skge.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <linux/slab.h>
  44. #include <linux/dmi.h>
  45. #include <linux/prefetch.h>
  46. #include <asm/irq.h>
  47. #include "skge.h"
  48. #define DRV_NAME "skge"
  49. #define DRV_VERSION "1.14"
  50. #define DEFAULT_TX_RING_SIZE 128
  51. #define DEFAULT_RX_RING_SIZE 512
  52. #define MAX_TX_RING_SIZE 1024
  53. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  54. #define MAX_RX_RING_SIZE 4096
  55. #define RX_COPY_THRESHOLD 128
  56. #define RX_BUF_SIZE 1536
  57. #define PHY_RETRIES 1000
  58. #define ETH_JUMBO_MTU 9000
  59. #define TX_WATCHDOG (5 * HZ)
  60. #define NAPI_WEIGHT 64
  61. #define BLINK_MS 250
  62. #define LINK_HZ HZ
  63. #define SKGE_EEPROM_MAGIC 0x9933aabb
  64. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  65. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  66. MODULE_LICENSE("GPL");
  67. MODULE_VERSION(DRV_VERSION);
  68. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  69. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  70. NETIF_MSG_IFDOWN);
  71. static int debug = -1; /* defaults above */
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  74. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  75. { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
  76. { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
  77. #ifdef CONFIG_SKGE_GENESIS
  78. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  79. #endif
  80. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  81. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
  82. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
  83. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
  84. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
  85. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  86. { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
  87. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
  88. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  89. { 0 }
  90. };
  91. MODULE_DEVICE_TABLE(pci, skge_id_table);
  92. static int skge_up(struct net_device *dev);
  93. static int skge_down(struct net_device *dev);
  94. static void skge_phy_reset(struct skge_port *skge);
  95. static void skge_tx_clean(struct net_device *dev);
  96. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  98. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  99. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  100. static void yukon_init(struct skge_hw *hw, int port);
  101. static void genesis_mac_init(struct skge_hw *hw, int port);
  102. static void genesis_link_up(struct skge_port *skge);
  103. static void skge_set_multicast(struct net_device *dev);
  104. static irqreturn_t skge_intr(int irq, void *dev_id);
  105. /* Avoid conditionals by using array */
  106. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  107. static const int rxqaddr[] = { Q_R1, Q_R2 };
  108. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  109. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  110. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  111. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  112. static inline bool is_genesis(const struct skge_hw *hw)
  113. {
  114. #ifdef CONFIG_SKGE_GENESIS
  115. return hw->chip_id == CHIP_ID_GENESIS;
  116. #else
  117. return false;
  118. #endif
  119. }
  120. static int skge_get_regs_len(struct net_device *dev)
  121. {
  122. return 0x4000;
  123. }
  124. /*
  125. * Returns copy of whole control register region
  126. * Note: skip RAM address register because accessing it will
  127. * cause bus hangs!
  128. */
  129. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  130. void *p)
  131. {
  132. const struct skge_port *skge = netdev_priv(dev);
  133. const void __iomem *io = skge->hw->regs;
  134. regs->version = 1;
  135. memset(p, 0, regs->len);
  136. memcpy_fromio(p, io, B3_RAM_ADDR);
  137. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  138. regs->len - B3_RI_WTO_R1);
  139. }
  140. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  141. static u32 wol_supported(const struct skge_hw *hw)
  142. {
  143. if (is_genesis(hw))
  144. return 0;
  145. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  146. return 0;
  147. return WAKE_MAGIC | WAKE_PHY;
  148. }
  149. static void skge_wol_init(struct skge_port *skge)
  150. {
  151. struct skge_hw *hw = skge->hw;
  152. int port = skge->port;
  153. u16 ctrl;
  154. skge_write16(hw, B0_CTST, CS_RST_CLR);
  155. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  156. /* Turn on Vaux */
  157. skge_write8(hw, B0_POWER_CTRL,
  158. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  159. /* WA code for COMA mode -- clear PHY reset */
  160. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  161. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  162. u32 reg = skge_read32(hw, B2_GP_IO);
  163. reg |= GP_DIR_9;
  164. reg &= ~GP_IO_9;
  165. skge_write32(hw, B2_GP_IO, reg);
  166. }
  167. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  168. GPC_DIS_SLEEP |
  169. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  170. GPC_ANEG_1 | GPC_RST_SET);
  171. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  172. GPC_DIS_SLEEP |
  173. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  174. GPC_ANEG_1 | GPC_RST_CLR);
  175. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  176. /* Force to 10/100 skge_reset will re-enable on resume */
  177. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  178. (PHY_AN_100FULL | PHY_AN_100HALF |
  179. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  180. /* no 1000 HD/FD */
  181. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  182. gm_phy_write(hw, port, PHY_MARV_CTRL,
  183. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  184. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  185. /* Set GMAC to no flow control and auto update for speed/duplex */
  186. gma_write16(hw, port, GM_GP_CTRL,
  187. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  188. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  189. /* Set WOL address */
  190. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  191. skge->netdev->dev_addr, ETH_ALEN);
  192. /* Turn on appropriate WOL control bits */
  193. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  194. ctrl = 0;
  195. if (skge->wol & WAKE_PHY)
  196. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  197. else
  198. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  199. if (skge->wol & WAKE_MAGIC)
  200. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  201. else
  202. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  203. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  204. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  205. /* block receiver */
  206. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  207. }
  208. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  209. {
  210. struct skge_port *skge = netdev_priv(dev);
  211. wol->supported = wol_supported(skge->hw);
  212. wol->wolopts = skge->wol;
  213. }
  214. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  215. {
  216. struct skge_port *skge = netdev_priv(dev);
  217. struct skge_hw *hw = skge->hw;
  218. if ((wol->wolopts & ~wol_supported(hw)) ||
  219. !device_can_wakeup(&hw->pdev->dev))
  220. return -EOPNOTSUPP;
  221. skge->wol = wol->wolopts;
  222. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  223. return 0;
  224. }
  225. /* Determine supported/advertised modes based on hardware.
  226. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  227. */
  228. static u32 skge_supported_modes(const struct skge_hw *hw)
  229. {
  230. u32 supported;
  231. if (hw->copper) {
  232. supported = (SUPPORTED_10baseT_Half |
  233. SUPPORTED_10baseT_Full |
  234. SUPPORTED_100baseT_Half |
  235. SUPPORTED_100baseT_Full |
  236. SUPPORTED_1000baseT_Half |
  237. SUPPORTED_1000baseT_Full |
  238. SUPPORTED_Autoneg |
  239. SUPPORTED_TP);
  240. if (is_genesis(hw))
  241. supported &= ~(SUPPORTED_10baseT_Half |
  242. SUPPORTED_10baseT_Full |
  243. SUPPORTED_100baseT_Half |
  244. SUPPORTED_100baseT_Full);
  245. else if (hw->chip_id == CHIP_ID_YUKON)
  246. supported &= ~SUPPORTED_1000baseT_Half;
  247. } else
  248. supported = (SUPPORTED_1000baseT_Full |
  249. SUPPORTED_1000baseT_Half |
  250. SUPPORTED_FIBRE |
  251. SUPPORTED_Autoneg);
  252. return supported;
  253. }
  254. static int skge_get_settings(struct net_device *dev,
  255. struct ethtool_cmd *ecmd)
  256. {
  257. struct skge_port *skge = netdev_priv(dev);
  258. struct skge_hw *hw = skge->hw;
  259. ecmd->transceiver = XCVR_INTERNAL;
  260. ecmd->supported = skge_supported_modes(hw);
  261. if (hw->copper) {
  262. ecmd->port = PORT_TP;
  263. ecmd->phy_address = hw->phy_addr;
  264. } else
  265. ecmd->port = PORT_FIBRE;
  266. ecmd->advertising = skge->advertising;
  267. ecmd->autoneg = skge->autoneg;
  268. ethtool_cmd_speed_set(ecmd, skge->speed);
  269. ecmd->duplex = skge->duplex;
  270. return 0;
  271. }
  272. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  273. {
  274. struct skge_port *skge = netdev_priv(dev);
  275. const struct skge_hw *hw = skge->hw;
  276. u32 supported = skge_supported_modes(hw);
  277. int err = 0;
  278. if (ecmd->autoneg == AUTONEG_ENABLE) {
  279. ecmd->advertising = supported;
  280. skge->duplex = -1;
  281. skge->speed = -1;
  282. } else {
  283. u32 setting;
  284. u32 speed = ethtool_cmd_speed(ecmd);
  285. switch (speed) {
  286. case SPEED_1000:
  287. if (ecmd->duplex == DUPLEX_FULL)
  288. setting = SUPPORTED_1000baseT_Full;
  289. else if (ecmd->duplex == DUPLEX_HALF)
  290. setting = SUPPORTED_1000baseT_Half;
  291. else
  292. return -EINVAL;
  293. break;
  294. case SPEED_100:
  295. if (ecmd->duplex == DUPLEX_FULL)
  296. setting = SUPPORTED_100baseT_Full;
  297. else if (ecmd->duplex == DUPLEX_HALF)
  298. setting = SUPPORTED_100baseT_Half;
  299. else
  300. return -EINVAL;
  301. break;
  302. case SPEED_10:
  303. if (ecmd->duplex == DUPLEX_FULL)
  304. setting = SUPPORTED_10baseT_Full;
  305. else if (ecmd->duplex == DUPLEX_HALF)
  306. setting = SUPPORTED_10baseT_Half;
  307. else
  308. return -EINVAL;
  309. break;
  310. default:
  311. return -EINVAL;
  312. }
  313. if ((setting & supported) == 0)
  314. return -EINVAL;
  315. skge->speed = speed;
  316. skge->duplex = ecmd->duplex;
  317. }
  318. skge->autoneg = ecmd->autoneg;
  319. skge->advertising = ecmd->advertising;
  320. if (netif_running(dev)) {
  321. skge_down(dev);
  322. err = skge_up(dev);
  323. if (err) {
  324. dev_close(dev);
  325. return err;
  326. }
  327. }
  328. return 0;
  329. }
  330. static void skge_get_drvinfo(struct net_device *dev,
  331. struct ethtool_drvinfo *info)
  332. {
  333. struct skge_port *skge = netdev_priv(dev);
  334. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  335. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  336. strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
  337. strlcpy(info->bus_info, pci_name(skge->hw->pdev),
  338. sizeof(info->bus_info));
  339. }
  340. static const struct skge_stat {
  341. char name[ETH_GSTRING_LEN];
  342. u16 xmac_offset;
  343. u16 gma_offset;
  344. } skge_stats[] = {
  345. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  346. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  347. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  348. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  349. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  350. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  351. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  352. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  353. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  354. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  355. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  356. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  357. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  358. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  359. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  360. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  361. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  362. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  363. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  364. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  365. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  366. };
  367. static int skge_get_sset_count(struct net_device *dev, int sset)
  368. {
  369. switch (sset) {
  370. case ETH_SS_STATS:
  371. return ARRAY_SIZE(skge_stats);
  372. default:
  373. return -EOPNOTSUPP;
  374. }
  375. }
  376. static void skge_get_ethtool_stats(struct net_device *dev,
  377. struct ethtool_stats *stats, u64 *data)
  378. {
  379. struct skge_port *skge = netdev_priv(dev);
  380. if (is_genesis(skge->hw))
  381. genesis_get_stats(skge, data);
  382. else
  383. yukon_get_stats(skge, data);
  384. }
  385. /* Use hardware MIB variables for critical path statistics and
  386. * transmit feedback not reported at interrupt.
  387. * Other errors are accounted for in interrupt handler.
  388. */
  389. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  390. {
  391. struct skge_port *skge = netdev_priv(dev);
  392. u64 data[ARRAY_SIZE(skge_stats)];
  393. if (is_genesis(skge->hw))
  394. genesis_get_stats(skge, data);
  395. else
  396. yukon_get_stats(skge, data);
  397. dev->stats.tx_bytes = data[0];
  398. dev->stats.rx_bytes = data[1];
  399. dev->stats.tx_packets = data[2] + data[4] + data[6];
  400. dev->stats.rx_packets = data[3] + data[5] + data[7];
  401. dev->stats.multicast = data[3] + data[5];
  402. dev->stats.collisions = data[10];
  403. dev->stats.tx_aborted_errors = data[12];
  404. return &dev->stats;
  405. }
  406. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  407. {
  408. int i;
  409. switch (stringset) {
  410. case ETH_SS_STATS:
  411. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  412. memcpy(data + i * ETH_GSTRING_LEN,
  413. skge_stats[i].name, ETH_GSTRING_LEN);
  414. break;
  415. }
  416. }
  417. static void skge_get_ring_param(struct net_device *dev,
  418. struct ethtool_ringparam *p)
  419. {
  420. struct skge_port *skge = netdev_priv(dev);
  421. p->rx_max_pending = MAX_RX_RING_SIZE;
  422. p->tx_max_pending = MAX_TX_RING_SIZE;
  423. p->rx_pending = skge->rx_ring.count;
  424. p->tx_pending = skge->tx_ring.count;
  425. }
  426. static int skge_set_ring_param(struct net_device *dev,
  427. struct ethtool_ringparam *p)
  428. {
  429. struct skge_port *skge = netdev_priv(dev);
  430. int err = 0;
  431. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  432. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  433. return -EINVAL;
  434. skge->rx_ring.count = p->rx_pending;
  435. skge->tx_ring.count = p->tx_pending;
  436. if (netif_running(dev)) {
  437. skge_down(dev);
  438. err = skge_up(dev);
  439. if (err)
  440. dev_close(dev);
  441. }
  442. return err;
  443. }
  444. static u32 skge_get_msglevel(struct net_device *netdev)
  445. {
  446. struct skge_port *skge = netdev_priv(netdev);
  447. return skge->msg_enable;
  448. }
  449. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  450. {
  451. struct skge_port *skge = netdev_priv(netdev);
  452. skge->msg_enable = value;
  453. }
  454. static int skge_nway_reset(struct net_device *dev)
  455. {
  456. struct skge_port *skge = netdev_priv(dev);
  457. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  458. return -EINVAL;
  459. skge_phy_reset(skge);
  460. return 0;
  461. }
  462. static void skge_get_pauseparam(struct net_device *dev,
  463. struct ethtool_pauseparam *ecmd)
  464. {
  465. struct skge_port *skge = netdev_priv(dev);
  466. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  467. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  468. ecmd->tx_pause = (ecmd->rx_pause ||
  469. (skge->flow_control == FLOW_MODE_LOC_SEND));
  470. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  471. }
  472. static int skge_set_pauseparam(struct net_device *dev,
  473. struct ethtool_pauseparam *ecmd)
  474. {
  475. struct skge_port *skge = netdev_priv(dev);
  476. struct ethtool_pauseparam old;
  477. int err = 0;
  478. skge_get_pauseparam(dev, &old);
  479. if (ecmd->autoneg != old.autoneg)
  480. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  481. else {
  482. if (ecmd->rx_pause && ecmd->tx_pause)
  483. skge->flow_control = FLOW_MODE_SYMMETRIC;
  484. else if (ecmd->rx_pause && !ecmd->tx_pause)
  485. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  486. else if (!ecmd->rx_pause && ecmd->tx_pause)
  487. skge->flow_control = FLOW_MODE_LOC_SEND;
  488. else
  489. skge->flow_control = FLOW_MODE_NONE;
  490. }
  491. if (netif_running(dev)) {
  492. skge_down(dev);
  493. err = skge_up(dev);
  494. if (err) {
  495. dev_close(dev);
  496. return err;
  497. }
  498. }
  499. return 0;
  500. }
  501. /* Chip internal frequency for clock calculations */
  502. static inline u32 hwkhz(const struct skge_hw *hw)
  503. {
  504. return is_genesis(hw) ? 53125 : 78125;
  505. }
  506. /* Chip HZ to microseconds */
  507. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  508. {
  509. return (ticks * 1000) / hwkhz(hw);
  510. }
  511. /* Microseconds to chip HZ */
  512. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  513. {
  514. return hwkhz(hw) * usec / 1000;
  515. }
  516. static int skge_get_coalesce(struct net_device *dev,
  517. struct ethtool_coalesce *ecmd)
  518. {
  519. struct skge_port *skge = netdev_priv(dev);
  520. struct skge_hw *hw = skge->hw;
  521. int port = skge->port;
  522. ecmd->rx_coalesce_usecs = 0;
  523. ecmd->tx_coalesce_usecs = 0;
  524. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  525. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  526. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  527. if (msk & rxirqmask[port])
  528. ecmd->rx_coalesce_usecs = delay;
  529. if (msk & txirqmask[port])
  530. ecmd->tx_coalesce_usecs = delay;
  531. }
  532. return 0;
  533. }
  534. /* Note: interrupt timer is per board, but can turn on/off per port */
  535. static int skge_set_coalesce(struct net_device *dev,
  536. struct ethtool_coalesce *ecmd)
  537. {
  538. struct skge_port *skge = netdev_priv(dev);
  539. struct skge_hw *hw = skge->hw;
  540. int port = skge->port;
  541. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  542. u32 delay = 25;
  543. if (ecmd->rx_coalesce_usecs == 0)
  544. msk &= ~rxirqmask[port];
  545. else if (ecmd->rx_coalesce_usecs < 25 ||
  546. ecmd->rx_coalesce_usecs > 33333)
  547. return -EINVAL;
  548. else {
  549. msk |= rxirqmask[port];
  550. delay = ecmd->rx_coalesce_usecs;
  551. }
  552. if (ecmd->tx_coalesce_usecs == 0)
  553. msk &= ~txirqmask[port];
  554. else if (ecmd->tx_coalesce_usecs < 25 ||
  555. ecmd->tx_coalesce_usecs > 33333)
  556. return -EINVAL;
  557. else {
  558. msk |= txirqmask[port];
  559. delay = min(delay, ecmd->rx_coalesce_usecs);
  560. }
  561. skge_write32(hw, B2_IRQM_MSK, msk);
  562. if (msk == 0)
  563. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  564. else {
  565. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  566. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  567. }
  568. return 0;
  569. }
  570. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  571. static void skge_led(struct skge_port *skge, enum led_mode mode)
  572. {
  573. struct skge_hw *hw = skge->hw;
  574. int port = skge->port;
  575. spin_lock_bh(&hw->phy_lock);
  576. if (is_genesis(hw)) {
  577. switch (mode) {
  578. case LED_MODE_OFF:
  579. if (hw->phy_type == SK_PHY_BCOM)
  580. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  581. else {
  582. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  583. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  584. }
  585. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  586. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  587. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  588. break;
  589. case LED_MODE_ON:
  590. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  591. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  592. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  593. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  594. break;
  595. case LED_MODE_TST:
  596. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  597. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  598. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  599. if (hw->phy_type == SK_PHY_BCOM)
  600. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  601. else {
  602. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  603. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  604. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  605. }
  606. }
  607. } else {
  608. switch (mode) {
  609. case LED_MODE_OFF:
  610. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  611. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  612. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  613. PHY_M_LED_MO_10(MO_LED_OFF) |
  614. PHY_M_LED_MO_100(MO_LED_OFF) |
  615. PHY_M_LED_MO_1000(MO_LED_OFF) |
  616. PHY_M_LED_MO_RX(MO_LED_OFF));
  617. break;
  618. case LED_MODE_ON:
  619. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  620. PHY_M_LED_PULS_DUR(PULS_170MS) |
  621. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  622. PHY_M_LEDC_TX_CTRL |
  623. PHY_M_LEDC_DP_CTRL);
  624. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  625. PHY_M_LED_MO_RX(MO_LED_OFF) |
  626. (skge->speed == SPEED_100 ?
  627. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  628. break;
  629. case LED_MODE_TST:
  630. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  631. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  632. PHY_M_LED_MO_DUP(MO_LED_ON) |
  633. PHY_M_LED_MO_10(MO_LED_ON) |
  634. PHY_M_LED_MO_100(MO_LED_ON) |
  635. PHY_M_LED_MO_1000(MO_LED_ON) |
  636. PHY_M_LED_MO_RX(MO_LED_ON));
  637. }
  638. }
  639. spin_unlock_bh(&hw->phy_lock);
  640. }
  641. /* blink LED's for finding board */
  642. static int skge_set_phys_id(struct net_device *dev,
  643. enum ethtool_phys_id_state state)
  644. {
  645. struct skge_port *skge = netdev_priv(dev);
  646. switch (state) {
  647. case ETHTOOL_ID_ACTIVE:
  648. return 2; /* cycle on/off twice per second */
  649. case ETHTOOL_ID_ON:
  650. skge_led(skge, LED_MODE_TST);
  651. break;
  652. case ETHTOOL_ID_OFF:
  653. skge_led(skge, LED_MODE_OFF);
  654. break;
  655. case ETHTOOL_ID_INACTIVE:
  656. /* back to regular LED state */
  657. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  658. }
  659. return 0;
  660. }
  661. static int skge_get_eeprom_len(struct net_device *dev)
  662. {
  663. struct skge_port *skge = netdev_priv(dev);
  664. u32 reg2;
  665. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  666. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  667. }
  668. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  669. {
  670. u32 val;
  671. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  672. do {
  673. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  674. } while (!(offset & PCI_VPD_ADDR_F));
  675. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  676. return val;
  677. }
  678. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  679. {
  680. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  681. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  682. offset | PCI_VPD_ADDR_F);
  683. do {
  684. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  685. } while (offset & PCI_VPD_ADDR_F);
  686. }
  687. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  688. u8 *data)
  689. {
  690. struct skge_port *skge = netdev_priv(dev);
  691. struct pci_dev *pdev = skge->hw->pdev;
  692. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  693. int length = eeprom->len;
  694. u16 offset = eeprom->offset;
  695. if (!cap)
  696. return -EINVAL;
  697. eeprom->magic = SKGE_EEPROM_MAGIC;
  698. while (length > 0) {
  699. u32 val = skge_vpd_read(pdev, cap, offset);
  700. int n = min_t(int, length, sizeof(val));
  701. memcpy(data, &val, n);
  702. length -= n;
  703. data += n;
  704. offset += n;
  705. }
  706. return 0;
  707. }
  708. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  709. u8 *data)
  710. {
  711. struct skge_port *skge = netdev_priv(dev);
  712. struct pci_dev *pdev = skge->hw->pdev;
  713. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  714. int length = eeprom->len;
  715. u16 offset = eeprom->offset;
  716. if (!cap)
  717. return -EINVAL;
  718. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  719. return -EINVAL;
  720. while (length > 0) {
  721. u32 val;
  722. int n = min_t(int, length, sizeof(val));
  723. if (n < sizeof(val))
  724. val = skge_vpd_read(pdev, cap, offset);
  725. memcpy(&val, data, n);
  726. skge_vpd_write(pdev, cap, offset, val);
  727. length -= n;
  728. data += n;
  729. offset += n;
  730. }
  731. return 0;
  732. }
  733. static const struct ethtool_ops skge_ethtool_ops = {
  734. .get_settings = skge_get_settings,
  735. .set_settings = skge_set_settings,
  736. .get_drvinfo = skge_get_drvinfo,
  737. .get_regs_len = skge_get_regs_len,
  738. .get_regs = skge_get_regs,
  739. .get_wol = skge_get_wol,
  740. .set_wol = skge_set_wol,
  741. .get_msglevel = skge_get_msglevel,
  742. .set_msglevel = skge_set_msglevel,
  743. .nway_reset = skge_nway_reset,
  744. .get_link = ethtool_op_get_link,
  745. .get_eeprom_len = skge_get_eeprom_len,
  746. .get_eeprom = skge_get_eeprom,
  747. .set_eeprom = skge_set_eeprom,
  748. .get_ringparam = skge_get_ring_param,
  749. .set_ringparam = skge_set_ring_param,
  750. .get_pauseparam = skge_get_pauseparam,
  751. .set_pauseparam = skge_set_pauseparam,
  752. .get_coalesce = skge_get_coalesce,
  753. .set_coalesce = skge_set_coalesce,
  754. .get_strings = skge_get_strings,
  755. .set_phys_id = skge_set_phys_id,
  756. .get_sset_count = skge_get_sset_count,
  757. .get_ethtool_stats = skge_get_ethtool_stats,
  758. };
  759. /*
  760. * Allocate ring elements and chain them together
  761. * One-to-one association of board descriptors with ring elements
  762. */
  763. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  764. {
  765. struct skge_tx_desc *d;
  766. struct skge_element *e;
  767. int i;
  768. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  769. if (!ring->start)
  770. return -ENOMEM;
  771. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  772. e->desc = d;
  773. if (i == ring->count - 1) {
  774. e->next = ring->start;
  775. d->next_offset = base;
  776. } else {
  777. e->next = e + 1;
  778. d->next_offset = base + (i+1) * sizeof(*d);
  779. }
  780. }
  781. ring->to_use = ring->to_clean = ring->start;
  782. return 0;
  783. }
  784. /* Allocate and setup a new buffer for receiving */
  785. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  786. struct sk_buff *skb, unsigned int bufsize)
  787. {
  788. struct skge_rx_desc *rd = e->desc;
  789. u64 map;
  790. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  791. PCI_DMA_FROMDEVICE);
  792. rd->dma_lo = map;
  793. rd->dma_hi = map >> 32;
  794. e->skb = skb;
  795. rd->csum1_start = ETH_HLEN;
  796. rd->csum2_start = ETH_HLEN;
  797. rd->csum1 = 0;
  798. rd->csum2 = 0;
  799. wmb();
  800. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  801. dma_unmap_addr_set(e, mapaddr, map);
  802. dma_unmap_len_set(e, maplen, bufsize);
  803. }
  804. /* Resume receiving using existing skb,
  805. * Note: DMA address is not changed by chip.
  806. * MTU not changed while receiver active.
  807. */
  808. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  809. {
  810. struct skge_rx_desc *rd = e->desc;
  811. rd->csum2 = 0;
  812. rd->csum2_start = ETH_HLEN;
  813. wmb();
  814. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  815. }
  816. /* Free all buffers in receive ring, assumes receiver stopped */
  817. static void skge_rx_clean(struct skge_port *skge)
  818. {
  819. struct skge_hw *hw = skge->hw;
  820. struct skge_ring *ring = &skge->rx_ring;
  821. struct skge_element *e;
  822. e = ring->start;
  823. do {
  824. struct skge_rx_desc *rd = e->desc;
  825. rd->control = 0;
  826. if (e->skb) {
  827. pci_unmap_single(hw->pdev,
  828. dma_unmap_addr(e, mapaddr),
  829. dma_unmap_len(e, maplen),
  830. PCI_DMA_FROMDEVICE);
  831. dev_kfree_skb(e->skb);
  832. e->skb = NULL;
  833. }
  834. } while ((e = e->next) != ring->start);
  835. }
  836. /* Allocate buffers for receive ring
  837. * For receive: to_clean is next received frame.
  838. */
  839. static int skge_rx_fill(struct net_device *dev)
  840. {
  841. struct skge_port *skge = netdev_priv(dev);
  842. struct skge_ring *ring = &skge->rx_ring;
  843. struct skge_element *e;
  844. e = ring->start;
  845. do {
  846. struct sk_buff *skb;
  847. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  848. GFP_KERNEL);
  849. if (!skb)
  850. return -ENOMEM;
  851. skb_reserve(skb, NET_IP_ALIGN);
  852. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  853. } while ((e = e->next) != ring->start);
  854. ring->to_clean = ring->start;
  855. return 0;
  856. }
  857. static const char *skge_pause(enum pause_status status)
  858. {
  859. switch (status) {
  860. case FLOW_STAT_NONE:
  861. return "none";
  862. case FLOW_STAT_REM_SEND:
  863. return "rx only";
  864. case FLOW_STAT_LOC_SEND:
  865. return "tx_only";
  866. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  867. return "both";
  868. default:
  869. return "indeterminated";
  870. }
  871. }
  872. static void skge_link_up(struct skge_port *skge)
  873. {
  874. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  875. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  876. netif_carrier_on(skge->netdev);
  877. netif_wake_queue(skge->netdev);
  878. netif_info(skge, link, skge->netdev,
  879. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  880. skge->speed,
  881. skge->duplex == DUPLEX_FULL ? "full" : "half",
  882. skge_pause(skge->flow_status));
  883. }
  884. static void skge_link_down(struct skge_port *skge)
  885. {
  886. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  887. netif_carrier_off(skge->netdev);
  888. netif_stop_queue(skge->netdev);
  889. netif_info(skge, link, skge->netdev, "Link is down\n");
  890. }
  891. static void xm_link_down(struct skge_hw *hw, int port)
  892. {
  893. struct net_device *dev = hw->dev[port];
  894. struct skge_port *skge = netdev_priv(dev);
  895. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  896. if (netif_carrier_ok(dev))
  897. skge_link_down(skge);
  898. }
  899. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  900. {
  901. int i;
  902. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  903. *val = xm_read16(hw, port, XM_PHY_DATA);
  904. if (hw->phy_type == SK_PHY_XMAC)
  905. goto ready;
  906. for (i = 0; i < PHY_RETRIES; i++) {
  907. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  908. goto ready;
  909. udelay(1);
  910. }
  911. return -ETIMEDOUT;
  912. ready:
  913. *val = xm_read16(hw, port, XM_PHY_DATA);
  914. return 0;
  915. }
  916. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  917. {
  918. u16 v = 0;
  919. if (__xm_phy_read(hw, port, reg, &v))
  920. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  921. return v;
  922. }
  923. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  924. {
  925. int i;
  926. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  927. for (i = 0; i < PHY_RETRIES; i++) {
  928. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  929. goto ready;
  930. udelay(1);
  931. }
  932. return -EIO;
  933. ready:
  934. xm_write16(hw, port, XM_PHY_DATA, val);
  935. for (i = 0; i < PHY_RETRIES; i++) {
  936. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  937. return 0;
  938. udelay(1);
  939. }
  940. return -ETIMEDOUT;
  941. }
  942. static void genesis_init(struct skge_hw *hw)
  943. {
  944. /* set blink source counter */
  945. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  946. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  947. /* configure mac arbiter */
  948. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  949. /* configure mac arbiter timeout values */
  950. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  951. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  952. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  953. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  954. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  955. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  956. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  957. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  958. /* configure packet arbiter timeout */
  959. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  960. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  961. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  962. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  963. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  964. }
  965. static void genesis_reset(struct skge_hw *hw, int port)
  966. {
  967. static const u8 zero[8] = { 0 };
  968. u32 reg;
  969. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  970. /* reset the statistics module */
  971. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  972. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  973. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  974. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  975. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  976. /* disable Broadcom PHY IRQ */
  977. if (hw->phy_type == SK_PHY_BCOM)
  978. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  979. xm_outhash(hw, port, XM_HSM, zero);
  980. /* Flush TX and RX fifo */
  981. reg = xm_read32(hw, port, XM_MODE);
  982. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  983. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  984. }
  985. /* Convert mode to MII values */
  986. static const u16 phy_pause_map[] = {
  987. [FLOW_MODE_NONE] = 0,
  988. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  989. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  990. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  991. };
  992. /* special defines for FIBER (88E1011S only) */
  993. static const u16 fiber_pause_map[] = {
  994. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  995. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  996. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  997. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  998. };
  999. /* Check status of Broadcom phy link */
  1000. static void bcom_check_link(struct skge_hw *hw, int port)
  1001. {
  1002. struct net_device *dev = hw->dev[port];
  1003. struct skge_port *skge = netdev_priv(dev);
  1004. u16 status;
  1005. /* read twice because of latch */
  1006. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1007. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1008. if ((status & PHY_ST_LSYNC) == 0) {
  1009. xm_link_down(hw, port);
  1010. return;
  1011. }
  1012. if (skge->autoneg == AUTONEG_ENABLE) {
  1013. u16 lpa, aux;
  1014. if (!(status & PHY_ST_AN_OVER))
  1015. return;
  1016. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1017. if (lpa & PHY_B_AN_RF) {
  1018. netdev_notice(dev, "remote fault\n");
  1019. return;
  1020. }
  1021. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1022. /* Check Duplex mismatch */
  1023. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1024. case PHY_B_RES_1000FD:
  1025. skge->duplex = DUPLEX_FULL;
  1026. break;
  1027. case PHY_B_RES_1000HD:
  1028. skge->duplex = DUPLEX_HALF;
  1029. break;
  1030. default:
  1031. netdev_notice(dev, "duplex mismatch\n");
  1032. return;
  1033. }
  1034. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1035. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1036. case PHY_B_AS_PAUSE_MSK:
  1037. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1038. break;
  1039. case PHY_B_AS_PRR:
  1040. skge->flow_status = FLOW_STAT_REM_SEND;
  1041. break;
  1042. case PHY_B_AS_PRT:
  1043. skge->flow_status = FLOW_STAT_LOC_SEND;
  1044. break;
  1045. default:
  1046. skge->flow_status = FLOW_STAT_NONE;
  1047. }
  1048. skge->speed = SPEED_1000;
  1049. }
  1050. if (!netif_carrier_ok(dev))
  1051. genesis_link_up(skge);
  1052. }
  1053. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1054. * Phy on for 100 or 10Mbit operation
  1055. */
  1056. static void bcom_phy_init(struct skge_port *skge)
  1057. {
  1058. struct skge_hw *hw = skge->hw;
  1059. int port = skge->port;
  1060. int i;
  1061. u16 id1, r, ext, ctl;
  1062. /* magic workaround patterns for Broadcom */
  1063. static const struct {
  1064. u16 reg;
  1065. u16 val;
  1066. } A1hack[] = {
  1067. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1068. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1069. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1070. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1071. }, C0hack[] = {
  1072. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1073. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1074. };
  1075. /* read Id from external PHY (all have the same address) */
  1076. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1077. /* Optimize MDIO transfer by suppressing preamble. */
  1078. r = xm_read16(hw, port, XM_MMU_CMD);
  1079. r |= XM_MMU_NO_PRE;
  1080. xm_write16(hw, port, XM_MMU_CMD, r);
  1081. switch (id1) {
  1082. case PHY_BCOM_ID1_C0:
  1083. /*
  1084. * Workaround BCOM Errata for the C0 type.
  1085. * Write magic patterns to reserved registers.
  1086. */
  1087. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1088. xm_phy_write(hw, port,
  1089. C0hack[i].reg, C0hack[i].val);
  1090. break;
  1091. case PHY_BCOM_ID1_A1:
  1092. /*
  1093. * Workaround BCOM Errata for the A1 type.
  1094. * Write magic patterns to reserved registers.
  1095. */
  1096. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1097. xm_phy_write(hw, port,
  1098. A1hack[i].reg, A1hack[i].val);
  1099. break;
  1100. }
  1101. /*
  1102. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1103. * Disable Power Management after reset.
  1104. */
  1105. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1106. r |= PHY_B_AC_DIS_PM;
  1107. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1108. /* Dummy read */
  1109. xm_read16(hw, port, XM_ISRC);
  1110. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1111. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1112. if (skge->autoneg == AUTONEG_ENABLE) {
  1113. /*
  1114. * Workaround BCOM Errata #1 for the C5 type.
  1115. * 1000Base-T Link Acquisition Failure in Slave Mode
  1116. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1117. */
  1118. u16 adv = PHY_B_1000C_RD;
  1119. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1120. adv |= PHY_B_1000C_AHD;
  1121. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1122. adv |= PHY_B_1000C_AFD;
  1123. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1124. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1125. } else {
  1126. if (skge->duplex == DUPLEX_FULL)
  1127. ctl |= PHY_CT_DUP_MD;
  1128. /* Force to slave */
  1129. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1130. }
  1131. /* Set autonegotiation pause parameters */
  1132. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1133. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1134. /* Handle Jumbo frames */
  1135. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1136. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1137. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1138. ext |= PHY_B_PEC_HIGH_LA;
  1139. }
  1140. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1141. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1142. /* Use link status change interrupt */
  1143. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1144. }
  1145. static void xm_phy_init(struct skge_port *skge)
  1146. {
  1147. struct skge_hw *hw = skge->hw;
  1148. int port = skge->port;
  1149. u16 ctrl = 0;
  1150. if (skge->autoneg == AUTONEG_ENABLE) {
  1151. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1152. ctrl |= PHY_X_AN_HD;
  1153. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1154. ctrl |= PHY_X_AN_FD;
  1155. ctrl |= fiber_pause_map[skge->flow_control];
  1156. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1157. /* Restart Auto-negotiation */
  1158. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1159. } else {
  1160. /* Set DuplexMode in Config register */
  1161. if (skge->duplex == DUPLEX_FULL)
  1162. ctrl |= PHY_CT_DUP_MD;
  1163. /*
  1164. * Do NOT enable Auto-negotiation here. This would hold
  1165. * the link down because no IDLEs are transmitted
  1166. */
  1167. }
  1168. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1169. /* Poll PHY for status changes */
  1170. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1171. }
  1172. static int xm_check_link(struct net_device *dev)
  1173. {
  1174. struct skge_port *skge = netdev_priv(dev);
  1175. struct skge_hw *hw = skge->hw;
  1176. int port = skge->port;
  1177. u16 status;
  1178. /* read twice because of latch */
  1179. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1180. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1181. if ((status & PHY_ST_LSYNC) == 0) {
  1182. xm_link_down(hw, port);
  1183. return 0;
  1184. }
  1185. if (skge->autoneg == AUTONEG_ENABLE) {
  1186. u16 lpa, res;
  1187. if (!(status & PHY_ST_AN_OVER))
  1188. return 0;
  1189. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1190. if (lpa & PHY_B_AN_RF) {
  1191. netdev_notice(dev, "remote fault\n");
  1192. return 0;
  1193. }
  1194. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1195. /* Check Duplex mismatch */
  1196. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1197. case PHY_X_RS_FD:
  1198. skge->duplex = DUPLEX_FULL;
  1199. break;
  1200. case PHY_X_RS_HD:
  1201. skge->duplex = DUPLEX_HALF;
  1202. break;
  1203. default:
  1204. netdev_notice(dev, "duplex mismatch\n");
  1205. return 0;
  1206. }
  1207. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1208. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1209. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1210. (lpa & PHY_X_P_SYM_MD))
  1211. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1212. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1213. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1214. /* Enable PAUSE receive, disable PAUSE transmit */
  1215. skge->flow_status = FLOW_STAT_REM_SEND;
  1216. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1217. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1218. /* Disable PAUSE receive, enable PAUSE transmit */
  1219. skge->flow_status = FLOW_STAT_LOC_SEND;
  1220. else
  1221. skge->flow_status = FLOW_STAT_NONE;
  1222. skge->speed = SPEED_1000;
  1223. }
  1224. if (!netif_carrier_ok(dev))
  1225. genesis_link_up(skge);
  1226. return 1;
  1227. }
  1228. /* Poll to check for link coming up.
  1229. *
  1230. * Since internal PHY is wired to a level triggered pin, can't
  1231. * get an interrupt when carrier is detected, need to poll for
  1232. * link coming up.
  1233. */
  1234. static void xm_link_timer(unsigned long arg)
  1235. {
  1236. struct skge_port *skge = (struct skge_port *) arg;
  1237. struct net_device *dev = skge->netdev;
  1238. struct skge_hw *hw = skge->hw;
  1239. int port = skge->port;
  1240. int i;
  1241. unsigned long flags;
  1242. if (!netif_running(dev))
  1243. return;
  1244. spin_lock_irqsave(&hw->phy_lock, flags);
  1245. /*
  1246. * Verify that the link by checking GPIO register three times.
  1247. * This pin has the signal from the link_sync pin connected to it.
  1248. */
  1249. for (i = 0; i < 3; i++) {
  1250. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1251. goto link_down;
  1252. }
  1253. /* Re-enable interrupt to detect link down */
  1254. if (xm_check_link(dev)) {
  1255. u16 msk = xm_read16(hw, port, XM_IMSK);
  1256. msk &= ~XM_IS_INP_ASS;
  1257. xm_write16(hw, port, XM_IMSK, msk);
  1258. xm_read16(hw, port, XM_ISRC);
  1259. } else {
  1260. link_down:
  1261. mod_timer(&skge->link_timer,
  1262. round_jiffies(jiffies + LINK_HZ));
  1263. }
  1264. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1265. }
  1266. static void genesis_mac_init(struct skge_hw *hw, int port)
  1267. {
  1268. struct net_device *dev = hw->dev[port];
  1269. struct skge_port *skge = netdev_priv(dev);
  1270. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1271. int i;
  1272. u32 r;
  1273. static const u8 zero[6] = { 0 };
  1274. for (i = 0; i < 10; i++) {
  1275. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1276. MFF_SET_MAC_RST);
  1277. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1278. goto reset_ok;
  1279. udelay(1);
  1280. }
  1281. netdev_warn(dev, "genesis reset failed\n");
  1282. reset_ok:
  1283. /* Unreset the XMAC. */
  1284. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1285. /*
  1286. * Perform additional initialization for external PHYs,
  1287. * namely for the 1000baseTX cards that use the XMAC's
  1288. * GMII mode.
  1289. */
  1290. if (hw->phy_type != SK_PHY_XMAC) {
  1291. /* Take external Phy out of reset */
  1292. r = skge_read32(hw, B2_GP_IO);
  1293. if (port == 0)
  1294. r |= GP_DIR_0|GP_IO_0;
  1295. else
  1296. r |= GP_DIR_2|GP_IO_2;
  1297. skge_write32(hw, B2_GP_IO, r);
  1298. /* Enable GMII interface */
  1299. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1300. }
  1301. switch (hw->phy_type) {
  1302. case SK_PHY_XMAC:
  1303. xm_phy_init(skge);
  1304. break;
  1305. case SK_PHY_BCOM:
  1306. bcom_phy_init(skge);
  1307. bcom_check_link(hw, port);
  1308. }
  1309. /* Set Station Address */
  1310. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1311. /* We don't use match addresses so clear */
  1312. for (i = 1; i < 16; i++)
  1313. xm_outaddr(hw, port, XM_EXM(i), zero);
  1314. /* Clear MIB counters */
  1315. xm_write16(hw, port, XM_STAT_CMD,
  1316. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1317. /* Clear two times according to Errata #3 */
  1318. xm_write16(hw, port, XM_STAT_CMD,
  1319. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1320. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1321. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1322. /* We don't need the FCS appended to the packet. */
  1323. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1324. if (jumbo)
  1325. r |= XM_RX_BIG_PK_OK;
  1326. if (skge->duplex == DUPLEX_HALF) {
  1327. /*
  1328. * If in manual half duplex mode the other side might be in
  1329. * full duplex mode, so ignore if a carrier extension is not seen
  1330. * on frames received
  1331. */
  1332. r |= XM_RX_DIS_CEXT;
  1333. }
  1334. xm_write16(hw, port, XM_RX_CMD, r);
  1335. /* We want short frames padded to 60 bytes. */
  1336. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1337. /* Increase threshold for jumbo frames on dual port */
  1338. if (hw->ports > 1 && jumbo)
  1339. xm_write16(hw, port, XM_TX_THR, 1020);
  1340. else
  1341. xm_write16(hw, port, XM_TX_THR, 512);
  1342. /*
  1343. * Enable the reception of all error frames. This is is
  1344. * a necessary evil due to the design of the XMAC. The
  1345. * XMAC's receive FIFO is only 8K in size, however jumbo
  1346. * frames can be up to 9000 bytes in length. When bad
  1347. * frame filtering is enabled, the XMAC's RX FIFO operates
  1348. * in 'store and forward' mode. For this to work, the
  1349. * entire frame has to fit into the FIFO, but that means
  1350. * that jumbo frames larger than 8192 bytes will be
  1351. * truncated. Disabling all bad frame filtering causes
  1352. * the RX FIFO to operate in streaming mode, in which
  1353. * case the XMAC will start transferring frames out of the
  1354. * RX FIFO as soon as the FIFO threshold is reached.
  1355. */
  1356. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1357. /*
  1358. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1359. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1360. * and 'Octets Rx OK Hi Cnt Ov'.
  1361. */
  1362. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1363. /*
  1364. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1365. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1366. * and 'Octets Tx OK Hi Cnt Ov'.
  1367. */
  1368. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1369. /* Configure MAC arbiter */
  1370. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1371. /* configure timeout values */
  1372. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1373. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1374. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1375. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1376. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1377. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1378. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1379. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1380. /* Configure Rx MAC FIFO */
  1381. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1382. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1383. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1384. /* Configure Tx MAC FIFO */
  1385. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1386. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1387. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1388. if (jumbo) {
  1389. /* Enable frame flushing if jumbo frames used */
  1390. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1391. } else {
  1392. /* enable timeout timers if normal frames */
  1393. skge_write16(hw, B3_PA_CTRL,
  1394. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1395. }
  1396. }
  1397. static void genesis_stop(struct skge_port *skge)
  1398. {
  1399. struct skge_hw *hw = skge->hw;
  1400. int port = skge->port;
  1401. unsigned retries = 1000;
  1402. u16 cmd;
  1403. /* Disable Tx and Rx */
  1404. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1405. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1406. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1407. genesis_reset(hw, port);
  1408. /* Clear Tx packet arbiter timeout IRQ */
  1409. skge_write16(hw, B3_PA_CTRL,
  1410. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1411. /* Reset the MAC */
  1412. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1413. do {
  1414. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1415. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1416. break;
  1417. } while (--retries > 0);
  1418. /* For external PHYs there must be special handling */
  1419. if (hw->phy_type != SK_PHY_XMAC) {
  1420. u32 reg = skge_read32(hw, B2_GP_IO);
  1421. if (port == 0) {
  1422. reg |= GP_DIR_0;
  1423. reg &= ~GP_IO_0;
  1424. } else {
  1425. reg |= GP_DIR_2;
  1426. reg &= ~GP_IO_2;
  1427. }
  1428. skge_write32(hw, B2_GP_IO, reg);
  1429. skge_read32(hw, B2_GP_IO);
  1430. }
  1431. xm_write16(hw, port, XM_MMU_CMD,
  1432. xm_read16(hw, port, XM_MMU_CMD)
  1433. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1434. xm_read16(hw, port, XM_MMU_CMD);
  1435. }
  1436. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1437. {
  1438. struct skge_hw *hw = skge->hw;
  1439. int port = skge->port;
  1440. int i;
  1441. unsigned long timeout = jiffies + HZ;
  1442. xm_write16(hw, port,
  1443. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1444. /* wait for update to complete */
  1445. while (xm_read16(hw, port, XM_STAT_CMD)
  1446. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1447. if (time_after(jiffies, timeout))
  1448. break;
  1449. udelay(10);
  1450. }
  1451. /* special case for 64 bit octet counter */
  1452. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1453. | xm_read32(hw, port, XM_TXO_OK_LO);
  1454. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1455. | xm_read32(hw, port, XM_RXO_OK_LO);
  1456. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1457. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1458. }
  1459. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1460. {
  1461. struct net_device *dev = hw->dev[port];
  1462. struct skge_port *skge = netdev_priv(dev);
  1463. u16 status = xm_read16(hw, port, XM_ISRC);
  1464. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1465. "mac interrupt status 0x%x\n", status);
  1466. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1467. xm_link_down(hw, port);
  1468. mod_timer(&skge->link_timer, jiffies + 1);
  1469. }
  1470. if (status & XM_IS_TXF_UR) {
  1471. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1472. ++dev->stats.tx_fifo_errors;
  1473. }
  1474. }
  1475. static void genesis_link_up(struct skge_port *skge)
  1476. {
  1477. struct skge_hw *hw = skge->hw;
  1478. int port = skge->port;
  1479. u16 cmd, msk;
  1480. u32 mode;
  1481. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1482. /*
  1483. * enabling pause frame reception is required for 1000BT
  1484. * because the XMAC is not reset if the link is going down
  1485. */
  1486. if (skge->flow_status == FLOW_STAT_NONE ||
  1487. skge->flow_status == FLOW_STAT_LOC_SEND)
  1488. /* Disable Pause Frame Reception */
  1489. cmd |= XM_MMU_IGN_PF;
  1490. else
  1491. /* Enable Pause Frame Reception */
  1492. cmd &= ~XM_MMU_IGN_PF;
  1493. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1494. mode = xm_read32(hw, port, XM_MODE);
  1495. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1496. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1497. /*
  1498. * Configure Pause Frame Generation
  1499. * Use internal and external Pause Frame Generation.
  1500. * Sending pause frames is edge triggered.
  1501. * Send a Pause frame with the maximum pause time if
  1502. * internal oder external FIFO full condition occurs.
  1503. * Send a zero pause time frame to re-start transmission.
  1504. */
  1505. /* XM_PAUSE_DA = '010000C28001' (default) */
  1506. /* XM_MAC_PTIME = 0xffff (maximum) */
  1507. /* remember this value is defined in big endian (!) */
  1508. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1509. mode |= XM_PAUSE_MODE;
  1510. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1511. } else {
  1512. /*
  1513. * disable pause frame generation is required for 1000BT
  1514. * because the XMAC is not reset if the link is going down
  1515. */
  1516. /* Disable Pause Mode in Mode Register */
  1517. mode &= ~XM_PAUSE_MODE;
  1518. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1519. }
  1520. xm_write32(hw, port, XM_MODE, mode);
  1521. /* Turn on detection of Tx underrun */
  1522. msk = xm_read16(hw, port, XM_IMSK);
  1523. msk &= ~XM_IS_TXF_UR;
  1524. xm_write16(hw, port, XM_IMSK, msk);
  1525. xm_read16(hw, port, XM_ISRC);
  1526. /* get MMU Command Reg. */
  1527. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1528. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1529. cmd |= XM_MMU_GMII_FD;
  1530. /*
  1531. * Workaround BCOM Errata (#10523) for all BCom Phys
  1532. * Enable Power Management after link up
  1533. */
  1534. if (hw->phy_type == SK_PHY_BCOM) {
  1535. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1536. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1537. & ~PHY_B_AC_DIS_PM);
  1538. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1539. }
  1540. /* enable Rx/Tx */
  1541. xm_write16(hw, port, XM_MMU_CMD,
  1542. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1543. skge_link_up(skge);
  1544. }
  1545. static inline void bcom_phy_intr(struct skge_port *skge)
  1546. {
  1547. struct skge_hw *hw = skge->hw;
  1548. int port = skge->port;
  1549. u16 isrc;
  1550. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1551. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1552. "phy interrupt status 0x%x\n", isrc);
  1553. if (isrc & PHY_B_IS_PSE)
  1554. pr_err("%s: uncorrectable pair swap error\n",
  1555. hw->dev[port]->name);
  1556. /* Workaround BCom Errata:
  1557. * enable and disable loopback mode if "NO HCD" occurs.
  1558. */
  1559. if (isrc & PHY_B_IS_NO_HDCL) {
  1560. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1561. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1562. ctrl | PHY_CT_LOOP);
  1563. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1564. ctrl & ~PHY_CT_LOOP);
  1565. }
  1566. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1567. bcom_check_link(hw, port);
  1568. }
  1569. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1570. {
  1571. int i;
  1572. gma_write16(hw, port, GM_SMI_DATA, val);
  1573. gma_write16(hw, port, GM_SMI_CTRL,
  1574. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1575. for (i = 0; i < PHY_RETRIES; i++) {
  1576. udelay(1);
  1577. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1578. return 0;
  1579. }
  1580. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1581. return -EIO;
  1582. }
  1583. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1584. {
  1585. int i;
  1586. gma_write16(hw, port, GM_SMI_CTRL,
  1587. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1588. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1589. for (i = 0; i < PHY_RETRIES; i++) {
  1590. udelay(1);
  1591. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1592. goto ready;
  1593. }
  1594. return -ETIMEDOUT;
  1595. ready:
  1596. *val = gma_read16(hw, port, GM_SMI_DATA);
  1597. return 0;
  1598. }
  1599. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1600. {
  1601. u16 v = 0;
  1602. if (__gm_phy_read(hw, port, reg, &v))
  1603. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1604. return v;
  1605. }
  1606. /* Marvell Phy Initialization */
  1607. static void yukon_init(struct skge_hw *hw, int port)
  1608. {
  1609. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1610. u16 ctrl, ct1000, adv;
  1611. if (skge->autoneg == AUTONEG_ENABLE) {
  1612. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1613. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1614. PHY_M_EC_MAC_S_MSK);
  1615. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1616. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1617. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1618. }
  1619. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1620. if (skge->autoneg == AUTONEG_DISABLE)
  1621. ctrl &= ~PHY_CT_ANE;
  1622. ctrl |= PHY_CT_RESET;
  1623. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1624. ctrl = 0;
  1625. ct1000 = 0;
  1626. adv = PHY_AN_CSMA;
  1627. if (skge->autoneg == AUTONEG_ENABLE) {
  1628. if (hw->copper) {
  1629. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1630. ct1000 |= PHY_M_1000C_AFD;
  1631. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1632. ct1000 |= PHY_M_1000C_AHD;
  1633. if (skge->advertising & ADVERTISED_100baseT_Full)
  1634. adv |= PHY_M_AN_100_FD;
  1635. if (skge->advertising & ADVERTISED_100baseT_Half)
  1636. adv |= PHY_M_AN_100_HD;
  1637. if (skge->advertising & ADVERTISED_10baseT_Full)
  1638. adv |= PHY_M_AN_10_FD;
  1639. if (skge->advertising & ADVERTISED_10baseT_Half)
  1640. adv |= PHY_M_AN_10_HD;
  1641. /* Set Flow-control capabilities */
  1642. adv |= phy_pause_map[skge->flow_control];
  1643. } else {
  1644. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1645. adv |= PHY_M_AN_1000X_AFD;
  1646. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1647. adv |= PHY_M_AN_1000X_AHD;
  1648. adv |= fiber_pause_map[skge->flow_control];
  1649. }
  1650. /* Restart Auto-negotiation */
  1651. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1652. } else {
  1653. /* forced speed/duplex settings */
  1654. ct1000 = PHY_M_1000C_MSE;
  1655. if (skge->duplex == DUPLEX_FULL)
  1656. ctrl |= PHY_CT_DUP_MD;
  1657. switch (skge->speed) {
  1658. case SPEED_1000:
  1659. ctrl |= PHY_CT_SP1000;
  1660. break;
  1661. case SPEED_100:
  1662. ctrl |= PHY_CT_SP100;
  1663. break;
  1664. }
  1665. ctrl |= PHY_CT_RESET;
  1666. }
  1667. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1668. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1669. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1670. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1671. if (skge->autoneg == AUTONEG_ENABLE)
  1672. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1673. else
  1674. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1675. }
  1676. static void yukon_reset(struct skge_hw *hw, int port)
  1677. {
  1678. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1679. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1680. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1681. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1682. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1683. gma_write16(hw, port, GM_RX_CTRL,
  1684. gma_read16(hw, port, GM_RX_CTRL)
  1685. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1686. }
  1687. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1688. static int is_yukon_lite_a0(struct skge_hw *hw)
  1689. {
  1690. u32 reg;
  1691. int ret;
  1692. if (hw->chip_id != CHIP_ID_YUKON)
  1693. return 0;
  1694. reg = skge_read32(hw, B2_FAR);
  1695. skge_write8(hw, B2_FAR + 3, 0xff);
  1696. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1697. skge_write32(hw, B2_FAR, reg);
  1698. return ret;
  1699. }
  1700. static void yukon_mac_init(struct skge_hw *hw, int port)
  1701. {
  1702. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1703. int i;
  1704. u32 reg;
  1705. const u8 *addr = hw->dev[port]->dev_addr;
  1706. /* WA code for COMA mode -- set PHY reset */
  1707. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1708. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1709. reg = skge_read32(hw, B2_GP_IO);
  1710. reg |= GP_DIR_9 | GP_IO_9;
  1711. skge_write32(hw, B2_GP_IO, reg);
  1712. }
  1713. /* hard reset */
  1714. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1715. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1716. /* WA code for COMA mode -- clear PHY reset */
  1717. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1718. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1719. reg = skge_read32(hw, B2_GP_IO);
  1720. reg |= GP_DIR_9;
  1721. reg &= ~GP_IO_9;
  1722. skge_write32(hw, B2_GP_IO, reg);
  1723. }
  1724. /* Set hardware config mode */
  1725. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1726. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1727. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1728. /* Clear GMC reset */
  1729. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1730. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1731. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1732. if (skge->autoneg == AUTONEG_DISABLE) {
  1733. reg = GM_GPCR_AU_ALL_DIS;
  1734. gma_write16(hw, port, GM_GP_CTRL,
  1735. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1736. switch (skge->speed) {
  1737. case SPEED_1000:
  1738. reg &= ~GM_GPCR_SPEED_100;
  1739. reg |= GM_GPCR_SPEED_1000;
  1740. break;
  1741. case SPEED_100:
  1742. reg &= ~GM_GPCR_SPEED_1000;
  1743. reg |= GM_GPCR_SPEED_100;
  1744. break;
  1745. case SPEED_10:
  1746. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1747. break;
  1748. }
  1749. if (skge->duplex == DUPLEX_FULL)
  1750. reg |= GM_GPCR_DUP_FULL;
  1751. } else
  1752. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1753. switch (skge->flow_control) {
  1754. case FLOW_MODE_NONE:
  1755. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1756. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1757. break;
  1758. case FLOW_MODE_LOC_SEND:
  1759. /* disable Rx flow-control */
  1760. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1761. break;
  1762. case FLOW_MODE_SYMMETRIC:
  1763. case FLOW_MODE_SYM_OR_REM:
  1764. /* enable Tx & Rx flow-control */
  1765. break;
  1766. }
  1767. gma_write16(hw, port, GM_GP_CTRL, reg);
  1768. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1769. yukon_init(hw, port);
  1770. /* MIB clear */
  1771. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1772. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1773. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1774. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1775. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1776. /* transmit control */
  1777. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1778. /* receive control reg: unicast + multicast + no FCS */
  1779. gma_write16(hw, port, GM_RX_CTRL,
  1780. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1781. /* transmit flow control */
  1782. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1783. /* transmit parameter */
  1784. gma_write16(hw, port, GM_TX_PARAM,
  1785. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1786. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1787. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1788. /* configure the Serial Mode Register */
  1789. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1790. | GM_SMOD_VLAN_ENA
  1791. | IPG_DATA_VAL(IPG_DATA_DEF);
  1792. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1793. reg |= GM_SMOD_JUMBO_ENA;
  1794. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1795. /* physical address: used for pause frames */
  1796. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1797. /* virtual address for data */
  1798. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1799. /* enable interrupt mask for counter overflows */
  1800. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1801. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1802. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1803. /* Initialize Mac Fifo */
  1804. /* Configure Rx MAC FIFO */
  1805. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1806. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1807. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1808. if (is_yukon_lite_a0(hw))
  1809. reg &= ~GMF_RX_F_FL_ON;
  1810. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1811. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1812. /*
  1813. * because Pause Packet Truncation in GMAC is not working
  1814. * we have to increase the Flush Threshold to 64 bytes
  1815. * in order to flush pause packets in Rx FIFO on Yukon-1
  1816. */
  1817. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1818. /* Configure Tx MAC FIFO */
  1819. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1820. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1821. }
  1822. /* Go into power down mode */
  1823. static void yukon_suspend(struct skge_hw *hw, int port)
  1824. {
  1825. u16 ctrl;
  1826. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1827. ctrl |= PHY_M_PC_POL_R_DIS;
  1828. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1829. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1830. ctrl |= PHY_CT_RESET;
  1831. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1832. /* switch IEEE compatible power down mode on */
  1833. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1834. ctrl |= PHY_CT_PDOWN;
  1835. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1836. }
  1837. static void yukon_stop(struct skge_port *skge)
  1838. {
  1839. struct skge_hw *hw = skge->hw;
  1840. int port = skge->port;
  1841. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1842. yukon_reset(hw, port);
  1843. gma_write16(hw, port, GM_GP_CTRL,
  1844. gma_read16(hw, port, GM_GP_CTRL)
  1845. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1846. gma_read16(hw, port, GM_GP_CTRL);
  1847. yukon_suspend(hw, port);
  1848. /* set GPHY Control reset */
  1849. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1850. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1851. }
  1852. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1853. {
  1854. struct skge_hw *hw = skge->hw;
  1855. int port = skge->port;
  1856. int i;
  1857. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1858. | gma_read32(hw, port, GM_TXO_OK_LO);
  1859. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1860. | gma_read32(hw, port, GM_RXO_OK_LO);
  1861. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1862. data[i] = gma_read32(hw, port,
  1863. skge_stats[i].gma_offset);
  1864. }
  1865. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1866. {
  1867. struct net_device *dev = hw->dev[port];
  1868. struct skge_port *skge = netdev_priv(dev);
  1869. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1870. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1871. "mac interrupt status 0x%x\n", status);
  1872. if (status & GM_IS_RX_FF_OR) {
  1873. ++dev->stats.rx_fifo_errors;
  1874. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1875. }
  1876. if (status & GM_IS_TX_FF_UR) {
  1877. ++dev->stats.tx_fifo_errors;
  1878. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1879. }
  1880. }
  1881. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1882. {
  1883. switch (aux & PHY_M_PS_SPEED_MSK) {
  1884. case PHY_M_PS_SPEED_1000:
  1885. return SPEED_1000;
  1886. case PHY_M_PS_SPEED_100:
  1887. return SPEED_100;
  1888. default:
  1889. return SPEED_10;
  1890. }
  1891. }
  1892. static void yukon_link_up(struct skge_port *skge)
  1893. {
  1894. struct skge_hw *hw = skge->hw;
  1895. int port = skge->port;
  1896. u16 reg;
  1897. /* Enable Transmit FIFO Underrun */
  1898. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1899. reg = gma_read16(hw, port, GM_GP_CTRL);
  1900. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1901. reg |= GM_GPCR_DUP_FULL;
  1902. /* enable Rx/Tx */
  1903. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1904. gma_write16(hw, port, GM_GP_CTRL, reg);
  1905. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1906. skge_link_up(skge);
  1907. }
  1908. static void yukon_link_down(struct skge_port *skge)
  1909. {
  1910. struct skge_hw *hw = skge->hw;
  1911. int port = skge->port;
  1912. u16 ctrl;
  1913. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1914. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1915. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1916. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1917. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1918. ctrl |= PHY_M_AN_ASP;
  1919. /* restore Asymmetric Pause bit */
  1920. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1921. }
  1922. skge_link_down(skge);
  1923. yukon_init(hw, port);
  1924. }
  1925. static void yukon_phy_intr(struct skge_port *skge)
  1926. {
  1927. struct skge_hw *hw = skge->hw;
  1928. int port = skge->port;
  1929. const char *reason = NULL;
  1930. u16 istatus, phystat;
  1931. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1932. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1933. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1934. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1935. if (istatus & PHY_M_IS_AN_COMPL) {
  1936. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1937. & PHY_M_AN_RF) {
  1938. reason = "remote fault";
  1939. goto failed;
  1940. }
  1941. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1942. reason = "master/slave fault";
  1943. goto failed;
  1944. }
  1945. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1946. reason = "speed/duplex";
  1947. goto failed;
  1948. }
  1949. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1950. ? DUPLEX_FULL : DUPLEX_HALF;
  1951. skge->speed = yukon_speed(hw, phystat);
  1952. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1953. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1954. case PHY_M_PS_PAUSE_MSK:
  1955. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1956. break;
  1957. case PHY_M_PS_RX_P_EN:
  1958. skge->flow_status = FLOW_STAT_REM_SEND;
  1959. break;
  1960. case PHY_M_PS_TX_P_EN:
  1961. skge->flow_status = FLOW_STAT_LOC_SEND;
  1962. break;
  1963. default:
  1964. skge->flow_status = FLOW_STAT_NONE;
  1965. }
  1966. if (skge->flow_status == FLOW_STAT_NONE ||
  1967. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1968. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1969. else
  1970. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1971. yukon_link_up(skge);
  1972. return;
  1973. }
  1974. if (istatus & PHY_M_IS_LSP_CHANGE)
  1975. skge->speed = yukon_speed(hw, phystat);
  1976. if (istatus & PHY_M_IS_DUP_CHANGE)
  1977. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1978. if (istatus & PHY_M_IS_LST_CHANGE) {
  1979. if (phystat & PHY_M_PS_LINK_UP)
  1980. yukon_link_up(skge);
  1981. else
  1982. yukon_link_down(skge);
  1983. }
  1984. return;
  1985. failed:
  1986. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  1987. /* XXX restart autonegotiation? */
  1988. }
  1989. static void skge_phy_reset(struct skge_port *skge)
  1990. {
  1991. struct skge_hw *hw = skge->hw;
  1992. int port = skge->port;
  1993. struct net_device *dev = hw->dev[port];
  1994. netif_stop_queue(skge->netdev);
  1995. netif_carrier_off(skge->netdev);
  1996. spin_lock_bh(&hw->phy_lock);
  1997. if (is_genesis(hw)) {
  1998. genesis_reset(hw, port);
  1999. genesis_mac_init(hw, port);
  2000. } else {
  2001. yukon_reset(hw, port);
  2002. yukon_init(hw, port);
  2003. }
  2004. spin_unlock_bh(&hw->phy_lock);
  2005. skge_set_multicast(dev);
  2006. }
  2007. /* Basic MII support */
  2008. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2009. {
  2010. struct mii_ioctl_data *data = if_mii(ifr);
  2011. struct skge_port *skge = netdev_priv(dev);
  2012. struct skge_hw *hw = skge->hw;
  2013. int err = -EOPNOTSUPP;
  2014. if (!netif_running(dev))
  2015. return -ENODEV; /* Phy still in reset */
  2016. switch (cmd) {
  2017. case SIOCGMIIPHY:
  2018. data->phy_id = hw->phy_addr;
  2019. /* fallthru */
  2020. case SIOCGMIIREG: {
  2021. u16 val = 0;
  2022. spin_lock_bh(&hw->phy_lock);
  2023. if (is_genesis(hw))
  2024. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2025. else
  2026. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2027. spin_unlock_bh(&hw->phy_lock);
  2028. data->val_out = val;
  2029. break;
  2030. }
  2031. case SIOCSMIIREG:
  2032. spin_lock_bh(&hw->phy_lock);
  2033. if (is_genesis(hw))
  2034. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2035. data->val_in);
  2036. else
  2037. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2038. data->val_in);
  2039. spin_unlock_bh(&hw->phy_lock);
  2040. break;
  2041. }
  2042. return err;
  2043. }
  2044. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2045. {
  2046. u32 end;
  2047. start /= 8;
  2048. len /= 8;
  2049. end = start + len - 1;
  2050. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2051. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2052. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2053. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2054. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2055. if (q == Q_R1 || q == Q_R2) {
  2056. /* Set thresholds on receive queue's */
  2057. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2058. start + (2*len)/3);
  2059. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2060. start + (len/3));
  2061. } else {
  2062. /* Enable store & forward on Tx queue's because
  2063. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2064. */
  2065. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2066. }
  2067. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2068. }
  2069. /* Setup Bus Memory Interface */
  2070. static void skge_qset(struct skge_port *skge, u16 q,
  2071. const struct skge_element *e)
  2072. {
  2073. struct skge_hw *hw = skge->hw;
  2074. u32 watermark = 0x600;
  2075. u64 base = skge->dma + (e->desc - skge->mem);
  2076. /* optimization to reduce window on 32bit/33mhz */
  2077. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2078. watermark /= 2;
  2079. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2080. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2081. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2082. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2083. }
  2084. static int skge_up(struct net_device *dev)
  2085. {
  2086. struct skge_port *skge = netdev_priv(dev);
  2087. struct skge_hw *hw = skge->hw;
  2088. int port = skge->port;
  2089. u32 chunk, ram_addr;
  2090. size_t rx_size, tx_size;
  2091. int err;
  2092. if (!is_valid_ether_addr(dev->dev_addr))
  2093. return -EINVAL;
  2094. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2095. if (dev->mtu > RX_BUF_SIZE)
  2096. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2097. else
  2098. skge->rx_buf_size = RX_BUF_SIZE;
  2099. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2100. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2101. skge->mem_size = tx_size + rx_size;
  2102. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2103. if (!skge->mem)
  2104. return -ENOMEM;
  2105. BUG_ON(skge->dma & 7);
  2106. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2107. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2108. err = -EINVAL;
  2109. goto free_pci_mem;
  2110. }
  2111. memset(skge->mem, 0, skge->mem_size);
  2112. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2113. if (err)
  2114. goto free_pci_mem;
  2115. err = skge_rx_fill(dev);
  2116. if (err)
  2117. goto free_rx_ring;
  2118. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2119. skge->dma + rx_size);
  2120. if (err)
  2121. goto free_rx_ring;
  2122. if (hw->ports == 1) {
  2123. err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
  2124. dev->name, hw);
  2125. if (err) {
  2126. netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
  2127. hw->pdev->irq, err);
  2128. goto free_tx_ring;
  2129. }
  2130. }
  2131. /* Initialize MAC */
  2132. spin_lock_bh(&hw->phy_lock);
  2133. if (is_genesis(hw))
  2134. genesis_mac_init(hw, port);
  2135. else
  2136. yukon_mac_init(hw, port);
  2137. spin_unlock_bh(&hw->phy_lock);
  2138. /* Configure RAMbuffers - equally between ports and tx/rx */
  2139. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2140. ram_addr = hw->ram_offset + 2 * chunk * port;
  2141. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2142. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2143. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2144. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2145. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2146. /* Start receiver BMU */
  2147. wmb();
  2148. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2149. skge_led(skge, LED_MODE_ON);
  2150. spin_lock_irq(&hw->hw_lock);
  2151. hw->intr_mask |= portmask[port];
  2152. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2153. skge_read32(hw, B0_IMSK);
  2154. spin_unlock_irq(&hw->hw_lock);
  2155. napi_enable(&skge->napi);
  2156. return 0;
  2157. free_tx_ring:
  2158. kfree(skge->tx_ring.start);
  2159. free_rx_ring:
  2160. skge_rx_clean(skge);
  2161. kfree(skge->rx_ring.start);
  2162. free_pci_mem:
  2163. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2164. skge->mem = NULL;
  2165. return err;
  2166. }
  2167. /* stop receiver */
  2168. static void skge_rx_stop(struct skge_hw *hw, int port)
  2169. {
  2170. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2171. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2172. RB_RST_SET|RB_DIS_OP_MD);
  2173. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2174. }
  2175. static int skge_down(struct net_device *dev)
  2176. {
  2177. struct skge_port *skge = netdev_priv(dev);
  2178. struct skge_hw *hw = skge->hw;
  2179. int port = skge->port;
  2180. if (skge->mem == NULL)
  2181. return 0;
  2182. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2183. netif_tx_disable(dev);
  2184. if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
  2185. del_timer_sync(&skge->link_timer);
  2186. napi_disable(&skge->napi);
  2187. netif_carrier_off(dev);
  2188. spin_lock_irq(&hw->hw_lock);
  2189. hw->intr_mask &= ~portmask[port];
  2190. skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
  2191. skge_read32(hw, B0_IMSK);
  2192. spin_unlock_irq(&hw->hw_lock);
  2193. if (hw->ports == 1)
  2194. free_irq(hw->pdev->irq, hw);
  2195. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2196. if (is_genesis(hw))
  2197. genesis_stop(skge);
  2198. else
  2199. yukon_stop(skge);
  2200. /* Stop transmitter */
  2201. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2202. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2203. RB_RST_SET|RB_DIS_OP_MD);
  2204. /* Disable Force Sync bit and Enable Alloc bit */
  2205. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2206. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2207. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2208. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2209. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2210. /* Reset PCI FIFO */
  2211. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2212. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2213. /* Reset the RAM Buffer async Tx queue */
  2214. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2215. skge_rx_stop(hw, port);
  2216. if (is_genesis(hw)) {
  2217. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2218. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2219. } else {
  2220. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2221. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2222. }
  2223. skge_led(skge, LED_MODE_OFF);
  2224. netif_tx_lock_bh(dev);
  2225. skge_tx_clean(dev);
  2226. netif_tx_unlock_bh(dev);
  2227. skge_rx_clean(skge);
  2228. kfree(skge->rx_ring.start);
  2229. kfree(skge->tx_ring.start);
  2230. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2231. skge->mem = NULL;
  2232. return 0;
  2233. }
  2234. static inline int skge_avail(const struct skge_ring *ring)
  2235. {
  2236. smp_mb();
  2237. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2238. + (ring->to_clean - ring->to_use) - 1;
  2239. }
  2240. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2241. struct net_device *dev)
  2242. {
  2243. struct skge_port *skge = netdev_priv(dev);
  2244. struct skge_hw *hw = skge->hw;
  2245. struct skge_element *e;
  2246. struct skge_tx_desc *td;
  2247. int i;
  2248. u32 control, len;
  2249. u64 map;
  2250. if (skb_padto(skb, ETH_ZLEN))
  2251. return NETDEV_TX_OK;
  2252. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2253. return NETDEV_TX_BUSY;
  2254. e = skge->tx_ring.to_use;
  2255. td = e->desc;
  2256. BUG_ON(td->control & BMU_OWN);
  2257. e->skb = skb;
  2258. len = skb_headlen(skb);
  2259. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2260. dma_unmap_addr_set(e, mapaddr, map);
  2261. dma_unmap_len_set(e, maplen, len);
  2262. td->dma_lo = map;
  2263. td->dma_hi = map >> 32;
  2264. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2265. const int offset = skb_checksum_start_offset(skb);
  2266. /* This seems backwards, but it is what the sk98lin
  2267. * does. Looks like hardware is wrong?
  2268. */
  2269. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2270. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2271. control = BMU_TCP_CHECK;
  2272. else
  2273. control = BMU_UDP_CHECK;
  2274. td->csum_offs = 0;
  2275. td->csum_start = offset;
  2276. td->csum_write = offset + skb->csum_offset;
  2277. } else
  2278. control = BMU_CHECK;
  2279. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2280. control |= BMU_EOF | BMU_IRQ_EOF;
  2281. else {
  2282. struct skge_tx_desc *tf = td;
  2283. control |= BMU_STFWD;
  2284. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2285. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2286. map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
  2287. skb_frag_size(frag), DMA_TO_DEVICE);
  2288. e = e->next;
  2289. e->skb = skb;
  2290. tf = e->desc;
  2291. BUG_ON(tf->control & BMU_OWN);
  2292. tf->dma_lo = map;
  2293. tf->dma_hi = (u64) map >> 32;
  2294. dma_unmap_addr_set(e, mapaddr, map);
  2295. dma_unmap_len_set(e, maplen, skb_frag_size(frag));
  2296. tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
  2297. }
  2298. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2299. }
  2300. /* Make sure all the descriptors written */
  2301. wmb();
  2302. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2303. wmb();
  2304. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2305. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2306. "tx queued, slot %td, len %d\n",
  2307. e - skge->tx_ring.start, skb->len);
  2308. skge->tx_ring.to_use = e->next;
  2309. smp_wmb();
  2310. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2311. netdev_dbg(dev, "transmit queue full\n");
  2312. netif_stop_queue(dev);
  2313. }
  2314. return NETDEV_TX_OK;
  2315. }
  2316. /* Free resources associated with this reing element */
  2317. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2318. u32 control)
  2319. {
  2320. struct pci_dev *pdev = skge->hw->pdev;
  2321. /* skb header vs. fragment */
  2322. if (control & BMU_STF)
  2323. pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
  2324. dma_unmap_len(e, maplen),
  2325. PCI_DMA_TODEVICE);
  2326. else
  2327. pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
  2328. dma_unmap_len(e, maplen),
  2329. PCI_DMA_TODEVICE);
  2330. if (control & BMU_EOF) {
  2331. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2332. "tx done slot %td\n", e - skge->tx_ring.start);
  2333. dev_kfree_skb(e->skb);
  2334. }
  2335. }
  2336. /* Free all buffers in transmit ring */
  2337. static void skge_tx_clean(struct net_device *dev)
  2338. {
  2339. struct skge_port *skge = netdev_priv(dev);
  2340. struct skge_element *e;
  2341. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2342. struct skge_tx_desc *td = e->desc;
  2343. skge_tx_free(skge, e, td->control);
  2344. td->control = 0;
  2345. }
  2346. skge->tx_ring.to_clean = e;
  2347. }
  2348. static void skge_tx_timeout(struct net_device *dev)
  2349. {
  2350. struct skge_port *skge = netdev_priv(dev);
  2351. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2352. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2353. skge_tx_clean(dev);
  2354. netif_wake_queue(dev);
  2355. }
  2356. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2357. {
  2358. int err;
  2359. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2360. return -EINVAL;
  2361. if (!netif_running(dev)) {
  2362. dev->mtu = new_mtu;
  2363. return 0;
  2364. }
  2365. skge_down(dev);
  2366. dev->mtu = new_mtu;
  2367. err = skge_up(dev);
  2368. if (err)
  2369. dev_close(dev);
  2370. return err;
  2371. }
  2372. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2373. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2374. {
  2375. u32 crc, bit;
  2376. crc = ether_crc_le(ETH_ALEN, addr);
  2377. bit = ~crc & 0x3f;
  2378. filter[bit/8] |= 1 << (bit%8);
  2379. }
  2380. static void genesis_set_multicast(struct net_device *dev)
  2381. {
  2382. struct skge_port *skge = netdev_priv(dev);
  2383. struct skge_hw *hw = skge->hw;
  2384. int port = skge->port;
  2385. struct netdev_hw_addr *ha;
  2386. u32 mode;
  2387. u8 filter[8];
  2388. mode = xm_read32(hw, port, XM_MODE);
  2389. mode |= XM_MD_ENA_HASH;
  2390. if (dev->flags & IFF_PROMISC)
  2391. mode |= XM_MD_ENA_PROM;
  2392. else
  2393. mode &= ~XM_MD_ENA_PROM;
  2394. if (dev->flags & IFF_ALLMULTI)
  2395. memset(filter, 0xff, sizeof(filter));
  2396. else {
  2397. memset(filter, 0, sizeof(filter));
  2398. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2399. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2400. genesis_add_filter(filter, pause_mc_addr);
  2401. netdev_for_each_mc_addr(ha, dev)
  2402. genesis_add_filter(filter, ha->addr);
  2403. }
  2404. xm_write32(hw, port, XM_MODE, mode);
  2405. xm_outhash(hw, port, XM_HSM, filter);
  2406. }
  2407. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2408. {
  2409. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2410. filter[bit/8] |= 1 << (bit%8);
  2411. }
  2412. static void yukon_set_multicast(struct net_device *dev)
  2413. {
  2414. struct skge_port *skge = netdev_priv(dev);
  2415. struct skge_hw *hw = skge->hw;
  2416. int port = skge->port;
  2417. struct netdev_hw_addr *ha;
  2418. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2419. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2420. u16 reg;
  2421. u8 filter[8];
  2422. memset(filter, 0, sizeof(filter));
  2423. reg = gma_read16(hw, port, GM_RX_CTRL);
  2424. reg |= GM_RXCR_UCF_ENA;
  2425. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2426. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2427. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2428. memset(filter, 0xff, sizeof(filter));
  2429. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2430. reg &= ~GM_RXCR_MCF_ENA;
  2431. else {
  2432. reg |= GM_RXCR_MCF_ENA;
  2433. if (rx_pause)
  2434. yukon_add_filter(filter, pause_mc_addr);
  2435. netdev_for_each_mc_addr(ha, dev)
  2436. yukon_add_filter(filter, ha->addr);
  2437. }
  2438. gma_write16(hw, port, GM_MC_ADDR_H1,
  2439. (u16)filter[0] | ((u16)filter[1] << 8));
  2440. gma_write16(hw, port, GM_MC_ADDR_H2,
  2441. (u16)filter[2] | ((u16)filter[3] << 8));
  2442. gma_write16(hw, port, GM_MC_ADDR_H3,
  2443. (u16)filter[4] | ((u16)filter[5] << 8));
  2444. gma_write16(hw, port, GM_MC_ADDR_H4,
  2445. (u16)filter[6] | ((u16)filter[7] << 8));
  2446. gma_write16(hw, port, GM_RX_CTRL, reg);
  2447. }
  2448. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2449. {
  2450. if (is_genesis(hw))
  2451. return status >> XMR_FS_LEN_SHIFT;
  2452. else
  2453. return status >> GMR_FS_LEN_SHIFT;
  2454. }
  2455. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2456. {
  2457. if (is_genesis(hw))
  2458. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2459. else
  2460. return (status & GMR_FS_ANY_ERR) ||
  2461. (status & GMR_FS_RX_OK) == 0;
  2462. }
  2463. static void skge_set_multicast(struct net_device *dev)
  2464. {
  2465. struct skge_port *skge = netdev_priv(dev);
  2466. if (is_genesis(skge->hw))
  2467. genesis_set_multicast(dev);
  2468. else
  2469. yukon_set_multicast(dev);
  2470. }
  2471. /* Get receive buffer from descriptor.
  2472. * Handles copy of small buffers and reallocation failures
  2473. */
  2474. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2475. struct skge_element *e,
  2476. u32 control, u32 status, u16 csum)
  2477. {
  2478. struct skge_port *skge = netdev_priv(dev);
  2479. struct sk_buff *skb;
  2480. u16 len = control & BMU_BBC;
  2481. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2482. "rx slot %td status 0x%x len %d\n",
  2483. e - skge->rx_ring.start, status, len);
  2484. if (len > skge->rx_buf_size)
  2485. goto error;
  2486. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2487. goto error;
  2488. if (bad_phy_status(skge->hw, status))
  2489. goto error;
  2490. if (phy_length(skge->hw, status) != len)
  2491. goto error;
  2492. if (len < RX_COPY_THRESHOLD) {
  2493. skb = netdev_alloc_skb_ip_align(dev, len);
  2494. if (!skb)
  2495. goto resubmit;
  2496. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2497. dma_unmap_addr(e, mapaddr),
  2498. len, PCI_DMA_FROMDEVICE);
  2499. skb_copy_from_linear_data(e->skb, skb->data, len);
  2500. pci_dma_sync_single_for_device(skge->hw->pdev,
  2501. dma_unmap_addr(e, mapaddr),
  2502. len, PCI_DMA_FROMDEVICE);
  2503. skge_rx_reuse(e, skge->rx_buf_size);
  2504. } else {
  2505. struct sk_buff *nskb;
  2506. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2507. if (!nskb)
  2508. goto resubmit;
  2509. pci_unmap_single(skge->hw->pdev,
  2510. dma_unmap_addr(e, mapaddr),
  2511. dma_unmap_len(e, maplen),
  2512. PCI_DMA_FROMDEVICE);
  2513. skb = e->skb;
  2514. prefetch(skb->data);
  2515. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2516. }
  2517. skb_put(skb, len);
  2518. if (dev->features & NETIF_F_RXCSUM) {
  2519. skb->csum = csum;
  2520. skb->ip_summed = CHECKSUM_COMPLETE;
  2521. }
  2522. skb->protocol = eth_type_trans(skb, dev);
  2523. return skb;
  2524. error:
  2525. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2526. "rx err, slot %td control 0x%x status 0x%x\n",
  2527. e - skge->rx_ring.start, control, status);
  2528. if (is_genesis(skge->hw)) {
  2529. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2530. dev->stats.rx_length_errors++;
  2531. if (status & XMR_FS_FRA_ERR)
  2532. dev->stats.rx_frame_errors++;
  2533. if (status & XMR_FS_FCS_ERR)
  2534. dev->stats.rx_crc_errors++;
  2535. } else {
  2536. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2537. dev->stats.rx_length_errors++;
  2538. if (status & GMR_FS_FRAGMENT)
  2539. dev->stats.rx_frame_errors++;
  2540. if (status & GMR_FS_CRC_ERR)
  2541. dev->stats.rx_crc_errors++;
  2542. }
  2543. resubmit:
  2544. skge_rx_reuse(e, skge->rx_buf_size);
  2545. return NULL;
  2546. }
  2547. /* Free all buffers in Tx ring which are no longer owned by device */
  2548. static void skge_tx_done(struct net_device *dev)
  2549. {
  2550. struct skge_port *skge = netdev_priv(dev);
  2551. struct skge_ring *ring = &skge->tx_ring;
  2552. struct skge_element *e;
  2553. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2554. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2555. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2556. if (control & BMU_OWN)
  2557. break;
  2558. skge_tx_free(skge, e, control);
  2559. }
  2560. skge->tx_ring.to_clean = e;
  2561. /* Can run lockless until we need to synchronize to restart queue. */
  2562. smp_mb();
  2563. if (unlikely(netif_queue_stopped(dev) &&
  2564. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2565. netif_tx_lock(dev);
  2566. if (unlikely(netif_queue_stopped(dev) &&
  2567. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2568. netif_wake_queue(dev);
  2569. }
  2570. netif_tx_unlock(dev);
  2571. }
  2572. }
  2573. static int skge_poll(struct napi_struct *napi, int to_do)
  2574. {
  2575. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2576. struct net_device *dev = skge->netdev;
  2577. struct skge_hw *hw = skge->hw;
  2578. struct skge_ring *ring = &skge->rx_ring;
  2579. struct skge_element *e;
  2580. int work_done = 0;
  2581. skge_tx_done(dev);
  2582. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2583. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2584. struct skge_rx_desc *rd = e->desc;
  2585. struct sk_buff *skb;
  2586. u32 control;
  2587. rmb();
  2588. control = rd->control;
  2589. if (control & BMU_OWN)
  2590. break;
  2591. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2592. if (likely(skb)) {
  2593. napi_gro_receive(napi, skb);
  2594. ++work_done;
  2595. }
  2596. }
  2597. ring->to_clean = e;
  2598. /* restart receiver */
  2599. wmb();
  2600. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2601. if (work_done < to_do) {
  2602. unsigned long flags;
  2603. napi_gro_flush(napi);
  2604. spin_lock_irqsave(&hw->hw_lock, flags);
  2605. __napi_complete(napi);
  2606. hw->intr_mask |= napimask[skge->port];
  2607. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2608. skge_read32(hw, B0_IMSK);
  2609. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2610. }
  2611. return work_done;
  2612. }
  2613. /* Parity errors seem to happen when Genesis is connected to a switch
  2614. * with no other ports present. Heartbeat error??
  2615. */
  2616. static void skge_mac_parity(struct skge_hw *hw, int port)
  2617. {
  2618. struct net_device *dev = hw->dev[port];
  2619. ++dev->stats.tx_heartbeat_errors;
  2620. if (is_genesis(hw))
  2621. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2622. MFF_CLR_PERR);
  2623. else
  2624. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2625. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2626. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2627. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2628. }
  2629. static void skge_mac_intr(struct skge_hw *hw, int port)
  2630. {
  2631. if (is_genesis(hw))
  2632. genesis_mac_intr(hw, port);
  2633. else
  2634. yukon_mac_intr(hw, port);
  2635. }
  2636. /* Handle device specific framing and timeout interrupts */
  2637. static void skge_error_irq(struct skge_hw *hw)
  2638. {
  2639. struct pci_dev *pdev = hw->pdev;
  2640. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2641. if (is_genesis(hw)) {
  2642. /* clear xmac errors */
  2643. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2644. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2645. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2646. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2647. } else {
  2648. /* Timestamp (unused) overflow */
  2649. if (hwstatus & IS_IRQ_TIST_OV)
  2650. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2651. }
  2652. if (hwstatus & IS_RAM_RD_PAR) {
  2653. dev_err(&pdev->dev, "Ram read data parity error\n");
  2654. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2655. }
  2656. if (hwstatus & IS_RAM_WR_PAR) {
  2657. dev_err(&pdev->dev, "Ram write data parity error\n");
  2658. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2659. }
  2660. if (hwstatus & IS_M1_PAR_ERR)
  2661. skge_mac_parity(hw, 0);
  2662. if (hwstatus & IS_M2_PAR_ERR)
  2663. skge_mac_parity(hw, 1);
  2664. if (hwstatus & IS_R1_PAR_ERR) {
  2665. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2666. hw->dev[0]->name);
  2667. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2668. }
  2669. if (hwstatus & IS_R2_PAR_ERR) {
  2670. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2671. hw->dev[1]->name);
  2672. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2673. }
  2674. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2675. u16 pci_status, pci_cmd;
  2676. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2677. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2678. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2679. pci_cmd, pci_status);
  2680. /* Write the error bits back to clear them. */
  2681. pci_status &= PCI_STATUS_ERROR_BITS;
  2682. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2683. pci_write_config_word(pdev, PCI_COMMAND,
  2684. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2685. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2686. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2687. /* if error still set then just ignore it */
  2688. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2689. if (hwstatus & IS_IRQ_STAT) {
  2690. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2691. hw->intr_mask &= ~IS_HW_ERR;
  2692. }
  2693. }
  2694. }
  2695. /*
  2696. * Interrupt from PHY are handled in tasklet (softirq)
  2697. * because accessing phy registers requires spin wait which might
  2698. * cause excess interrupt latency.
  2699. */
  2700. static void skge_extirq(unsigned long arg)
  2701. {
  2702. struct skge_hw *hw = (struct skge_hw *) arg;
  2703. int port;
  2704. for (port = 0; port < hw->ports; port++) {
  2705. struct net_device *dev = hw->dev[port];
  2706. if (netif_running(dev)) {
  2707. struct skge_port *skge = netdev_priv(dev);
  2708. spin_lock(&hw->phy_lock);
  2709. if (!is_genesis(hw))
  2710. yukon_phy_intr(skge);
  2711. else if (hw->phy_type == SK_PHY_BCOM)
  2712. bcom_phy_intr(skge);
  2713. spin_unlock(&hw->phy_lock);
  2714. }
  2715. }
  2716. spin_lock_irq(&hw->hw_lock);
  2717. hw->intr_mask |= IS_EXT_REG;
  2718. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2719. skge_read32(hw, B0_IMSK);
  2720. spin_unlock_irq(&hw->hw_lock);
  2721. }
  2722. static irqreturn_t skge_intr(int irq, void *dev_id)
  2723. {
  2724. struct skge_hw *hw = dev_id;
  2725. u32 status;
  2726. int handled = 0;
  2727. spin_lock(&hw->hw_lock);
  2728. /* Reading this register masks IRQ */
  2729. status = skge_read32(hw, B0_SP_ISRC);
  2730. if (status == 0 || status == ~0)
  2731. goto out;
  2732. handled = 1;
  2733. status &= hw->intr_mask;
  2734. if (status & IS_EXT_REG) {
  2735. hw->intr_mask &= ~IS_EXT_REG;
  2736. tasklet_schedule(&hw->phy_task);
  2737. }
  2738. if (status & (IS_XA1_F|IS_R1_F)) {
  2739. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2740. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2741. napi_schedule(&skge->napi);
  2742. }
  2743. if (status & IS_PA_TO_TX1)
  2744. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2745. if (status & IS_PA_TO_RX1) {
  2746. ++hw->dev[0]->stats.rx_over_errors;
  2747. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2748. }
  2749. if (status & IS_MAC1)
  2750. skge_mac_intr(hw, 0);
  2751. if (hw->dev[1]) {
  2752. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2753. if (status & (IS_XA2_F|IS_R2_F)) {
  2754. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2755. napi_schedule(&skge->napi);
  2756. }
  2757. if (status & IS_PA_TO_RX2) {
  2758. ++hw->dev[1]->stats.rx_over_errors;
  2759. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2760. }
  2761. if (status & IS_PA_TO_TX2)
  2762. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2763. if (status & IS_MAC2)
  2764. skge_mac_intr(hw, 1);
  2765. }
  2766. if (status & IS_HW_ERR)
  2767. skge_error_irq(hw);
  2768. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2769. skge_read32(hw, B0_IMSK);
  2770. out:
  2771. spin_unlock(&hw->hw_lock);
  2772. return IRQ_RETVAL(handled);
  2773. }
  2774. #ifdef CONFIG_NET_POLL_CONTROLLER
  2775. static void skge_netpoll(struct net_device *dev)
  2776. {
  2777. struct skge_port *skge = netdev_priv(dev);
  2778. disable_irq(dev->irq);
  2779. skge_intr(dev->irq, skge->hw);
  2780. enable_irq(dev->irq);
  2781. }
  2782. #endif
  2783. static int skge_set_mac_address(struct net_device *dev, void *p)
  2784. {
  2785. struct skge_port *skge = netdev_priv(dev);
  2786. struct skge_hw *hw = skge->hw;
  2787. unsigned port = skge->port;
  2788. const struct sockaddr *addr = p;
  2789. u16 ctrl;
  2790. if (!is_valid_ether_addr(addr->sa_data))
  2791. return -EADDRNOTAVAIL;
  2792. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2793. if (!netif_running(dev)) {
  2794. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2795. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2796. } else {
  2797. /* disable Rx */
  2798. spin_lock_bh(&hw->phy_lock);
  2799. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2800. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2801. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2802. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2803. if (is_genesis(hw))
  2804. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2805. else {
  2806. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2807. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2808. }
  2809. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2810. spin_unlock_bh(&hw->phy_lock);
  2811. }
  2812. return 0;
  2813. }
  2814. static const struct {
  2815. u8 id;
  2816. const char *name;
  2817. } skge_chips[] = {
  2818. { CHIP_ID_GENESIS, "Genesis" },
  2819. { CHIP_ID_YUKON, "Yukon" },
  2820. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2821. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2822. };
  2823. static const char *skge_board_name(const struct skge_hw *hw)
  2824. {
  2825. int i;
  2826. static char buf[16];
  2827. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2828. if (skge_chips[i].id == hw->chip_id)
  2829. return skge_chips[i].name;
  2830. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2831. return buf;
  2832. }
  2833. /*
  2834. * Setup the board data structure, but don't bring up
  2835. * the port(s)
  2836. */
  2837. static int skge_reset(struct skge_hw *hw)
  2838. {
  2839. u32 reg;
  2840. u16 ctst, pci_status;
  2841. u8 t8, mac_cfg, pmd_type;
  2842. int i;
  2843. ctst = skge_read16(hw, B0_CTST);
  2844. /* do a SW reset */
  2845. skge_write8(hw, B0_CTST, CS_RST_SET);
  2846. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2847. /* clear PCI errors, if any */
  2848. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2849. skge_write8(hw, B2_TST_CTRL2, 0);
  2850. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2851. pci_write_config_word(hw->pdev, PCI_STATUS,
  2852. pci_status | PCI_STATUS_ERROR_BITS);
  2853. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2854. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2855. /* restore CLK_RUN bits (for Yukon-Lite) */
  2856. skge_write16(hw, B0_CTST,
  2857. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2858. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2859. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2860. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2861. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2862. switch (hw->chip_id) {
  2863. case CHIP_ID_GENESIS:
  2864. #ifdef CONFIG_SKGE_GENESIS
  2865. switch (hw->phy_type) {
  2866. case SK_PHY_XMAC:
  2867. hw->phy_addr = PHY_ADDR_XMAC;
  2868. break;
  2869. case SK_PHY_BCOM:
  2870. hw->phy_addr = PHY_ADDR_BCOM;
  2871. break;
  2872. default:
  2873. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2874. hw->phy_type);
  2875. return -EOPNOTSUPP;
  2876. }
  2877. break;
  2878. #else
  2879. dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
  2880. return -EOPNOTSUPP;
  2881. #endif
  2882. case CHIP_ID_YUKON:
  2883. case CHIP_ID_YUKON_LITE:
  2884. case CHIP_ID_YUKON_LP:
  2885. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2886. hw->copper = 1;
  2887. hw->phy_addr = PHY_ADDR_MARV;
  2888. break;
  2889. default:
  2890. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2891. hw->chip_id);
  2892. return -EOPNOTSUPP;
  2893. }
  2894. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2895. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2896. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2897. /* read the adapters RAM size */
  2898. t8 = skge_read8(hw, B2_E_0);
  2899. if (is_genesis(hw)) {
  2900. if (t8 == 3) {
  2901. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2902. hw->ram_size = 0x100000;
  2903. hw->ram_offset = 0x80000;
  2904. } else
  2905. hw->ram_size = t8 * 512;
  2906. } else if (t8 == 0)
  2907. hw->ram_size = 0x20000;
  2908. else
  2909. hw->ram_size = t8 * 4096;
  2910. hw->intr_mask = IS_HW_ERR;
  2911. /* Use PHY IRQ for all but fiber based Genesis board */
  2912. if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
  2913. hw->intr_mask |= IS_EXT_REG;
  2914. if (is_genesis(hw))
  2915. genesis_init(hw);
  2916. else {
  2917. /* switch power to VCC (WA for VAUX problem) */
  2918. skge_write8(hw, B0_POWER_CTRL,
  2919. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2920. /* avoid boards with stuck Hardware error bits */
  2921. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2922. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2923. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2924. hw->intr_mask &= ~IS_HW_ERR;
  2925. }
  2926. /* Clear PHY COMA */
  2927. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2928. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2929. reg &= ~PCI_PHY_COMA;
  2930. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2931. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2932. for (i = 0; i < hw->ports; i++) {
  2933. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2934. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2935. }
  2936. }
  2937. /* turn off hardware timer (unused) */
  2938. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2939. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2940. skge_write8(hw, B0_LED, LED_STAT_ON);
  2941. /* enable the Tx Arbiters */
  2942. for (i = 0; i < hw->ports; i++)
  2943. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2944. /* Initialize ram interface */
  2945. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2946. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2947. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2948. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2949. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2950. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2951. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2952. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2953. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2954. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2955. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2956. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2957. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2958. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2959. /* Set interrupt moderation for Transmit only
  2960. * Receive interrupts avoided by NAPI
  2961. */
  2962. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2963. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2964. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2965. /* Leave irq disabled until first port is brought up. */
  2966. skge_write32(hw, B0_IMSK, 0);
  2967. for (i = 0; i < hw->ports; i++) {
  2968. if (is_genesis(hw))
  2969. genesis_reset(hw, i);
  2970. else
  2971. yukon_reset(hw, i);
  2972. }
  2973. return 0;
  2974. }
  2975. #ifdef CONFIG_SKGE_DEBUG
  2976. static struct dentry *skge_debug;
  2977. static int skge_debug_show(struct seq_file *seq, void *v)
  2978. {
  2979. struct net_device *dev = seq->private;
  2980. const struct skge_port *skge = netdev_priv(dev);
  2981. const struct skge_hw *hw = skge->hw;
  2982. const struct skge_element *e;
  2983. if (!netif_running(dev))
  2984. return -ENETDOWN;
  2985. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  2986. skge_read32(hw, B0_IMSK));
  2987. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  2988. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2989. const struct skge_tx_desc *t = e->desc;
  2990. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  2991. t->control, t->dma_hi, t->dma_lo, t->status,
  2992. t->csum_offs, t->csum_write, t->csum_start);
  2993. }
  2994. seq_printf(seq, "\nRx Ring:\n");
  2995. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  2996. const struct skge_rx_desc *r = e->desc;
  2997. if (r->control & BMU_OWN)
  2998. break;
  2999. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3000. r->control, r->dma_hi, r->dma_lo, r->status,
  3001. r->timestamp, r->csum1, r->csum1_start);
  3002. }
  3003. return 0;
  3004. }
  3005. static int skge_debug_open(struct inode *inode, struct file *file)
  3006. {
  3007. return single_open(file, skge_debug_show, inode->i_private);
  3008. }
  3009. static const struct file_operations skge_debug_fops = {
  3010. .owner = THIS_MODULE,
  3011. .open = skge_debug_open,
  3012. .read = seq_read,
  3013. .llseek = seq_lseek,
  3014. .release = single_release,
  3015. };
  3016. /*
  3017. * Use network device events to create/remove/rename
  3018. * debugfs file entries
  3019. */
  3020. static int skge_device_event(struct notifier_block *unused,
  3021. unsigned long event, void *ptr)
  3022. {
  3023. struct net_device *dev = ptr;
  3024. struct skge_port *skge;
  3025. struct dentry *d;
  3026. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3027. goto done;
  3028. skge = netdev_priv(dev);
  3029. switch (event) {
  3030. case NETDEV_CHANGENAME:
  3031. if (skge->debugfs) {
  3032. d = debugfs_rename(skge_debug, skge->debugfs,
  3033. skge_debug, dev->name);
  3034. if (d)
  3035. skge->debugfs = d;
  3036. else {
  3037. netdev_info(dev, "rename failed\n");
  3038. debugfs_remove(skge->debugfs);
  3039. }
  3040. }
  3041. break;
  3042. case NETDEV_GOING_DOWN:
  3043. if (skge->debugfs) {
  3044. debugfs_remove(skge->debugfs);
  3045. skge->debugfs = NULL;
  3046. }
  3047. break;
  3048. case NETDEV_UP:
  3049. d = debugfs_create_file(dev->name, S_IRUGO,
  3050. skge_debug, dev,
  3051. &skge_debug_fops);
  3052. if (!d || IS_ERR(d))
  3053. netdev_info(dev, "debugfs create failed\n");
  3054. else
  3055. skge->debugfs = d;
  3056. break;
  3057. }
  3058. done:
  3059. return NOTIFY_DONE;
  3060. }
  3061. static struct notifier_block skge_notifier = {
  3062. .notifier_call = skge_device_event,
  3063. };
  3064. static __init void skge_debug_init(void)
  3065. {
  3066. struct dentry *ent;
  3067. ent = debugfs_create_dir("skge", NULL);
  3068. if (!ent || IS_ERR(ent)) {
  3069. pr_info("debugfs create directory failed\n");
  3070. return;
  3071. }
  3072. skge_debug = ent;
  3073. register_netdevice_notifier(&skge_notifier);
  3074. }
  3075. static __exit void skge_debug_cleanup(void)
  3076. {
  3077. if (skge_debug) {
  3078. unregister_netdevice_notifier(&skge_notifier);
  3079. debugfs_remove(skge_debug);
  3080. skge_debug = NULL;
  3081. }
  3082. }
  3083. #else
  3084. #define skge_debug_init()
  3085. #define skge_debug_cleanup()
  3086. #endif
  3087. static const struct net_device_ops skge_netdev_ops = {
  3088. .ndo_open = skge_up,
  3089. .ndo_stop = skge_down,
  3090. .ndo_start_xmit = skge_xmit_frame,
  3091. .ndo_do_ioctl = skge_ioctl,
  3092. .ndo_get_stats = skge_get_stats,
  3093. .ndo_tx_timeout = skge_tx_timeout,
  3094. .ndo_change_mtu = skge_change_mtu,
  3095. .ndo_validate_addr = eth_validate_addr,
  3096. .ndo_set_rx_mode = skge_set_multicast,
  3097. .ndo_set_mac_address = skge_set_mac_address,
  3098. #ifdef CONFIG_NET_POLL_CONTROLLER
  3099. .ndo_poll_controller = skge_netpoll,
  3100. #endif
  3101. };
  3102. /* Initialize network device */
  3103. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3104. int highmem)
  3105. {
  3106. struct skge_port *skge;
  3107. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3108. if (!dev) {
  3109. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3110. return NULL;
  3111. }
  3112. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3113. dev->netdev_ops = &skge_netdev_ops;
  3114. dev->ethtool_ops = &skge_ethtool_ops;
  3115. dev->watchdog_timeo = TX_WATCHDOG;
  3116. dev->irq = hw->pdev->irq;
  3117. if (highmem)
  3118. dev->features |= NETIF_F_HIGHDMA;
  3119. skge = netdev_priv(dev);
  3120. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3121. skge->netdev = dev;
  3122. skge->hw = hw;
  3123. skge->msg_enable = netif_msg_init(debug, default_msg);
  3124. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3125. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3126. /* Auto speed and flow control */
  3127. skge->autoneg = AUTONEG_ENABLE;
  3128. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3129. skge->duplex = -1;
  3130. skge->speed = -1;
  3131. skge->advertising = skge_supported_modes(hw);
  3132. if (device_can_wakeup(&hw->pdev->dev)) {
  3133. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3134. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3135. }
  3136. hw->dev[port] = dev;
  3137. skge->port = port;
  3138. /* Only used for Genesis XMAC */
  3139. if (is_genesis(hw))
  3140. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3141. else {
  3142. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  3143. NETIF_F_RXCSUM;
  3144. dev->features |= dev->hw_features;
  3145. }
  3146. /* read the mac address */
  3147. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3148. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3149. return dev;
  3150. }
  3151. static void __devinit skge_show_addr(struct net_device *dev)
  3152. {
  3153. const struct skge_port *skge = netdev_priv(dev);
  3154. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3155. }
  3156. static int only_32bit_dma;
  3157. static int __devinit skge_probe(struct pci_dev *pdev,
  3158. const struct pci_device_id *ent)
  3159. {
  3160. struct net_device *dev, *dev1;
  3161. struct skge_hw *hw;
  3162. int err, using_dac = 0;
  3163. err = pci_enable_device(pdev);
  3164. if (err) {
  3165. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3166. goto err_out;
  3167. }
  3168. err = pci_request_regions(pdev, DRV_NAME);
  3169. if (err) {
  3170. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3171. goto err_out_disable_pdev;
  3172. }
  3173. pci_set_master(pdev);
  3174. if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3175. using_dac = 1;
  3176. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3177. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3178. using_dac = 0;
  3179. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3180. }
  3181. if (err) {
  3182. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3183. goto err_out_free_regions;
  3184. }
  3185. #ifdef __BIG_ENDIAN
  3186. /* byte swap descriptors in hardware */
  3187. {
  3188. u32 reg;
  3189. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3190. reg |= PCI_REV_DESC;
  3191. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3192. }
  3193. #endif
  3194. err = -ENOMEM;
  3195. /* space for skge@pci:0000:04:00.0 */
  3196. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3197. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3198. if (!hw) {
  3199. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3200. goto err_out_free_regions;
  3201. }
  3202. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3203. hw->pdev = pdev;
  3204. spin_lock_init(&hw->hw_lock);
  3205. spin_lock_init(&hw->phy_lock);
  3206. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3207. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3208. if (!hw->regs) {
  3209. dev_err(&pdev->dev, "cannot map device registers\n");
  3210. goto err_out_free_hw;
  3211. }
  3212. err = skge_reset(hw);
  3213. if (err)
  3214. goto err_out_iounmap;
  3215. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3216. DRV_VERSION,
  3217. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3218. skge_board_name(hw), hw->chip_rev);
  3219. dev = skge_devinit(hw, 0, using_dac);
  3220. if (!dev)
  3221. goto err_out_led_off;
  3222. /* Some motherboards are broken and has zero in ROM. */
  3223. if (!is_valid_ether_addr(dev->dev_addr))
  3224. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3225. err = register_netdev(dev);
  3226. if (err) {
  3227. dev_err(&pdev->dev, "cannot register net device\n");
  3228. goto err_out_free_netdev;
  3229. }
  3230. skge_show_addr(dev);
  3231. if (hw->ports > 1) {
  3232. dev1 = skge_devinit(hw, 1, using_dac);
  3233. if (!dev1) {
  3234. err = -ENOMEM;
  3235. goto err_out_unregister;
  3236. }
  3237. err = register_netdev(dev1);
  3238. if (err) {
  3239. dev_err(&pdev->dev, "cannot register second net device\n");
  3240. goto err_out_free_dev1;
  3241. }
  3242. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
  3243. hw->irq_name, hw);
  3244. if (err) {
  3245. dev_err(&pdev->dev, "cannot assign irq %d\n",
  3246. pdev->irq);
  3247. goto err_out_unregister_dev1;
  3248. }
  3249. skge_show_addr(dev1);
  3250. }
  3251. pci_set_drvdata(pdev, hw);
  3252. return 0;
  3253. err_out_unregister_dev1:
  3254. unregister_netdev(dev1);
  3255. err_out_free_dev1:
  3256. free_netdev(dev1);
  3257. err_out_unregister:
  3258. unregister_netdev(dev);
  3259. err_out_free_netdev:
  3260. free_netdev(dev);
  3261. err_out_led_off:
  3262. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3263. err_out_iounmap:
  3264. iounmap(hw->regs);
  3265. err_out_free_hw:
  3266. kfree(hw);
  3267. err_out_free_regions:
  3268. pci_release_regions(pdev);
  3269. err_out_disable_pdev:
  3270. pci_disable_device(pdev);
  3271. pci_set_drvdata(pdev, NULL);
  3272. err_out:
  3273. return err;
  3274. }
  3275. static void __devexit skge_remove(struct pci_dev *pdev)
  3276. {
  3277. struct skge_hw *hw = pci_get_drvdata(pdev);
  3278. struct net_device *dev0, *dev1;
  3279. if (!hw)
  3280. return;
  3281. dev1 = hw->dev[1];
  3282. if (dev1)
  3283. unregister_netdev(dev1);
  3284. dev0 = hw->dev[0];
  3285. unregister_netdev(dev0);
  3286. tasklet_disable(&hw->phy_task);
  3287. spin_lock_irq(&hw->hw_lock);
  3288. hw->intr_mask = 0;
  3289. if (hw->ports > 1) {
  3290. skge_write32(hw, B0_IMSK, 0);
  3291. skge_read32(hw, B0_IMSK);
  3292. free_irq(pdev->irq, hw);
  3293. }
  3294. spin_unlock_irq(&hw->hw_lock);
  3295. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3296. skge_write8(hw, B0_CTST, CS_RST_SET);
  3297. if (hw->ports > 1)
  3298. free_irq(pdev->irq, hw);
  3299. pci_release_regions(pdev);
  3300. pci_disable_device(pdev);
  3301. if (dev1)
  3302. free_netdev(dev1);
  3303. free_netdev(dev0);
  3304. iounmap(hw->regs);
  3305. kfree(hw);
  3306. pci_set_drvdata(pdev, NULL);
  3307. }
  3308. #ifdef CONFIG_PM
  3309. static int skge_suspend(struct device *dev)
  3310. {
  3311. struct pci_dev *pdev = to_pci_dev(dev);
  3312. struct skge_hw *hw = pci_get_drvdata(pdev);
  3313. int i;
  3314. if (!hw)
  3315. return 0;
  3316. for (i = 0; i < hw->ports; i++) {
  3317. struct net_device *dev = hw->dev[i];
  3318. struct skge_port *skge = netdev_priv(dev);
  3319. if (netif_running(dev))
  3320. skge_down(dev);
  3321. if (skge->wol)
  3322. skge_wol_init(skge);
  3323. }
  3324. skge_write32(hw, B0_IMSK, 0);
  3325. return 0;
  3326. }
  3327. static int skge_resume(struct device *dev)
  3328. {
  3329. struct pci_dev *pdev = to_pci_dev(dev);
  3330. struct skge_hw *hw = pci_get_drvdata(pdev);
  3331. int i, err;
  3332. if (!hw)
  3333. return 0;
  3334. err = skge_reset(hw);
  3335. if (err)
  3336. goto out;
  3337. for (i = 0; i < hw->ports; i++) {
  3338. struct net_device *dev = hw->dev[i];
  3339. if (netif_running(dev)) {
  3340. err = skge_up(dev);
  3341. if (err) {
  3342. netdev_err(dev, "could not up: %d\n", err);
  3343. dev_close(dev);
  3344. goto out;
  3345. }
  3346. }
  3347. }
  3348. out:
  3349. return err;
  3350. }
  3351. static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
  3352. #define SKGE_PM_OPS (&skge_pm_ops)
  3353. #else
  3354. #define SKGE_PM_OPS NULL
  3355. #endif
  3356. static void skge_shutdown(struct pci_dev *pdev)
  3357. {
  3358. struct skge_hw *hw = pci_get_drvdata(pdev);
  3359. int i;
  3360. if (!hw)
  3361. return;
  3362. for (i = 0; i < hw->ports; i++) {
  3363. struct net_device *dev = hw->dev[i];
  3364. struct skge_port *skge = netdev_priv(dev);
  3365. if (skge->wol)
  3366. skge_wol_init(skge);
  3367. }
  3368. pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
  3369. pci_set_power_state(pdev, PCI_D3hot);
  3370. }
  3371. static struct pci_driver skge_driver = {
  3372. .name = DRV_NAME,
  3373. .id_table = skge_id_table,
  3374. .probe = skge_probe,
  3375. .remove = __devexit_p(skge_remove),
  3376. .shutdown = skge_shutdown,
  3377. .driver.pm = SKGE_PM_OPS,
  3378. };
  3379. static struct dmi_system_id skge_32bit_dma_boards[] = {
  3380. {
  3381. .ident = "Gigabyte nForce boards",
  3382. .matches = {
  3383. DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
  3384. DMI_MATCH(DMI_BOARD_NAME, "nForce"),
  3385. },
  3386. },
  3387. {}
  3388. };
  3389. static int __init skge_init_module(void)
  3390. {
  3391. if (dmi_check_system(skge_32bit_dma_boards))
  3392. only_32bit_dma = 1;
  3393. skge_debug_init();
  3394. return pci_register_driver(&skge_driver);
  3395. }
  3396. static void __exit skge_cleanup_module(void)
  3397. {
  3398. pci_unregister_driver(&skge_driver);
  3399. skge_debug_cleanup();
  3400. }
  3401. module_init(skge_init_module);
  3402. module_exit(skge_cleanup_module);