_msrs[j].reserved = 0;
  963. vcpu->host_msrs[j].data = data;
  964. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  965. ++vcpu->nmsrs;
  966. }
  967. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  968. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  969. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  970. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  971. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  972. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  973. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  974. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  975. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
  976. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  977. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  978. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  979. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  980. /* 22.2.1, 20.8.1 */
  981. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
  982. VM_ENTRY_CONTROLS, 0);
  983. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  984. #ifdef CONFIG_X86_64
  985. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  986. vmcs_writel(TPR_THRESHOLD, 0);
  987. #endif
  988. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  989. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  990. vcpu->cr0 = 0x60000010;
  991. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  992. vmx_set_cr4(vcpu, 0);
  993. #ifdef CONFIG_X86_64
  994. vmx_set_efer(vcpu, 0);
  995. #endif
  996. return 0;
  997. out_free_guest_msrs:
  998. kfree(vcpu->guest_msrs);
  999. out:
  1000. return ret;
  1001. }
  1002. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1003. {
  1004. u16 ent[2];
  1005. u16 cs;
  1006. u16 ip;
  1007. unsigned long flags;
  1008. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1009. u16 sp = vmcs_readl(GUEST_RSP);
  1010. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1011. if (sp > ss_limit || sp - 6 > sp) {
  1012. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1013. __FUNCTION__,
  1014. vmcs_readl(GUEST_RSP),
  1015. vmcs_readl(GUEST_SS_BASE),
  1016. vmcs_read32(GUEST_SS_LIMIT));
  1017. return;
  1018. }
  1019. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1020. sizeof(ent)) {
  1021. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1022. return;
  1023. }
  1024. flags = vmcs_readl(GUEST_RFLAGS);
  1025. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1026. ip = vmcs_readl(GUEST_RIP);
  1027. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1028. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1029. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1030. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1031. return;
  1032. }
  1033. vmcs_writel(GUEST_RFLAGS, flags &
  1034. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1035. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1036. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1037. vmcs_writel(GUEST_RIP, ent[0]);
  1038. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1039. }
  1040. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1041. {
  1042. int word_index = __ffs(vcpu->irq_summary);
  1043. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1044. int irq = word_index * BITS_PER_LONG + bit_index;
  1045. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1046. if (!vcpu->irq_pending[word_index])
  1047. clear_bit(word_index, &vcpu->irq_summary);
  1048. if (vcpu->rmode.active) {
  1049. inject_rmode_irq(vcpu, irq);
  1050. return;
  1051. }
  1052. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1053. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1054. }
  1055. static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
  1056. {
  1057. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
  1058. && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
  1059. /*
  1060. * Interrupts enabled, and not blocked by sti or mov ss. Good.
  1061. */
  1062. kvm_do_inject_irq(vcpu);
  1063. else
  1064. /*
  1065. * Interrupts blocked. Wait for unblock.
  1066. */
  1067. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1068. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1069. | CPU_BASED_VIRTUAL_INTR_PENDING);
  1070. }
  1071. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1072. {
  1073. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1074. set_debugreg(dbg->bp[0], 0);
  1075. set_debugreg(dbg->bp[1], 1);
  1076. set_debugreg(dbg->bp[2], 2);
  1077. set_debugreg(dbg->bp[3], 3);
  1078. if (dbg->singlestep) {
  1079. unsigned long flags;
  1080. flags = vmcs_readl(GUEST_RFLAGS);
  1081. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1082. vmcs_writel(GUEST_RFLAGS, flags);
  1083. }
  1084. }
  1085. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1086. int vec, u32 err_code)
  1087. {
  1088. if (!vcpu->rmode.active)
  1089. return 0;
  1090. if (vec == GP_VECTOR && err_code == 0)
  1091. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1092. return 1;
  1093. return 0;
  1094. }
  1095. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1096. {
  1097. u32 intr_info, error_code;
  1098. unsigned long cr2, rip;
  1099. u32 vect_info;
  1100. enum emulation_result er;
  1101. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1102. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1103. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1104. !is_page_fault(intr_info)) {
  1105. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1106. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1107. }
  1108. if (is_external_interrupt(vect_info)) {
  1109. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1110. set_bit(irq, vcpu->irq_pending);
  1111. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1112. }
  1113. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1114. asm ("int $2");
  1115. return 1;
  1116. }
  1117. error_code = 0;
  1118. rip = vmcs_readl(GUEST_RIP);
  1119. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1120. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1121. if (is_page_fault(intr_info)) {
  1122. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1123. spin_lock(&vcpu->kvm->lock);
  1124. if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
  1125. spin_unlock(&vcpu->kvm->lock);
  1126. return 1;
  1127. }
  1128. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1129. spin_unlock(&vcpu->kvm->lock);
  1130. switch (er) {
  1131. case EMULATE_DONE:
  1132. return 1;
  1133. case EMULATE_DO_MMIO:
  1134. ++kvm_stat.mmio_exits;
  1135. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1136. return 0;
  1137. case EMULATE_FAIL:
  1138. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1139. break;
  1140. default:
  1141. BUG();
  1142. }
  1143. }
  1144. if (vcpu->rmode.active &&
  1145. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1146. error_code))
  1147. return 1;
  1148. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1149. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1150. return 0;
  1151. }
  1152. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1153. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1154. kvm_run->ex.error_code = error_code;
  1155. return 0;
  1156. }
  1157. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1158. struct kvm_run *kvm_run)
  1159. {
  1160. ++kvm_stat.irq_exits;
  1161. return 1;
  1162. }
  1163. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1164. {
  1165. u64 inst;
  1166. gva_t rip;
  1167. int countr_size;
  1168. int i, n;
  1169. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1170. countr_size = 2;
  1171. } else {
  1172. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1173. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1174. (cs_ar & AR_DB_MASK) ? 4: 2;
  1175. }
  1176. rip = vmcs_readl(GUEST_RIP);
  1177. if (countr_size != 8)
  1178. rip += vmcs_readl(GUEST_CS_BASE);
  1179. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1180. for (i = 0; i < n; i++) {
  1181. switch (((u8*)&inst)[i]) {
  1182. case 0xf0:
  1183. case 0xf2:
  1184. case 0xf3:
  1185. case 0x2e:
  1186. case 0x36:
  1187. case 0x3e:
  1188. case 0x26:
  1189. case 0x64:
  1190. case 0x65:
  1191. case 0x66:
  1192. break;
  1193. case 0x67:
  1194. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1195. default:
  1196. goto done;
  1197. }
  1198. }
  1199. return 0;
  1200. done:
  1201. countr_size *= 8;
  1202. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1203. return 1;
  1204. }
  1205. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1206. {
  1207. u64 exit_qualification;
  1208. ++kvm_stat.io_exits;
  1209. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1210. kvm_run->exit_reason = KVM_EXIT_IO;
  1211. if (exit_qualification & 8)
  1212. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1213. else
  1214. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1215. kvm_run->io.size = (exit_qualification & 7) + 1;
  1216. kvm_run->io.string = (exit_qualification & 16) != 0;
  1217. kvm_run->io.string_down
  1218. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1219. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1220. kvm_run->io.port = exit_qualification >> 16;
  1221. if (kvm_run->io.string) {
  1222. if (!get_io_count(vcpu, &kvm_run->io.count))
  1223. return 1;
  1224. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1225. } else
  1226. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1227. return 0;
  1228. }
  1229. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1230. {
  1231. u64 address = vmcs_read64(EXIT_QUALIFICATION);
  1232. int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1233. spin_lock(&vcpu->kvm->lock);
  1234. vcpu->mmu.inval_page(vcpu, address);
  1235. spin_unlock(&vcpu->kvm->lock);
  1236. vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
  1237. return 1;
  1238. }
  1239. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1240. {
  1241. u64 exit_qualification;
  1242. int cr;
  1243. int reg;
  1244. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1245. cr = exit_qualification & 15;
  1246. reg = (exit_qualification >> 8) & 15;
  1247. switch ((exit_qualification >> 4) & 3) {
  1248. case 0: /* mov to cr */
  1249. switch (cr) {
  1250. case 0:
  1251. vcpu_load_rsp_rip(vcpu);
  1252. set_cr0(vcpu, vcpu->regs[reg]);
  1253. skip_emulated_instruction(vcpu);
  1254. return 1;
  1255. case 3:
  1256. vcpu_load_rsp_rip(vcpu);
  1257. set_cr3(vcpu, vcpu->regs[reg]);
  1258. skip_emulated_instruction(vcpu);
  1259. return 1;
  1260. case 4:
  1261. vcpu_load_rsp_rip(vcpu);
  1262. set_cr4(vcpu, vcpu->regs[reg]);
  1263. skip_emulated_instruction(vcpu);
  1264. return 1;
  1265. case 8:
  1266. vcpu_load_rsp_rip(vcpu);
  1267. set_cr8(vcpu, vcpu->regs[reg]);
  1268. skip_emulated_instruction(vcpu);
  1269. return 1;
  1270. };
  1271. break;
  1272. case 1: /*mov from cr*/
  1273. switch (cr) {
  1274. case 3:
  1275. vcpu_load_rsp_rip(vcpu);
  1276. vcpu->regs[reg] = vcpu->cr3;
  1277. vcpu_put_rsp_rip(vcpu);
  1278. skip_emulated_instruction(vcpu);
  1279. return 1;
  1280. case 8:
  1281. printk(KERN_DEBUG "handle_cr: read CR8 "
  1282. "cpu erratum AA15\n");
  1283. vcpu_load_rsp_rip(vcpu);
  1284. vcpu->regs[reg] = vcpu->cr8;
  1285. vcpu_put_rsp_rip(vcpu);
  1286. skip_emulated_instruction(vcpu);
  1287. return 1;
  1288. }
  1289. break;
  1290. case 3: /* lmsw */
  1291. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1292. skip_emulated_instruction(vcpu);
  1293. return 1;
  1294. default:
  1295. break;
  1296. }
  1297. kvm_run->exit_reason = 0;
  1298. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1299. (int)(exit_qualification >> 4) & 3, cr);
  1300. return 0;
  1301. }
  1302. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1303. {
  1304. u64 exit_qualification;
  1305. unsigned long val;
  1306. int dr, reg;
  1307. /*
  1308. * FIXME: this code assumes the host is debugging the guest.
  1309. * need to deal with guest debugging itself too.
  1310. */
  1311. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1312. dr = exit_qualification & 7;
  1313. reg = (exit_qualification >> 8) & 15;
  1314. vcpu_load_rsp_rip(vcpu);
  1315. if (exit_qualification & 16) {
  1316. /* mov from dr */
  1317. switch (dr) {
  1318. case 6:
  1319. val = 0xffff0ff0;
  1320. break;
  1321. case 7:
  1322. val = 0x400;
  1323. break;
  1324. default:
  1325. val = 0;
  1326. }
  1327. vcpu->regs[reg] = val;
  1328. } else {
  1329. /* mov to dr */
  1330. }
  1331. vcpu_put_rsp_rip(vcpu);
  1332. skip_emulated_instruction(vcpu);
  1333. return 1;
  1334. }
  1335. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1336. {
  1337. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1338. return 0;
  1339. }
  1340. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1341. {
  1342. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1343. u64 data;
  1344. if (vmx_get_msr(vcpu, ecx, &data)) {
  1345. vmx_inject_gp(vcpu, 0);
  1346. return 1;
  1347. }
  1348. /* FIXME: handling of bits 32:63 of rax, rdx */
  1349. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1350. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1351. skip_emulated_instruction(vcpu);
  1352. return 1;
  1353. }
  1354. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1355. {
  1356. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1357. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1358. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1359. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1360. vmx_inject_gp(vcpu, 0);
  1361. return 1;
  1362. }
  1363. skip_emulated_instruction(vcpu);
  1364. return 1;
  1365. }
  1366. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1367. struct kvm_run *kvm_run)
  1368. {
  1369. /* Turn off interrupt window reporting. */
  1370. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1371. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1372. & ~CPU_BASED_VIRTUAL_INTR_PENDING);
  1373. return 1;
  1374. }
  1375. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1376. {
  1377. skip_emulated_instruction(vcpu);
  1378. if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
  1379. return 1;
  1380. kvm_run->exit_reason = KVM_EXIT_HLT;
  1381. return 0;
  1382. }
  1383. /*
  1384. * The exit handlers return 1 if the exit was handled fully and guest execution
  1385. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1386. * to be done to userspace and return 0.
  1387. */
  1388. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1389. struct kvm_run *kvm_run) = {
  1390. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1391. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1392. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1393. [EXIT_REASON_INVLPG] = handle_invlpg,
  1394. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1395. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1396. [EXIT_REASON_CPUID] = handle_cpuid,
  1397. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1398. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1399. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1400. [EXIT_REASON_HLT] = handle_halt,
  1401. };
  1402. static const int kvm_vmx_max_exit_handlers =
  1403. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1404. /*
  1405. * The guest has exited. See if we can fix it or if we need userspace
  1406. * assistance.
  1407. */
  1408. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1409. {
  1410. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1411. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1412. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1413. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1414. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1415. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1416. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1417. if (exit_reason < kvm_vmx_max_exit_handlers
  1418. && kvm_vmx_exit_handlers[exit_reason])
  1419. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1420. else {
  1421. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1422. kvm_run->hw.hardware_exit_reason = exit_reason;
  1423. }
  1424. return 0;
  1425. }
  1426. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1427. {
  1428. u8 fail;
  1429. u16 fs_sel, gs_sel, ldt_sel;
  1430. int fs_gs_ldt_reload_needed;
  1431. again:
  1432. /*
  1433. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1434. * allow segment selectors with cpl > 0 or ti == 1.
  1435. */
  1436. fs_sel = read_fs();
  1437. gs_sel = read_gs();
  1438. ldt_sel = read_ldt();
  1439. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1440. if (!fs_gs_ldt_reload_needed) {
  1441. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1442. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1443. } else {
  1444. vmcs_write16(HOST_FS_SELECTOR, 0);
  1445. vmcs_write16(HOST_GS_SELECTOR, 0);
  1446. }
  1447. #ifdef CONFIG_X86_64
  1448. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1449. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1450. #else
  1451. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1452. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1453. #endif
  1454. if (vcpu->irq_summary &&
  1455. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1456. kvm_try_inject_irq(vcpu);
  1457. if (vcpu->guest_debug.enabled)
  1458. kvm_guest_debug_pre(vcpu);
  1459. fx_save(vcpu->host_fx_image);
  1460. fx_restore(vcpu->guest_fx_image);
  1461. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1462. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1463. asm (
  1464. /* Store host registers */
  1465. "pushf \n\t"
  1466. #ifdef CONFIG_X86_64
  1467. "push %%rax; push %%rbx; push %%rdx;"
  1468. "push %%rsi; push %%rdi; push %%rbp;"
  1469. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1470. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1471. "push %%rcx \n\t"
  1472. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1473. #else
  1474. "pusha; push %%ecx \n\t"
  1475. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1476. #endif
  1477. /* Check if vmlaunch of vmresume is needed */
  1478. "cmp $0, %1 \n\t"
  1479. /* Load guest registers. Don't clobber flags. */
  1480. #ifdef CONFIG_X86_64
  1481. "mov %c[cr2](%3), %%rax \n\t"
  1482. "mov %%rax, %%cr2 \n\t"
  1483. "mov %c[rax](%3), %%rax \n\t"
  1484. "mov %c[rbx](%3), %%rbx \n\t"
  1485. "mov %c[rdx](%3), %%rdx \n\t"
  1486. "mov %c[rsi](%3), %%rsi \n\t"
  1487. "mov %c[rdi](%3), %%rdi \n\t"
  1488. "mov %c[rbp](%3), %%rbp \n\t"
  1489. "mov %c[r8](%3), %%r8 \n\t"
  1490. "mov %c[r9](%3), %%r9 \n\t"
  1491. "mov %c[r10](%3), %%r10 \n\t"
  1492. "mov %c[r11](%3), %%r11 \n\t"
  1493. "mov %c[r12](%3), %%r12 \n\t"
  1494. "mov %c[r13](%3), %%r13 \n\t"
  1495. "mov %c[r14](%3), %%r14 \n\t"
  1496. "mov %c[r15](%3), %%r15 \n\t"
  1497. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1498. #else
  1499. "mov %c[cr2](%3), %%eax \n\t"
  1500. "mov %%eax, %%cr2 \n\t"
  1501. "mov %c[rax](%3), %%eax \n\t"
  1502. "mov %c[rbx](%3), %%ebx \n\t"
  1503. "mov %c[rdx](%3), %%edx \n\t"
  1504. "mov %c[rsi](%3), %%esi \n\t"
  1505. "mov %c[rdi](%3), %%edi \n\t"
  1506. "mov %c[rbp](%3), %%ebp \n\t"
  1507. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1508. #endif
  1509. /* Enter guest mode */
  1510. "jne launched \n\t"
  1511. ASM_VMX_VMLAUNCH "\n\t"
  1512. "jmp kvm_vmx_return \n\t"
  1513. "launched: " ASM_VMX_VMRESUME "\n\t"
  1514. ".globl kvm_vmx_return \n\t"
  1515. "kvm_vmx_return: "
  1516. /* Save guest registers, load host registers, keep flags */
  1517. #ifdef CONFIG_X86_64
  1518. "xchg %3, 0(%%rsp) \n\t"
  1519. "mov %%rax, %c[rax](%3) \n\t"
  1520. "mov %%rbx, %c[rbx](%3) \n\t"
  1521. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1522. "mov %%rdx, %c[rdx](%3) \n\t"
  1523. "mov %%rsi, %c[rsi](%3) \n\t"
  1524. "mov %%rdi, %c[rdi](%3) \n\t"
  1525. "mov %%rbp, %c[rbp](%3) \n\t"
  1526. "mov %%r8, %c[r8](%3) \n\t"
  1527. "mov %%r9, %c[r9](%3) \n\t"
  1528. "mov %%r10, %c[r10](%3) \n\t"
  1529. "mov %%r11, %c[r11](%3) \n\t"
  1530. "mov %%r12, %c[r12](%3) \n\t"
  1531. "mov %%r13, %c[r13](%3) \n\t"
  1532. "mov %%r14, %c[r14](%3) \n\t"
  1533. "mov %%r15, %c[r15](%3) \n\t"
  1534. "mov %%cr2, %%rax \n\t"
  1535. "mov %%rax, %c[cr2](%3) \n\t"
  1536. "mov 0(%%rsp), %3 \n\t"
  1537. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1538. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1539. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1540. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1541. #else
  1542. "xchg %3, 0(%%esp) \n\t"
  1543. "mov %%eax, %c[rax](%3) \n\t"
  1544. "mov %%ebx, %c[rbx](%3) \n\t"
  1545. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1546. "mov %%edx, %c[rdx](%3) \n\t"
  1547. "mov %%esi, %c[rsi](%3) \n\t"
  1548. "mov %%edi, %c[rdi](%3) \n\t"
  1549. "mov %%ebp, %c[rbp](%3) \n\t"
  1550. "mov %%cr2, %%eax \n\t"
  1551. "mov %%eax, %c[cr2](%3) \n\t"
  1552. "mov 0(%%esp), %3 \n\t"
  1553. "pop %%ecx; popa \n\t"
  1554. #endif
  1555. "setbe %0 \n\t"
  1556. "popf \n\t"
  1557. : "=g" (fail)
  1558. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1559. "c"(vcpu),
  1560. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1561. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1562. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1563. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1564. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1565. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1566. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1567. #ifdef CONFIG_X86_64
  1568. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1569. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1570. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1571. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1572. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1573. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1574. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1575. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1576. #endif
  1577. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1578. : "cc", "memory" );
  1579. ++kvm_stat.exits;
  1580. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1581. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1582. fx_save(vcpu->guest_fx_image);
  1583. fx_restore(vcpu->host_fx_image);
  1584. #ifndef CONFIG_X86_64
  1585. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1586. #endif
  1587. kvm_run->exit_type = 0;
  1588. if (fail) {
  1589. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1590. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1591. } else {
  1592. if (fs_gs_ldt_reload_needed) {
  1593. load_ldt(ldt_sel);
  1594. load_fs(fs_sel);
  1595. /*
  1596. * If we have to reload gs, we must take care to
  1597. * preserve our gs base.
  1598. */
  1599. local_irq_disable();
  1600. load_gs(gs_sel);
  1601. #ifdef CONFIG_X86_64
  1602. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1603. #endif
  1604. local_irq_enable();
  1605. reload_tss();
  1606. }
  1607. vcpu->launched = 1;
  1608. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1609. if (kvm_handle_exit(kvm_run, vcpu)) {
  1610. /* Give scheduler a change to reschedule. */
  1611. if (signal_pending(current)) {
  1612. ++kvm_stat.signal_exits;
  1613. return -EINTR;
  1614. }
  1615. kvm_resched(vcpu);
  1616. goto again;
  1617. }
  1618. }
  1619. return 0;
  1620. }
  1621. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1622. {
  1623. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1624. }
  1625. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1626. unsigned long addr,
  1627. u32 err_code)
  1628. {
  1629. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1630. ++kvm_stat.pf_guest;
  1631. if (is_page_fault(vect_info)) {
  1632. printk(KERN_DEBUG "inject_page_fault: "
  1633. "double fault 0x%lx @ 0x%lx\n",
  1634. addr, vmcs_readl(GUEST_RIP));
  1635. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1636. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1637. DF_VECTOR |
  1638. INTR_TYPE_EXCEPTION |
  1639. INTR_INFO_DELIEVER_CODE_MASK |
  1640. INTR_INFO_VALID_MASK);
  1641. return;
  1642. }
  1643. vcpu->cr2 = addr;
  1644. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1645. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1646. PF_VECTOR |
  1647. INTR_TYPE_EXCEPTION |
  1648. INTR_INFO_DELIEVER_CODE_MASK |
  1649. INTR_INFO_VALID_MASK);
  1650. }
  1651. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1652. {
  1653. if (vcpu->vmcs) {
  1654. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1655. free_vmcs(vcpu->vmcs);
  1656. vcpu->vmcs = NULL;
  1657. }
  1658. }
  1659. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1660. {
  1661. vmx_free_vmcs(vcpu);
  1662. }
  1663. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1664. {
  1665. struct vmcs *vmcs;
  1666. vmcs = alloc_vmcs();
  1667. if (!vmcs)
  1668. return -ENOMEM;
  1669. vmcs_clear(vmcs);
  1670. vcpu->vmcs = vmcs;
  1671. vcpu->launched = 0;
  1672. return 0;
  1673. }
  1674. static struct kvm_arch_ops vmx_arch_ops = {
  1675. .cpu_has_kvm_support = cpu_has_kvm_support,
  1676. .disabled_by_bios = vmx_disabled_by_bios,
  1677. .hardware_setup = hardware_setup,
  1678. .hardware_unsetup = hardware_unsetup,
  1679. .hardware_enable = hardware_enable,
  1680. .hardware_disable = hardware_disable,
  1681. .vcpu_create = vmx_create_vcpu,
  1682. .vcpu_free = vmx_free_vcpu,
  1683. .vcpu_load = vmx_vcpu_load,
  1684. .vcpu_put = vmx_vcpu_put,
  1685. .set_guest_debug = set_guest_debug,
  1686. .get_msr = vmx_get_msr,
  1687. .set_msr = vmx_set_msr,
  1688. .get_segment_base = vmx_get_segment_base,
  1689. .get_segment = vmx_get_segment,
  1690. .set_segment = vmx_set_segment,
  1691. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1692. .set_cr0 = vmx_set_cr0,
  1693. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1694. .set_cr3 = vmx_set_cr3,
  1695. .set_cr4 = vmx_set_cr4,
  1696. #ifdef CONFIG_X86_64
  1697. .set_efer = vmx_set_efer,
  1698. #endif
  1699. .get_idt = vmx_get_idt,
  1700. .set_idt = vmx_set_idt,
  1701. .get_gdt = vmx_get_gdt,
  1702. .set_gdt = vmx_set_gdt,
  1703. .cache_regs = vcpu_load_rsp_rip,
  1704. .decache_regs = vcpu_put_rsp_rip,
  1705. .get_rflags = vmx_get_rflags,
  1706. .set_rflags = vmx_set_rflags,
  1707. .tlb_flush = vmx_flush_tlb,
  1708. .inject_page_fault = vmx_inject_page_fault,
  1709. .inject_gp = vmx_inject_gp,
  1710. .run = vmx_vcpu_run,
  1711. .skip_emulated_instruction = skip_emulated_instruction,
  1712. .vcpu_setup = vmx_vcpu_setup,
  1713. };
  1714. static int __init vmx_init(void)
  1715. {
  1716. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1717. }
  1718. static void __exit vmx_exit(void)
  1719. {
  1720. kvm_exit_arch();
  1721. }
  1722. module_init(vmx_init)
  1723. module_exit(vmx_exit)