gc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Adrian Hunter
  20. * Artem Bityutskiy (Битюцкий Артём)
  21. */
  22. /*
  23. * This file implements garbage collection. The procedure for garbage collection
  24. * is different depending on whether a LEB as an index LEB (contains index
  25. * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  26. * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  27. * nodes to the journal, at which point the garbage-collected LEB is free to be
  28. * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  29. * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  30. * to be reused. Garbage collection will cause the number of dirty index nodes
  31. * to grow, however sufficient space is reserved for the index to ensure the
  32. * commit will never run out of space.
  33. *
  34. * Notes about dead watermark. At current UBIFS implementation we assume that
  35. * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  36. * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  37. * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  38. * Garbage Collector has to synchronize the GC head's write buffer before
  39. * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  40. * actually reclaim even very small pieces of dirty space by garbage collecting
  41. * enough dirty LEBs, but we do not bother doing this at this implementation.
  42. *
  43. * Notes about dark watermark. The results of GC work depends on how big are
  44. * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  45. * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  46. * have to waste large pieces of free space at the end of LEB B, because nodes
  47. * from LEB A would not fit. And the worst situation is when all nodes are of
  48. * maximum size. So dark watermark is the amount of free + dirty space in LEB
  49. * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  50. * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  51. * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  52. * good, and GC takes extra care when moving them.
  53. */
  54. #include <linux/slab.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/list_sort.h>
  57. #include "ubifs.h"
  58. /*
  59. * GC may need to move more than one LEB to make progress. The below constants
  60. * define "soft" and "hard" limits on the number of LEBs the garbage collector
  61. * may move.
  62. */
  63. #define SOFT_LEBS_LIMIT 4
  64. #define HARD_LEBS_LIMIT 32
  65. /**
  66. * switch_gc_head - switch the garbage collection journal head.
  67. * @c: UBIFS file-system description object
  68. * @buf: buffer to write
  69. * @len: length of the buffer to write
  70. * @lnum: LEB number written is returned here
  71. * @offs: offset written is returned here
  72. *
  73. * This function switch the GC head to the next LEB which is reserved in
  74. * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  75. * and other negative error code in case of failures.
  76. */
  77. static int switch_gc_head(struct ubifs_info *c)
  78. {
  79. int err, gc_lnum = c->gc_lnum;
  80. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  81. ubifs_assert(gc_lnum != -1);
  82. dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  83. wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  84. c->leb_size - wbuf->offs - wbuf->used);
  85. err = ubifs_wbuf_sync_nolock(wbuf);
  86. if (err)
  87. return err;
  88. /*
  89. * The GC write-buffer was synchronized, we may safely unmap
  90. * 'c->gc_lnum'.
  91. */
  92. err = ubifs_leb_unmap(c, gc_lnum);
  93. if (err)
  94. return err;
  95. err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
  96. if (err)
  97. return err;
  98. c->gc_lnum = -1;
  99. err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
  100. return err;
  101. }
  102. /**
  103. * data_nodes_cmp - compare 2 data nodes.
  104. * @priv: UBIFS file-system description object
  105. * @a: first data node
  106. * @a: second data node
  107. *
  108. * This function compares data nodes @a and @b. Returns %1 if @a has greater
  109. * inode or block number, and %-1 otherwise.
  110. */
  111. int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
  112. {
  113. ino_t inuma, inumb;
  114. struct ubifs_info *c = priv;
  115. struct ubifs_scan_node *sa, *sb;
  116. cond_resched();
  117. sa = list_entry(a, struct ubifs_scan_node, list);
  118. sb = list_entry(b, struct ubifs_scan_node, list);
  119. ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
  120. ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
  121. ubifs_assert(sa->type == UBIFS_DATA_NODE);
  122. ubifs_assert(sb->type == UBIFS_DATA_NODE);
  123. inuma = key_inum(c, &sa->key);
  124. inumb = key_inum(c, &sb->key);
  125. if (inuma == inumb) {
  126. unsigned int blka = key_block(c, &sa->key);
  127. unsigned int blkb = key_block(c, &sb->key);
  128. if (blka <= blkb)
  129. return -1;
  130. } else if (inuma <= inumb)
  131. return -1;
  132. return 1;
  133. }
  134. /*
  135. * nondata_nodes_cmp - compare 2 non-data nodes.
  136. * @priv: UBIFS file-system description object
  137. * @a: first node
  138. * @a: second node
  139. *
  140. * This function compares nodes @a and @b. It makes sure that inode nodes go
  141. * first and sorted by length in descending order. Directory entry nodes go
  142. * after inode nodes and are sorted in ascending hash valuer order.
  143. */
  144. int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
  145. {
  146. ino_t inuma, inumb;
  147. struct ubifs_info *c = priv;
  148. struct ubifs_scan_node *sa, *sb;
  149. cond_resched();
  150. sa = list_entry(a, struct ubifs_scan_node, list);
  151. sb = list_entry(b, struct ubifs_scan_node, list);
  152. ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
  153. key_type(c, &sb->key) != UBIFS_DATA_KEY);
  154. ubifs_assert(sa->type != UBIFS_DATA_NODE &&
  155. sb->type != UBIFS_DATA_NODE);
  156. /* Inodes go before directory entries */
  157. if (sa->type == UBIFS_INO_NODE) {
  158. if (sb->type == UBIFS_INO_NODE)
  159. return sb->len - sa->len;
  160. return -1;
  161. }
  162. if (sb->type == UBIFS_INO_NODE)
  163. return 1;
  164. ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
  165. key_type(c, &sa->key) == UBIFS_XENT_KEY);
  166. ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
  167. key_type(c, &sb->key) == UBIFS_XENT_KEY);
  168. ubifs_assert(sa->type == UBIFS_DENT_NODE ||
  169. sa->type == UBIFS_XENT_NODE);
  170. ubifs_assert(sb->type == UBIFS_DENT_NODE ||
  171. sb->type == UBIFS_XENT_NODE);
  172. inuma = key_inum(c, &sa->key);
  173. inumb = key_inum(c, &sb->key);
  174. if (inuma == inumb) {
  175. uint32_t hasha = key_hash(c, &sa->key);
  176. uint32_t hashb = key_hash(c, &sb->key);
  177. if (hasha <= hashb)
  178. return -1;
  179. } else if (inuma <= inumb)
  180. return -1;
  181. return 1;
  182. }
  183. /**
  184. * sort_nodes - sort nodes for GC.
  185. * @c: UBIFS file-system description object
  186. * @sleb: describes nodes to sort and contains the result on exit
  187. * @nondata: contains non-data nodes on exit
  188. * @min: minimum node size is returned here
  189. *
  190. * This function sorts the list of inodes to garbage collect. First of all, it
  191. * kills obsolete nodes and separates data and non-data nodes to the
  192. * @sleb->nodes and @nondata lists correspondingly.
  193. *
  194. * Data nodes are then sorted in block number order - this is important for
  195. * bulk-read; data nodes with lower inode number go before data nodes with
  196. * higher inode number, and data nodes with lower block number go before data
  197. * nodes with higher block number;
  198. *
  199. * Non-data nodes are sorted as follows.
  200. * o First go inode nodes - they are sorted in descending length order.
  201. * o Then go directory entry nodes - they are sorted in hash order, which
  202. * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
  203. * inode number go before direntry nodes with higher parent inode number,
  204. * and direntry nodes with lower name hash values go before direntry nodes
  205. * with higher name hash values.
  206. *
  207. * This function returns zero in case of success and a negative error code in
  208. * case of failure.
  209. */
  210. static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  211. struct list_head *nondata, int *min)
  212. {
  213. struct ubifs_scan_node *snod, *tmp;
  214. *min = INT_MAX;
  215. /* Separate data nodes and non-data nodes */
  216. list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
  217. int err;
  218. ubifs_assert(snod->type == UBIFS_INO_NODE ||
  219. snod->type == UBIFS_DATA_NODE ||
  220. snod->type == UBIFS_DENT_NODE ||
  221. snod->type == UBIFS_XENT_NODE ||
  222. snod->type == UBIFS_TRUN_NODE);
  223. if (snod->type != UBIFS_INO_NODE &&
  224. snod->type != UBIFS_DATA_NODE &&
  225. snod->type != UBIFS_DENT_NODE &&
  226. snod->type != UBIFS_XENT_NODE) {
  227. /* Probably truncation node, zap it */
  228. list_del(&snod->list);
  229. kfree(snod);
  230. continue;
  231. }
  232. ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
  233. key_type(c, &snod->key) == UBIFS_INO_KEY ||
  234. key_type(c, &snod->key) == UBIFS_DENT_KEY ||
  235. key_type(c, &snod->key) == UBIFS_XENT_KEY);
  236. err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
  237. snod->offs, 0);
  238. if (err < 0)
  239. return err;
  240. if (!err) {
  241. /* The node is obsolete, remove it from the list */
  242. list_del(&snod->list);
  243. kfree(snod);
  244. continue;
  245. }
  246. if (snod->len < *min)
  247. *min = snod->len;
  248. if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
  249. list_move_tail(&snod->list, nondata);
  250. }
  251. /* Sort data and non-data nodes */
  252. list_sort(c, &sleb->nodes, &data_nodes_cmp);
  253. list_sort(c, nondata, &nondata_nodes_cmp);
  254. return 0;
  255. }
  256. /**
  257. * move_node - move a node.
  258. * @c: UBIFS file-system description object
  259. * @sleb: describes the LEB to move nodes from
  260. * @snod: the mode to move
  261. * @wbuf: write-buffer to move node to
  262. *
  263. * This function moves node @snod to @wbuf, changes TNC correspondingly, and
  264. * destroys @snod. Returns zero in case of success and a negative error code in
  265. * case of failure.
  266. */
  267. static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  268. struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
  269. {
  270. int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
  271. cond_resched();
  272. err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
  273. if (err)
  274. return err;
  275. err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
  276. snod->offs, new_lnum, new_offs,
  277. snod->len);
  278. list_del(&snod->list);
  279. kfree(snod);
  280. return err;
  281. }
  282. /**
  283. * move_nodes - move nodes.
  284. * @c: UBIFS file-system description object
  285. * @sleb: describes the LEB to move nodes from
  286. *
  287. * This function moves valid nodes from data LEB described by @sleb to the GC
  288. * journal head. This function returns zero in case of success, %-EAGAIN if
  289. * commit is required, and other negative error codes in case of other
  290. * failures.
  291. */
  292. static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
  293. {
  294. int err, min;
  295. LIST_HEAD(nondata);
  296. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  297. if (wbuf->lnum == -1) {
  298. /*
  299. * The GC journal head is not set, because it is the first GC
  300. * invocation since mount.
  301. */
  302. err = switch_gc_head(c);
  303. if (err)
  304. return err;
  305. }
  306. err = sort_nodes(c, sleb, &nondata, &min);
  307. if (err)
  308. goto out;
  309. /* Write nodes to their new location. Use the first-fit strategy */
  310. while (1) {
  311. int avail;
  312. struct ubifs_scan_node *snod, *tmp;
  313. /* Move data nodes */
  314. list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
  315. avail = c->leb_size - wbuf->offs - wbuf->used;
  316. if (snod->len > avail)
  317. /*
  318. * Do not skip data nodes in order to optimize
  319. * bulk-read.
  320. */
  321. break;
  322. err = move_node(c, sleb, snod, wbuf);
  323. if (err)
  324. goto out;
  325. }
  326. /* Move non-data nodes */
  327. list_for_each_entry_safe(snod, tmp, &nondata, list) {
  328. avail = c->leb_size - wbuf->offs - wbuf->used;
  329. if (avail < min)
  330. break;
  331. if (snod->len > avail) {
  332. /*
  333. * Keep going only if this is an inode with
  334. * some data. Otherwise stop and switch the GC
  335. * head. IOW, we assume that data-less inode
  336. * nodes and direntry nodes are roughly of the
  337. * same size.
  338. */
  339. if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
  340. snod->len == UBIFS_INO_NODE_SZ)
  341. break;
  342. continue;
  343. }
  344. err = move_node(c, sleb, snod, wbuf);
  345. if (err)
  346. goto out;
  347. }
  348. if (list_empty(&sleb->nodes) && list_empty(&nondata))
  349. break;
  350. /*
  351. * Waste the rest of the space in the LEB and switch to the
  352. * next LEB.
  353. */
  354. err = switch_gc_head(c);
  355. if (err)
  356. goto out;
  357. }
  358. return 0;
  359. out:
  360. list_splice_tail(&nondata, &sleb->nodes);
  361. return err;
  362. }
  363. /**
  364. * gc_sync_wbufs - sync write-buffers for GC.
  365. * @c: UBIFS file-system description object
  366. *
  367. * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
  368. * be in a write-buffer instead. That is, a node could be written to a
  369. * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
  370. * erased before the write-buffer is sync'd and then there is an unclean
  371. * unmount, then an existing node is lost. To avoid this, we sync all
  372. * write-buffers.
  373. *
  374. * This function returns %0 on success or a negative error code on failure.
  375. */
  376. static int gc_sync_wbufs(struct ubifs_info *c)
  377. {
  378. int err, i;
  379. for (i = 0; i < c->jhead_cnt; i++) {
  380. if (i == GCHD)
  381. continue;
  382. err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
  383. if (err)
  384. return err;
  385. }
  386. return 0;
  387. }
  388. /**
  389. * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
  390. * @c: UBIFS file-system description object
  391. * @lp: describes the LEB to garbage collect
  392. *
  393. * This function garbage-collects an LEB and returns one of the @LEB_FREED,
  394. * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
  395. * required, and other negative error codes in case of failures.
  396. */
  397. int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
  398. {
  399. struct ubifs_scan_leb *sleb;
  400. struct ubifs_scan_node *snod;
  401. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  402. int err = 0, lnum = lp->lnum;
  403. ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
  404. c->need_recovery);
  405. ubifs_assert(c->gc_lnum != lnum);
  406. ubifs_assert(wbuf->lnum != lnum);
  407. /*
  408. * We scan the entire LEB even though we only really need to scan up to
  409. * (c->leb_size - lp->free).
  410. */
  411. sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
  412. if (IS_ERR(sleb))
  413. return PTR_ERR(sleb);
  414. ubifs_assert(!list_empty(&sleb->nodes));
  415. snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
  416. if (snod->type == UBIFS_IDX_NODE) {
  417. struct ubifs_gced_idx_leb *idx_gc;
  418. dbg_gc("indexing LEB %d (free %d, dirty %d)",
  419. lnum, lp->free, lp->dirty);
  420. list_for_each_entry(snod, &sleb->nodes, list) {
  421. struct ubifs_idx_node *idx = snod->node;
  422. int level = le16_to_cpu(idx->level);
  423. ubifs_assert(snod->type == UBIFS_IDX_NODE);
  424. key_read(c, ubifs_idx_key(c, idx), &snod->key);
  425. err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
  426. snod->offs);
  427. if (err)
  428. goto out;
  429. }
  430. idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
  431. if (!idx_gc) {
  432. err = -ENOMEM;
  433. goto out;
  434. }
  435. idx_gc->lnum = lnum;
  436. idx_gc->unmap = 0;
  437. list_add(&idx_gc->list, &c->idx_gc);
  438. /*
  439. * Don't release the LEB until after the next commit, because
  440. * it may contain data which is needed for recovery. So
  441. * although we freed this LEB, it will become usable only after
  442. * the commit.
  443. */
  444. err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
  445. LPROPS_INDEX, 1);
  446. if (err)
  447. goto out;
  448. err = LEB_FREED_IDX;
  449. } else {
  450. dbg_gc("data LEB %d (free %d, dirty %d)",
  451. lnum, lp->free, lp->dirty);
  452. err = move_nodes(c, sleb);
  453. if (err)
  454. goto out_inc_seq;
  455. err = gc_sync_wbufs(c);
  456. if (err)
  457. goto out_inc_seq;
  458. err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
  459. if (err)
  460. goto out_inc_seq;
  461. /* Allow for races with TNC */
  462. c->gced_lnum = lnum;
  463. smp_wmb();
  464. c->gc_seq += 1;
  465. smp_wmb();
  466. if (c->gc_lnum == -1) {
  467. c->gc_lnum = lnum;
  468. err = LEB_RETAINED;
  469. } else {
  470. err = ubifs_wbuf_sync_nolock(wbuf);
  471. if (err)
  472. goto out;
  473. err = ubifs_leb_unmap(c, lnum);
  474. if (err)
  475. goto out;
  476. err = LEB_FREED;
  477. }
  478. }
  479. out:
  480. ubifs_scan_destroy(sleb);
  481. return err;
  482. out_inc_seq:
  483. /* We may have moved at least some nodes so allow for races with TNC */
  484. c->gced_lnum = lnum;
  485. smp_wmb();
  486. c->gc_seq += 1;
  487. smp_wmb();
  488. goto out;
  489. }
  490. /**
  491. * ubifs_garbage_collect - UBIFS garbage collector.
  492. * @c: UBIFS file-system description object
  493. * @anyway: do GC even if there are free LEBs
  494. *
  495. * This function does out-of-place garbage collection. The return codes are:
  496. * o positive LEB number if the LEB has been freed and may be used;
  497. * o %-EAGAIN if the caller has to run commit;
  498. * o %-ENOSPC if GC failed to make any progress;
  499. * o other negative error codes in case of other errors.
  500. *
  501. * Garbage collector writes data to the journal when GC'ing data LEBs, and just
  502. * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
  503. * commit may be required. But commit cannot be run from inside GC, because the
  504. * caller might be holding the commit lock, so %-EAGAIN is returned instead;
  505. * And this error code means that the caller has to run commit, and re-run GC
  506. * if there is still no free space.
  507. *
  508. * There are many reasons why this function may return %-EAGAIN:
  509. * o the log is full and there is no space to write an LEB reference for
  510. * @c->gc_lnum;
  511. * o the journal is too large and exceeds size limitations;
  512. * o GC moved indexing LEBs, but they can be used only after the commit;
  513. * o the shrinker fails to find clean znodes to free and requests the commit;
  514. * o etc.
  515. *
  516. * Note, if the file-system is close to be full, this function may return
  517. * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
  518. * the function. E.g., this happens if the limits on the journal size are too
  519. * tough and GC writes too much to the journal before an LEB is freed. This
  520. * might also mean that the journal is too large, and the TNC becomes to big,
  521. * so that the shrinker is constantly called, finds not clean znodes to free,
  522. * and requests commit. Well, this may also happen if the journal is all right,
  523. * but another kernel process consumes too much memory. Anyway, infinite
  524. * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
  525. */
  526. int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
  527. {
  528. int i, err, ret, min_space = c->dead_wm;
  529. struct ubifs_lprops lp;
  530. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  531. ubifs_assert_cmt_locked(c);
  532. if (ubifs_gc_should_commit(c))
  533. return -EAGAIN;
  534. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  535. if (c->ro_media) {
  536. ret = -EROFS;
  537. goto out_unlock;
  538. }
  539. /* We expect the write-buffer to be empty on entry */
  540. ubifs_assert(!wbuf->used);
  541. for (i = 0; ; i++) {
  542. int space_before = c->leb_size - wbuf->offs - wbuf->used;
  543. int space_after;
  544. cond_resched();
  545. /* Give the commit an opportunity to run */
  546. if (ubifs_gc_should_commit(c)) {
  547. ret = -EAGAIN;
  548. break;
  549. }
  550. if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
  551. /*
  552. * We've done enough iterations. Indexing LEBs were
  553. * moved and will be available after the commit.
  554. */
  555. dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
  556. ubifs_commit_required(c);
  557. ret = -EAGAIN;
  558. break;
  559. }
  560. if (i > HARD_LEBS_LIMIT) {
  561. /*
  562. * We've moved too many LEBs and have not made
  563. * progress, give up.
  564. */
  565. dbg_gc("hard limit, -ENOSPC");
  566. ret = -ENOSPC;
  567. break;
  568. }
  569. /*
  570. * Empty and freeable LEBs can turn up while we waited for
  571. * the wbuf lock, or while we have been running GC. In that
  572. * case, we should just return one of those instead of
  573. * continuing to GC dirty LEBs. Hence we request
  574. * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
  575. */
  576. ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
  577. if (ret) {
  578. if (ret == -ENOSPC)
  579. dbg_gc("no more dirty LEBs");
  580. break;
  581. }
  582. dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
  583. "(min. space %d)", lp.lnum, lp.free, lp.dirty,
  584. lp.free + lp.dirty, min_space);
  585. if (lp.free + lp.dirty == c->leb_size) {
  586. /* An empty LEB was returned */
  587. dbg_gc("LEB %d is free, return it", lp.lnum);
  588. /*
  589. * ubifs_find_dirty_leb() doesn't return freeable index
  590. * LEBs.
  591. */
  592. ubifs_assert(!(lp.flags & LPROPS_INDEX));
  593. if (lp.free != c->leb_size) {
  594. /*
  595. * Write buffers must be sync'd before
  596. * unmapping freeable LEBs, because one of them
  597. * may contain data which obsoletes something
  598. * in 'lp.pnum'.
  599. */
  600. ret = gc_sync_wbufs(c);
  601. if (ret)
  602. goto out;
  603. ret = ubifs_change_one_lp(c, lp.lnum,
  604. c->leb_size, 0, 0, 0,
  605. 0);
  606. if (ret)
  607. goto out;
  608. }
  609. ret = ubifs_leb_unmap(c, lp.lnum);
  610. if (ret)
  611. goto out;
  612. ret = lp.lnum;
  613. break;
  614. }
  615. space_before = c->leb_size - wbuf->offs - wbuf->used;
  616. if (wbuf->lnum == -1)
  617. space_before = 0;
  618. ret = ubifs_garbage_collect_leb(c, &lp);
  619. if (ret < 0) {
  620. if (ret == -EAGAIN) {
  621. /*
  622. * This is not error, so we have to return the
  623. * LEB to lprops. But if 'ubifs_return_leb()'
  624. * fails, its failure code is propagated to the
  625. * caller instead of the original '-EAGAIN'.
  626. */
  627. err = ubifs_return_leb(c, lp.lnum);
  628. if (err)
  629. ret = err;
  630. break;
  631. }
  632. goto out;
  633. }
  634. if (ret == LEB_FREED) {
  635. /* An LEB has been freed and is ready for use */
  636. dbg_gc("LEB %d freed, return", lp.lnum);
  637. ret = lp.lnum;
  638. break;
  639. }
  640. if (ret == LEB_FREED_IDX) {
  641. /*
  642. * This was an indexing LEB and it cannot be
  643. * immediately used. And instead of requesting the
  644. * commit straight away, we try to garbage collect some
  645. * more.
  646. */
  647. dbg_gc("indexing LEB %d freed, continue", lp.lnum);
  648. continue;
  649. }
  650. ubifs_assert(ret == LEB_RETAINED);
  651. space_after = c->leb_size - wbuf->offs - wbuf->used;
  652. dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
  653. space_after - space_before);
  654. if (space_after > space_before) {
  655. /* GC makes progress, keep working */
  656. min_space >>= 1;
  657. if (min_space < c->dead_wm)
  658. min_space = c->dead_wm;
  659. continue;
  660. }
  661. dbg_gc("did not make progress");
  662. /*
  663. * GC moved an LEB bud have not done any progress. This means
  664. * that the previous GC head LEB contained too few free space
  665. * and the LEB which was GC'ed contained only large nodes which
  666. * did not fit that space.
  667. *
  668. * We can do 2 things:
  669. * 1. pick another LEB in a hope it'll contain a small node
  670. * which will fit the space we have at the end of current GC
  671. * head LEB, but there is no guarantee, so we try this out
  672. * unless we have already been working for too long;
  673. * 2. request an LEB with more dirty space, which will force
  674. * 'ubifs_find_dirty_leb()' to start scanning the lprops
  675. * table, instead of just picking one from the heap
  676. * (previously it already picked the dirtiest LEB).
  677. */
  678. if (i < SOFT_LEBS_LIMIT) {
  679. dbg_gc("try again");
  680. continue;
  681. }
  682. min_space <<= 1;
  683. if (min_space > c->dark_wm)
  684. min_space = c->dark_wm;
  685. dbg_gc("set min. space to %d", min_space);
  686. }
  687. if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
  688. dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
  689. ubifs_commit_required(c);
  690. ret = -EAGAIN;
  691. }
  692. err = ubifs_wbuf_sync_nolock(wbuf);
  693. if (!err)
  694. err = ubifs_leb_unmap(c, c->gc_lnum);
  695. if (err) {
  696. ret = err;
  697. goto out;
  698. }
  699. out_unlock:
  700. mutex_unlock(&wbuf->io_mutex);
  701. return ret;
  702. out:
  703. ubifs_assert(ret < 0);
  704. ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
  705. ubifs_wbuf_sync_nolock(wbuf);
  706. ubifs_ro_mode(c, ret);
  707. mutex_unlock(&wbuf->io_mutex);
  708. ubifs_return_leb(c, lp.lnum);
  709. return ret;
  710. }
  711. /**
  712. * ubifs_gc_start_commit - garbage collection at start of commit.
  713. * @c: UBIFS file-system description object
  714. *
  715. * If a LEB has only dirty and free space, then we may safely unmap it and make
  716. * it free. Note, we cannot do this with indexing LEBs because dirty space may
  717. * correspond index nodes that are required for recovery. In that case, the
  718. * LEB cannot be unmapped until after the next commit.
  719. *
  720. * This function returns %0 upon success and a negative error code upon failure.
  721. */
  722. int ubifs_gc_start_commit(struct ubifs_info *c)
  723. {
  724. struct ubifs_gced_idx_leb *idx_gc;
  725. const struct ubifs_lprops *lp;
  726. int err = 0, flags;
  727. ubifs_get_lprops(c);
  728. /*
  729. * Unmap (non-index) freeable LEBs. Note that recovery requires that all
  730. * wbufs are sync'd before this, which is done in 'do_commit()'.
  731. */
  732. while (1) {
  733. lp = ubifs_fast_find_freeable(c);
  734. if (IS_ERR(lp)) {
  735. err = PTR_ERR(lp);
  736. goto out;
  737. }
  738. if (!lp)
  739. break;
  740. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  741. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  742. err = ubifs_leb_unmap(c, lp->lnum);
  743. if (err)
  744. goto out;
  745. lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
  746. if (IS_ERR(lp)) {
  747. err = PTR_ERR(lp);
  748. goto out;
  749. }
  750. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  751. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  752. }
  753. /* Mark GC'd index LEBs OK to unmap after this commit finishes */
  754. list_for_each_entry(idx_gc, &c->idx_gc, list)
  755. idx_gc->unmap = 1;
  756. /* Record index freeable LEBs for unmapping after commit */
  757. while (1) {
  758. lp = ubifs_fast_find_frdi_idx(c);
  759. if (IS_ERR(lp)) {
  760. err = PTR_ERR(lp);
  761. goto out;
  762. }
  763. if (!lp)
  764. break;
  765. idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
  766. if (!idx_gc) {
  767. err = -ENOMEM;
  768. goto out;
  769. }
  770. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  771. ubifs_assert(lp->flags & LPROPS_INDEX);
  772. /* Don't release the LEB until after the next commit */
  773. flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
  774. lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
  775. if (IS_ERR(lp)) {
  776. err = PTR_ERR(lp);
  777. kfree(idx_gc);
  778. goto out;
  779. }
  780. ubifs_assert(lp->flags & LPROPS_TAKEN);
  781. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  782. idx_gc->lnum = lp->lnum;
  783. idx_gc->unmap = 1;
  784. list_add(&idx_gc->list, &c->idx_gc);
  785. }
  786. out:
  787. ubifs_release_lprops(c);
  788. return err;
  789. }
  790. /**
  791. * ubifs_gc_end_commit - garbage collection at end of commit.
  792. * @c: UBIFS file-system description object
  793. *
  794. * This function completes out-of-place garbage collection of index LEBs.
  795. */
  796. int ubifs_gc_end_commit(struct ubifs_info *c)
  797. {
  798. struct ubifs_gced_idx_leb *idx_gc, *tmp;
  799. struct ubifs_wbuf *wbuf;
  800. int err = 0;
  801. wbuf = &c->jheads[GCHD].wbuf;
  802. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  803. list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
  804. if (idx_gc->unmap) {
  805. dbg_gc("LEB %d", idx_gc->lnum);
  806. err = ubifs_leb_unmap(c, idx_gc->lnum);
  807. if (err)
  808. goto out;
  809. err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
  810. LPROPS_NC, 0, LPROPS_TAKEN, -1);
  811. if (err)
  812. goto out;
  813. list_del(&idx_gc->list);
  814. kfree(idx_gc);
  815. }
  816. out:
  817. mutex_unlock(&wbuf->io_mutex);
  818. return err;
  819. }
  820. /**
  821. * ubifs_destroy_idx_gc - destroy idx_gc list.
  822. * @c: UBIFS file-system description object
  823. *
  824. * This function destroys the @c->idx_gc list. It is called when unmounting
  825. * so locks are not needed. Returns zero in case of success and a negative
  826. * error code in case of failure.
  827. */
  828. void ubifs_destroy_idx_gc(struct ubifs_info *c)
  829. {
  830. while (!list_empty(&c->idx_gc)) {
  831. struct ubifs_gced_idx_leb *idx_gc;
  832. idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
  833. list);
  834. c->idx_gc_cnt -= 1;
  835. list_del(&idx_gc->list);
  836. kfree(idx_gc);
  837. }
  838. }
  839. /**
  840. * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
  841. * @c: UBIFS file-system description object
  842. *
  843. * Called during start commit so locks are not needed.
  844. */
  845. int ubifs_get_idx_gc_leb(struct ubifs_info *c)
  846. {
  847. struct ubifs_gced_idx_leb *idx_gc;
  848. int lnum;
  849. if (list_empty(&c->idx_gc))
  850. return -ENOSPC;
  851. idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
  852. lnum = idx_gc->lnum;
  853. /* c->idx_gc_cnt is updated by the caller when lprops are updated */
  854. list_del(&idx_gc->list);
  855. kfree(idx_gc);
  856. return lnum;
  857. }