mtdpart.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure with this macro.
  46. */
  47. #define PART(x) ((struct mtd_part *)(x))
  48. /*
  49. * MTD methods which simply translate the effective address and pass through
  50. * to the _real_ device.
  51. */
  52. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  53. size_t *retlen, u_char *buf)
  54. {
  55. struct mtd_part *part = PART(mtd);
  56. struct mtd_ecc_stats stats;
  57. int res;
  58. stats = part->master->ecc_stats;
  59. res = mtd_read(part->master, from + part->offset, len, retlen, buf);
  60. if (unlikely(res)) {
  61. if (mtd_is_bitflip(res))
  62. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  63. if (mtd_is_eccerr(res))
  64. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  65. }
  66. return res;
  67. }
  68. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  69. size_t *retlen, void **virt, resource_size_t *phys)
  70. {
  71. struct mtd_part *part = PART(mtd);
  72. return mtd_point(part->master, from + part->offset, len, retlen,
  73. virt, phys);
  74. }
  75. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  76. {
  77. struct mtd_part *part = PART(mtd);
  78. return mtd_unpoint(part->master, from + part->offset, len);
  79. }
  80. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  81. unsigned long len,
  82. unsigned long offset,
  83. unsigned long flags)
  84. {
  85. struct mtd_part *part = PART(mtd);
  86. offset += part->offset;
  87. return mtd_get_unmapped_area(part->master, len, offset, flags);
  88. }
  89. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  90. struct mtd_oob_ops *ops)
  91. {
  92. struct mtd_part *part = PART(mtd);
  93. int res;
  94. if (from >= mtd->size)
  95. return -EINVAL;
  96. if (ops->datbuf && from + ops->len > mtd->size)
  97. return -EINVAL;
  98. /*
  99. * If OOB is also requested, make sure that we do not read past the end
  100. * of this partition.
  101. */
  102. if (ops->oobbuf) {
  103. size_t len, pages;
  104. if (ops->mode == MTD_OPS_AUTO_OOB)
  105. len = mtd->oobavail;
  106. else
  107. len = mtd->oobsize;
  108. pages = mtd_div_by_ws(mtd->size, mtd);
  109. pages -= mtd_div_by_ws(from, mtd);
  110. if (ops->ooboffs + ops->ooblen > pages * len)
  111. return -EINVAL;
  112. }
  113. res = mtd_read_oob(part->master, from + part->offset, ops);
  114. if (unlikely(res)) {
  115. if (mtd_is_bitflip(res))
  116. mtd->ecc_stats.corrected++;
  117. if (mtd_is_eccerr(res))
  118. mtd->ecc_stats.failed++;
  119. }
  120. return res;
  121. }
  122. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  123. size_t len, size_t *retlen, u_char *buf)
  124. {
  125. struct mtd_part *part = PART(mtd);
  126. return mtd_read_user_prot_reg(part->master, from, len, retlen, buf);
  127. }
  128. static int part_get_user_prot_info(struct mtd_info *mtd,
  129. struct otp_info *buf, size_t len)
  130. {
  131. struct mtd_part *part = PART(mtd);
  132. return mtd_get_user_prot_info(part->master, buf, len);
  133. }
  134. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  135. size_t len, size_t *retlen, u_char *buf)
  136. {
  137. struct mtd_part *part = PART(mtd);
  138. return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf);
  139. }
  140. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  141. size_t len)
  142. {
  143. struct mtd_part *part = PART(mtd);
  144. return mtd_get_fact_prot_info(part->master, buf, len);
  145. }
  146. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  147. size_t *retlen, const u_char *buf)
  148. {
  149. struct mtd_part *part = PART(mtd);
  150. return mtd_write(part->master, to + part->offset, len, retlen, buf);
  151. }
  152. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  153. size_t *retlen, const u_char *buf)
  154. {
  155. struct mtd_part *part = PART(mtd);
  156. return mtd_panic_write(part->master, to + part->offset, len, retlen,
  157. buf);
  158. }
  159. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  160. struct mtd_oob_ops *ops)
  161. {
  162. struct mtd_part *part = PART(mtd);
  163. if (to >= mtd->size)
  164. return -EINVAL;
  165. if (ops->datbuf && to + ops->len > mtd->size)
  166. return -EINVAL;
  167. return mtd_write_oob(part->master, to + part->offset, ops);
  168. }
  169. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  170. size_t len, size_t *retlen, u_char *buf)
  171. {
  172. struct mtd_part *part = PART(mtd);
  173. return mtd_write_user_prot_reg(part->master, from, len, retlen, buf);
  174. }
  175. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  176. size_t len)
  177. {
  178. struct mtd_part *part = PART(mtd);
  179. return mtd_lock_user_prot_reg(part->master, from, len);
  180. }
  181. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  182. unsigned long count, loff_t to, size_t *retlen)
  183. {
  184. struct mtd_part *part = PART(mtd);
  185. return mtd_writev(part->master, vecs, count, to + part->offset,
  186. retlen);
  187. }
  188. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  189. {
  190. struct mtd_part *part = PART(mtd);
  191. int ret;
  192. instr->addr += part->offset;
  193. ret = mtd_erase(part->master, instr);
  194. if (ret) {
  195. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  196. instr->fail_addr -= part->offset;
  197. instr->addr -= part->offset;
  198. }
  199. return ret;
  200. }
  201. void mtd_erase_callback(struct erase_info *instr)
  202. {
  203. if (instr->mtd->_erase == part_erase) {
  204. struct mtd_part *part = PART(instr->mtd);
  205. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  206. instr->fail_addr -= part->offset;
  207. instr->addr -= part->offset;
  208. }
  209. if (instr->callback)
  210. instr->callback(instr);
  211. }
  212. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  213. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  214. {
  215. struct mtd_part *part = PART(mtd);
  216. return mtd_lock(part->master, ofs + part->offset, len);
  217. }
  218. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  219. {
  220. struct mtd_part *part = PART(mtd);
  221. return mtd_unlock(part->master, ofs + part->offset, len);
  222. }
  223. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  224. {
  225. struct mtd_part *part = PART(mtd);
  226. return mtd_is_locked(part->master, ofs + part->offset, len);
  227. }
  228. static void part_sync(struct mtd_info *mtd)
  229. {
  230. struct mtd_part *part = PART(mtd);
  231. mtd_sync(part->master);
  232. }
  233. static int part_suspend(struct mtd_info *mtd)
  234. {
  235. struct mtd_part *part = PART(mtd);
  236. return mtd_suspend(part->master);
  237. }
  238. static void part_resume(struct mtd_info *mtd)
  239. {
  240. struct mtd_part *part = PART(mtd);
  241. mtd_resume(part->master);
  242. }
  243. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  244. {
  245. struct mtd_part *part = PART(mtd);
  246. ofs += part->offset;
  247. return mtd_block_isbad(part->master, ofs);
  248. }
  249. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  250. {
  251. struct mtd_part *part = PART(mtd);
  252. int res;
  253. ofs += part->offset;
  254. res = mtd_block_markbad(part->master, ofs);
  255. if (!res)
  256. mtd->ecc_stats.badblocks++;
  257. return res;
  258. }
  259. static inline void free_partition(struct mtd_part *p)
  260. {
  261. kfree(p->mtd.name);
  262. kfree(p);
  263. }
  264. /*
  265. * This function unregisters and destroy all slave MTD objects which are
  266. * attached to the given master MTD object.
  267. */
  268. int del_mtd_partitions(struct mtd_info *master)
  269. {
  270. struct mtd_part *slave, *next;
  271. int ret, err = 0;
  272. mutex_lock(&mtd_partitions_mutex);
  273. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  274. if (slave->master == master) {
  275. ret = del_mtd_device(&slave->mtd);
  276. if (ret < 0) {
  277. err = ret;
  278. continue;
  279. }
  280. list_del(&slave->list);
  281. free_partition(slave);
  282. }
  283. mutex_unlock(&mtd_partitions_mutex);
  284. return err;
  285. }
  286. static struct mtd_part *allocate_partition(struct mtd_info *master,
  287. const struct mtd_partition *part, int partno,
  288. uint64_t cur_offset)
  289. {
  290. struct mtd_part *slave;
  291. char *name;
  292. /* allocate the partition structure */
  293. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  294. name = kstrdup(part->name, GFP_KERNEL);
  295. if (!name || !slave) {
  296. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  297. master->name);
  298. kfree(name);
  299. kfree(slave);
  300. return ERR_PTR(-ENOMEM);
  301. }
  302. /* set up the MTD object for this partition */
  303. slave->mtd.type = master->type;
  304. slave->mtd.flags = master->flags & ~part->mask_flags;
  305. slave->mtd.size = part->size;
  306. slave->mtd.writesize = master->writesize;
  307. slave->mtd.writebufsize = master->writebufsize;
  308. slave->mtd.oobsize = master->oobsize;
  309. slave->mtd.oobavail = master->oobavail;
  310. slave->mtd.subpage_sft = master->subpage_sft;
  311. slave->mtd.name = name;
  312. slave->mtd.owner = master->owner;
  313. slave->mtd.backing_dev_info = master->backing_dev_info;
  314. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  315. * to have the same data be in two different partitions.
  316. */
  317. slave->mtd.dev.parent = master->dev.parent;
  318. slave->mtd._read = part_read;
  319. slave->mtd._write = part_write;
  320. if (master->_panic_write)
  321. slave->mtd._panic_write = part_panic_write;
  322. if (master->_point && master->_unpoint) {
  323. slave->mtd._point = part_point;
  324. slave->mtd._unpoint = part_unpoint;
  325. }
  326. if (master->_get_unmapped_area)
  327. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  328. if (master->_read_oob)
  329. slave->mtd._read_oob = part_read_oob;
  330. if (master->_write_oob)
  331. slave->mtd._write_oob = part_write_oob;
  332. if (master->_read_user_prot_reg)
  333. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  334. if (master->_read_fact_prot_reg)
  335. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  336. if (master->_write_user_prot_reg)
  337. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  338. if (master->_lock_user_prot_reg)
  339. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  340. if (master->_get_user_prot_info)
  341. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  342. if (master->_get_fact_prot_info)
  343. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  344. if (master->_sync)
  345. slave->mtd._sync = part_sync;
  346. if (!partno && !master->dev.class && master->_suspend &&
  347. master->_resume) {
  348. slave->mtd._suspend = part_suspend;
  349. slave->mtd._resume = part_resume;
  350. }
  351. if (master->_writev)
  352. slave->mtd._writev = part_writev;
  353. if (master->_lock)
  354. slave->mtd._lock = part_lock;
  355. if (master->_unlock)
  356. slave->mtd._unlock = part_unlock;
  357. if (master->_is_locked)
  358. slave->mtd._is_locked = part_is_locked;
  359. if (master->_block_isbad)
  360. slave->mtd._block_isbad = part_block_isbad;
  361. if (master->_block_markbad)
  362. slave->mtd._block_markbad = part_block_markbad;
  363. slave->mtd._erase = part_erase;
  364. slave->master = master;
  365. slave->offset = part->offset;
  366. if (slave->offset == MTDPART_OFS_APPEND)
  367. slave->offset = cur_offset;
  368. if (slave->offset == MTDPART_OFS_NXTBLK) {
  369. slave->offset = cur_offset;
  370. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  371. /* Round up to next erasesize */
  372. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  373. printk(KERN_NOTICE "Moving partition %d: "
  374. "0x%012llx -> 0x%012llx\n", partno,
  375. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  376. }
  377. }
  378. if (slave->offset == MTDPART_OFS_RETAIN) {
  379. slave->offset = cur_offset;
  380. if (master->size - slave->offset >= slave->mtd.size) {
  381. slave->mtd.size = master->size - slave->offset
  382. - slave->mtd.size;
  383. } else {
  384. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  385. part->name, master->size - slave->offset,
  386. slave->mtd.size);
  387. /* register to preserve ordering */
  388. goto out_register;
  389. }
  390. }
  391. if (slave->mtd.size == MTDPART_SIZ_FULL)
  392. slave->mtd.size = master->size - slave->offset;
  393. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  394. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  395. /* let's do some sanity checks */
  396. if (slave->offset >= master->size) {
  397. /* let's register it anyway to preserve ordering */
  398. slave->offset = 0;
  399. slave->mtd.size = 0;
  400. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  401. part->name);
  402. goto out_register;
  403. }
  404. if (slave->offset + slave->mtd.size > master->size) {
  405. slave->mtd.size = master->size - slave->offset;
  406. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  407. part->name, master->name, (unsigned long long)slave->mtd.size);
  408. }
  409. if (master->numeraseregions > 1) {
  410. /* Deal with variable erase size stuff */
  411. int i, max = master->numeraseregions;
  412. u64 end = slave->offset + slave->mtd.size;
  413. struct mtd_erase_region_info *regions = master->eraseregions;
  414. /* Find the first erase regions which is part of this
  415. * partition. */
  416. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  417. ;
  418. /* The loop searched for the region _behind_ the first one */
  419. if (i > 0)
  420. i--;
  421. /* Pick biggest erasesize */
  422. for (; i < max && regions[i].offset < end; i++) {
  423. if (slave->mtd.erasesize < regions[i].erasesize) {
  424. slave->mtd.erasesize = regions[i].erasesize;
  425. }
  426. }
  427. BUG_ON(slave->mtd.erasesize == 0);
  428. } else {
  429. /* Single erase size */
  430. slave->mtd.erasesize = master->erasesize;
  431. }
  432. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  433. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  434. /* Doesn't start on a boundary of major erase size */
  435. /* FIXME: Let it be writable if it is on a boundary of
  436. * _minor_ erase size though */
  437. slave->mtd.flags &= ~MTD_WRITEABLE;
  438. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  439. part->name);
  440. }
  441. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  442. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  443. slave->mtd.flags &= ~MTD_WRITEABLE;
  444. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  445. part->name);
  446. }
  447. slave->mtd.ecclayout = master->ecclayout;
  448. if (master->_block_isbad) {
  449. uint64_t offs = 0;
  450. while (offs < slave->mtd.size) {
  451. if (mtd_block_isbad(master, offs + slave->offset))
  452. slave->mtd.ecc_stats.badblocks++;
  453. offs += slave->mtd.erasesize;
  454. }
  455. }
  456. out_register:
  457. return slave;
  458. }
  459. int mtd_add_partition(struct mtd_info *master, char *name,
  460. long long offset, long long length)
  461. {
  462. struct mtd_partition part;
  463. struct mtd_part *p, *new;
  464. uint64_t start, end;
  465. int ret = 0;
  466. /* the direct offset is expected */
  467. if (offset == MTDPART_OFS_APPEND ||
  468. offset == MTDPART_OFS_NXTBLK)
  469. return -EINVAL;
  470. if (length == MTDPART_SIZ_FULL)
  471. length = master->size - offset;
  472. if (length <= 0)
  473. return -EINVAL;
  474. part.name = name;
  475. part.size = length;
  476. part.offset = offset;
  477. part.mask_flags = 0;
  478. part.ecclayout = NULL;
  479. new = allocate_partition(master, &part, -1, offset);
  480. if (IS_ERR(new))
  481. return PTR_ERR(new);
  482. start = offset;
  483. end = offset + length;
  484. mutex_lock(&mtd_partitions_mutex);
  485. list_for_each_entry(p, &mtd_partitions, list)
  486. if (p->master == master) {
  487. if ((start >= p->offset) &&
  488. (start < (p->offset + p->mtd.size)))
  489. goto err_inv;
  490. if ((end >= p->offset) &&
  491. (end < (p->offset + p->mtd.size)))
  492. goto err_inv;
  493. }
  494. list_add(&new->list, &mtd_partitions);
  495. mutex_unlock(&mtd_partitions_mutex);
  496. add_mtd_device(&new->mtd);
  497. return ret;
  498. err_inv:
  499. mutex_unlock(&mtd_partitions_mutex);
  500. free_partition(new);
  501. return -EINVAL;
  502. }
  503. EXPORT_SYMBOL_GPL(mtd_add_partition);
  504. int mtd_del_partition(struct mtd_info *master, int partno)
  505. {
  506. struct mtd_part *slave, *next;
  507. int ret = -EINVAL;
  508. mutex_lock(&mtd_partitions_mutex);
  509. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  510. if ((slave->master == master) &&
  511. (slave->mtd.index == partno)) {
  512. ret = del_mtd_device(&slave->mtd);
  513. if (ret < 0)
  514. break;
  515. list_del(&slave->list);
  516. free_partition(slave);
  517. break;
  518. }
  519. mutex_unlock(&mtd_partitions_mutex);
  520. return ret;
  521. }
  522. EXPORT_SYMBOL_GPL(mtd_del_partition);
  523. /*
  524. * This function, given a master MTD object and a partition table, creates
  525. * and registers slave MTD objects which are bound to the master according to
  526. * the partition definitions.
  527. *
  528. * We don't register the master, or expect the caller to have done so,
  529. * for reasons of data integrity.
  530. */
  531. int add_mtd_partitions(struct mtd_info *master,
  532. const struct mtd_partition *parts,
  533. int nbparts)
  534. {
  535. struct mtd_part *slave;
  536. uint64_t cur_offset = 0;
  537. int i;
  538. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  539. for (i = 0; i < nbparts; i++) {
  540. slave = allocate_partition(master, parts + i, i, cur_offset);
  541. if (IS_ERR(slave))
  542. return PTR_ERR(slave);
  543. mutex_lock(&mtd_partitions_mutex);
  544. list_add(&slave->list, &mtd_partitions);
  545. mutex_unlock(&mtd_partitions_mutex);
  546. add_mtd_device(&slave->mtd);
  547. cur_offset = slave->offset + slave->mtd.size;
  548. }
  549. return 0;
  550. }
  551. static DEFINE_SPINLOCK(part_parser_lock);
  552. static LIST_HEAD(part_parsers);
  553. static struct mtd_part_parser *get_partition_parser(const char *name)
  554. {
  555. struct mtd_part_parser *p, *ret = NULL;
  556. spin_lock(&part_parser_lock);
  557. list_for_each_entry(p, &part_parsers, list)
  558. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  559. ret = p;
  560. break;
  561. }
  562. spin_unlock(&part_parser_lock);
  563. return ret;
  564. }
  565. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  566. int register_mtd_parser(struct mtd_part_parser *p)
  567. {
  568. spin_lock(&part_parser_lock);
  569. list_add(&p->list, &part_parsers);
  570. spin_unlock(&part_parser_lock);
  571. return 0;
  572. }
  573. EXPORT_SYMBOL_GPL(register_mtd_parser);
  574. int deregister_mtd_parser(struct mtd_part_parser *p)
  575. {
  576. spin_lock(&part_parser_lock);
  577. list_del(&p->list);
  578. spin_unlock(&part_parser_lock);
  579. return 0;
  580. }
  581. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  582. /*
  583. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  584. * are changing this array!
  585. */
  586. static const char *default_mtd_part_types[] = {
  587. "cmdlinepart",
  588. "ofpart",
  589. NULL
  590. };
  591. /**
  592. * parse_mtd_partitions - parse MTD partitions
  593. * @master: the master partition (describes whole MTD device)
  594. * @types: names of partition parsers to try or %NULL
  595. * @pparts: array of partitions found is returned here
  596. * @data: MTD partition parser-specific data
  597. *
  598. * This function tries to find partition on MTD device @master. It uses MTD
  599. * partition parsers, specified in @types. However, if @types is %NULL, then
  600. * the default list of parsers is used. The default list contains only the
  601. * "cmdlinepart" and "ofpart" parsers ATM.
  602. *
  603. * This function may return:
  604. * o a negative error code in case of failure
  605. * o zero if no partitions were found
  606. * o a positive number of found partitions, in which case on exit @pparts will
  607. * point to an array containing this number of &struct mtd_info objects.
  608. */
  609. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  610. struct mtd_partition **pparts,
  611. struct mtd_part_parser_data *data)
  612. {
  613. struct mtd_part_parser *parser;
  614. int ret = 0;
  615. if (!types)
  616. types = default_mtd_part_types;
  617. for ( ; ret <= 0 && *types; types++) {
  618. parser = get_partition_parser(*types);
  619. if (!parser && !request_module("%s", *types))
  620. parser = get_partition_parser(*types);
  621. if (!parser)
  622. continue;
  623. ret = (*parser->parse_fn)(master, pparts, data);
  624. if (ret > 0) {
  625. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  626. ret, parser->name, master->name);
  627. }
  628. put_partition_parser(parser);
  629. }
  630. return ret;
  631. }
  632. int mtd_is_partition(struct mtd_info *mtd)
  633. {
  634. struct mtd_part *part;
  635. int ispart = 0;
  636. mutex_lock(&mtd_partitions_mutex);
  637. list_for_each_entry(part, &mtd_partitions, list)
  638. if (&part->mtd == mtd) {
  639. ispart = 1;
  640. break;
  641. }
  642. mutex_unlock(&mtd_partitions_mutex);
  643. return ispart;
  644. }
  645. EXPORT_SYMBOL_GPL(mtd_is_partition);