mmu.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "x86.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. char *audit_point_name[] = {
  58. "pre page fault",
  59. "post page fault",
  60. "pre pte write",
  61. "post pte write",
  62. "pre sync",
  63. "post sync"
  64. };
  65. #undef MMU_DEBUG
  66. #ifdef MMU_DEBUG
  67. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  68. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  69. #else
  70. #define pgprintk(x...) do { } while (0)
  71. #define rmap_printk(x...) do { } while (0)
  72. #endif
  73. #ifdef MMU_DEBUG
  74. static int dbg = 0;
  75. module_param(dbg, bool, 0644);
  76. #endif
  77. static int oos_shadow = 1;
  78. module_param(oos_shadow, bool, 0644);
  79. #ifndef MMU_DEBUG
  80. #define ASSERT(x) do { } while (0)
  81. #else
  82. #define ASSERT(x) \
  83. if (!(x)) { \
  84. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  85. __FILE__, __LINE__, #x); \
  86. }
  87. #endif
  88. #define PTE_PREFETCH_NUM 8
  89. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  90. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  91. #define PT64_LEVEL_BITS 9
  92. #define PT64_LEVEL_SHIFT(level) \
  93. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94. #define PT64_INDEX(address, level)\
  95. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  96. #define PT32_LEVEL_BITS 10
  97. #define PT32_LEVEL_SHIFT(level) \
  98. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  99. #define PT32_LVL_OFFSET_MASK(level) \
  100. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT32_LEVEL_BITS))) - 1))
  102. #define PT32_INDEX(address, level)\
  103. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  104. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  105. #define PT64_DIR_BASE_ADDR_MASK \
  106. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  107. #define PT64_LVL_ADDR_MASK(level) \
  108. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT64_LEVEL_BITS))) - 1))
  110. #define PT64_LVL_OFFSET_MASK(level) \
  111. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  112. * PT64_LEVEL_BITS))) - 1))
  113. #define PT32_BASE_ADDR_MASK PAGE_MASK
  114. #define PT32_DIR_BASE_ADDR_MASK \
  115. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  116. #define PT32_LVL_ADDR_MASK(level) \
  117. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  118. * PT32_LEVEL_BITS))) - 1))
  119. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  120. | PT64_NX_MASK)
  121. #define PTE_LIST_EXT 4
  122. #define ACC_EXEC_MASK 1
  123. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  124. #define ACC_USER_MASK PT_USER_MASK
  125. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  126. #include <trace/events/kvm.h>
  127. #define CREATE_TRACE_POINTS
  128. #include "mmutrace.h"
  129. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  130. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  131. struct pte_list_desc {
  132. u64 *sptes[PTE_LIST_EXT];
  133. struct pte_list_desc *more;
  134. };
  135. struct kvm_shadow_walk_iterator {
  136. u64 addr;
  137. hpa_t shadow_addr;
  138. int level;
  139. u64 *sptep;
  140. unsigned index;
  141. };
  142. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  143. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  144. shadow_walk_okay(&(_walker)); \
  145. shadow_walk_next(&(_walker)))
  146. static struct kmem_cache *pte_list_desc_cache;
  147. static struct kmem_cache *mmu_page_header_cache;
  148. static struct percpu_counter kvm_total_used_mmu_pages;
  149. static u64 __read_mostly shadow_trap_nonpresent_pte;
  150. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  151. static u64 __read_mostly shadow_nx_mask;
  152. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  153. static u64 __read_mostly shadow_user_mask;
  154. static u64 __read_mostly shadow_accessed_mask;
  155. static u64 __read_mostly shadow_dirty_mask;
  156. static inline u64 rsvd_bits(int s, int e)
  157. {
  158. return ((1ULL << (e - s + 1)) - 1) << s;
  159. }
  160. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  161. {
  162. shadow_trap_nonpresent_pte = trap_pte;
  163. shadow_notrap_nonpresent_pte = notrap_pte;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  166. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  167. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  168. {
  169. shadow_user_mask = user_mask;
  170. shadow_accessed_mask = accessed_mask;
  171. shadow_dirty_mask = dirty_mask;
  172. shadow_nx_mask = nx_mask;
  173. shadow_x_mask = x_mask;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  176. static bool is_write_protection(struct kvm_vcpu *vcpu)
  177. {
  178. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  179. }
  180. static int is_cpuid_PSE36(void)
  181. {
  182. return 1;
  183. }
  184. static int is_nx(struct kvm_vcpu *vcpu)
  185. {
  186. return vcpu->arch.efer & EFER_NX;
  187. }
  188. static int is_shadow_present_pte(u64 pte)
  189. {
  190. return pte != shadow_trap_nonpresent_pte
  191. && pte != shadow_notrap_nonpresent_pte;
  192. }
  193. static int is_large_pte(u64 pte)
  194. {
  195. return pte & PT_PAGE_SIZE_MASK;
  196. }
  197. static int is_writable_pte(unsigned long pte)
  198. {
  199. return pte & PT_WRITABLE_MASK;
  200. }
  201. static int is_dirty_gpte(unsigned long pte)
  202. {
  203. return pte & PT_DIRTY_MASK;
  204. }
  205. static int is_rmap_spte(u64 pte)
  206. {
  207. return is_shadow_present_pte(pte);
  208. }
  209. static int is_last_spte(u64 pte, int level)
  210. {
  211. if (level == PT_PAGE_TABLE_LEVEL)
  212. return 1;
  213. if (is_large_pte(pte))
  214. return 1;
  215. return 0;
  216. }
  217. static pfn_t spte_to_pfn(u64 pte)
  218. {
  219. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  220. }
  221. static gfn_t pse36_gfn_delta(u32 gpte)
  222. {
  223. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  224. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  225. }
  226. static void __set_spte(u64 *sptep, u64 spte)
  227. {
  228. set_64bit(sptep, spte);
  229. }
  230. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  231. {
  232. #ifdef CONFIG_X86_64
  233. return xchg(sptep, new_spte);
  234. #else
  235. u64 old_spte;
  236. do {
  237. old_spte = *sptep;
  238. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  239. return old_spte;
  240. #endif
  241. }
  242. static bool spte_has_volatile_bits(u64 spte)
  243. {
  244. if (!shadow_accessed_mask)
  245. return false;
  246. if (!is_shadow_present_pte(spte))
  247. return false;
  248. if ((spte & shadow_accessed_mask) &&
  249. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  250. return false;
  251. return true;
  252. }
  253. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  254. {
  255. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  256. }
  257. static void update_spte(u64 *sptep, u64 new_spte)
  258. {
  259. u64 mask, old_spte = *sptep;
  260. WARN_ON(!is_rmap_spte(new_spte));
  261. new_spte |= old_spte & shadow_dirty_mask;
  262. mask = shadow_accessed_mask;
  263. if (is_writable_pte(old_spte))
  264. mask |= shadow_dirty_mask;
  265. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  266. __set_spte(sptep, new_spte);
  267. else
  268. old_spte = __xchg_spte(sptep, new_spte);
  269. if (!shadow_accessed_mask)
  270. return;
  271. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  272. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  273. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  274. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  275. }
  276. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  277. struct kmem_cache *base_cache, int min)
  278. {
  279. void *obj;
  280. if (cache->nobjs >= min)
  281. return 0;
  282. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  283. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  284. if (!obj)
  285. return -ENOMEM;
  286. cache->objects[cache->nobjs++] = obj;
  287. }
  288. return 0;
  289. }
  290. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  291. struct kmem_cache *cache)
  292. {
  293. while (mc->nobjs)
  294. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  295. }
  296. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  297. int min)
  298. {
  299. void *page;
  300. if (cache->nobjs >= min)
  301. return 0;
  302. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  303. page = (void *)__get_free_page(GFP_KERNEL);
  304. if (!page)
  305. return -ENOMEM;
  306. cache->objects[cache->nobjs++] = page;
  307. }
  308. return 0;
  309. }
  310. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  311. {
  312. while (mc->nobjs)
  313. free_page((unsigned long)mc->objects[--mc->nobjs]);
  314. }
  315. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  316. {
  317. int r;
  318. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  319. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  320. if (r)
  321. goto out;
  322. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  323. if (r)
  324. goto out;
  325. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  326. mmu_page_header_cache, 4);
  327. out:
  328. return r;
  329. }
  330. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  331. {
  332. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  333. pte_list_desc_cache);
  334. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  335. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  336. mmu_page_header_cache);
  337. }
  338. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  339. size_t size)
  340. {
  341. void *p;
  342. BUG_ON(!mc->nobjs);
  343. p = mc->objects[--mc->nobjs];
  344. return p;
  345. }
  346. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  347. {
  348. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
  349. sizeof(struct pte_list_desc));
  350. }
  351. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  352. {
  353. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  354. }
  355. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  356. {
  357. if (!sp->role.direct)
  358. return sp->gfns[index];
  359. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  360. }
  361. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  362. {
  363. if (sp->role.direct)
  364. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  365. else
  366. sp->gfns[index] = gfn;
  367. }
  368. /*
  369. * Return the pointer to the large page information for a given gfn,
  370. * handling slots that are not large page aligned.
  371. */
  372. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  373. struct kvm_memory_slot *slot,
  374. int level)
  375. {
  376. unsigned long idx;
  377. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  378. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  379. return &slot->lpage_info[level - 2][idx];
  380. }
  381. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  382. {
  383. struct kvm_memory_slot *slot;
  384. struct kvm_lpage_info *linfo;
  385. int i;
  386. slot = gfn_to_memslot(kvm, gfn);
  387. for (i = PT_DIRECTORY_LEVEL;
  388. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  389. linfo = lpage_info_slot(gfn, slot, i);
  390. linfo->write_count += 1;
  391. }
  392. kvm->arch.indirect_shadow_pages++;
  393. }
  394. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  395. {
  396. struct kvm_memory_slot *slot;
  397. struct kvm_lpage_info *linfo;
  398. int i;
  399. slot = gfn_to_memslot(kvm, gfn);
  400. for (i = PT_DIRECTORY_LEVEL;
  401. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  402. linfo = lpage_info_slot(gfn, slot, i);
  403. linfo->write_count -= 1;
  404. WARN_ON(linfo->write_count < 0);
  405. }
  406. kvm->arch.indirect_shadow_pages--;
  407. }
  408. static int has_wrprotected_page(struct kvm *kvm,
  409. gfn_t gfn,
  410. int level)
  411. {
  412. struct kvm_memory_slot *slot;
  413. struct kvm_lpage_info *linfo;
  414. slot = gfn_to_memslot(kvm, gfn);
  415. if (slot) {
  416. linfo = lpage_info_slot(gfn, slot, level);
  417. return linfo->write_count;
  418. }
  419. return 1;
  420. }
  421. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  422. {
  423. unsigned long page_size;
  424. int i, ret = 0;
  425. page_size = kvm_host_page_size(kvm, gfn);
  426. for (i = PT_PAGE_TABLE_LEVEL;
  427. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  428. if (page_size >= KVM_HPAGE_SIZE(i))
  429. ret = i;
  430. else
  431. break;
  432. }
  433. return ret;
  434. }
  435. static struct kvm_memory_slot *
  436. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  437. bool no_dirty_log)
  438. {
  439. struct kvm_memory_slot *slot;
  440. slot = gfn_to_memslot(vcpu->kvm, gfn);
  441. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  442. (no_dirty_log && slot->dirty_bitmap))
  443. slot = NULL;
  444. return slot;
  445. }
  446. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  447. {
  448. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  449. }
  450. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  451. {
  452. int host_level, level, max_level;
  453. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  454. if (host_level == PT_PAGE_TABLE_LEVEL)
  455. return host_level;
  456. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  457. kvm_x86_ops->get_lpage_level() : host_level;
  458. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  459. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  460. break;
  461. return level - 1;
  462. }
  463. /*
  464. * Pte mapping structures:
  465. *
  466. * If pte_list bit zero is zero, then pte_list point to the spte.
  467. *
  468. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  469. * pte_list_desc containing more mappings.
  470. *
  471. * Returns the number of pte entries before the spte was added or zero if
  472. * the spte was not added.
  473. *
  474. */
  475. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  476. unsigned long *pte_list)
  477. {
  478. struct pte_list_desc *desc;
  479. int i, count = 0;
  480. if (!*pte_list) {
  481. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  482. *pte_list = (unsigned long)spte;
  483. } else if (!(*pte_list & 1)) {
  484. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  485. desc = mmu_alloc_pte_list_desc(vcpu);
  486. desc->sptes[0] = (u64 *)*pte_list;
  487. desc->sptes[1] = spte;
  488. *pte_list = (unsigned long)desc | 1;
  489. ++count;
  490. } else {
  491. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  492. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  493. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  494. desc = desc->more;
  495. count += PTE_LIST_EXT;
  496. }
  497. if (desc->sptes[PTE_LIST_EXT-1]) {
  498. desc->more = mmu_alloc_pte_list_desc(vcpu);
  499. desc = desc->more;
  500. }
  501. for (i = 0; desc->sptes[i]; ++i)
  502. ++count;
  503. desc->sptes[i] = spte;
  504. }
  505. return count;
  506. }
  507. static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
  508. {
  509. struct pte_list_desc *desc;
  510. u64 *prev_spte;
  511. int i;
  512. if (!*pte_list)
  513. return NULL;
  514. else if (!(*pte_list & 1)) {
  515. if (!spte)
  516. return (u64 *)*pte_list;
  517. return NULL;
  518. }
  519. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  520. prev_spte = NULL;
  521. while (desc) {
  522. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
  523. if (prev_spte == spte)
  524. return desc->sptes[i];
  525. prev_spte = desc->sptes[i];
  526. }
  527. desc = desc->more;
  528. }
  529. return NULL;
  530. }
  531. static void
  532. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  533. int i, struct pte_list_desc *prev_desc)
  534. {
  535. int j;
  536. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  537. ;
  538. desc->sptes[i] = desc->sptes[j];
  539. desc->sptes[j] = NULL;
  540. if (j != 0)
  541. return;
  542. if (!prev_desc && !desc->more)
  543. *pte_list = (unsigned long)desc->sptes[0];
  544. else
  545. if (prev_desc)
  546. prev_desc->more = desc->more;
  547. else
  548. *pte_list = (unsigned long)desc->more | 1;
  549. mmu_free_pte_list_desc(desc);
  550. }
  551. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  552. {
  553. struct pte_list_desc *desc;
  554. struct pte_list_desc *prev_desc;
  555. int i;
  556. if (!*pte_list) {
  557. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  558. BUG();
  559. } else if (!(*pte_list & 1)) {
  560. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  561. if ((u64 *)*pte_list != spte) {
  562. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  563. BUG();
  564. }
  565. *pte_list = 0;
  566. } else {
  567. rmap_printk("pte_list_remove: %p many->many\n", spte);
  568. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  569. prev_desc = NULL;
  570. while (desc) {
  571. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  572. if (desc->sptes[i] == spte) {
  573. pte_list_desc_remove_entry(pte_list,
  574. desc, i,
  575. prev_desc);
  576. return;
  577. }
  578. prev_desc = desc;
  579. desc = desc->more;
  580. }
  581. pr_err("pte_list_remove: %p many->many\n", spte);
  582. BUG();
  583. }
  584. }
  585. typedef void (*pte_list_walk_fn) (u64 *spte);
  586. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  587. {
  588. struct pte_list_desc *desc;
  589. int i;
  590. if (!*pte_list)
  591. return;
  592. if (!(*pte_list & 1))
  593. return fn((u64 *)*pte_list);
  594. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  595. while (desc) {
  596. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  597. fn(desc->sptes[i]);
  598. desc = desc->more;
  599. }
  600. }
  601. /*
  602. * Take gfn and return the reverse mapping to it.
  603. */
  604. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  605. {
  606. struct kvm_memory_slot *slot;
  607. struct kvm_lpage_info *linfo;
  608. slot = gfn_to_memslot(kvm, gfn);
  609. if (likely(level == PT_PAGE_TABLE_LEVEL))
  610. return &slot->rmap[gfn - slot->base_gfn];
  611. linfo = lpage_info_slot(gfn, slot, level);
  612. return &linfo->rmap_pde;
  613. }
  614. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  615. {
  616. struct kvm_mmu_page *sp;
  617. unsigned long *rmapp;
  618. if (!is_rmap_spte(*spte))
  619. return 0;
  620. sp = page_header(__pa(spte));
  621. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  622. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  623. return pte_list_add(vcpu, spte, rmapp);
  624. }
  625. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  626. {
  627. return pte_list_next(rmapp, spte);
  628. }
  629. static void rmap_remove(struct kvm *kvm, u64 *spte)
  630. {
  631. struct kvm_mmu_page *sp;
  632. gfn_t gfn;
  633. unsigned long *rmapp;
  634. sp = page_header(__pa(spte));
  635. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  636. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  637. pte_list_remove(spte, rmapp);
  638. }
  639. static int set_spte_track_bits(u64 *sptep, u64 new_spte)
  640. {
  641. pfn_t pfn;
  642. u64 old_spte = *sptep;
  643. if (!spte_has_volatile_bits(old_spte))
  644. __set_spte(sptep, new_spte);
  645. else
  646. old_spte = __xchg_spte(sptep, new_spte);
  647. if (!is_rmap_spte(old_spte))
  648. return 0;
  649. pfn = spte_to_pfn(old_spte);
  650. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  651. kvm_set_pfn_accessed(pfn);
  652. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  653. kvm_set_pfn_dirty(pfn);
  654. return 1;
  655. }
  656. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  657. {
  658. if (set_spte_track_bits(sptep, new_spte))
  659. rmap_remove(kvm, sptep);
  660. }
  661. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  662. {
  663. unsigned long *rmapp;
  664. u64 *spte;
  665. int i, write_protected = 0;
  666. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  667. spte = rmap_next(kvm, rmapp, NULL);
  668. while (spte) {
  669. BUG_ON(!spte);
  670. BUG_ON(!(*spte & PT_PRESENT_MASK));
  671. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  672. if (is_writable_pte(*spte)) {
  673. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  674. write_protected = 1;
  675. }
  676. spte = rmap_next(kvm, rmapp, spte);
  677. }
  678. /* check for huge page mappings */
  679. for (i = PT_DIRECTORY_LEVEL;
  680. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  681. rmapp = gfn_to_rmap(kvm, gfn, i);
  682. spte = rmap_next(kvm, rmapp, NULL);
  683. while (spte) {
  684. BUG_ON(!spte);
  685. BUG_ON(!(*spte & PT_PRESENT_MASK));
  686. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  687. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  688. if (is_writable_pte(*spte)) {
  689. drop_spte(kvm, spte,
  690. shadow_trap_nonpresent_pte);
  691. --kvm->stat.lpages;
  692. spte = NULL;
  693. write_protected = 1;
  694. }
  695. spte = rmap_next(kvm, rmapp, spte);
  696. }
  697. }
  698. return write_protected;
  699. }
  700. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  701. unsigned long data)
  702. {
  703. u64 *spte;
  704. int need_tlb_flush = 0;
  705. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  706. BUG_ON(!(*spte & PT_PRESENT_MASK));
  707. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  708. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  709. need_tlb_flush = 1;
  710. }
  711. return need_tlb_flush;
  712. }
  713. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  714. unsigned long data)
  715. {
  716. int need_flush = 0;
  717. u64 *spte, new_spte;
  718. pte_t *ptep = (pte_t *)data;
  719. pfn_t new_pfn;
  720. WARN_ON(pte_huge(*ptep));
  721. new_pfn = pte_pfn(*ptep);
  722. spte = rmap_next(kvm, rmapp, NULL);
  723. while (spte) {
  724. BUG_ON(!is_shadow_present_pte(*spte));
  725. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  726. need_flush = 1;
  727. if (pte_write(*ptep)) {
  728. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  729. spte = rmap_next(kvm, rmapp, NULL);
  730. } else {
  731. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  732. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  733. new_spte &= ~PT_WRITABLE_MASK;
  734. new_spte &= ~SPTE_HOST_WRITEABLE;
  735. new_spte &= ~shadow_accessed_mask;
  736. set_spte_track_bits(spte, new_spte);
  737. spte = rmap_next(kvm, rmapp, spte);
  738. }
  739. }
  740. if (need_flush)
  741. kvm_flush_remote_tlbs(kvm);
  742. return 0;
  743. }
  744. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  745. unsigned long data,
  746. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  747. unsigned long data))
  748. {
  749. int i, j;
  750. int ret;
  751. int retval = 0;
  752. struct kvm_memslots *slots;
  753. slots = kvm_memslots(kvm);
  754. for (i = 0; i < slots->nmemslots; i++) {
  755. struct kvm_memory_slot *memslot = &slots->memslots[i];
  756. unsigned long start = memslot->userspace_addr;
  757. unsigned long end;
  758. end = start + (memslot->npages << PAGE_SHIFT);
  759. if (hva >= start && hva < end) {
  760. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  761. gfn_t gfn = memslot->base_gfn + gfn_offset;
  762. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  763. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  764. struct kvm_lpage_info *linfo;
  765. linfo = lpage_info_slot(gfn, memslot,
  766. PT_DIRECTORY_LEVEL + j);
  767. ret |= handler(kvm, &linfo->rmap_pde, data);
  768. }
  769. trace_kvm_age_page(hva, memslot, ret);
  770. retval |= ret;
  771. }
  772. }
  773. return retval;
  774. }
  775. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  776. {
  777. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  778. }
  779. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  780. {
  781. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  782. }
  783. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  784. unsigned long data)
  785. {
  786. u64 *spte;
  787. int young = 0;
  788. /*
  789. * Emulate the accessed bit for EPT, by checking if this page has
  790. * an EPT mapping, and clearing it if it does. On the next access,
  791. * a new EPT mapping will be established.
  792. * This has some overhead, but not as much as the cost of swapping
  793. * out actively used pages or breaking up actively used hugepages.
  794. */
  795. if (!shadow_accessed_mask)
  796. return kvm_unmap_rmapp(kvm, rmapp, data);
  797. spte = rmap_next(kvm, rmapp, NULL);
  798. while (spte) {
  799. int _young;
  800. u64 _spte = *spte;
  801. BUG_ON(!(_spte & PT_PRESENT_MASK));
  802. _young = _spte & PT_ACCESSED_MASK;
  803. if (_young) {
  804. young = 1;
  805. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  806. }
  807. spte = rmap_next(kvm, rmapp, spte);
  808. }
  809. return young;
  810. }
  811. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  812. unsigned long data)
  813. {
  814. u64 *spte;
  815. int young = 0;
  816. /*
  817. * If there's no access bit in the secondary pte set by the
  818. * hardware it's up to gup-fast/gup to set the access bit in
  819. * the primary pte or in the page structure.
  820. */
  821. if (!shadow_accessed_mask)
  822. goto out;
  823. spte = rmap_next(kvm, rmapp, NULL);
  824. while (spte) {
  825. u64 _spte = *spte;
  826. BUG_ON(!(_spte & PT_PRESENT_MASK));
  827. young = _spte & PT_ACCESSED_MASK;
  828. if (young) {
  829. young = 1;
  830. break;
  831. }
  832. spte = rmap_next(kvm, rmapp, spte);
  833. }
  834. out:
  835. return young;
  836. }
  837. #define RMAP_RECYCLE_THRESHOLD 1000
  838. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  839. {
  840. unsigned long *rmapp;
  841. struct kvm_mmu_page *sp;
  842. sp = page_header(__pa(spte));
  843. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  844. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  845. kvm_flush_remote_tlbs(vcpu->kvm);
  846. }
  847. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  848. {
  849. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  850. }
  851. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  852. {
  853. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  854. }
  855. #ifdef MMU_DEBUG
  856. static int is_empty_shadow_page(u64 *spt)
  857. {
  858. u64 *pos;
  859. u64 *end;
  860. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  861. if (is_shadow_present_pte(*pos)) {
  862. printk(KERN_ERR "%s: %p %llx\n", __func__,
  863. pos, *pos);
  864. return 0;
  865. }
  866. return 1;
  867. }
  868. #endif
  869. /*
  870. * This value is the sum of all of the kvm instances's
  871. * kvm->arch.n_used_mmu_pages values. We need a global,
  872. * aggregate version in order to make the slab shrinker
  873. * faster
  874. */
  875. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  876. {
  877. kvm->arch.n_used_mmu_pages += nr;
  878. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  879. }
  880. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  881. {
  882. ASSERT(is_empty_shadow_page(sp->spt));
  883. hlist_del(&sp->hash_link);
  884. list_del(&sp->link);
  885. free_page((unsigned long)sp->spt);
  886. if (!sp->role.direct)
  887. free_page((unsigned long)sp->gfns);
  888. kmem_cache_free(mmu_page_header_cache, sp);
  889. kvm_mod_used_mmu_pages(kvm, -1);
  890. }
  891. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  892. {
  893. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  894. }
  895. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  896. struct kvm_mmu_page *sp, u64 *parent_pte)
  897. {
  898. if (!parent_pte)
  899. return;
  900. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  901. }
  902. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  903. u64 *parent_pte)
  904. {
  905. pte_list_remove(parent_pte, &sp->parent_ptes);
  906. }
  907. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  908. u64 *parent_pte, int direct)
  909. {
  910. struct kvm_mmu_page *sp;
  911. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
  912. sizeof *sp);
  913. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  914. if (!direct)
  915. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  916. PAGE_SIZE);
  917. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  918. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  919. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  920. sp->parent_ptes = 0;
  921. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  922. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  923. return sp;
  924. }
  925. static void mark_unsync(u64 *spte);
  926. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  927. {
  928. pte_list_walk(&sp->parent_ptes, mark_unsync);
  929. }
  930. static void mark_unsync(u64 *spte)
  931. {
  932. struct kvm_mmu_page *sp;
  933. unsigned int index;
  934. sp = page_header(__pa(spte));
  935. index = spte - sp->spt;
  936. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  937. return;
  938. if (sp->unsync_children++)
  939. return;
  940. kvm_mmu_mark_parents_unsync(sp);
  941. }
  942. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  943. struct kvm_mmu_page *sp)
  944. {
  945. int i;
  946. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  947. sp->spt[i] = shadow_trap_nonpresent_pte;
  948. }
  949. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  950. struct kvm_mmu_page *sp)
  951. {
  952. return 1;
  953. }
  954. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  955. {
  956. }
  957. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  958. struct kvm_mmu_page *sp, u64 *spte,
  959. const void *pte)
  960. {
  961. WARN_ON(1);
  962. }
  963. #define KVM_PAGE_ARRAY_NR 16
  964. struct kvm_mmu_pages {
  965. struct mmu_page_and_offset {
  966. struct kvm_mmu_page *sp;
  967. unsigned int idx;
  968. } page[KVM_PAGE_ARRAY_NR];
  969. unsigned int nr;
  970. };
  971. #define for_each_unsync_children(bitmap, idx) \
  972. for (idx = find_first_bit(bitmap, 512); \
  973. idx < 512; \
  974. idx = find_next_bit(bitmap, 512, idx+1))
  975. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  976. int idx)
  977. {
  978. int i;
  979. if (sp->unsync)
  980. for (i=0; i < pvec->nr; i++)
  981. if (pvec->page[i].sp == sp)
  982. return 0;
  983. pvec->page[pvec->nr].sp = sp;
  984. pvec->page[pvec->nr].idx = idx;
  985. pvec->nr++;
  986. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  987. }
  988. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  989. struct kvm_mmu_pages *pvec)
  990. {
  991. int i, ret, nr_unsync_leaf = 0;
  992. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  993. struct kvm_mmu_page *child;
  994. u64 ent = sp->spt[i];
  995. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  996. goto clear_child_bitmap;
  997. child = page_header(ent & PT64_BASE_ADDR_MASK);
  998. if (child->unsync_children) {
  999. if (mmu_pages_add(pvec, child, i))
  1000. return -ENOSPC;
  1001. ret = __mmu_unsync_walk(child, pvec);
  1002. if (!ret)
  1003. goto clear_child_bitmap;
  1004. else if (ret > 0)
  1005. nr_unsync_leaf += ret;
  1006. else
  1007. return ret;
  1008. } else if (child->unsync) {
  1009. nr_unsync_leaf++;
  1010. if (mmu_pages_add(pvec, child, i))
  1011. return -ENOSPC;
  1012. } else
  1013. goto clear_child_bitmap;
  1014. continue;
  1015. clear_child_bitmap:
  1016. __clear_bit(i, sp->unsync_child_bitmap);
  1017. sp->unsync_children--;
  1018. WARN_ON((int)sp->unsync_children < 0);
  1019. }
  1020. return nr_unsync_leaf;
  1021. }
  1022. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1023. struct kvm_mmu_pages *pvec)
  1024. {
  1025. if (!sp->unsync_children)
  1026. return 0;
  1027. mmu_pages_add(pvec, sp, 0);
  1028. return __mmu_unsync_walk(sp, pvec);
  1029. }
  1030. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1031. {
  1032. WARN_ON(!sp->unsync);
  1033. trace_kvm_mmu_sync_page(sp);
  1034. sp->unsync = 0;
  1035. --kvm->stat.mmu_unsync;
  1036. }
  1037. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1038. struct list_head *invalid_list);
  1039. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1040. struct list_head *invalid_list);
  1041. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1042. hlist_for_each_entry(sp, pos, \
  1043. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1044. if ((sp)->gfn != (gfn)) {} else
  1045. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1046. hlist_for_each_entry(sp, pos, \
  1047. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1048. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1049. (sp)->role.invalid) {} else
  1050. /* @sp->gfn should be write-protected at the call site */
  1051. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1052. struct list_head *invalid_list, bool clear_unsync)
  1053. {
  1054. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1055. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1056. return 1;
  1057. }
  1058. if (clear_unsync)
  1059. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1060. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1061. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1062. return 1;
  1063. }
  1064. kvm_mmu_flush_tlb(vcpu);
  1065. return 0;
  1066. }
  1067. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1068. struct kvm_mmu_page *sp)
  1069. {
  1070. LIST_HEAD(invalid_list);
  1071. int ret;
  1072. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1073. if (ret)
  1074. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1075. return ret;
  1076. }
  1077. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1078. struct list_head *invalid_list)
  1079. {
  1080. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1081. }
  1082. /* @gfn should be write-protected at the call site */
  1083. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1084. {
  1085. struct kvm_mmu_page *s;
  1086. struct hlist_node *node;
  1087. LIST_HEAD(invalid_list);
  1088. bool flush = false;
  1089. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1090. if (!s->unsync)
  1091. continue;
  1092. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1093. kvm_unlink_unsync_page(vcpu->kvm, s);
  1094. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1095. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1096. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1097. continue;
  1098. }
  1099. flush = true;
  1100. }
  1101. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1102. if (flush)
  1103. kvm_mmu_flush_tlb(vcpu);
  1104. }
  1105. struct mmu_page_path {
  1106. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1107. unsigned int idx[PT64_ROOT_LEVEL-1];
  1108. };
  1109. #define for_each_sp(pvec, sp, parents, i) \
  1110. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1111. sp = pvec.page[i].sp; \
  1112. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1113. i = mmu_pages_next(&pvec, &parents, i))
  1114. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1115. struct mmu_page_path *parents,
  1116. int i)
  1117. {
  1118. int n;
  1119. for (n = i+1; n < pvec->nr; n++) {
  1120. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1121. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1122. parents->idx[0] = pvec->page[n].idx;
  1123. return n;
  1124. }
  1125. parents->parent[sp->role.level-2] = sp;
  1126. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1127. }
  1128. return n;
  1129. }
  1130. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1131. {
  1132. struct kvm_mmu_page *sp;
  1133. unsigned int level = 0;
  1134. do {
  1135. unsigned int idx = parents->idx[level];
  1136. sp = parents->parent[level];
  1137. if (!sp)
  1138. return;
  1139. --sp->unsync_children;
  1140. WARN_ON((int)sp->unsync_children < 0);
  1141. __clear_bit(idx, sp->unsync_child_bitmap);
  1142. level++;
  1143. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1144. }
  1145. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1146. struct mmu_page_path *parents,
  1147. struct kvm_mmu_pages *pvec)
  1148. {
  1149. parents->parent[parent->role.level-1] = NULL;
  1150. pvec->nr = 0;
  1151. }
  1152. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1153. struct kvm_mmu_page *parent)
  1154. {
  1155. int i;
  1156. struct kvm_mmu_page *sp;
  1157. struct mmu_page_path parents;
  1158. struct kvm_mmu_pages pages;
  1159. LIST_HEAD(invalid_list);
  1160. kvm_mmu_pages_init(parent, &parents, &pages);
  1161. while (mmu_unsync_walk(parent, &pages)) {
  1162. int protected = 0;
  1163. for_each_sp(pages, sp, parents, i)
  1164. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1165. if (protected)
  1166. kvm_flush_remote_tlbs(vcpu->kvm);
  1167. for_each_sp(pages, sp, parents, i) {
  1168. kvm_sync_page(vcpu, sp, &invalid_list);
  1169. mmu_pages_clear_parents(&parents);
  1170. }
  1171. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1172. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1173. kvm_mmu_pages_init(parent, &parents, &pages);
  1174. }
  1175. }
  1176. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1177. gfn_t gfn,
  1178. gva_t gaddr,
  1179. unsigned level,
  1180. int direct,
  1181. unsigned access,
  1182. u64 *parent_pte)
  1183. {
  1184. union kvm_mmu_page_role role;
  1185. unsigned quadrant;
  1186. struct kvm_mmu_page *sp;
  1187. struct hlist_node *node;
  1188. bool need_sync = false;
  1189. role = vcpu->arch.mmu.base_role;
  1190. role.level = level;
  1191. role.direct = direct;
  1192. if (role.direct)
  1193. role.cr4_pae = 0;
  1194. role.access = access;
  1195. if (!vcpu->arch.mmu.direct_map
  1196. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1197. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1198. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1199. role.quadrant = quadrant;
  1200. }
  1201. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1202. if (!need_sync && sp->unsync)
  1203. need_sync = true;
  1204. if (sp->role.word != role.word)
  1205. continue;
  1206. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1207. break;
  1208. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1209. if (sp->unsync_children) {
  1210. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1211. kvm_mmu_mark_parents_unsync(sp);
  1212. } else if (sp->unsync)
  1213. kvm_mmu_mark_parents_unsync(sp);
  1214. trace_kvm_mmu_get_page(sp, false);
  1215. return sp;
  1216. }
  1217. ++vcpu->kvm->stat.mmu_cache_miss;
  1218. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1219. if (!sp)
  1220. return sp;
  1221. sp->gfn = gfn;
  1222. sp->role = role;
  1223. hlist_add_head(&sp->hash_link,
  1224. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1225. if (!direct) {
  1226. if (rmap_write_protect(vcpu->kvm, gfn))
  1227. kvm_flush_remote_tlbs(vcpu->kvm);
  1228. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1229. kvm_sync_pages(vcpu, gfn);
  1230. account_shadowed(vcpu->kvm, gfn);
  1231. }
  1232. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1233. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1234. else
  1235. nonpaging_prefetch_page(vcpu, sp);
  1236. trace_kvm_mmu_get_page(sp, true);
  1237. return sp;
  1238. }
  1239. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1240. struct kvm_vcpu *vcpu, u64 addr)
  1241. {
  1242. iterator->addr = addr;
  1243. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1244. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1245. if (iterator->level == PT64_ROOT_LEVEL &&
  1246. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1247. !vcpu->arch.mmu.direct_map)
  1248. --iterator->level;
  1249. if (iterator->level == PT32E_ROOT_LEVEL) {
  1250. iterator->shadow_addr
  1251. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1252. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1253. --iterator->level;
  1254. if (!iterator->shadow_addr)
  1255. iterator->level = 0;
  1256. }
  1257. }
  1258. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1259. {
  1260. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1261. return false;
  1262. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1263. if (is_large_pte(*iterator->sptep))
  1264. return false;
  1265. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1266. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1267. return true;
  1268. }
  1269. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1270. {
  1271. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1272. --iterator->level;
  1273. }
  1274. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1275. {
  1276. u64 spte;
  1277. spte = __pa(sp->spt)
  1278. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1279. | PT_WRITABLE_MASK | PT_USER_MASK;
  1280. __set_spte(sptep, spte);
  1281. }
  1282. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1283. {
  1284. if (is_large_pte(*sptep)) {
  1285. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1286. kvm_flush_remote_tlbs(vcpu->kvm);
  1287. }
  1288. }
  1289. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1290. unsigned direct_access)
  1291. {
  1292. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1293. struct kvm_mmu_page *child;
  1294. /*
  1295. * For the direct sp, if the guest pte's dirty bit
  1296. * changed form clean to dirty, it will corrupt the
  1297. * sp's access: allow writable in the read-only sp,
  1298. * so we should update the spte at this point to get
  1299. * a new sp with the correct access.
  1300. */
  1301. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1302. if (child->role.access == direct_access)
  1303. return;
  1304. mmu_page_remove_parent_pte(child, sptep);
  1305. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1306. kvm_flush_remote_tlbs(vcpu->kvm);
  1307. }
  1308. }
  1309. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1310. struct kvm_mmu_page *sp)
  1311. {
  1312. unsigned i;
  1313. u64 *pt;
  1314. u64 ent;
  1315. pt = sp->spt;
  1316. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1317. ent = pt[i];
  1318. if (is_shadow_present_pte(ent)) {
  1319. if (!is_last_spte(ent, sp->role.level)) {
  1320. ent &= PT64_BASE_ADDR_MASK;
  1321. mmu_page_remove_parent_pte(page_header(ent),
  1322. &pt[i]);
  1323. } else {
  1324. if (is_large_pte(ent))
  1325. --kvm->stat.lpages;
  1326. drop_spte(kvm, &pt[i],
  1327. shadow_trap_nonpresent_pte);
  1328. }
  1329. }
  1330. pt[i] = shadow_trap_nonpresent_pte;
  1331. }
  1332. }
  1333. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1334. {
  1335. mmu_page_remove_parent_pte(sp, parent_pte);
  1336. }
  1337. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1338. {
  1339. int i;
  1340. struct kvm_vcpu *vcpu;
  1341. kvm_for_each_vcpu(i, vcpu, kvm)
  1342. vcpu->arch.last_pte_updated = NULL;
  1343. }
  1344. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1345. {
  1346. u64 *parent_pte;
  1347. while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL))) {
  1348. kvm_mmu_put_page(sp, parent_pte);
  1349. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1350. }
  1351. }
  1352. static int mmu_zap_unsync_children(struct kvm *kvm,
  1353. struct kvm_mmu_page *parent,
  1354. struct list_head *invalid_list)
  1355. {
  1356. int i, zapped = 0;
  1357. struct mmu_page_path parents;
  1358. struct kvm_mmu_pages pages;
  1359. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1360. return 0;
  1361. kvm_mmu_pages_init(parent, &parents, &pages);
  1362. while (mmu_unsync_walk(parent, &pages)) {
  1363. struct kvm_mmu_page *sp;
  1364. for_each_sp(pages, sp, parents, i) {
  1365. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1366. mmu_pages_clear_parents(&parents);
  1367. zapped++;
  1368. }
  1369. kvm_mmu_pages_init(parent, &parents, &pages);
  1370. }
  1371. return zapped;
  1372. }
  1373. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1374. struct list_head *invalid_list)
  1375. {
  1376. int ret;
  1377. trace_kvm_mmu_prepare_zap_page(sp);
  1378. ++kvm->stat.mmu_shadow_zapped;
  1379. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1380. kvm_mmu_page_unlink_children(kvm, sp);
  1381. kvm_mmu_unlink_parents(kvm, sp);
  1382. if (!sp->role.invalid && !sp->role.direct)
  1383. unaccount_shadowed(kvm, sp->gfn);
  1384. if (sp->unsync)
  1385. kvm_unlink_unsync_page(kvm, sp);
  1386. if (!sp->root_count) {
  1387. /* Count self */
  1388. ret++;
  1389. list_move(&sp->link, invalid_list);
  1390. } else {
  1391. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1392. kvm_reload_remote_mmus(kvm);
  1393. }
  1394. sp->role.invalid = 1;
  1395. kvm_mmu_reset_last_pte_updated(kvm);
  1396. return ret;
  1397. }
  1398. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1399. struct list_head *invalid_list)
  1400. {
  1401. struct kvm_mmu_page *sp;
  1402. if (list_empty(invalid_list))
  1403. return;
  1404. kvm_flush_remote_tlbs(kvm);
  1405. do {
  1406. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1407. WARN_ON(!sp->role.invalid || sp->root_count);
  1408. kvm_mmu_free_page(kvm, sp);
  1409. } while (!list_empty(invalid_list));
  1410. }
  1411. /*
  1412. * Changing the number of mmu pages allocated to the vm
  1413. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1414. */
  1415. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1416. {
  1417. LIST_HEAD(invalid_list);
  1418. /*
  1419. * If we set the number of mmu pages to be smaller be than the
  1420. * number of actived pages , we must to free some mmu pages before we
  1421. * change the value
  1422. */
  1423. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1424. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1425. !list_empty(&kvm->arch.active_mmu_pages)) {
  1426. struct kvm_mmu_page *page;
  1427. page = container_of(kvm->arch.active_mmu_pages.prev,
  1428. struct kvm_mmu_page, link);
  1429. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1430. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1431. }
  1432. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1433. }
  1434. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1435. }
  1436. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1437. {
  1438. struct kvm_mmu_page *sp;
  1439. struct hlist_node *node;
  1440. LIST_HEAD(invalid_list);
  1441. int r;
  1442. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1443. r = 0;
  1444. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1445. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1446. sp->role.word);
  1447. r = 1;
  1448. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1449. }
  1450. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1451. return r;
  1452. }
  1453. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1454. {
  1455. struct kvm_mmu_page *sp;
  1456. struct hlist_node *node;
  1457. LIST_HEAD(invalid_list);
  1458. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1459. pgprintk("%s: zap %llx %x\n",
  1460. __func__, gfn, sp->role.word);
  1461. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1462. }
  1463. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1464. }
  1465. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1466. {
  1467. int slot = memslot_id(kvm, gfn);
  1468. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1469. __set_bit(slot, sp->slot_bitmap);
  1470. }
  1471. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1472. {
  1473. int i;
  1474. u64 *pt = sp->spt;
  1475. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1476. return;
  1477. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1478. if (pt[i] == shadow_notrap_nonpresent_pte)
  1479. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1480. }
  1481. }
  1482. /*
  1483. * The function is based on mtrr_type_lookup() in
  1484. * arch/x86/kernel/cpu/mtrr/generic.c
  1485. */
  1486. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1487. u64 start, u64 end)
  1488. {
  1489. int i;
  1490. u64 base, mask;
  1491. u8 prev_match, curr_match;
  1492. int num_var_ranges = KVM_NR_VAR_MTRR;
  1493. if (!mtrr_state->enabled)
  1494. return 0xFF;
  1495. /* Make end inclusive end, instead of exclusive */
  1496. end--;
  1497. /* Look in fixed ranges. Just return the type as per start */
  1498. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1499. int idx;
  1500. if (start < 0x80000) {
  1501. idx = 0;
  1502. idx += (start >> 16);
  1503. return mtrr_state->fixed_ranges[idx];
  1504. } else if (start < 0xC0000) {
  1505. idx = 1 * 8;
  1506. idx += ((start - 0x80000) >> 14);
  1507. return mtrr_state->fixed_ranges[idx];
  1508. } else if (start < 0x1000000) {
  1509. idx = 3 * 8;
  1510. idx += ((start - 0xC0000) >> 12);
  1511. return mtrr_state->fixed_ranges[idx];
  1512. }
  1513. }
  1514. /*
  1515. * Look in variable ranges
  1516. * Look of multiple ranges matching this address and pick type
  1517. * as per MTRR precedence
  1518. */
  1519. if (!(mtrr_state->enabled & 2))
  1520. return mtrr_state->def_type;
  1521. prev_match = 0xFF;
  1522. for (i = 0; i < num_var_ranges; ++i) {
  1523. unsigned short start_state, end_state;
  1524. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1525. continue;
  1526. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1527. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1528. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1529. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1530. start_state = ((start & mask) == (base & mask));
  1531. end_state = ((end & mask) == (base & mask));
  1532. if (start_state != end_state)
  1533. return 0xFE;
  1534. if ((start & mask) != (base & mask))
  1535. continue;
  1536. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1537. if (prev_match == 0xFF) {
  1538. prev_match = curr_match;
  1539. continue;
  1540. }
  1541. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1542. curr_match == MTRR_TYPE_UNCACHABLE)
  1543. return MTRR_TYPE_UNCACHABLE;
  1544. if ((prev_match == MTRR_TYPE_WRBACK &&
  1545. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1546. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1547. curr_match == MTRR_TYPE_WRBACK)) {
  1548. prev_match = MTRR_TYPE_WRTHROUGH;
  1549. curr_match = MTRR_TYPE_WRTHROUGH;
  1550. }
  1551. if (prev_match != curr_match)
  1552. return MTRR_TYPE_UNCACHABLE;
  1553. }
  1554. if (prev_match != 0xFF)
  1555. return prev_match;
  1556. return mtrr_state->def_type;
  1557. }
  1558. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1559. {
  1560. u8 mtrr;
  1561. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1562. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1563. if (mtrr == 0xfe || mtrr == 0xff)
  1564. mtrr = MTRR_TYPE_WRBACK;
  1565. return mtrr;
  1566. }
  1567. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1568. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1569. {
  1570. trace_kvm_mmu_unsync_page(sp);
  1571. ++vcpu->kvm->stat.mmu_unsync;
  1572. sp->unsync = 1;
  1573. kvm_mmu_mark_parents_unsync(sp);
  1574. mmu_convert_notrap(sp);
  1575. }
  1576. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1577. {
  1578. struct kvm_mmu_page *s;
  1579. struct hlist_node *node;
  1580. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1581. if (s->unsync)
  1582. continue;
  1583. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1584. __kvm_unsync_page(vcpu, s);
  1585. }
  1586. }
  1587. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1588. bool can_unsync)
  1589. {
  1590. struct kvm_mmu_page *s;
  1591. struct hlist_node *node;
  1592. bool need_unsync = false;
  1593. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1594. if (!can_unsync)
  1595. return 1;
  1596. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1597. return 1;
  1598. if (!need_unsync && !s->unsync) {
  1599. if (!oos_shadow)
  1600. return 1;
  1601. need_unsync = true;
  1602. }
  1603. }
  1604. if (need_unsync)
  1605. kvm_unsync_pages(vcpu, gfn);
  1606. return 0;
  1607. }
  1608. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1609. unsigned pte_access, int user_fault,
  1610. int write_fault, int dirty, int level,
  1611. gfn_t gfn, pfn_t pfn, bool speculative,
  1612. bool can_unsync, bool host_writable)
  1613. {
  1614. u64 spte, entry = *sptep;
  1615. int ret = 0;
  1616. /*
  1617. * We don't set the accessed bit, since we sometimes want to see
  1618. * whether the guest actually used the pte (in order to detect
  1619. * demand paging).
  1620. */
  1621. spte = PT_PRESENT_MASK;
  1622. if (!speculative)
  1623. spte |= shadow_accessed_mask;
  1624. if (!dirty)
  1625. pte_access &= ~ACC_WRITE_MASK;
  1626. if (pte_access & ACC_EXEC_MASK)
  1627. spte |= shadow_x_mask;
  1628. else
  1629. spte |= shadow_nx_mask;
  1630. if (pte_access & ACC_USER_MASK)
  1631. spte |= shadow_user_mask;
  1632. if (level > PT_PAGE_TABLE_LEVEL)
  1633. spte |= PT_PAGE_SIZE_MASK;
  1634. if (tdp_enabled)
  1635. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1636. kvm_is_mmio_pfn(pfn));
  1637. if (host_writable)
  1638. spte |= SPTE_HOST_WRITEABLE;
  1639. else
  1640. pte_access &= ~ACC_WRITE_MASK;
  1641. spte |= (u64)pfn << PAGE_SHIFT;
  1642. if ((pte_access & ACC_WRITE_MASK)
  1643. || (!vcpu->arch.mmu.direct_map && write_fault
  1644. && !is_write_protection(vcpu) && !user_fault)) {
  1645. if (level > PT_PAGE_TABLE_LEVEL &&
  1646. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1647. ret = 1;
  1648. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1649. goto done;
  1650. }
  1651. spte |= PT_WRITABLE_MASK;
  1652. if (!vcpu->arch.mmu.direct_map
  1653. && !(pte_access & ACC_WRITE_MASK))
  1654. spte &= ~PT_USER_MASK;
  1655. /*
  1656. * Optimization: for pte sync, if spte was writable the hash
  1657. * lookup is unnecessary (and expensive). Write protection
  1658. * is responsibility of mmu_get_page / kvm_sync_page.
  1659. * Same reasoning can be applied to dirty page accounting.
  1660. */
  1661. if (!can_unsync && is_writable_pte(*sptep))
  1662. goto set_pte;
  1663. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1664. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1665. __func__, gfn);
  1666. ret = 1;
  1667. pte_access &= ~ACC_WRITE_MASK;
  1668. if (is_writable_pte(spte))
  1669. spte &= ~PT_WRITABLE_MASK;
  1670. }
  1671. }
  1672. if (pte_access & ACC_WRITE_MASK)
  1673. mark_page_dirty(vcpu->kvm, gfn);
  1674. set_pte:
  1675. update_spte(sptep, spte);
  1676. /*
  1677. * If we overwrite a writable spte with a read-only one we
  1678. * should flush remote TLBs. Otherwise rmap_write_protect
  1679. * will find a read-only spte, even though the writable spte
  1680. * might be cached on a CPU's TLB.
  1681. */
  1682. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1683. kvm_flush_remote_tlbs(vcpu->kvm);
  1684. done:
  1685. return ret;
  1686. }
  1687. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1688. unsigned pt_access, unsigned pte_access,
  1689. int user_fault, int write_fault, int dirty,
  1690. int *ptwrite, int level, gfn_t gfn,
  1691. pfn_t pfn, bool speculative,
  1692. bool host_writable)
  1693. {
  1694. int was_rmapped = 0;
  1695. int rmap_count;
  1696. pgprintk("%s: spte %llx access %x write_fault %d"
  1697. " user_fault %d gfn %llx\n",
  1698. __func__, *sptep, pt_access,
  1699. write_fault, user_fault, gfn);
  1700. if (is_rmap_spte(*sptep)) {
  1701. /*
  1702. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1703. * the parent of the now unreachable PTE.
  1704. */
  1705. if (level > PT_PAGE_TABLE_LEVEL &&
  1706. !is_large_pte(*sptep)) {
  1707. struct kvm_mmu_page *child;
  1708. u64 pte = *sptep;
  1709. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1710. mmu_page_remove_parent_pte(child, sptep);
  1711. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1712. kvm_flush_remote_tlbs(vcpu->kvm);
  1713. } else if (pfn != spte_to_pfn(*sptep)) {
  1714. pgprintk("hfn old %llx new %llx\n",
  1715. spte_to_pfn(*sptep), pfn);
  1716. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1717. kvm_flush_remote_tlbs(vcpu->kvm);
  1718. } else
  1719. was_rmapped = 1;
  1720. }
  1721. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1722. dirty, level, gfn, pfn, speculative, true,
  1723. host_writable)) {
  1724. if (write_fault)
  1725. *ptwrite = 1;
  1726. kvm_mmu_flush_tlb(vcpu);
  1727. }
  1728. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1729. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1730. is_large_pte(*sptep)? "2MB" : "4kB",
  1731. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1732. *sptep, sptep);
  1733. if (!was_rmapped && is_large_pte(*sptep))
  1734. ++vcpu->kvm->stat.lpages;
  1735. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1736. if (!was_rmapped) {
  1737. rmap_count = rmap_add(vcpu, sptep, gfn);
  1738. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1739. rmap_recycle(vcpu, sptep, gfn);
  1740. }
  1741. kvm_release_pfn_clean(pfn);
  1742. if (speculative) {
  1743. vcpu->arch.last_pte_updated = sptep;
  1744. vcpu->arch.last_pte_gfn = gfn;
  1745. }
  1746. }
  1747. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1748. {
  1749. }
  1750. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1751. bool no_dirty_log)
  1752. {
  1753. struct kvm_memory_slot *slot;
  1754. unsigned long hva;
  1755. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  1756. if (!slot) {
  1757. get_page(bad_page);
  1758. return page_to_pfn(bad_page);
  1759. }
  1760. hva = gfn_to_hva_memslot(slot, gfn);
  1761. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1762. }
  1763. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1764. struct kvm_mmu_page *sp,
  1765. u64 *start, u64 *end)
  1766. {
  1767. struct page *pages[PTE_PREFETCH_NUM];
  1768. unsigned access = sp->role.access;
  1769. int i, ret;
  1770. gfn_t gfn;
  1771. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1772. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  1773. return -1;
  1774. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1775. if (ret <= 0)
  1776. return -1;
  1777. for (i = 0; i < ret; i++, gfn++, start++)
  1778. mmu_set_spte(vcpu, start, ACC_ALL,
  1779. access, 0, 0, 1, NULL,
  1780. sp->role.level, gfn,
  1781. page_to_pfn(pages[i]), true, true);
  1782. return 0;
  1783. }
  1784. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1785. struct kvm_mmu_page *sp, u64 *sptep)
  1786. {
  1787. u64 *spte, *start = NULL;
  1788. int i;
  1789. WARN_ON(!sp->role.direct);
  1790. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1791. spte = sp->spt + i;
  1792. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1793. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1794. if (!start)
  1795. continue;
  1796. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1797. break;
  1798. start = NULL;
  1799. } else if (!start)
  1800. start = spte;
  1801. }
  1802. }
  1803. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1804. {
  1805. struct kvm_mmu_page *sp;
  1806. /*
  1807. * Since it's no accessed bit on EPT, it's no way to
  1808. * distinguish between actually accessed translations
  1809. * and prefetched, so disable pte prefetch if EPT is
  1810. * enabled.
  1811. */
  1812. if (!shadow_accessed_mask)
  1813. return;
  1814. sp = page_header(__pa(sptep));
  1815. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1816. return;
  1817. __direct_pte_prefetch(vcpu, sp, sptep);
  1818. }
  1819. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1820. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  1821. bool prefault)
  1822. {
  1823. struct kvm_shadow_walk_iterator iterator;
  1824. struct kvm_mmu_page *sp;
  1825. int pt_write = 0;
  1826. gfn_t pseudo_gfn;
  1827. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1828. if (iterator.level == level) {
  1829. unsigned pte_access = ACC_ALL;
  1830. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  1831. 0, write, 1, &pt_write,
  1832. level, gfn, pfn, prefault, map_writable);
  1833. direct_pte_prefetch(vcpu, iterator.sptep);
  1834. ++vcpu->stat.pf_fixed;
  1835. break;
  1836. }
  1837. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1838. u64 base_addr = iterator.addr;
  1839. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1840. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1841. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1842. iterator.level - 1,
  1843. 1, ACC_ALL, iterator.sptep);
  1844. if (!sp) {
  1845. pgprintk("nonpaging_map: ENOMEM\n");
  1846. kvm_release_pfn_clean(pfn);
  1847. return -ENOMEM;
  1848. }
  1849. __set_spte(iterator.sptep,
  1850. __pa(sp->spt)
  1851. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1852. | shadow_user_mask | shadow_x_mask
  1853. | shadow_accessed_mask);
  1854. }
  1855. }
  1856. return pt_write;
  1857. }
  1858. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  1859. {
  1860. siginfo_t info;
  1861. info.si_signo = SIGBUS;
  1862. info.si_errno = 0;
  1863. info.si_code = BUS_MCEERR_AR;
  1864. info.si_addr = (void __user *)address;
  1865. info.si_addr_lsb = PAGE_SHIFT;
  1866. send_sig_info(SIGBUS, &info, tsk);
  1867. }
  1868. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1869. {
  1870. kvm_release_pfn_clean(pfn);
  1871. if (is_hwpoison_pfn(pfn)) {
  1872. kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
  1873. return 0;
  1874. } else if (is_fault_pfn(pfn))
  1875. return -EFAULT;
  1876. return 1;
  1877. }
  1878. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  1879. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  1880. {
  1881. pfn_t pfn = *pfnp;
  1882. gfn_t gfn = *gfnp;
  1883. int level = *levelp;
  1884. /*
  1885. * Check if it's a transparent hugepage. If this would be an
  1886. * hugetlbfs page, level wouldn't be set to
  1887. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  1888. * here.
  1889. */
  1890. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  1891. level == PT_PAGE_TABLE_LEVEL &&
  1892. PageTransCompound(pfn_to_page(pfn)) &&
  1893. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  1894. unsigned long mask;
  1895. /*
  1896. * mmu_notifier_retry was successful and we hold the
  1897. * mmu_lock here, so the pmd can't become splitting
  1898. * from under us, and in turn
  1899. * __split_huge_page_refcount() can't run from under
  1900. * us and we can safely transfer the refcount from
  1901. * PG_tail to PG_head as we switch the pfn to tail to
  1902. * head.
  1903. */
  1904. *levelp = level = PT_DIRECTORY_LEVEL;
  1905. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  1906. VM_BUG_ON((gfn & mask) != (pfn & mask));
  1907. if (pfn & mask) {
  1908. gfn &= ~mask;
  1909. *gfnp = gfn;
  1910. kvm_release_pfn_clean(pfn);
  1911. pfn &= ~mask;
  1912. if (!get_page_unless_zero(pfn_to_page(pfn)))
  1913. BUG();
  1914. *pfnp = pfn;
  1915. }
  1916. }
  1917. }
  1918. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  1919. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  1920. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  1921. bool prefault)
  1922. {
  1923. int r;
  1924. int level;
  1925. int force_pt_level;
  1926. pfn_t pfn;
  1927. unsigned long mmu_seq;
  1928. bool map_writable;
  1929. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  1930. if (likely(!force_pt_level)) {
  1931. level = mapping_level(vcpu, gfn);
  1932. /*
  1933. * This path builds a PAE pagetable - so we can map
  1934. * 2mb pages at maximum. Therefore check if the level
  1935. * is larger than that.
  1936. */
  1937. if (level > PT_DIRECTORY_LEVEL)
  1938. level = PT_DIRECTORY_LEVEL;
  1939. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1940. } else
  1941. level = PT_PAGE_TABLE_LEVEL;
  1942. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1943. smp_rmb();
  1944. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  1945. return 0;
  1946. /* mmio */
  1947. if (is_error_pfn(pfn))
  1948. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1949. spin_lock(&vcpu->kvm->mmu_lock);
  1950. if (mmu_notifier_retry(vcpu, mmu_seq))
  1951. goto out_unlock;
  1952. kvm_mmu_free_some_pages(vcpu);
  1953. if (likely(!force_pt_level))
  1954. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  1955. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  1956. prefault);
  1957. spin_unlock(&vcpu->kvm->mmu_lock);
  1958. return r;
  1959. out_unlock:
  1960. spin_unlock(&vcpu->kvm->mmu_lock);
  1961. kvm_release_pfn_clean(pfn);
  1962. return 0;
  1963. }
  1964. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1965. {
  1966. int i;
  1967. struct kvm_mmu_page *sp;
  1968. LIST_HEAD(invalid_list);
  1969. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1970. return;
  1971. spin_lock(&vcpu->kvm->mmu_lock);
  1972. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  1973. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  1974. vcpu->arch.mmu.direct_map)) {
  1975. hpa_t root = vcpu->arch.mmu.root_hpa;
  1976. sp = page_header(root);
  1977. --sp->root_count;
  1978. if (!sp->root_count && sp->role.invalid) {
  1979. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1980. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1981. }
  1982. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1983. spin_unlock(&vcpu->kvm->mmu_lock);
  1984. return;
  1985. }
  1986. for (i = 0; i < 4; ++i) {
  1987. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1988. if (root) {
  1989. root &= PT64_BASE_ADDR_MASK;
  1990. sp = page_header(root);
  1991. --sp->root_count;
  1992. if (!sp->root_count && sp->role.invalid)
  1993. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1994. &invalid_list);
  1995. }
  1996. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1997. }
  1998. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1999. spin_unlock(&vcpu->kvm->mmu_lock);
  2000. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2001. }
  2002. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2003. {
  2004. int ret = 0;
  2005. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2006. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2007. ret = 1;
  2008. }
  2009. return ret;
  2010. }
  2011. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2012. {
  2013. struct kvm_mmu_page *sp;
  2014. unsigned i;
  2015. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2016. spin_lock(&vcpu->kvm->mmu_lock);
  2017. kvm_mmu_free_some_pages(vcpu);
  2018. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2019. 1, ACC_ALL, NULL);
  2020. ++sp->root_count;
  2021. spin_unlock(&vcpu->kvm->mmu_lock);
  2022. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2023. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2024. for (i = 0; i < 4; ++i) {
  2025. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2026. ASSERT(!VALID_PAGE(root));
  2027. spin_lock(&vcpu->kvm->mmu_lock);
  2028. kvm_mmu_free_some_pages(vcpu);
  2029. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2030. i << 30,
  2031. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2032. NULL);
  2033. root = __pa(sp->spt);
  2034. ++sp->root_count;
  2035. spin_unlock(&vcpu->kvm->mmu_lock);
  2036. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2037. }
  2038. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2039. } else
  2040. BUG();
  2041. return 0;
  2042. }
  2043. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2044. {
  2045. struct kvm_mmu_page *sp;
  2046. u64 pdptr, pm_mask;
  2047. gfn_t root_gfn;
  2048. int i;
  2049. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2050. if (mmu_check_root(vcpu, root_gfn))
  2051. return 1;
  2052. /*
  2053. * Do we shadow a long mode page table? If so we need to
  2054. * write-protect the guests page table root.
  2055. */
  2056. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2057. hpa_t root = vcpu->arch.mmu.root_hpa;
  2058. ASSERT(!VALID_PAGE(root));
  2059. spin_lock(&vcpu->kvm->mmu_lock);
  2060. kvm_mmu_free_some_pages(vcpu);
  2061. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2062. 0, ACC_ALL, NULL);
  2063. root = __pa(sp->spt);
  2064. ++sp->root_count;
  2065. spin_unlock(&vcpu->kvm->mmu_lock);
  2066. vcpu->arch.mmu.root_hpa = root;
  2067. return 0;
  2068. }
  2069. /*
  2070. * We shadow a 32 bit page table. This may be a legacy 2-level
  2071. * or a PAE 3-level page table. In either case we need to be aware that
  2072. * the shadow page table may be a PAE or a long mode page table.
  2073. */
  2074. pm_mask = PT_PRESENT_MASK;
  2075. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2076. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2077. for (i = 0; i < 4; ++i) {
  2078. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2079. ASSERT(!VALID_PAGE(root));
  2080. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2081. pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
  2082. if (!is_present_gpte(pdptr)) {
  2083. vcpu->arch.mmu.pae_root[i] = 0;
  2084. continue;
  2085. }
  2086. root_gfn = pdptr >> PAGE_SHIFT;
  2087. if (mmu_check_root(vcpu, root_gfn))
  2088. return 1;
  2089. }
  2090. spin_lock(&vcpu->kvm->mmu_lock);
  2091. kvm_mmu_free_some_pages(vcpu);
  2092. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2093. PT32_ROOT_LEVEL, 0,
  2094. ACC_ALL, NULL);
  2095. root = __pa(sp->spt);
  2096. ++sp->root_count;
  2097. spin_unlock(&vcpu->kvm->mmu_lock);
  2098. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2099. }
  2100. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2101. /*
  2102. * If we shadow a 32 bit page table with a long mode page
  2103. * table we enter this path.
  2104. */
  2105. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2106. if (vcpu->arch.mmu.lm_root == NULL) {
  2107. /*
  2108. * The additional page necessary for this is only
  2109. * allocated on demand.
  2110. */
  2111. u64 *lm_root;
  2112. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2113. if (lm_root == NULL)
  2114. return 1;
  2115. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2116. vcpu->arch.mmu.lm_root = lm_root;
  2117. }
  2118. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2119. }
  2120. return 0;
  2121. }
  2122. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2123. {
  2124. if (vcpu->arch.mmu.direct_map)
  2125. return mmu_alloc_direct_roots(vcpu);
  2126. else
  2127. return mmu_alloc_shadow_roots(vcpu);
  2128. }
  2129. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2130. {
  2131. int i;
  2132. struct kvm_mmu_page *sp;
  2133. if (vcpu->arch.mmu.direct_map)
  2134. return;
  2135. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2136. return;
  2137. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2138. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2139. hpa_t root = vcpu->arch.mmu.root_hpa;
  2140. sp = page_header(root);
  2141. mmu_sync_children(vcpu, sp);
  2142. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2143. return;
  2144. }
  2145. for (i = 0; i < 4; ++i) {
  2146. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2147. if (root && VALID_PAGE(root)) {
  2148. root &= PT64_BASE_ADDR_MASK;
  2149. sp = page_header(root);
  2150. mmu_sync_children(vcpu, sp);
  2151. }
  2152. }
  2153. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2154. }
  2155. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2156. {
  2157. spin_lock(&vcpu->kvm->mmu_lock);
  2158. mmu_sync_roots(vcpu);
  2159. spin_unlock(&vcpu->kvm->mmu_lock);
  2160. }
  2161. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2162. u32 access, struct x86_exception *exception)
  2163. {
  2164. if (exception)
  2165. exception->error_code = 0;
  2166. return vaddr;
  2167. }
  2168. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2169. u32 access,
  2170. struct x86_exception *exception)
  2171. {
  2172. if (exception)
  2173. exception->error_code = 0;
  2174. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2175. }
  2176. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2177. u32 error_code, bool prefault)
  2178. {
  2179. gfn_t gfn;
  2180. int r;
  2181. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2182. r = mmu_topup_memory_caches(vcpu);
  2183. if (r)
  2184. return r;
  2185. ASSERT(vcpu);
  2186. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2187. gfn = gva >> PAGE_SHIFT;
  2188. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2189. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2190. }
  2191. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2192. {
  2193. struct kvm_arch_async_pf arch;
  2194. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2195. arch.gfn = gfn;
  2196. arch.direct_map = vcpu->arch.mmu.direct_map;
  2197. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2198. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2199. }
  2200. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2201. {
  2202. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2203. kvm_event_needs_reinjection(vcpu)))
  2204. return false;
  2205. return kvm_x86_ops->interrupt_allowed(vcpu);
  2206. }
  2207. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2208. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2209. {
  2210. bool async;
  2211. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2212. if (!async)
  2213. return false; /* *pfn has correct page already */
  2214. put_page(pfn_to_page(*pfn));
  2215. if (!prefault && can_do_async_pf(vcpu)) {
  2216. trace_kvm_try_async_get_page(gva, gfn);
  2217. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2218. trace_kvm_async_pf_doublefault(gva, gfn);
  2219. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2220. return true;
  2221. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2222. return true;
  2223. }
  2224. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2225. return false;
  2226. }
  2227. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2228. bool prefault)
  2229. {
  2230. pfn_t pfn;
  2231. int r;
  2232. int level;
  2233. int force_pt_level;
  2234. gfn_t gfn = gpa >> PAGE_SHIFT;
  2235. unsigned long mmu_seq;
  2236. int write = error_code & PFERR_WRITE_MASK;
  2237. bool map_writable;
  2238. ASSERT(vcpu);
  2239. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2240. r = mmu_topup_memory_caches(vcpu);
  2241. if (r)
  2242. return r;
  2243. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2244. if (likely(!force_pt_level)) {
  2245. level = mapping_level(vcpu, gfn);
  2246. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2247. } else
  2248. level = PT_PAGE_TABLE_LEVEL;
  2249. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2250. smp_rmb();
  2251. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2252. return 0;
  2253. /* mmio */
  2254. if (is_error_pfn(pfn))
  2255. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2256. spin_lock(&vcpu->kvm->mmu_lock);
  2257. if (mmu_notifier_retry(vcpu, mmu_seq))
  2258. goto out_unlock;
  2259. kvm_mmu_free_some_pages(vcpu);
  2260. if (likely(!force_pt_level))
  2261. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2262. r = __direct_map(vcpu, gpa, write, map_writable,
  2263. level, gfn, pfn, prefault);
  2264. spin_unlock(&vcpu->kvm->mmu_lock);
  2265. return r;
  2266. out_unlock:
  2267. spin_unlock(&vcpu->kvm->mmu_lock);
  2268. kvm_release_pfn_clean(pfn);
  2269. return 0;
  2270. }
  2271. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2272. {
  2273. mmu_free_roots(vcpu);
  2274. }
  2275. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2276. struct kvm_mmu *context)
  2277. {
  2278. context->new_cr3 = nonpaging_new_cr3;
  2279. context->page_fault = nonpaging_page_fault;
  2280. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2281. context->free = nonpaging_free;
  2282. context->prefetch_page = nonpaging_prefetch_page;
  2283. context->sync_page = nonpaging_sync_page;
  2284. context->invlpg = nonpaging_invlpg;
  2285. context->update_pte = nonpaging_update_pte;
  2286. context->root_level = 0;
  2287. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2288. context->root_hpa = INVALID_PAGE;
  2289. context->direct_map = true;
  2290. context->nx = false;
  2291. return 0;
  2292. }
  2293. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2294. {
  2295. ++vcpu->stat.tlb_flush;
  2296. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2297. }
  2298. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2299. {
  2300. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2301. mmu_free_roots(vcpu);
  2302. }
  2303. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2304. {
  2305. return kvm_read_cr3(vcpu);
  2306. }
  2307. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2308. struct x86_exception *fault)
  2309. {
  2310. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2311. }
  2312. static void paging_free(struct kvm_vcpu *vcpu)
  2313. {
  2314. nonpaging_free(vcpu);
  2315. }
  2316. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2317. {
  2318. int bit7;
  2319. bit7 = (gpte >> 7) & 1;
  2320. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2321. }
  2322. #define PTTYPE 64
  2323. #include "paging_tmpl.h"
  2324. #undef PTTYPE
  2325. #define PTTYPE 32
  2326. #include "paging_tmpl.h"
  2327. #undef PTTYPE
  2328. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2329. struct kvm_mmu *context,
  2330. int level)
  2331. {
  2332. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2333. u64 exb_bit_rsvd = 0;
  2334. if (!context->nx)
  2335. exb_bit_rsvd = rsvd_bits(63, 63);
  2336. switch (level) {
  2337. case PT32_ROOT_LEVEL:
  2338. /* no rsvd bits for 2 level 4K page table entries */
  2339. context->rsvd_bits_mask[0][1] = 0;
  2340. context->rsvd_bits_mask[0][0] = 0;
  2341. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2342. if (!is_pse(vcpu)) {
  2343. context->rsvd_bits_mask[1][1] = 0;
  2344. break;
  2345. }
  2346. if (is_cpuid_PSE36())
  2347. /* 36bits PSE 4MB page */
  2348. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2349. else
  2350. /* 32 bits PSE 4MB page */
  2351. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2352. break;
  2353. case PT32E_ROOT_LEVEL:
  2354. context->rsvd_bits_mask[0][2] =
  2355. rsvd_bits(maxphyaddr, 63) |
  2356. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2357. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2358. rsvd_bits(maxphyaddr, 62); /* PDE */
  2359. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2360. rsvd_bits(maxphyaddr, 62); /* PTE */
  2361. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2362. rsvd_bits(maxphyaddr, 62) |
  2363. rsvd_bits(13, 20); /* large page */
  2364. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2365. break;
  2366. case PT64_ROOT_LEVEL:
  2367. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2368. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2369. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2370. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2371. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2372. rsvd_bits(maxphyaddr, 51);
  2373. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2374. rsvd_bits(maxphyaddr, 51);
  2375. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2376. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2377. rsvd_bits(maxphyaddr, 51) |
  2378. rsvd_bits(13, 29);
  2379. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2380. rsvd_bits(maxphyaddr, 51) |
  2381. rsvd_bits(13, 20); /* large page */
  2382. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2383. break;
  2384. }
  2385. }
  2386. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2387. struct kvm_mmu *context,
  2388. int level)
  2389. {
  2390. context->nx = is_nx(vcpu);
  2391. reset_rsvds_bits_mask(vcpu, context, level);
  2392. ASSERT(is_pae(vcpu));
  2393. context->new_cr3 = paging_new_cr3;
  2394. context->page_fault = paging64_page_fault;
  2395. context->gva_to_gpa = paging64_gva_to_gpa;
  2396. context->prefetch_page = paging64_prefetch_page;
  2397. context->sync_page = paging64_sync_page;
  2398. context->invlpg = paging64_invlpg;
  2399. context->update_pte = paging64_update_pte;
  2400. context->free = paging_free;
  2401. context->root_level = level;
  2402. context->shadow_root_level = level;
  2403. context->root_hpa = INVALID_PAGE;
  2404. context->direct_map = false;
  2405. return 0;
  2406. }
  2407. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2408. struct kvm_mmu *context)
  2409. {
  2410. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2411. }
  2412. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2413. struct kvm_mmu *context)
  2414. {
  2415. context->nx = false;
  2416. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2417. context->new_cr3 = paging_new_cr3;
  2418. context->page_fault = paging32_page_fault;
  2419. context->gva_to_gpa = paging32_gva_to_gpa;
  2420. context->free = paging_free;
  2421. context->prefetch_page = paging32_prefetch_page;
  2422. context->sync_page = paging32_sync_page;
  2423. context->invlpg = paging32_invlpg;
  2424. context->update_pte = paging32_update_pte;
  2425. context->root_level = PT32_ROOT_LEVEL;
  2426. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2427. context->root_hpa = INVALID_PAGE;
  2428. context->direct_map = false;
  2429. return 0;
  2430. }
  2431. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2432. struct kvm_mmu *context)
  2433. {
  2434. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2435. }
  2436. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2437. {
  2438. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2439. context->base_role.word = 0;
  2440. context->new_cr3 = nonpaging_new_cr3;
  2441. context->page_fault = tdp_page_fault;
  2442. context->free = nonpaging_free;
  2443. context->prefetch_page = nonpaging_prefetch_page;
  2444. context->sync_page = nonpaging_sync_page;
  2445. context->invlpg = nonpaging_invlpg;
  2446. context->update_pte = nonpaging_update_pte;
  2447. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2448. context->root_hpa = INVALID_PAGE;
  2449. context->direct_map = true;
  2450. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2451. context->get_cr3 = get_cr3;
  2452. context->inject_page_fault = kvm_inject_page_fault;
  2453. context->nx = is_nx(vcpu);
  2454. if (!is_paging(vcpu)) {
  2455. context->nx = false;
  2456. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2457. context->root_level = 0;
  2458. } else if (is_long_mode(vcpu)) {
  2459. context->nx = is_nx(vcpu);
  2460. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2461. context->gva_to_gpa = paging64_gva_to_gpa;
  2462. context->root_level = PT64_ROOT_LEVEL;
  2463. } else if (is_pae(vcpu)) {
  2464. context->nx = is_nx(vcpu);
  2465. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2466. context->gva_to_gpa = paging64_gva_to_gpa;
  2467. context->root_level = PT32E_ROOT_LEVEL;
  2468. } else {
  2469. context->nx = false;
  2470. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2471. context->gva_to_gpa = paging32_gva_to_gpa;
  2472. context->root_level = PT32_ROOT_LEVEL;
  2473. }
  2474. return 0;
  2475. }
  2476. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2477. {
  2478. int r;
  2479. ASSERT(vcpu);
  2480. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2481. if (!is_paging(vcpu))
  2482. r = nonpaging_init_context(vcpu, context);
  2483. else if (is_long_mode(vcpu))
  2484. r = paging64_init_context(vcpu, context);
  2485. else if (is_pae(vcpu))
  2486. r = paging32E_init_context(vcpu, context);
  2487. else
  2488. r = paging32_init_context(vcpu, context);
  2489. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2490. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2491. return r;
  2492. }
  2493. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2494. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2495. {
  2496. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2497. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2498. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2499. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2500. return r;
  2501. }
  2502. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2503. {
  2504. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2505. g_context->get_cr3 = get_cr3;
  2506. g_context->inject_page_fault = kvm_inject_page_fault;
  2507. /*
  2508. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2509. * translation of l2_gpa to l1_gpa addresses is done using the
  2510. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2511. * functions between mmu and nested_mmu are swapped.
  2512. */
  2513. if (!is_paging(vcpu)) {
  2514. g_context->nx = false;
  2515. g_context->root_level = 0;
  2516. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2517. } else if (is_long_mode(vcpu)) {
  2518. g_context->nx = is_nx(vcpu);
  2519. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2520. g_context->root_level = PT64_ROOT_LEVEL;
  2521. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2522. } else if (is_pae(vcpu)) {
  2523. g_context->nx = is_nx(vcpu);
  2524. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2525. g_context->root_level = PT32E_ROOT_LEVEL;
  2526. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2527. } else {
  2528. g_context->nx = false;
  2529. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2530. g_context->root_level = PT32_ROOT_LEVEL;
  2531. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2532. }
  2533. return 0;
  2534. }
  2535. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2536. {
  2537. if (mmu_is_nested(vcpu))
  2538. return init_kvm_nested_mmu(vcpu);
  2539. else if (tdp_enabled)
  2540. return init_kvm_tdp_mmu(vcpu);
  2541. else
  2542. return init_kvm_softmmu(vcpu);
  2543. }
  2544. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2545. {
  2546. ASSERT(vcpu);
  2547. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2548. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2549. vcpu->arch.mmu.free(vcpu);
  2550. }
  2551. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2552. {
  2553. destroy_kvm_mmu(vcpu);
  2554. return init_kvm_mmu(vcpu);
  2555. }
  2556. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2557. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2558. {
  2559. int r;
  2560. r = mmu_topup_memory_caches(vcpu);
  2561. if (r)
  2562. goto out;
  2563. r = mmu_alloc_roots(vcpu);
  2564. spin_lock(&vcpu->kvm->mmu_lock);
  2565. mmu_sync_roots(vcpu);
  2566. spin_unlock(&vcpu->kvm->mmu_lock);
  2567. if (r)
  2568. goto out;
  2569. /* set_cr3() should ensure TLB has been flushed */
  2570. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2571. out:
  2572. return r;
  2573. }
  2574. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2575. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2576. {
  2577. mmu_free_roots(vcpu);
  2578. }
  2579. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2580. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2581. struct kvm_mmu_page *sp,
  2582. u64 *spte)
  2583. {
  2584. u64 pte;
  2585. struct kvm_mmu_page *child;
  2586. pte = *spte;
  2587. if (is_shadow_present_pte(pte)) {
  2588. if (is_last_spte(pte, sp->role.level))
  2589. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2590. else {
  2591. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2592. mmu_page_remove_parent_pte(child, spte);
  2593. }
  2594. }
  2595. __set_spte(spte, shadow_trap_nonpresent_pte);
  2596. if (is_large_pte(pte))
  2597. --vcpu->kvm->stat.lpages;
  2598. }
  2599. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2600. struct kvm_mmu_page *sp, u64 *spte,
  2601. const void *new)
  2602. {
  2603. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2604. ++vcpu->kvm->stat.mmu_pde_zapped;
  2605. return;
  2606. }
  2607. ++vcpu->kvm->stat.mmu_pte_updated;
  2608. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2609. }
  2610. static bool need_remote_flush(u64 old, u64 new)
  2611. {
  2612. if (!is_shadow_present_pte(old))
  2613. return false;
  2614. if (!is_shadow_present_pte(new))
  2615. return true;
  2616. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2617. return true;
  2618. old ^= PT64_NX_MASK;
  2619. new ^= PT64_NX_MASK;
  2620. return (old & ~new & PT64_PERM_MASK) != 0;
  2621. }
  2622. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2623. bool remote_flush, bool local_flush)
  2624. {
  2625. if (zap_page)
  2626. return;
  2627. if (remote_flush)
  2628. kvm_flush_remote_tlbs(vcpu->kvm);
  2629. else if (local_flush)
  2630. kvm_mmu_flush_tlb(vcpu);
  2631. }
  2632. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2633. {
  2634. u64 *spte = vcpu->arch.last_pte_updated;
  2635. return !!(spte && (*spte & shadow_accessed_mask));
  2636. }
  2637. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2638. {
  2639. u64 *spte = vcpu->arch.last_pte_updated;
  2640. if (spte
  2641. && vcpu->arch.last_pte_gfn == gfn
  2642. && shadow_accessed_mask
  2643. && !(*spte & shadow_accessed_mask)
  2644. && is_shadow_present_pte(*spte))
  2645. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2646. }
  2647. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2648. const u8 *new, int bytes,
  2649. bool guest_initiated)
  2650. {
  2651. gfn_t gfn = gpa >> PAGE_SHIFT;
  2652. union kvm_mmu_page_role mask = { .word = 0 };
  2653. struct kvm_mmu_page *sp;
  2654. struct hlist_node *node;
  2655. LIST_HEAD(invalid_list);
  2656. u64 entry, gentry, *spte;
  2657. unsigned pte_size, page_offset, misaligned, quadrant, offset;
  2658. int level, npte, invlpg_counter, r, flooded = 0;
  2659. bool remote_flush, local_flush, zap_page;
  2660. /*
  2661. * If we don't have indirect shadow pages, it means no page is
  2662. * write-protected, so we can exit simply.
  2663. */
  2664. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  2665. return;
  2666. zap_page = remote_flush = local_flush = false;
  2667. offset = offset_in_page(gpa);
  2668. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2669. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2670. /*
  2671. * Assume that the pte write on a page table of the same type
  2672. * as the current vcpu paging mode since we update the sptes only
  2673. * when they have the same mode.
  2674. */
  2675. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2676. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2677. if (is_pae(vcpu)) {
  2678. gpa &= ~(gpa_t)7;
  2679. bytes = 8;
  2680. }
  2681. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2682. if (r)
  2683. gentry = 0;
  2684. new = (const u8 *)&gentry;
  2685. }
  2686. switch (bytes) {
  2687. case 4:
  2688. gentry = *(const u32 *)new;
  2689. break;
  2690. case 8:
  2691. gentry = *(const u64 *)new;
  2692. break;
  2693. default:
  2694. gentry = 0;
  2695. break;
  2696. }
  2697. spin_lock(&vcpu->kvm->mmu_lock);
  2698. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2699. gentry = 0;
  2700. kvm_mmu_free_some_pages(vcpu);
  2701. ++vcpu->kvm->stat.mmu_pte_write;
  2702. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2703. if (guest_initiated) {
  2704. kvm_mmu_access_page(vcpu, gfn);
  2705. if (gfn == vcpu->arch.last_pt_write_gfn
  2706. && !last_updated_pte_accessed(vcpu)) {
  2707. ++vcpu->arch.last_pt_write_count;
  2708. if (vcpu->arch.last_pt_write_count >= 3)
  2709. flooded = 1;
  2710. } else {
  2711. vcpu->arch.last_pt_write_gfn = gfn;
  2712. vcpu->arch.last_pt_write_count = 1;
  2713. vcpu->arch.last_pte_updated = NULL;
  2714. }
  2715. }
  2716. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2717. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2718. pte_size = sp->role.cr4_pae ? 8 : 4;
  2719. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2720. misaligned |= bytes < 4;
  2721. if (misaligned || flooded) {
  2722. /*
  2723. * Misaligned accesses are too much trouble to fix
  2724. * up; also, they usually indicate a page is not used
  2725. * as a page table.
  2726. *
  2727. * If we're seeing too many writes to a page,
  2728. * it may no longer be a page table, or we may be
  2729. * forking, in which case it is better to unmap the
  2730. * page.
  2731. */
  2732. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2733. gpa, bytes, sp->role.word);
  2734. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2735. &invalid_list);
  2736. ++vcpu->kvm->stat.mmu_flooded;
  2737. continue;
  2738. }
  2739. page_offset = offset;
  2740. level = sp->role.level;
  2741. npte = 1;
  2742. if (!sp->role.cr4_pae) {
  2743. page_offset <<= 1; /* 32->64 */
  2744. /*
  2745. * A 32-bit pde maps 4MB while the shadow pdes map
  2746. * only 2MB. So we need to double the offset again
  2747. * and zap two pdes instead of one.
  2748. */
  2749. if (level == PT32_ROOT_LEVEL) {
  2750. page_offset &= ~7; /* kill rounding error */
  2751. page_offset <<= 1;
  2752. npte = 2;
  2753. }
  2754. quadrant = page_offset >> PAGE_SHIFT;
  2755. page_offset &= ~PAGE_MASK;
  2756. if (quadrant != sp->role.quadrant)
  2757. continue;
  2758. }
  2759. local_flush = true;
  2760. spte = &sp->spt[page_offset / sizeof(*spte)];
  2761. while (npte--) {
  2762. entry = *spte;
  2763. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2764. if (gentry &&
  2765. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2766. & mask.word))
  2767. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2768. if (!remote_flush && need_remote_flush(entry, *spte))
  2769. remote_flush = true;
  2770. ++spte;
  2771. }
  2772. }
  2773. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2774. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2775. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2776. spin_unlock(&vcpu->kvm->mmu_lock);
  2777. }
  2778. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2779. {
  2780. gpa_t gpa;
  2781. int r;
  2782. if (vcpu->arch.mmu.direct_map)
  2783. return 0;
  2784. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2785. spin_lock(&vcpu->kvm->mmu_lock);
  2786. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2787. spin_unlock(&vcpu->kvm->mmu_lock);
  2788. return r;
  2789. }
  2790. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2791. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2792. {
  2793. LIST_HEAD(invalid_list);
  2794. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2795. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2796. struct kvm_mmu_page *sp;
  2797. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2798. struct kvm_mmu_page, link);
  2799. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2800. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2801. ++vcpu->kvm->stat.mmu_recycled;
  2802. }
  2803. }
  2804. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  2805. void *insn, int insn_len)
  2806. {
  2807. int r;
  2808. enum emulation_result er;
  2809. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  2810. if (r < 0)
  2811. goto out;
  2812. if (!r) {
  2813. r = 1;
  2814. goto out;
  2815. }
  2816. r = mmu_topup_memory_caches(vcpu);
  2817. if (r)
  2818. goto out;
  2819. er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
  2820. switch (er) {
  2821. case EMULATE_DONE:
  2822. return 1;
  2823. case EMULATE_DO_MMIO:
  2824. ++vcpu->stat.mmio_exits;
  2825. /* fall through */
  2826. case EMULATE_FAIL:
  2827. return 0;
  2828. default:
  2829. BUG();
  2830. }
  2831. out:
  2832. return r;
  2833. }
  2834. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2835. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2836. {
  2837. vcpu->arch.mmu.invlpg(vcpu, gva);
  2838. kvm_mmu_flush_tlb(vcpu);
  2839. ++vcpu->stat.invlpg;
  2840. }
  2841. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2842. void kvm_enable_tdp(void)
  2843. {
  2844. tdp_enabled = true;
  2845. }
  2846. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2847. void kvm_disable_tdp(void)
  2848. {
  2849. tdp_enabled = false;
  2850. }
  2851. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2852. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2853. {
  2854. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2855. if (vcpu->arch.mmu.lm_root != NULL)
  2856. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  2857. }
  2858. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2859. {
  2860. struct page *page;
  2861. int i;
  2862. ASSERT(vcpu);
  2863. /*
  2864. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2865. * Therefore we need to allocate shadow page tables in the first
  2866. * 4GB of memory, which happens to fit the DMA32 zone.
  2867. */
  2868. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2869. if (!page)
  2870. return -ENOMEM;
  2871. vcpu->arch.mmu.pae_root = page_address(page);
  2872. for (i = 0; i < 4; ++i)
  2873. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2874. return 0;
  2875. }
  2876. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2877. {
  2878. ASSERT(vcpu);
  2879. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2880. return alloc_mmu_pages(vcpu);
  2881. }
  2882. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2883. {
  2884. ASSERT(vcpu);
  2885. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2886. return init_kvm_mmu(vcpu);
  2887. }
  2888. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2889. {
  2890. struct kvm_mmu_page *sp;
  2891. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2892. int i;
  2893. u64 *pt;
  2894. if (!test_bit(slot, sp->slot_bitmap))
  2895. continue;
  2896. pt = sp->spt;
  2897. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2898. if (!is_shadow_present_pte(pt[i]) ||
  2899. !is_last_spte(pt[i], sp->role.level))
  2900. continue;
  2901. if (is_large_pte(pt[i])) {
  2902. drop_spte(kvm, &pt[i],
  2903. shadow_trap_nonpresent_pte);
  2904. --kvm->stat.lpages;
  2905. continue;
  2906. }
  2907. /* avoid RMW */
  2908. if (is_writable_pte(pt[i]))
  2909. update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
  2910. }
  2911. }
  2912. kvm_flush_remote_tlbs(kvm);
  2913. }
  2914. void kvm_mmu_zap_all(struct kvm *kvm)
  2915. {
  2916. struct kvm_mmu_page *sp, *node;
  2917. LIST_HEAD(invalid_list);
  2918. spin_lock(&kvm->mmu_lock);
  2919. restart:
  2920. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2921. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2922. goto restart;
  2923. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2924. spin_unlock(&kvm->mmu_lock);
  2925. }
  2926. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2927. struct list_head *invalid_list)
  2928. {
  2929. struct kvm_mmu_page *page;
  2930. page = container_of(kvm->arch.active_mmu_pages.prev,
  2931. struct kvm_mmu_page, link);
  2932. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2933. }
  2934. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  2935. {
  2936. struct kvm *kvm;
  2937. struct kvm *kvm_freed = NULL;
  2938. int nr_to_scan = sc->nr_to_scan;
  2939. if (nr_to_scan == 0)
  2940. goto out;
  2941. raw_spin_lock(&kvm_lock);
  2942. list_for_each_entry(kvm, &vm_list, vm_list) {
  2943. int idx, freed_pages;
  2944. LIST_HEAD(invalid_list);
  2945. idx = srcu_read_lock(&kvm->srcu);
  2946. spin_lock(&kvm->mmu_lock);
  2947. if (!kvm_freed && nr_to_scan > 0 &&
  2948. kvm->arch.n_used_mmu_pages > 0) {
  2949. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2950. &invalid_list);
  2951. kvm_freed = kvm;
  2952. }
  2953. nr_to_scan--;
  2954. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2955. spin_unlock(&kvm->mmu_lock);
  2956. srcu_read_unlock(&kvm->srcu, idx);
  2957. }
  2958. if (kvm_freed)
  2959. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2960. raw_spin_unlock(&kvm_lock);
  2961. out:
  2962. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2963. }
  2964. static struct shrinker mmu_shrinker = {
  2965. .shrink = mmu_shrink,
  2966. .seeks = DEFAULT_SEEKS * 10,
  2967. };
  2968. static void mmu_destroy_caches(void)
  2969. {
  2970. if (pte_list_desc_cache)
  2971. kmem_cache_destroy(pte_list_desc_cache);
  2972. if (mmu_page_header_cache)
  2973. kmem_cache_destroy(mmu_page_header_cache);
  2974. }
  2975. int kvm_mmu_module_init(void)
  2976. {
  2977. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  2978. sizeof(struct pte_list_desc),
  2979. 0, 0, NULL);
  2980. if (!pte_list_desc_cache)
  2981. goto nomem;
  2982. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2983. sizeof(struct kvm_mmu_page),
  2984. 0, 0, NULL);
  2985. if (!mmu_page_header_cache)
  2986. goto nomem;
  2987. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  2988. goto nomem;
  2989. register_shrinker(&mmu_shrinker);
  2990. return 0;
  2991. nomem:
  2992. mmu_destroy_caches();
  2993. return -ENOMEM;
  2994. }
  2995. /*
  2996. * Caculate mmu pages needed for kvm.
  2997. */
  2998. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2999. {
  3000. int i;
  3001. unsigned int nr_mmu_pages;
  3002. unsigned int nr_pages = 0;
  3003. struct kvm_memslots *slots;
  3004. slots = kvm_memslots(kvm);
  3005. for (i = 0; i < slots->nmemslots; i++)
  3006. nr_pages += slots->memslots[i].npages;
  3007. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3008. nr_mmu_pages = max(nr_mmu_pages,
  3009. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3010. return nr_mmu_pages;
  3011. }
  3012. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3013. unsigned len)
  3014. {
  3015. if (len > buffer->len)
  3016. return NULL;
  3017. return buffer->ptr;
  3018. }
  3019. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3020. unsigned len)
  3021. {
  3022. void *ret;
  3023. ret = pv_mmu_peek_buffer(buffer, len);
  3024. if (!ret)
  3025. return ret;
  3026. buffer->ptr += len;
  3027. buffer->len -= len;
  3028. buffer->processed += len;
  3029. return ret;
  3030. }
  3031. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  3032. gpa_t addr, gpa_t value)
  3033. {
  3034. int bytes = 8;
  3035. int r;
  3036. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  3037. bytes = 4;
  3038. r = mmu_topup_memory_caches(vcpu);
  3039. if (r)
  3040. return r;
  3041. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  3042. return -EFAULT;
  3043. return 1;
  3044. }
  3045. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  3046. {
  3047. (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
  3048. return 1;
  3049. }
  3050. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  3051. {
  3052. spin_lock(&vcpu->kvm->mmu_lock);
  3053. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  3054. spin_unlock(&vcpu->kvm->mmu_lock);
  3055. return 1;
  3056. }
  3057. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  3058. struct kvm_pv_mmu_op_buffer *buffer)
  3059. {
  3060. struct kvm_mmu_op_header *header;
  3061. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  3062. if (!header)
  3063. return 0;
  3064. switch (header->op) {
  3065. case KVM_MMU_OP_WRITE_PTE: {
  3066. struct kvm_mmu_op_write_pte *wpte;
  3067. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  3068. if (!wpte)
  3069. return 0;
  3070. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  3071. wpte->pte_val);
  3072. }
  3073. case KVM_MMU_OP_FLUSH_TLB: {
  3074. struct kvm_mmu_op_flush_tlb *ftlb;
  3075. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  3076. if (!ftlb)
  3077. return 0;
  3078. return kvm_pv_mmu_flush_tlb(vcpu);
  3079. }
  3080. case KVM_MMU_OP_RELEASE_PT: {
  3081. struct kvm_mmu_op_release_pt *rpt;
  3082. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  3083. if (!rpt)
  3084. return 0;
  3085. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  3086. }
  3087. default: return 0;
  3088. }
  3089. }
  3090. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  3091. gpa_t addr, unsigned long *ret)
  3092. {
  3093. int r;
  3094. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  3095. buffer->ptr = buffer->buf;
  3096. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  3097. buffer->processed = 0;
  3098. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  3099. if (r)
  3100. goto out;
  3101. while (buffer->len) {
  3102. r = kvm_pv_mmu_op_one(vcpu, buffer);
  3103. if (r < 0)
  3104. goto out;
  3105. if (r == 0)
  3106. break;
  3107. }
  3108. r = 1;
  3109. out:
  3110. *ret = buffer->processed;
  3111. return r;
  3112. }
  3113. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3114. {
  3115. struct kvm_shadow_walk_iterator iterator;
  3116. int nr_sptes = 0;
  3117. spin_lock(&vcpu->kvm->mmu_lock);
  3118. for_each_shadow_entry(vcpu, addr, iterator) {
  3119. sptes[iterator.level-1] = *iterator.sptep;
  3120. nr_sptes++;
  3121. if (!is_shadow_present_pte(*iterator.sptep))
  3122. break;
  3123. }
  3124. spin_unlock(&vcpu->kvm->mmu_lock);
  3125. return nr_sptes;
  3126. }
  3127. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3128. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3129. {
  3130. ASSERT(vcpu);
  3131. destroy_kvm_mmu(vcpu);
  3132. free_mmu_pages(vcpu);
  3133. mmu_free_memory_caches(vcpu);
  3134. }
  3135. #ifdef CONFIG_KVM_MMU_AUDIT
  3136. #include "mmu_audit.c"
  3137. #else
  3138. static void mmu_audit_disable(void) { }
  3139. #endif
  3140. void kvm_mmu_module_exit(void)
  3141. {
  3142. mmu_destroy_caches();
  3143. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3144. unregister_shrinker(&mmu_shrinker);
  3145. mmu_audit_disable();
  3146. }