sched.c 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. spin_unlock_irq(&rq->lock);
  763. #else
  764. spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. spin_unlock(&this_rq->lock);
  1475. spin_lock(&busiest->lock);
  1476. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1477. ret = 1;
  1478. } else
  1479. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1480. }
  1481. return ret;
  1482. }
  1483. #endif /* CONFIG_PREEMPT */
  1484. /*
  1485. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1486. */
  1487. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1488. {
  1489. if (unlikely(!irqs_disabled())) {
  1490. /* printk() doesn't work good under rq->lock */
  1491. spin_unlock(&this_rq->lock);
  1492. BUG_ON(1);
  1493. }
  1494. return _double_lock_balance(this_rq, busiest);
  1495. }
  1496. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1497. __releases(busiest->lock)
  1498. {
  1499. spin_unlock(&busiest->lock);
  1500. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1501. }
  1502. #endif
  1503. #ifdef CONFIG_FAIR_GROUP_SCHED
  1504. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1505. {
  1506. #ifdef CONFIG_SMP
  1507. cfs_rq->shares = shares;
  1508. #endif
  1509. }
  1510. #endif
  1511. static void calc_load_account_active(struct rq *this_rq);
  1512. static void update_sysctl(void);
  1513. static int get_update_sysctl_factor(void);
  1514. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1515. {
  1516. set_task_rq(p, cpu);
  1517. #ifdef CONFIG_SMP
  1518. /*
  1519. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1520. * successfuly executed on another CPU. We must ensure that updates of
  1521. * per-task data have been completed by this moment.
  1522. */
  1523. smp_wmb();
  1524. task_thread_info(p)->cpu = cpu;
  1525. #endif
  1526. }
  1527. #include "sched_stats.h"
  1528. #include "sched_idletask.c"
  1529. #include "sched_fair.c"
  1530. #include "sched_rt.c"
  1531. #ifdef CONFIG_SCHED_DEBUG
  1532. # include "sched_debug.c"
  1533. #endif
  1534. #define sched_class_highest (&rt_sched_class)
  1535. #define for_each_class(class) \
  1536. for (class = sched_class_highest; class; class = class->next)
  1537. static void inc_nr_running(struct rq *rq)
  1538. {
  1539. rq->nr_running++;
  1540. }
  1541. static void dec_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running--;
  1544. }
  1545. static void set_load_weight(struct task_struct *p)
  1546. {
  1547. if (task_has_rt_policy(p)) {
  1548. p->se.load.weight = prio_to_weight[0] * 2;
  1549. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1550. return;
  1551. }
  1552. /*
  1553. * SCHED_IDLE tasks get minimal weight:
  1554. */
  1555. if (p->policy == SCHED_IDLE) {
  1556. p->se.load.weight = WEIGHT_IDLEPRIO;
  1557. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1558. return;
  1559. }
  1560. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1561. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1562. }
  1563. static void update_avg(u64 *avg, u64 sample)
  1564. {
  1565. s64 diff = sample - *avg;
  1566. *avg += diff >> 3;
  1567. }
  1568. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1569. {
  1570. if (wakeup)
  1571. p->se.start_runtime = p->se.sum_exec_runtime;
  1572. sched_info_queued(p);
  1573. p->sched_class->enqueue_task(rq, p, wakeup);
  1574. p->se.on_rq = 1;
  1575. }
  1576. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1577. {
  1578. if (sleep) {
  1579. if (p->se.last_wakeup) {
  1580. update_avg(&p->se.avg_overlap,
  1581. p->se.sum_exec_runtime - p->se.last_wakeup);
  1582. p->se.last_wakeup = 0;
  1583. } else {
  1584. update_avg(&p->se.avg_wakeup,
  1585. sysctl_sched_wakeup_granularity);
  1586. }
  1587. }
  1588. sched_info_dequeued(p);
  1589. p->sched_class->dequeue_task(rq, p, sleep);
  1590. p->se.on_rq = 0;
  1591. }
  1592. /*
  1593. * __normal_prio - return the priority that is based on the static prio
  1594. */
  1595. static inline int __normal_prio(struct task_struct *p)
  1596. {
  1597. return p->static_prio;
  1598. }
  1599. /*
  1600. * Calculate the expected normal priority: i.e. priority
  1601. * without taking RT-inheritance into account. Might be
  1602. * boosted by interactivity modifiers. Changes upon fork,
  1603. * setprio syscalls, and whenever the interactivity
  1604. * estimator recalculates.
  1605. */
  1606. static inline int normal_prio(struct task_struct *p)
  1607. {
  1608. int prio;
  1609. if (task_has_rt_policy(p))
  1610. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1611. else
  1612. prio = __normal_prio(p);
  1613. return prio;
  1614. }
  1615. /*
  1616. * Calculate the current priority, i.e. the priority
  1617. * taken into account by the scheduler. This value might
  1618. * be boosted by RT tasks, or might be boosted by
  1619. * interactivity modifiers. Will be RT if the task got
  1620. * RT-boosted. If not then it returns p->normal_prio.
  1621. */
  1622. static int effective_prio(struct task_struct *p)
  1623. {
  1624. p->normal_prio = normal_prio(p);
  1625. /*
  1626. * If we are RT tasks or we were boosted to RT priority,
  1627. * keep the priority unchanged. Otherwise, update priority
  1628. * to the normal priority:
  1629. */
  1630. if (!rt_prio(p->prio))
  1631. return p->normal_prio;
  1632. return p->prio;
  1633. }
  1634. /*
  1635. * activate_task - move a task to the runqueue.
  1636. */
  1637. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1638. {
  1639. if (task_contributes_to_load(p))
  1640. rq->nr_uninterruptible--;
  1641. enqueue_task(rq, p, wakeup);
  1642. inc_nr_running(rq);
  1643. }
  1644. /*
  1645. * deactivate_task - remove a task from the runqueue.
  1646. */
  1647. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1648. {
  1649. if (task_contributes_to_load(p))
  1650. rq->nr_uninterruptible++;
  1651. dequeue_task(rq, p, sleep);
  1652. dec_nr_running(rq);
  1653. }
  1654. /**
  1655. * task_curr - is this task currently executing on a CPU?
  1656. * @p: the task in question.
  1657. */
  1658. inline int task_curr(const struct task_struct *p)
  1659. {
  1660. return cpu_curr(task_cpu(p)) == p;
  1661. }
  1662. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1663. const struct sched_class *prev_class,
  1664. int oldprio, int running)
  1665. {
  1666. if (prev_class != p->sched_class) {
  1667. if (prev_class->switched_from)
  1668. prev_class->switched_from(rq, p, running);
  1669. p->sched_class->switched_to(rq, p, running);
  1670. } else
  1671. p->sched_class->prio_changed(rq, p, oldprio, running);
  1672. }
  1673. /**
  1674. * kthread_bind - bind a just-created kthread to a cpu.
  1675. * @p: thread created by kthread_create().
  1676. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1677. *
  1678. * Description: This function is equivalent to set_cpus_allowed(),
  1679. * except that @cpu doesn't need to be online, and the thread must be
  1680. * stopped (i.e., just returned from kthread_create()).
  1681. *
  1682. * Function lives here instead of kthread.c because it messes with
  1683. * scheduler internals which require locking.
  1684. */
  1685. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1686. {
  1687. struct rq *rq = cpu_rq(cpu);
  1688. unsigned long flags;
  1689. /* Must have done schedule() in kthread() before we set_task_cpu */
  1690. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1691. WARN_ON(1);
  1692. return;
  1693. }
  1694. spin_lock_irqsave(&rq->lock, flags);
  1695. update_rq_clock(rq);
  1696. set_task_cpu(p, cpu);
  1697. p->cpus_allowed = cpumask_of_cpu(cpu);
  1698. p->rt.nr_cpus_allowed = 1;
  1699. p->flags |= PF_THREAD_BOUND;
  1700. spin_unlock_irqrestore(&rq->lock, flags);
  1701. }
  1702. EXPORT_SYMBOL(kthread_bind);
  1703. #ifdef CONFIG_SMP
  1704. /*
  1705. * Is this task likely cache-hot:
  1706. */
  1707. static int
  1708. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1709. {
  1710. s64 delta;
  1711. /*
  1712. * Buddy candidates are cache hot:
  1713. */
  1714. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1715. (&p->se == cfs_rq_of(&p->se)->next ||
  1716. &p->se == cfs_rq_of(&p->se)->last))
  1717. return 1;
  1718. if (p->sched_class != &fair_sched_class)
  1719. return 0;
  1720. if (sysctl_sched_migration_cost == -1)
  1721. return 1;
  1722. if (sysctl_sched_migration_cost == 0)
  1723. return 0;
  1724. delta = now - p->se.exec_start;
  1725. return delta < (s64)sysctl_sched_migration_cost;
  1726. }
  1727. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1728. {
  1729. int old_cpu = task_cpu(p);
  1730. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1731. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1732. trace_sched_migrate_task(p, new_cpu);
  1733. if (old_cpu != new_cpu) {
  1734. p->se.nr_migrations++;
  1735. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1736. 1, 1, NULL, 0);
  1737. }
  1738. p->se.vruntime -= old_cfsrq->min_vruntime -
  1739. new_cfsrq->min_vruntime;
  1740. __set_task_cpu(p, new_cpu);
  1741. }
  1742. struct migration_req {
  1743. struct list_head list;
  1744. struct task_struct *task;
  1745. int dest_cpu;
  1746. struct completion done;
  1747. };
  1748. /*
  1749. * The task's runqueue lock must be held.
  1750. * Returns true if you have to wait for migration thread.
  1751. */
  1752. static int
  1753. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1754. {
  1755. struct rq *rq = task_rq(p);
  1756. /*
  1757. * If the task is not on a runqueue (and not running), then
  1758. * it is sufficient to simply update the task's cpu field.
  1759. */
  1760. if (!p->se.on_rq && !task_running(rq, p)) {
  1761. update_rq_clock(rq);
  1762. set_task_cpu(p, dest_cpu);
  1763. return 0;
  1764. }
  1765. init_completion(&req->done);
  1766. req->task = p;
  1767. req->dest_cpu = dest_cpu;
  1768. list_add(&req->list, &rq->migration_queue);
  1769. return 1;
  1770. }
  1771. /*
  1772. * wait_task_context_switch - wait for a thread to complete at least one
  1773. * context switch.
  1774. *
  1775. * @p must not be current.
  1776. */
  1777. void wait_task_context_switch(struct task_struct *p)
  1778. {
  1779. unsigned long nvcsw, nivcsw, flags;
  1780. int running;
  1781. struct rq *rq;
  1782. nvcsw = p->nvcsw;
  1783. nivcsw = p->nivcsw;
  1784. for (;;) {
  1785. /*
  1786. * The runqueue is assigned before the actual context
  1787. * switch. We need to take the runqueue lock.
  1788. *
  1789. * We could check initially without the lock but it is
  1790. * very likely that we need to take the lock in every
  1791. * iteration.
  1792. */
  1793. rq = task_rq_lock(p, &flags);
  1794. running = task_running(rq, p);
  1795. task_rq_unlock(rq, &flags);
  1796. if (likely(!running))
  1797. break;
  1798. /*
  1799. * The switch count is incremented before the actual
  1800. * context switch. We thus wait for two switches to be
  1801. * sure at least one completed.
  1802. */
  1803. if ((p->nvcsw - nvcsw) > 1)
  1804. break;
  1805. if ((p->nivcsw - nivcsw) > 1)
  1806. break;
  1807. cpu_relax();
  1808. }
  1809. }
  1810. /*
  1811. * wait_task_inactive - wait for a thread to unschedule.
  1812. *
  1813. * If @match_state is nonzero, it's the @p->state value just checked and
  1814. * not expected to change. If it changes, i.e. @p might have woken up,
  1815. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1816. * we return a positive number (its total switch count). If a second call
  1817. * a short while later returns the same number, the caller can be sure that
  1818. * @p has remained unscheduled the whole time.
  1819. *
  1820. * The caller must ensure that the task *will* unschedule sometime soon,
  1821. * else this function might spin for a *long* time. This function can't
  1822. * be called with interrupts off, or it may introduce deadlock with
  1823. * smp_call_function() if an IPI is sent by the same process we are
  1824. * waiting to become inactive.
  1825. */
  1826. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1827. {
  1828. unsigned long flags;
  1829. int running, on_rq;
  1830. unsigned long ncsw;
  1831. struct rq *rq;
  1832. for (;;) {
  1833. /*
  1834. * We do the initial early heuristics without holding
  1835. * any task-queue locks at all. We'll only try to get
  1836. * the runqueue lock when things look like they will
  1837. * work out!
  1838. */
  1839. rq = task_rq(p);
  1840. /*
  1841. * If the task is actively running on another CPU
  1842. * still, just relax and busy-wait without holding
  1843. * any locks.
  1844. *
  1845. * NOTE! Since we don't hold any locks, it's not
  1846. * even sure that "rq" stays as the right runqueue!
  1847. * But we don't care, since "task_running()" will
  1848. * return false if the runqueue has changed and p
  1849. * is actually now running somewhere else!
  1850. */
  1851. while (task_running(rq, p)) {
  1852. if (match_state && unlikely(p->state != match_state))
  1853. return 0;
  1854. cpu_relax();
  1855. }
  1856. /*
  1857. * Ok, time to look more closely! We need the rq
  1858. * lock now, to be *sure*. If we're wrong, we'll
  1859. * just go back and repeat.
  1860. */
  1861. rq = task_rq_lock(p, &flags);
  1862. trace_sched_wait_task(rq, p);
  1863. running = task_running(rq, p);
  1864. on_rq = p->se.on_rq;
  1865. ncsw = 0;
  1866. if (!match_state || p->state == match_state)
  1867. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1868. task_rq_unlock(rq, &flags);
  1869. /*
  1870. * If it changed from the expected state, bail out now.
  1871. */
  1872. if (unlikely(!ncsw))
  1873. break;
  1874. /*
  1875. * Was it really running after all now that we
  1876. * checked with the proper locks actually held?
  1877. *
  1878. * Oops. Go back and try again..
  1879. */
  1880. if (unlikely(running)) {
  1881. cpu_relax();
  1882. continue;
  1883. }
  1884. /*
  1885. * It's not enough that it's not actively running,
  1886. * it must be off the runqueue _entirely_, and not
  1887. * preempted!
  1888. *
  1889. * So if it was still runnable (but just not actively
  1890. * running right now), it's preempted, and we should
  1891. * yield - it could be a while.
  1892. */
  1893. if (unlikely(on_rq)) {
  1894. schedule_timeout_uninterruptible(1);
  1895. continue;
  1896. }
  1897. /*
  1898. * Ahh, all good. It wasn't running, and it wasn't
  1899. * runnable, which means that it will never become
  1900. * running in the future either. We're all done!
  1901. */
  1902. break;
  1903. }
  1904. return ncsw;
  1905. }
  1906. /***
  1907. * kick_process - kick a running thread to enter/exit the kernel
  1908. * @p: the to-be-kicked thread
  1909. *
  1910. * Cause a process which is running on another CPU to enter
  1911. * kernel-mode, without any delay. (to get signals handled.)
  1912. *
  1913. * NOTE: this function doesnt have to take the runqueue lock,
  1914. * because all it wants to ensure is that the remote task enters
  1915. * the kernel. If the IPI races and the task has been migrated
  1916. * to another CPU then no harm is done and the purpose has been
  1917. * achieved as well.
  1918. */
  1919. void kick_process(struct task_struct *p)
  1920. {
  1921. int cpu;
  1922. preempt_disable();
  1923. cpu = task_cpu(p);
  1924. if ((cpu != smp_processor_id()) && task_curr(p))
  1925. smp_send_reschedule(cpu);
  1926. preempt_enable();
  1927. }
  1928. EXPORT_SYMBOL_GPL(kick_process);
  1929. #endif /* CONFIG_SMP */
  1930. /**
  1931. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1932. * @p: the task to evaluate
  1933. * @func: the function to be called
  1934. * @info: the function call argument
  1935. *
  1936. * Calls the function @func when the task is currently running. This might
  1937. * be on the current CPU, which just calls the function directly
  1938. */
  1939. void task_oncpu_function_call(struct task_struct *p,
  1940. void (*func) (void *info), void *info)
  1941. {
  1942. int cpu;
  1943. preempt_disable();
  1944. cpu = task_cpu(p);
  1945. if (task_curr(p))
  1946. smp_call_function_single(cpu, func, info, 1);
  1947. preempt_enable();
  1948. }
  1949. #ifdef CONFIG_SMP
  1950. static inline
  1951. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1952. {
  1953. return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1954. }
  1955. #endif
  1956. /***
  1957. * try_to_wake_up - wake up a thread
  1958. * @p: the to-be-woken-up thread
  1959. * @state: the mask of task states that can be woken
  1960. * @sync: do a synchronous wakeup?
  1961. *
  1962. * Put it on the run-queue if it's not already there. The "current"
  1963. * thread is always on the run-queue (except when the actual
  1964. * re-schedule is in progress), and as such you're allowed to do
  1965. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1966. * runnable without the overhead of this.
  1967. *
  1968. * returns failure only if the task is already active.
  1969. */
  1970. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1971. int wake_flags)
  1972. {
  1973. int cpu, orig_cpu, this_cpu, success = 0;
  1974. unsigned long flags;
  1975. struct rq *rq, *orig_rq;
  1976. if (!sched_feat(SYNC_WAKEUPS))
  1977. wake_flags &= ~WF_SYNC;
  1978. this_cpu = get_cpu();
  1979. smp_wmb();
  1980. rq = orig_rq = task_rq_lock(p, &flags);
  1981. update_rq_clock(rq);
  1982. if (!(p->state & state))
  1983. goto out;
  1984. if (p->se.on_rq)
  1985. goto out_running;
  1986. cpu = task_cpu(p);
  1987. orig_cpu = cpu;
  1988. #ifdef CONFIG_SMP
  1989. if (unlikely(task_running(rq, p)))
  1990. goto out_activate;
  1991. /*
  1992. * In order to handle concurrent wakeups and release the rq->lock
  1993. * we put the task in TASK_WAKING state.
  1994. *
  1995. * First fix up the nr_uninterruptible count:
  1996. */
  1997. if (task_contributes_to_load(p))
  1998. rq->nr_uninterruptible--;
  1999. p->state = TASK_WAKING;
  2000. __task_rq_unlock(rq);
  2001. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2002. if (cpu != orig_cpu)
  2003. set_task_cpu(p, cpu);
  2004. rq = __task_rq_lock(p);
  2005. update_rq_clock(rq);
  2006. WARN_ON(p->state != TASK_WAKING);
  2007. cpu = task_cpu(p);
  2008. #ifdef CONFIG_SCHEDSTATS
  2009. schedstat_inc(rq, ttwu_count);
  2010. if (cpu == this_cpu)
  2011. schedstat_inc(rq, ttwu_local);
  2012. else {
  2013. struct sched_domain *sd;
  2014. for_each_domain(this_cpu, sd) {
  2015. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2016. schedstat_inc(sd, ttwu_wake_remote);
  2017. break;
  2018. }
  2019. }
  2020. }
  2021. #endif /* CONFIG_SCHEDSTATS */
  2022. out_activate:
  2023. #endif /* CONFIG_SMP */
  2024. schedstat_inc(p, se.nr_wakeups);
  2025. if (wake_flags & WF_SYNC)
  2026. schedstat_inc(p, se.nr_wakeups_sync);
  2027. if (orig_cpu != cpu)
  2028. schedstat_inc(p, se.nr_wakeups_migrate);
  2029. if (cpu == this_cpu)
  2030. schedstat_inc(p, se.nr_wakeups_local);
  2031. else
  2032. schedstat_inc(p, se.nr_wakeups_remote);
  2033. activate_task(rq, p, 1);
  2034. success = 1;
  2035. /*
  2036. * Only attribute actual wakeups done by this task.
  2037. */
  2038. if (!in_interrupt()) {
  2039. struct sched_entity *se = &current->se;
  2040. u64 sample = se->sum_exec_runtime;
  2041. if (se->last_wakeup)
  2042. sample -= se->last_wakeup;
  2043. else
  2044. sample -= se->start_runtime;
  2045. update_avg(&se->avg_wakeup, sample);
  2046. se->last_wakeup = se->sum_exec_runtime;
  2047. }
  2048. out_running:
  2049. trace_sched_wakeup(rq, p, success);
  2050. check_preempt_curr(rq, p, wake_flags);
  2051. p->state = TASK_RUNNING;
  2052. #ifdef CONFIG_SMP
  2053. if (p->sched_class->task_wake_up)
  2054. p->sched_class->task_wake_up(rq, p);
  2055. if (unlikely(rq->idle_stamp)) {
  2056. u64 delta = rq->clock - rq->idle_stamp;
  2057. u64 max = 2*sysctl_sched_migration_cost;
  2058. if (delta > max)
  2059. rq->avg_idle = max;
  2060. else
  2061. update_avg(&rq->avg_idle, delta);
  2062. rq->idle_stamp = 0;
  2063. }
  2064. #endif
  2065. out:
  2066. task_rq_unlock(rq, &flags);
  2067. put_cpu();
  2068. return success;
  2069. }
  2070. /**
  2071. * wake_up_process - Wake up a specific process
  2072. * @p: The process to be woken up.
  2073. *
  2074. * Attempt to wake up the nominated process and move it to the set of runnable
  2075. * processes. Returns 1 if the process was woken up, 0 if it was already
  2076. * running.
  2077. *
  2078. * It may be assumed that this function implies a write memory barrier before
  2079. * changing the task state if and only if any tasks are woken up.
  2080. */
  2081. int wake_up_process(struct task_struct *p)
  2082. {
  2083. return try_to_wake_up(p, TASK_ALL, 0);
  2084. }
  2085. EXPORT_SYMBOL(wake_up_process);
  2086. int wake_up_state(struct task_struct *p, unsigned int state)
  2087. {
  2088. return try_to_wake_up(p, state, 0);
  2089. }
  2090. /*
  2091. * Perform scheduler related setup for a newly forked process p.
  2092. * p is forked by current.
  2093. *
  2094. * __sched_fork() is basic setup used by init_idle() too:
  2095. */
  2096. static void __sched_fork(struct task_struct *p)
  2097. {
  2098. p->se.exec_start = 0;
  2099. p->se.sum_exec_runtime = 0;
  2100. p->se.prev_sum_exec_runtime = 0;
  2101. p->se.nr_migrations = 0;
  2102. p->se.last_wakeup = 0;
  2103. p->se.avg_overlap = 0;
  2104. p->se.start_runtime = 0;
  2105. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2106. #ifdef CONFIG_SCHEDSTATS
  2107. p->se.wait_start = 0;
  2108. p->se.wait_max = 0;
  2109. p->se.wait_count = 0;
  2110. p->se.wait_sum = 0;
  2111. p->se.sleep_start = 0;
  2112. p->se.sleep_max = 0;
  2113. p->se.sum_sleep_runtime = 0;
  2114. p->se.block_start = 0;
  2115. p->se.block_max = 0;
  2116. p->se.exec_max = 0;
  2117. p->se.slice_max = 0;
  2118. p->se.nr_migrations_cold = 0;
  2119. p->se.nr_failed_migrations_affine = 0;
  2120. p->se.nr_failed_migrations_running = 0;
  2121. p->se.nr_failed_migrations_hot = 0;
  2122. p->se.nr_forced_migrations = 0;
  2123. p->se.nr_wakeups = 0;
  2124. p->se.nr_wakeups_sync = 0;
  2125. p->se.nr_wakeups_migrate = 0;
  2126. p->se.nr_wakeups_local = 0;
  2127. p->se.nr_wakeups_remote = 0;
  2128. p->se.nr_wakeups_affine = 0;
  2129. p->se.nr_wakeups_affine_attempts = 0;
  2130. p->se.nr_wakeups_passive = 0;
  2131. p->se.nr_wakeups_idle = 0;
  2132. #endif
  2133. INIT_LIST_HEAD(&p->rt.run_list);
  2134. p->se.on_rq = 0;
  2135. INIT_LIST_HEAD(&p->se.group_node);
  2136. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2137. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2138. #endif
  2139. /*
  2140. * We mark the process as running here, but have not actually
  2141. * inserted it onto the runqueue yet. This guarantees that
  2142. * nobody will actually run it, and a signal or other external
  2143. * event cannot wake it up and insert it on the runqueue either.
  2144. */
  2145. p->state = TASK_RUNNING;
  2146. }
  2147. /*
  2148. * fork()/clone()-time setup:
  2149. */
  2150. void sched_fork(struct task_struct *p, int clone_flags)
  2151. {
  2152. int cpu = get_cpu();
  2153. __sched_fork(p);
  2154. /*
  2155. * Revert to default priority/policy on fork if requested.
  2156. */
  2157. if (unlikely(p->sched_reset_on_fork)) {
  2158. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2159. p->policy = SCHED_NORMAL;
  2160. p->normal_prio = p->static_prio;
  2161. }
  2162. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2163. p->static_prio = NICE_TO_PRIO(0);
  2164. p->normal_prio = p->static_prio;
  2165. set_load_weight(p);
  2166. }
  2167. /*
  2168. * We don't need the reset flag anymore after the fork. It has
  2169. * fulfilled its duty:
  2170. */
  2171. p->sched_reset_on_fork = 0;
  2172. }
  2173. /*
  2174. * Make sure we do not leak PI boosting priority to the child.
  2175. */
  2176. p->prio = current->normal_prio;
  2177. if (!rt_prio(p->prio))
  2178. p->sched_class = &fair_sched_class;
  2179. if (p->sched_class->task_fork)
  2180. p->sched_class->task_fork(p);
  2181. #ifdef CONFIG_SMP
  2182. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2183. #endif
  2184. set_task_cpu(p, cpu);
  2185. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2186. if (likely(sched_info_on()))
  2187. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2188. #endif
  2189. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2190. p->oncpu = 0;
  2191. #endif
  2192. #ifdef CONFIG_PREEMPT
  2193. /* Want to start with kernel preemption disabled. */
  2194. task_thread_info(p)->preempt_count = 1;
  2195. #endif
  2196. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2197. put_cpu();
  2198. }
  2199. /*
  2200. * wake_up_new_task - wake up a newly created task for the first time.
  2201. *
  2202. * This function will do some initial scheduler statistics housekeeping
  2203. * that must be done for every newly created context, then puts the task
  2204. * on the runqueue and wakes it.
  2205. */
  2206. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2207. {
  2208. unsigned long flags;
  2209. struct rq *rq;
  2210. rq = task_rq_lock(p, &flags);
  2211. BUG_ON(p->state != TASK_RUNNING);
  2212. update_rq_clock(rq);
  2213. activate_task(rq, p, 0);
  2214. trace_sched_wakeup_new(rq, p, 1);
  2215. check_preempt_curr(rq, p, WF_FORK);
  2216. #ifdef CONFIG_SMP
  2217. if (p->sched_class->task_wake_up)
  2218. p->sched_class->task_wake_up(rq, p);
  2219. #endif
  2220. task_rq_unlock(rq, &flags);
  2221. }
  2222. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2223. /**
  2224. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2225. * @notifier: notifier struct to register
  2226. */
  2227. void preempt_notifier_register(struct preempt_notifier *notifier)
  2228. {
  2229. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2230. }
  2231. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2232. /**
  2233. * preempt_notifier_unregister - no longer interested in preemption notifications
  2234. * @notifier: notifier struct to unregister
  2235. *
  2236. * This is safe to call from within a preemption notifier.
  2237. */
  2238. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2239. {
  2240. hlist_del(&notifier->link);
  2241. }
  2242. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2243. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2244. {
  2245. struct preempt_notifier *notifier;
  2246. struct hlist_node *node;
  2247. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2248. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2249. }
  2250. static void
  2251. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2252. struct task_struct *next)
  2253. {
  2254. struct preempt_notifier *notifier;
  2255. struct hlist_node *node;
  2256. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2257. notifier->ops->sched_out(notifier, next);
  2258. }
  2259. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2260. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2261. {
  2262. }
  2263. static void
  2264. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2265. struct task_struct *next)
  2266. {
  2267. }
  2268. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2269. /**
  2270. * prepare_task_switch - prepare to switch tasks
  2271. * @rq: the runqueue preparing to switch
  2272. * @prev: the current task that is being switched out
  2273. * @next: the task we are going to switch to.
  2274. *
  2275. * This is called with the rq lock held and interrupts off. It must
  2276. * be paired with a subsequent finish_task_switch after the context
  2277. * switch.
  2278. *
  2279. * prepare_task_switch sets up locking and calls architecture specific
  2280. * hooks.
  2281. */
  2282. static inline void
  2283. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2284. struct task_struct *next)
  2285. {
  2286. fire_sched_out_preempt_notifiers(prev, next);
  2287. prepare_lock_switch(rq, next);
  2288. prepare_arch_switch(next);
  2289. }
  2290. /**
  2291. * finish_task_switch - clean up after a task-switch
  2292. * @rq: runqueue associated with task-switch
  2293. * @prev: the thread we just switched away from.
  2294. *
  2295. * finish_task_switch must be called after the context switch, paired
  2296. * with a prepare_task_switch call before the context switch.
  2297. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2298. * and do any other architecture-specific cleanup actions.
  2299. *
  2300. * Note that we may have delayed dropping an mm in context_switch(). If
  2301. * so, we finish that here outside of the runqueue lock. (Doing it
  2302. * with the lock held can cause deadlocks; see schedule() for
  2303. * details.)
  2304. */
  2305. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2306. __releases(rq->lock)
  2307. {
  2308. struct mm_struct *mm = rq->prev_mm;
  2309. long prev_state;
  2310. rq->prev_mm = NULL;
  2311. /*
  2312. * A task struct has one reference for the use as "current".
  2313. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2314. * schedule one last time. The schedule call will never return, and
  2315. * the scheduled task must drop that reference.
  2316. * The test for TASK_DEAD must occur while the runqueue locks are
  2317. * still held, otherwise prev could be scheduled on another cpu, die
  2318. * there before we look at prev->state, and then the reference would
  2319. * be dropped twice.
  2320. * Manfred Spraul <manfred@colorfullife.com>
  2321. */
  2322. prev_state = prev->state;
  2323. finish_arch_switch(prev);
  2324. perf_event_task_sched_in(current, cpu_of(rq));
  2325. finish_lock_switch(rq, prev);
  2326. fire_sched_in_preempt_notifiers(current);
  2327. if (mm)
  2328. mmdrop(mm);
  2329. if (unlikely(prev_state == TASK_DEAD)) {
  2330. /*
  2331. * Remove function-return probe instances associated with this
  2332. * task and put them back on the free list.
  2333. */
  2334. kprobe_flush_task(prev);
  2335. put_task_struct(prev);
  2336. }
  2337. }
  2338. #ifdef CONFIG_SMP
  2339. /* assumes rq->lock is held */
  2340. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2341. {
  2342. if (prev->sched_class->pre_schedule)
  2343. prev->sched_class->pre_schedule(rq, prev);
  2344. }
  2345. /* rq->lock is NOT held, but preemption is disabled */
  2346. static inline void post_schedule(struct rq *rq)
  2347. {
  2348. if (rq->post_schedule) {
  2349. unsigned long flags;
  2350. spin_lock_irqsave(&rq->lock, flags);
  2351. if (rq->curr->sched_class->post_schedule)
  2352. rq->curr->sched_class->post_schedule(rq);
  2353. spin_unlock_irqrestore(&rq->lock, flags);
  2354. rq->post_schedule = 0;
  2355. }
  2356. }
  2357. #else
  2358. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2359. {
  2360. }
  2361. static inline void post_schedule(struct rq *rq)
  2362. {
  2363. }
  2364. #endif
  2365. /**
  2366. * schedule_tail - first thing a freshly forked thread must call.
  2367. * @prev: the thread we just switched away from.
  2368. */
  2369. asmlinkage void schedule_tail(struct task_struct *prev)
  2370. __releases(rq->lock)
  2371. {
  2372. struct rq *rq = this_rq();
  2373. finish_task_switch(rq, prev);
  2374. /*
  2375. * FIXME: do we need to worry about rq being invalidated by the
  2376. * task_switch?
  2377. */
  2378. post_schedule(rq);
  2379. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2380. /* In this case, finish_task_switch does not reenable preemption */
  2381. preempt_enable();
  2382. #endif
  2383. if (current->set_child_tid)
  2384. put_user(task_pid_vnr(current), current->set_child_tid);
  2385. }
  2386. /*
  2387. * context_switch - switch to the new MM and the new
  2388. * thread's register state.
  2389. */
  2390. static inline void
  2391. context_switch(struct rq *rq, struct task_struct *prev,
  2392. struct task_struct *next)
  2393. {
  2394. struct mm_struct *mm, *oldmm;
  2395. prepare_task_switch(rq, prev, next);
  2396. trace_sched_switch(rq, prev, next);
  2397. mm = next->mm;
  2398. oldmm = prev->active_mm;
  2399. /*
  2400. * For paravirt, this is coupled with an exit in switch_to to
  2401. * combine the page table reload and the switch backend into
  2402. * one hypercall.
  2403. */
  2404. arch_start_context_switch(prev);
  2405. if (likely(!mm)) {
  2406. next->active_mm = oldmm;
  2407. atomic_inc(&oldmm->mm_count);
  2408. enter_lazy_tlb(oldmm, next);
  2409. } else
  2410. switch_mm(oldmm, mm, next);
  2411. if (likely(!prev->mm)) {
  2412. prev->active_mm = NULL;
  2413. rq->prev_mm = oldmm;
  2414. }
  2415. /*
  2416. * Since the runqueue lock will be released by the next
  2417. * task (which is an invalid locking op but in the case
  2418. * of the scheduler it's an obvious special-case), so we
  2419. * do an early lockdep release here:
  2420. */
  2421. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2422. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2423. #endif
  2424. /* Here we just switch the register state and the stack. */
  2425. switch_to(prev, next, prev);
  2426. barrier();
  2427. /*
  2428. * this_rq must be evaluated again because prev may have moved
  2429. * CPUs since it called schedule(), thus the 'rq' on its stack
  2430. * frame will be invalid.
  2431. */
  2432. finish_task_switch(this_rq(), prev);
  2433. }
  2434. /*
  2435. * nr_running, nr_uninterruptible and nr_context_switches:
  2436. *
  2437. * externally visible scheduler statistics: current number of runnable
  2438. * threads, current number of uninterruptible-sleeping threads, total
  2439. * number of context switches performed since bootup.
  2440. */
  2441. unsigned long nr_running(void)
  2442. {
  2443. unsigned long i, sum = 0;
  2444. for_each_online_cpu(i)
  2445. sum += cpu_rq(i)->nr_running;
  2446. return sum;
  2447. }
  2448. unsigned long nr_uninterruptible(void)
  2449. {
  2450. unsigned long i, sum = 0;
  2451. for_each_possible_cpu(i)
  2452. sum += cpu_rq(i)->nr_uninterruptible;
  2453. /*
  2454. * Since we read the counters lockless, it might be slightly
  2455. * inaccurate. Do not allow it to go below zero though:
  2456. */
  2457. if (unlikely((long)sum < 0))
  2458. sum = 0;
  2459. return sum;
  2460. }
  2461. unsigned long long nr_context_switches(void)
  2462. {
  2463. int i;
  2464. unsigned long long sum = 0;
  2465. for_each_possible_cpu(i)
  2466. sum += cpu_rq(i)->nr_switches;
  2467. return sum;
  2468. }
  2469. unsigned long nr_iowait(void)
  2470. {
  2471. unsigned long i, sum = 0;
  2472. for_each_possible_cpu(i)
  2473. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2474. return sum;
  2475. }
  2476. unsigned long nr_iowait_cpu(void)
  2477. {
  2478. struct rq *this = this_rq();
  2479. return atomic_read(&this->nr_iowait);
  2480. }
  2481. unsigned long this_cpu_load(void)
  2482. {
  2483. struct rq *this = this_rq();
  2484. return this->cpu_load[0];
  2485. }
  2486. /* Variables and functions for calc_load */
  2487. static atomic_long_t calc_load_tasks;
  2488. static unsigned long calc_load_update;
  2489. unsigned long avenrun[3];
  2490. EXPORT_SYMBOL(avenrun);
  2491. /**
  2492. * get_avenrun - get the load average array
  2493. * @loads: pointer to dest load array
  2494. * @offset: offset to add
  2495. * @shift: shift count to shift the result left
  2496. *
  2497. * These values are estimates at best, so no need for locking.
  2498. */
  2499. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2500. {
  2501. loads[0] = (avenrun[0] + offset) << shift;
  2502. loads[1] = (avenrun[1] + offset) << shift;
  2503. loads[2] = (avenrun[2] + offset) << shift;
  2504. }
  2505. static unsigned long
  2506. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2507. {
  2508. load *= exp;
  2509. load += active * (FIXED_1 - exp);
  2510. return load >> FSHIFT;
  2511. }
  2512. /*
  2513. * calc_load - update the avenrun load estimates 10 ticks after the
  2514. * CPUs have updated calc_load_tasks.
  2515. */
  2516. void calc_global_load(void)
  2517. {
  2518. unsigned long upd = calc_load_update + 10;
  2519. long active;
  2520. if (time_before(jiffies, upd))
  2521. return;
  2522. active = atomic_long_read(&calc_load_tasks);
  2523. active = active > 0 ? active * FIXED_1 : 0;
  2524. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2525. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2526. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2527. calc_load_update += LOAD_FREQ;
  2528. }
  2529. /*
  2530. * Either called from update_cpu_load() or from a cpu going idle
  2531. */
  2532. static void calc_load_account_active(struct rq *this_rq)
  2533. {
  2534. long nr_active, delta;
  2535. nr_active = this_rq->nr_running;
  2536. nr_active += (long) this_rq->nr_uninterruptible;
  2537. if (nr_active != this_rq->calc_load_active) {
  2538. delta = nr_active - this_rq->calc_load_active;
  2539. this_rq->calc_load_active = nr_active;
  2540. atomic_long_add(delta, &calc_load_tasks);
  2541. }
  2542. }
  2543. /*
  2544. * Update rq->cpu_load[] statistics. This function is usually called every
  2545. * scheduler tick (TICK_NSEC).
  2546. */
  2547. static void update_cpu_load(struct rq *this_rq)
  2548. {
  2549. unsigned long this_load = this_rq->load.weight;
  2550. int i, scale;
  2551. this_rq->nr_load_updates++;
  2552. /* Update our load: */
  2553. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2554. unsigned long old_load, new_load;
  2555. /* scale is effectively 1 << i now, and >> i divides by scale */
  2556. old_load = this_rq->cpu_load[i];
  2557. new_load = this_load;
  2558. /*
  2559. * Round up the averaging division if load is increasing. This
  2560. * prevents us from getting stuck on 9 if the load is 10, for
  2561. * example.
  2562. */
  2563. if (new_load > old_load)
  2564. new_load += scale-1;
  2565. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2566. }
  2567. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2568. this_rq->calc_load_update += LOAD_FREQ;
  2569. calc_load_account_active(this_rq);
  2570. }
  2571. }
  2572. #ifdef CONFIG_SMP
  2573. /*
  2574. * double_rq_lock - safely lock two runqueues
  2575. *
  2576. * Note this does not disable interrupts like task_rq_lock,
  2577. * you need to do so manually before calling.
  2578. */
  2579. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2580. __acquires(rq1->lock)
  2581. __acquires(rq2->lock)
  2582. {
  2583. BUG_ON(!irqs_disabled());
  2584. if (rq1 == rq2) {
  2585. spin_lock(&rq1->lock);
  2586. __acquire(rq2->lock); /* Fake it out ;) */
  2587. } else {
  2588. if (rq1 < rq2) {
  2589. spin_lock(&rq1->lock);
  2590. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2591. } else {
  2592. spin_lock(&rq2->lock);
  2593. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2594. }
  2595. }
  2596. update_rq_clock(rq1);
  2597. update_rq_clock(rq2);
  2598. }
  2599. /*
  2600. * double_rq_unlock - safely unlock two runqueues
  2601. *
  2602. * Note this does not restore interrupts like task_rq_unlock,
  2603. * you need to do so manually after calling.
  2604. */
  2605. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2606. __releases(rq1->lock)
  2607. __releases(rq2->lock)
  2608. {
  2609. spin_unlock(&rq1->lock);
  2610. if (rq1 != rq2)
  2611. spin_unlock(&rq2->lock);
  2612. else
  2613. __release(rq2->lock);
  2614. }
  2615. /*
  2616. * If dest_cpu is allowed for this process, migrate the task to it.
  2617. * This is accomplished by forcing the cpu_allowed mask to only
  2618. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2619. * the cpu_allowed mask is restored.
  2620. */
  2621. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2622. {
  2623. struct migration_req req;
  2624. unsigned long flags;
  2625. struct rq *rq;
  2626. rq = task_rq_lock(p, &flags);
  2627. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2628. || unlikely(!cpu_active(dest_cpu)))
  2629. goto out;
  2630. /* force the process onto the specified CPU */
  2631. if (migrate_task(p, dest_cpu, &req)) {
  2632. /* Need to wait for migration thread (might exit: take ref). */
  2633. struct task_struct *mt = rq->migration_thread;
  2634. get_task_struct(mt);
  2635. task_rq_unlock(rq, &flags);
  2636. wake_up_process(mt);
  2637. put_task_struct(mt);
  2638. wait_for_completion(&req.done);
  2639. return;
  2640. }
  2641. out:
  2642. task_rq_unlock(rq, &flags);
  2643. }
  2644. /*
  2645. * sched_exec - execve() is a valuable balancing opportunity, because at
  2646. * this point the task has the smallest effective memory and cache footprint.
  2647. */
  2648. void sched_exec(void)
  2649. {
  2650. int new_cpu, this_cpu = get_cpu();
  2651. new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
  2652. put_cpu();
  2653. if (new_cpu != this_cpu)
  2654. sched_migrate_task(current, new_cpu);
  2655. }
  2656. /*
  2657. * pull_task - move a task from a remote runqueue to the local runqueue.
  2658. * Both runqueues must be locked.
  2659. */
  2660. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2661. struct rq *this_rq, int this_cpu)
  2662. {
  2663. deactivate_task(src_rq, p, 0);
  2664. set_task_cpu(p, this_cpu);
  2665. activate_task(this_rq, p, 0);
  2666. check_preempt_curr(this_rq, p, 0);
  2667. }
  2668. /*
  2669. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2670. */
  2671. static
  2672. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2673. struct sched_domain *sd, enum cpu_idle_type idle,
  2674. int *all_pinned)
  2675. {
  2676. int tsk_cache_hot = 0;
  2677. /*
  2678. * We do not migrate tasks that are:
  2679. * 1) running (obviously), or
  2680. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2681. * 3) are cache-hot on their current CPU.
  2682. */
  2683. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2684. schedstat_inc(p, se.nr_failed_migrations_affine);
  2685. return 0;
  2686. }
  2687. *all_pinned = 0;
  2688. if (task_running(rq, p)) {
  2689. schedstat_inc(p, se.nr_failed_migrations_running);
  2690. return 0;
  2691. }
  2692. /*
  2693. * Aggressive migration if:
  2694. * 1) task is cache cold, or
  2695. * 2) too many balance attempts have failed.
  2696. */
  2697. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2698. if (!tsk_cache_hot ||
  2699. sd->nr_balance_failed > sd->cache_nice_tries) {
  2700. #ifdef CONFIG_SCHEDSTATS
  2701. if (tsk_cache_hot) {
  2702. schedstat_inc(sd, lb_hot_gained[idle]);
  2703. schedstat_inc(p, se.nr_forced_migrations);
  2704. }
  2705. #endif
  2706. return 1;
  2707. }
  2708. if (tsk_cache_hot) {
  2709. schedstat_inc(p, se.nr_failed_migrations_hot);
  2710. return 0;
  2711. }
  2712. return 1;
  2713. }
  2714. static unsigned long
  2715. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2716. unsigned long max_load_move, struct sched_domain *sd,
  2717. enum cpu_idle_type idle, int *all_pinned,
  2718. int *this_best_prio, struct rq_iterator *iterator)
  2719. {
  2720. int loops = 0, pulled = 0, pinned = 0;
  2721. struct task_struct *p;
  2722. long rem_load_move = max_load_move;
  2723. if (max_load_move == 0)
  2724. goto out;
  2725. pinned = 1;
  2726. /*
  2727. * Start the load-balancing iterator:
  2728. */
  2729. p = iterator->start(iterator->arg);
  2730. next:
  2731. if (!p || loops++ > sysctl_sched_nr_migrate)
  2732. goto out;
  2733. if ((p->se.load.weight >> 1) > rem_load_move ||
  2734. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2735. p = iterator->next(iterator->arg);
  2736. goto next;
  2737. }
  2738. pull_task(busiest, p, this_rq, this_cpu);
  2739. pulled++;
  2740. rem_load_move -= p->se.load.weight;
  2741. #ifdef CONFIG_PREEMPT
  2742. /*
  2743. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2744. * will stop after the first task is pulled to minimize the critical
  2745. * section.
  2746. */
  2747. if (idle == CPU_NEWLY_IDLE)
  2748. goto out;
  2749. #endif
  2750. /*
  2751. * We only want to steal up to the prescribed amount of weighted load.
  2752. */
  2753. if (rem_load_move > 0) {
  2754. if (p->prio < *this_best_prio)
  2755. *this_best_prio = p->prio;
  2756. p = iterator->next(iterator->arg);
  2757. goto next;
  2758. }
  2759. out:
  2760. /*
  2761. * Right now, this is one of only two places pull_task() is called,
  2762. * so we can safely collect pull_task() stats here rather than
  2763. * inside pull_task().
  2764. */
  2765. schedstat_add(sd, lb_gained[idle], pulled);
  2766. if (all_pinned)
  2767. *all_pinned = pinned;
  2768. return max_load_move - rem_load_move;
  2769. }
  2770. /*
  2771. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2772. * this_rq, as part of a balancing operation within domain "sd".
  2773. * Returns 1 if successful and 0 otherwise.
  2774. *
  2775. * Called with both runqueues locked.
  2776. */
  2777. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2778. unsigned long max_load_move,
  2779. struct sched_domain *sd, enum cpu_idle_type idle,
  2780. int *all_pinned)
  2781. {
  2782. const struct sched_class *class = sched_class_highest;
  2783. unsigned long total_load_moved = 0;
  2784. int this_best_prio = this_rq->curr->prio;
  2785. do {
  2786. total_load_moved +=
  2787. class->load_balance(this_rq, this_cpu, busiest,
  2788. max_load_move - total_load_moved,
  2789. sd, idle, all_pinned, &this_best_prio);
  2790. class = class->next;
  2791. #ifdef CONFIG_PREEMPT
  2792. /*
  2793. * NEWIDLE balancing is a source of latency, so preemptible
  2794. * kernels will stop after the first task is pulled to minimize
  2795. * the critical section.
  2796. */
  2797. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2798. break;
  2799. #endif
  2800. } while (class && max_load_move > total_load_moved);
  2801. return total_load_moved > 0;
  2802. }
  2803. static int
  2804. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2805. struct sched_domain *sd, enum cpu_idle_type idle,
  2806. struct rq_iterator *iterator)
  2807. {
  2808. struct task_struct *p = iterator->start(iterator->arg);
  2809. int pinned = 0;
  2810. while (p) {
  2811. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2812. pull_task(busiest, p, this_rq, this_cpu);
  2813. /*
  2814. * Right now, this is only the second place pull_task()
  2815. * is called, so we can safely collect pull_task()
  2816. * stats here rather than inside pull_task().
  2817. */
  2818. schedstat_inc(sd, lb_gained[idle]);
  2819. return 1;
  2820. }
  2821. p = iterator->next(iterator->arg);
  2822. }
  2823. return 0;
  2824. }
  2825. /*
  2826. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2827. * part of active balancing operations within "domain".
  2828. * Returns 1 if successful and 0 otherwise.
  2829. *
  2830. * Called with both runqueues locked.
  2831. */
  2832. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2833. struct sched_domain *sd, enum cpu_idle_type idle)
  2834. {
  2835. const struct sched_class *class;
  2836. for_each_class(class) {
  2837. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2838. return 1;
  2839. }
  2840. return 0;
  2841. }
  2842. /********** Helpers for find_busiest_group ************************/
  2843. /*
  2844. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2845. * during load balancing.
  2846. */
  2847. struct sd_lb_stats {
  2848. struct sched_group *busiest; /* Busiest group in this sd */
  2849. struct sched_group *this; /* Local group in this sd */
  2850. unsigned long total_load; /* Total load of all groups in sd */
  2851. unsigned long total_pwr; /* Total power of all groups in sd */
  2852. unsigned long avg_load; /* Average load across all groups in sd */
  2853. /** Statistics of this group */
  2854. unsigned long this_load;
  2855. unsigned long this_load_per_task;
  2856. unsigned long this_nr_running;
  2857. /* Statistics of the busiest group */
  2858. unsigned long max_load;
  2859. unsigned long busiest_load_per_task;
  2860. unsigned long busiest_nr_running;
  2861. int group_imb; /* Is there imbalance in this sd */
  2862. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2863. int power_savings_balance; /* Is powersave balance needed for this sd */
  2864. struct sched_group *group_min; /* Least loaded group in sd */
  2865. struct sched_group *group_leader; /* Group which relieves group_min */
  2866. unsigned long min_load_per_task; /* load_per_task in group_min */
  2867. unsigned long leader_nr_running; /* Nr running of group_leader */
  2868. unsigned long min_nr_running; /* Nr running of group_min */
  2869. #endif
  2870. };
  2871. /*
  2872. * sg_lb_stats - stats of a sched_group required for load_balancing
  2873. */
  2874. struct sg_lb_stats {
  2875. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2876. unsigned long group_load; /* Total load over the CPUs of the group */
  2877. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2878. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2879. unsigned long group_capacity;
  2880. int group_imb; /* Is there an imbalance in the group ? */
  2881. };
  2882. /**
  2883. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2884. * @group: The group whose first cpu is to be returned.
  2885. */
  2886. static inline unsigned int group_first_cpu(struct sched_group *group)
  2887. {
  2888. return cpumask_first(sched_group_cpus(group));
  2889. }
  2890. /**
  2891. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2892. * @sd: The sched_domain whose load_idx is to be obtained.
  2893. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2894. */
  2895. static inline int get_sd_load_idx(struct sched_domain *sd,
  2896. enum cpu_idle_type idle)
  2897. {
  2898. int load_idx;
  2899. switch (idle) {
  2900. case CPU_NOT_IDLE:
  2901. load_idx = sd->busy_idx;
  2902. break;
  2903. case CPU_NEWLY_IDLE:
  2904. load_idx = sd->newidle_idx;
  2905. break;
  2906. default:
  2907. load_idx = sd->idle_idx;
  2908. break;
  2909. }
  2910. return load_idx;
  2911. }
  2912. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2913. /**
  2914. * init_sd_power_savings_stats - Initialize power savings statistics for
  2915. * the given sched_domain, during load balancing.
  2916. *
  2917. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2918. * @sds: Variable containing the statistics for sd.
  2919. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2920. */
  2921. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2922. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2923. {
  2924. /*
  2925. * Busy processors will not participate in power savings
  2926. * balance.
  2927. */
  2928. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2929. sds->power_savings_balance = 0;
  2930. else {
  2931. sds->power_savings_balance = 1;
  2932. sds->min_nr_running = ULONG_MAX;
  2933. sds->leader_nr_running = 0;
  2934. }
  2935. }
  2936. /**
  2937. * update_sd_power_savings_stats - Update the power saving stats for a
  2938. * sched_domain while performing load balancing.
  2939. *
  2940. * @group: sched_group belonging to the sched_domain under consideration.
  2941. * @sds: Variable containing the statistics of the sched_domain
  2942. * @local_group: Does group contain the CPU for which we're performing
  2943. * load balancing ?
  2944. * @sgs: Variable containing the statistics of the group.
  2945. */
  2946. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2947. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2948. {
  2949. if (!sds->power_savings_balance)
  2950. return;
  2951. /*
  2952. * If the local group is idle or completely loaded
  2953. * no need to do power savings balance at this domain
  2954. */
  2955. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2956. !sds->this_nr_running))
  2957. sds->power_savings_balance = 0;
  2958. /*
  2959. * If a group is already running at full capacity or idle,
  2960. * don't include that group in power savings calculations
  2961. */
  2962. if (!sds->power_savings_balance ||
  2963. sgs->sum_nr_running >= sgs->group_capacity ||
  2964. !sgs->sum_nr_running)
  2965. return;
  2966. /*
  2967. * Calculate the group which has the least non-idle load.
  2968. * This is the group from where we need to pick up the load
  2969. * for saving power
  2970. */
  2971. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2972. (sgs->sum_nr_running == sds->min_nr_running &&
  2973. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2974. sds->group_min = group;
  2975. sds->min_nr_running = sgs->sum_nr_running;
  2976. sds->min_load_per_task = sgs->sum_weighted_load /
  2977. sgs->sum_nr_running;
  2978. }
  2979. /*
  2980. * Calculate the group which is almost near its
  2981. * capacity but still has some space to pick up some load
  2982. * from other group and save more power
  2983. */
  2984. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2985. return;
  2986. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2987. (sgs->sum_nr_running == sds->leader_nr_running &&
  2988. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2989. sds->group_leader = group;
  2990. sds->leader_nr_running = sgs->sum_nr_running;
  2991. }
  2992. }
  2993. /**
  2994. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2995. * @sds: Variable containing the statistics of the sched_domain
  2996. * under consideration.
  2997. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2998. * @imbalance: Variable to store the imbalance.
  2999. *
  3000. * Description:
  3001. * Check if we have potential to perform some power-savings balance.
  3002. * If yes, set the busiest group to be the least loaded group in the
  3003. * sched_domain, so that it's CPUs can be put to idle.
  3004. *
  3005. * Returns 1 if there is potential to perform power-savings balance.
  3006. * Else returns 0.
  3007. */
  3008. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3009. int this_cpu, unsigned long *imbalance)
  3010. {
  3011. if (!sds->power_savings_balance)
  3012. return 0;
  3013. if (sds->this != sds->group_leader ||
  3014. sds->group_leader == sds->group_min)
  3015. return 0;
  3016. *imbalance = sds->min_load_per_task;
  3017. sds->busiest = sds->group_min;
  3018. return 1;
  3019. }
  3020. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3021. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3022. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3023. {
  3024. return;
  3025. }
  3026. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3027. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3028. {
  3029. return;
  3030. }
  3031. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3032. int this_cpu, unsigned long *imbalance)
  3033. {
  3034. return 0;
  3035. }
  3036. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3037. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3038. {
  3039. return SCHED_LOAD_SCALE;
  3040. }
  3041. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3042. {
  3043. return default_scale_freq_power(sd, cpu);
  3044. }
  3045. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3046. {
  3047. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3048. unsigned long smt_gain = sd->smt_gain;
  3049. smt_gain /= weight;
  3050. return smt_gain;
  3051. }
  3052. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3053. {
  3054. return default_scale_smt_power(sd, cpu);
  3055. }
  3056. unsigned long scale_rt_power(int cpu)
  3057. {
  3058. struct rq *rq = cpu_rq(cpu);
  3059. u64 total, available;
  3060. sched_avg_update(rq);
  3061. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3062. available = total - rq->rt_avg;
  3063. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3064. total = SCHED_LOAD_SCALE;
  3065. total >>= SCHED_LOAD_SHIFT;
  3066. return div_u64(available, total);
  3067. }
  3068. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3069. {
  3070. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3071. unsigned long power = SCHED_LOAD_SCALE;
  3072. struct sched_group *sdg = sd->groups;
  3073. if (sched_feat(ARCH_POWER))
  3074. power *= arch_scale_freq_power(sd, cpu);
  3075. else
  3076. power *= default_scale_freq_power(sd, cpu);
  3077. power >>= SCHED_LOAD_SHIFT;
  3078. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3079. if (sched_feat(ARCH_POWER))
  3080. power *= arch_scale_smt_power(sd, cpu);
  3081. else
  3082. power *= default_scale_smt_power(sd, cpu);
  3083. power >>= SCHED_LOAD_SHIFT;
  3084. }
  3085. power *= scale_rt_power(cpu);
  3086. power >>= SCHED_LOAD_SHIFT;
  3087. if (!power)
  3088. power = 1;
  3089. sdg->cpu_power = power;
  3090. }
  3091. static void update_group_power(struct sched_domain *sd, int cpu)
  3092. {
  3093. struct sched_domain *child = sd->child;
  3094. struct sched_group *group, *sdg = sd->groups;
  3095. unsigned long power;
  3096. if (!child) {
  3097. update_cpu_power(sd, cpu);
  3098. return;
  3099. }
  3100. power = 0;
  3101. group = child->groups;
  3102. do {
  3103. power += group->cpu_power;
  3104. group = group->next;
  3105. } while (group != child->groups);
  3106. sdg->cpu_power = power;
  3107. }
  3108. /**
  3109. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3110. * @sd: The sched_domain whose statistics are to be updated.
  3111. * @group: sched_group whose statistics are to be updated.
  3112. * @this_cpu: Cpu for which load balance is currently performed.
  3113. * @idle: Idle status of this_cpu
  3114. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3115. * @sd_idle: Idle status of the sched_domain containing group.
  3116. * @local_group: Does group contain this_cpu.
  3117. * @cpus: Set of cpus considered for load balancing.
  3118. * @balance: Should we balance.
  3119. * @sgs: variable to hold the statistics for this group.
  3120. */
  3121. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3122. struct sched_group *group, int this_cpu,
  3123. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3124. int local_group, const struct cpumask *cpus,
  3125. int *balance, struct sg_lb_stats *sgs)
  3126. {
  3127. unsigned long load, max_cpu_load, min_cpu_load;
  3128. int i;
  3129. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3130. unsigned long sum_avg_load_per_task;
  3131. unsigned long avg_load_per_task;
  3132. if (local_group) {
  3133. balance_cpu = group_first_cpu(group);
  3134. if (balance_cpu == this_cpu)
  3135. update_group_power(sd, this_cpu);
  3136. }
  3137. /* Tally up the load of all CPUs in the group */
  3138. sum_avg_load_per_task = avg_load_per_task = 0;
  3139. max_cpu_load = 0;
  3140. min_cpu_load = ~0UL;
  3141. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3142. struct rq *rq = cpu_rq(i);
  3143. if (*sd_idle && rq->nr_running)
  3144. *sd_idle = 0;
  3145. /* Bias balancing toward cpus of our domain */
  3146. if (local_group) {
  3147. if (idle_cpu(i) && !first_idle_cpu) {
  3148. first_idle_cpu = 1;
  3149. balance_cpu = i;
  3150. }
  3151. load = target_load(i, load_idx);
  3152. } else {
  3153. load = source_load(i, load_idx);
  3154. if (load > max_cpu_load)
  3155. max_cpu_load = load;
  3156. if (min_cpu_load > load)
  3157. min_cpu_load = load;
  3158. }
  3159. sgs->group_load += load;
  3160. sgs->sum_nr_running += rq->nr_running;
  3161. sgs->sum_weighted_load += weighted_cpuload(i);
  3162. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3163. }
  3164. /*
  3165. * First idle cpu or the first cpu(busiest) in this sched group
  3166. * is eligible for doing load balancing at this and above
  3167. * domains. In the newly idle case, we will allow all the cpu's
  3168. * to do the newly idle load balance.
  3169. */
  3170. if (idle != CPU_NEWLY_IDLE && local_group &&
  3171. balance_cpu != this_cpu && balance) {
  3172. *balance = 0;
  3173. return;
  3174. }
  3175. /* Adjust by relative CPU power of the group */
  3176. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3177. /*
  3178. * Consider the group unbalanced when the imbalance is larger
  3179. * than the average weight of two tasks.
  3180. *
  3181. * APZ: with cgroup the avg task weight can vary wildly and
  3182. * might not be a suitable number - should we keep a
  3183. * normalized nr_running number somewhere that negates
  3184. * the hierarchy?
  3185. */
  3186. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3187. group->cpu_power;
  3188. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3189. sgs->group_imb = 1;
  3190. sgs->group_capacity =
  3191. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3192. }
  3193. /**
  3194. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3195. * @sd: sched_domain whose statistics are to be updated.
  3196. * @this_cpu: Cpu for which load balance is currently performed.
  3197. * @idle: Idle status of this_cpu
  3198. * @sd_idle: Idle status of the sched_domain containing group.
  3199. * @cpus: Set of cpus considered for load balancing.
  3200. * @balance: Should we balance.
  3201. * @sds: variable to hold the statistics for this sched_domain.
  3202. */
  3203. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3204. enum cpu_idle_type idle, int *sd_idle,
  3205. const struct cpumask *cpus, int *balance,
  3206. struct sd_lb_stats *sds)
  3207. {
  3208. struct sched_domain *child = sd->child;
  3209. struct sched_group *group = sd->groups;
  3210. struct sg_lb_stats sgs;
  3211. int load_idx, prefer_sibling = 0;
  3212. if (child && child->flags & SD_PREFER_SIBLING)
  3213. prefer_sibling = 1;
  3214. init_sd_power_savings_stats(sd, sds, idle);
  3215. load_idx = get_sd_load_idx(sd, idle);
  3216. do {
  3217. int local_group;
  3218. local_group = cpumask_test_cpu(this_cpu,
  3219. sched_group_cpus(group));
  3220. memset(&sgs, 0, sizeof(sgs));
  3221. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3222. local_group, cpus, balance, &sgs);
  3223. if (local_group && balance && !(*balance))
  3224. return;
  3225. sds->total_load += sgs.group_load;
  3226. sds->total_pwr += group->cpu_power;
  3227. /*
  3228. * In case the child domain prefers tasks go to siblings
  3229. * first, lower the group capacity to one so that we'll try
  3230. * and move all the excess tasks away.
  3231. */
  3232. if (prefer_sibling)
  3233. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3234. if (local_group) {
  3235. sds->this_load = sgs.avg_load;
  3236. sds->this = group;
  3237. sds->this_nr_running = sgs.sum_nr_running;
  3238. sds->this_load_per_task = sgs.sum_weighted_load;
  3239. } else if (sgs.avg_load > sds->max_load &&
  3240. (sgs.sum_nr_running > sgs.group_capacity ||
  3241. sgs.group_imb)) {
  3242. sds->max_load = sgs.avg_load;
  3243. sds->busiest = group;
  3244. sds->busiest_nr_running = sgs.sum_nr_running;
  3245. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3246. sds->group_imb = sgs.group_imb;
  3247. }
  3248. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3249. group = group->next;
  3250. } while (group != sd->groups);
  3251. }
  3252. /**
  3253. * fix_small_imbalance - Calculate the minor imbalance that exists
  3254. * amongst the groups of a sched_domain, during
  3255. * load balancing.
  3256. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3257. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3258. * @imbalance: Variable to store the imbalance.
  3259. */
  3260. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3261. int this_cpu, unsigned long *imbalance)
  3262. {
  3263. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3264. unsigned int imbn = 2;
  3265. if (sds->this_nr_running) {
  3266. sds->this_load_per_task /= sds->this_nr_running;
  3267. if (sds->busiest_load_per_task >
  3268. sds->this_load_per_task)
  3269. imbn = 1;
  3270. } else
  3271. sds->this_load_per_task =
  3272. cpu_avg_load_per_task(this_cpu);
  3273. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3274. sds->busiest_load_per_task * imbn) {
  3275. *imbalance = sds->busiest_load_per_task;
  3276. return;
  3277. }
  3278. /*
  3279. * OK, we don't have enough imbalance to justify moving tasks,
  3280. * however we may be able to increase total CPU power used by
  3281. * moving them.
  3282. */
  3283. pwr_now += sds->busiest->cpu_power *
  3284. min(sds->busiest_load_per_task, sds->max_load);
  3285. pwr_now += sds->this->cpu_power *
  3286. min(sds->this_load_per_task, sds->this_load);
  3287. pwr_now /= SCHED_LOAD_SCALE;
  3288. /* Amount of load we'd subtract */
  3289. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3290. sds->busiest->cpu_power;
  3291. if (sds->max_load > tmp)
  3292. pwr_move += sds->busiest->cpu_power *
  3293. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3294. /* Amount of load we'd add */
  3295. if (sds->max_load * sds->busiest->cpu_power <
  3296. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3297. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3298. sds->this->cpu_power;
  3299. else
  3300. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3301. sds->this->cpu_power;
  3302. pwr_move += sds->this->cpu_power *
  3303. min(sds->this_load_per_task, sds->this_load + tmp);
  3304. pwr_move /= SCHED_LOAD_SCALE;
  3305. /* Move if we gain throughput */
  3306. if (pwr_move > pwr_now)
  3307. *imbalance = sds->busiest_load_per_task;
  3308. }
  3309. /**
  3310. * calculate_imbalance - Calculate the amount of imbalance present within the
  3311. * groups of a given sched_domain during load balance.
  3312. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3313. * @this_cpu: Cpu for which currently load balance is being performed.
  3314. * @imbalance: The variable to store the imbalance.
  3315. */
  3316. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3317. unsigned long *imbalance)
  3318. {
  3319. unsigned long max_pull;
  3320. /*
  3321. * In the presence of smp nice balancing, certain scenarios can have
  3322. * max load less than avg load(as we skip the groups at or below
  3323. * its cpu_power, while calculating max_load..)
  3324. */
  3325. if (sds->max_load < sds->avg_load) {
  3326. *imbalance = 0;
  3327. return fix_small_imbalance(sds, this_cpu, imbalance);
  3328. }
  3329. /* Don't want to pull so many tasks that a group would go idle */
  3330. max_pull = min(sds->max_load - sds->avg_load,
  3331. sds->max_load - sds->busiest_load_per_task);
  3332. /* How much load to actually move to equalise the imbalance */
  3333. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3334. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3335. / SCHED_LOAD_SCALE;
  3336. /*
  3337. * if *imbalance is less than the average load per runnable task
  3338. * there is no gaurantee that any tasks will be moved so we'll have
  3339. * a think about bumping its value to force at least one task to be
  3340. * moved
  3341. */
  3342. if (*imbalance < sds->busiest_load_per_task)
  3343. return fix_small_imbalance(sds, this_cpu, imbalance);
  3344. }
  3345. /******* find_busiest_group() helpers end here *********************/
  3346. /**
  3347. * find_busiest_group - Returns the busiest group within the sched_domain
  3348. * if there is an imbalance. If there isn't an imbalance, and
  3349. * the user has opted for power-savings, it returns a group whose
  3350. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3351. * such a group exists.
  3352. *
  3353. * Also calculates the amount of weighted load which should be moved
  3354. * to restore balance.
  3355. *
  3356. * @sd: The sched_domain whose busiest group is to be returned.
  3357. * @this_cpu: The cpu for which load balancing is currently being performed.
  3358. * @imbalance: Variable which stores amount of weighted load which should
  3359. * be moved to restore balance/put a group to idle.
  3360. * @idle: The idle status of this_cpu.
  3361. * @sd_idle: The idleness of sd
  3362. * @cpus: The set of CPUs under consideration for load-balancing.
  3363. * @balance: Pointer to a variable indicating if this_cpu
  3364. * is the appropriate cpu to perform load balancing at this_level.
  3365. *
  3366. * Returns: - the busiest group if imbalance exists.
  3367. * - If no imbalance and user has opted for power-savings balance,
  3368. * return the least loaded group whose CPUs can be
  3369. * put to idle by rebalancing its tasks onto our group.
  3370. */
  3371. static struct sched_group *
  3372. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3373. unsigned long *imbalance, enum cpu_idle_type idle,
  3374. int *sd_idle, const struct cpumask *cpus, int *balance)
  3375. {
  3376. struct sd_lb_stats sds;
  3377. memset(&sds, 0, sizeof(sds));
  3378. /*
  3379. * Compute the various statistics relavent for load balancing at
  3380. * this level.
  3381. */
  3382. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3383. balance, &sds);
  3384. /* Cases where imbalance does not exist from POV of this_cpu */
  3385. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3386. * at this level.
  3387. * 2) There is no busy sibling group to pull from.
  3388. * 3) This group is the busiest group.
  3389. * 4) This group is more busy than the avg busieness at this
  3390. * sched_domain.
  3391. * 5) The imbalance is within the specified limit.
  3392. * 6) Any rebalance would lead to ping-pong
  3393. */
  3394. if (balance && !(*balance))
  3395. goto ret;
  3396. if (!sds.busiest || sds.busiest_nr_running == 0)
  3397. goto out_balanced;
  3398. if (sds.this_load >= sds.max_load)
  3399. goto out_balanced;
  3400. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3401. if (sds.this_load >= sds.avg_load)
  3402. goto out_balanced;
  3403. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3404. goto out_balanced;
  3405. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3406. if (sds.group_imb)
  3407. sds.busiest_load_per_task =
  3408. min(sds.busiest_load_per_task, sds.avg_load);
  3409. /*
  3410. * We're trying to get all the cpus to the average_load, so we don't
  3411. * want to push ourselves above the average load, nor do we wish to
  3412. * reduce the max loaded cpu below the average load, as either of these
  3413. * actions would just result in more rebalancing later, and ping-pong
  3414. * tasks around. Thus we look for the minimum possible imbalance.
  3415. * Negative imbalances (*we* are more loaded than anyone else) will
  3416. * be counted as no imbalance for these purposes -- we can't fix that
  3417. * by pulling tasks to us. Be careful of negative numbers as they'll
  3418. * appear as very large values with unsigned longs.
  3419. */
  3420. if (sds.max_load <= sds.busiest_load_per_task)
  3421. goto out_balanced;
  3422. /* Looks like there is an imbalance. Compute it */
  3423. calculate_imbalance(&sds, this_cpu, imbalance);
  3424. return sds.busiest;
  3425. out_balanced:
  3426. /*
  3427. * There is no obvious imbalance. But check if we can do some balancing
  3428. * to save power.
  3429. */
  3430. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3431. return sds.busiest;
  3432. ret:
  3433. *imbalance = 0;
  3434. return NULL;
  3435. }
  3436. /*
  3437. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3438. */
  3439. static struct rq *
  3440. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3441. unsigned long imbalance, const struct cpumask *cpus)
  3442. {
  3443. struct rq *busiest = NULL, *rq;
  3444. unsigned long max_load = 0;
  3445. int i;
  3446. for_each_cpu(i, sched_group_cpus(group)) {
  3447. unsigned long power = power_of(i);
  3448. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3449. unsigned long wl;
  3450. if (!cpumask_test_cpu(i, cpus))
  3451. continue;
  3452. rq = cpu_rq(i);
  3453. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3454. wl /= power;
  3455. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3456. continue;
  3457. if (wl > max_load) {
  3458. max_load = wl;
  3459. busiest = rq;
  3460. }
  3461. }
  3462. return busiest;
  3463. }
  3464. /*
  3465. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3466. * so long as it is large enough.
  3467. */
  3468. #define MAX_PINNED_INTERVAL 512
  3469. /* Working cpumask for load_balance and load_balance_newidle. */
  3470. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3471. /*
  3472. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3473. * tasks if there is an imbalance.
  3474. */
  3475. static int load_balance(int this_cpu, struct rq *this_rq,
  3476. struct sched_domain *sd, enum cpu_idle_type idle,
  3477. int *balance)
  3478. {
  3479. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3480. struct sched_group *group;
  3481. unsigned long imbalance;
  3482. struct rq *busiest;
  3483. unsigned long flags;
  3484. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3485. cpumask_copy(cpus, cpu_active_mask);
  3486. /*
  3487. * When power savings policy is enabled for the parent domain, idle
  3488. * sibling can pick up load irrespective of busy siblings. In this case,
  3489. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3490. * portraying it as CPU_NOT_IDLE.
  3491. */
  3492. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3493. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3494. sd_idle = 1;
  3495. schedstat_inc(sd, lb_count[idle]);
  3496. redo:
  3497. update_shares(sd);
  3498. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3499. cpus, balance);
  3500. if (*balance == 0)
  3501. goto out_balanced;
  3502. if (!group) {
  3503. schedstat_inc(sd, lb_nobusyg[idle]);
  3504. goto out_balanced;
  3505. }
  3506. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3507. if (!busiest) {
  3508. schedstat_inc(sd, lb_nobusyq[idle]);
  3509. goto out_balanced;
  3510. }
  3511. BUG_ON(busiest == this_rq);
  3512. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3513. ld_moved = 0;
  3514. if (busiest->nr_running > 1) {
  3515. /*
  3516. * Attempt to move tasks. If find_busiest_group has found
  3517. * an imbalance but busiest->nr_running <= 1, the group is
  3518. * still unbalanced. ld_moved simply stays zero, so it is
  3519. * correctly treated as an imbalance.
  3520. */
  3521. local_irq_save(flags);
  3522. double_rq_lock(this_rq, busiest);
  3523. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3524. imbalance, sd, idle, &all_pinned);
  3525. double_rq_unlock(this_rq, busiest);
  3526. local_irq_restore(flags);
  3527. /*
  3528. * some other cpu did the load balance for us.
  3529. */
  3530. if (ld_moved && this_cpu != smp_processor_id())
  3531. resched_cpu(this_cpu);
  3532. /* All tasks on this runqueue were pinned by CPU affinity */
  3533. if (unlikely(all_pinned)) {
  3534. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3535. if (!cpumask_empty(cpus))
  3536. goto redo;
  3537. goto out_balanced;
  3538. }
  3539. }
  3540. if (!ld_moved) {
  3541. schedstat_inc(sd, lb_failed[idle]);
  3542. sd->nr_balance_failed++;
  3543. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3544. spin_lock_irqsave(&busiest->lock, flags);
  3545. /* don't kick the migration_thread, if the curr
  3546. * task on busiest cpu can't be moved to this_cpu
  3547. */
  3548. if (!cpumask_test_cpu(this_cpu,
  3549. &busiest->curr->cpus_allowed)) {
  3550. spin_unlock_irqrestore(&busiest->lock, flags);
  3551. all_pinned = 1;
  3552. goto out_one_pinned;
  3553. }
  3554. if (!busiest->active_balance) {
  3555. busiest->active_balance = 1;
  3556. busiest->push_cpu = this_cpu;
  3557. active_balance = 1;
  3558. }
  3559. spin_unlock_irqrestore(&busiest->lock, flags);
  3560. if (active_balance)
  3561. wake_up_process(busiest->migration_thread);
  3562. /*
  3563. * We've kicked active balancing, reset the failure
  3564. * counter.
  3565. */
  3566. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3567. }
  3568. } else
  3569. sd->nr_balance_failed = 0;
  3570. if (likely(!active_balance)) {
  3571. /* We were unbalanced, so reset the balancing interval */
  3572. sd->balance_interval = sd->min_interval;
  3573. } else {
  3574. /*
  3575. * If we've begun active balancing, start to back off. This
  3576. * case may not be covered by the all_pinned logic if there
  3577. * is only 1 task on the busy runqueue (because we don't call
  3578. * move_tasks).
  3579. */
  3580. if (sd->balance_interval < sd->max_interval)
  3581. sd->balance_interval *= 2;
  3582. }
  3583. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3584. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3585. ld_moved = -1;
  3586. goto out;
  3587. out_balanced:
  3588. schedstat_inc(sd, lb_balanced[idle]);
  3589. sd->nr_balance_failed = 0;
  3590. out_one_pinned:
  3591. /* tune up the balancing interval */
  3592. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3593. (sd->balance_interval < sd->max_interval))
  3594. sd->balance_interval *= 2;
  3595. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3596. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3597. ld_moved = -1;
  3598. else
  3599. ld_moved = 0;
  3600. out:
  3601. if (ld_moved)
  3602. update_shares(sd);
  3603. return ld_moved;
  3604. }
  3605. /*
  3606. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3607. * tasks if there is an imbalance.
  3608. *
  3609. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3610. * this_rq is locked.
  3611. */
  3612. static int
  3613. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3614. {
  3615. struct sched_group *group;
  3616. struct rq *busiest = NULL;
  3617. unsigned long imbalance;
  3618. int ld_moved = 0;
  3619. int sd_idle = 0;
  3620. int all_pinned = 0;
  3621. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3622. cpumask_copy(cpus, cpu_active_mask);
  3623. /*
  3624. * When power savings policy is enabled for the parent domain, idle
  3625. * sibling can pick up load irrespective of busy siblings. In this case,
  3626. * let the state of idle sibling percolate up as IDLE, instead of
  3627. * portraying it as CPU_NOT_IDLE.
  3628. */
  3629. if (sd->flags & SD_SHARE_CPUPOWER &&
  3630. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3631. sd_idle = 1;
  3632. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3633. redo:
  3634. update_shares_locked(this_rq, sd);
  3635. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3636. &sd_idle, cpus, NULL);
  3637. if (!group) {
  3638. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3639. goto out_balanced;
  3640. }
  3641. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3642. if (!busiest) {
  3643. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3644. goto out_balanced;
  3645. }
  3646. BUG_ON(busiest == this_rq);
  3647. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3648. ld_moved = 0;
  3649. if (busiest->nr_running > 1) {
  3650. /* Attempt to move tasks */
  3651. double_lock_balance(this_rq, busiest);
  3652. /* this_rq->clock is already updated */
  3653. update_rq_clock(busiest);
  3654. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3655. imbalance, sd, CPU_NEWLY_IDLE,
  3656. &all_pinned);
  3657. double_unlock_balance(this_rq, busiest);
  3658. if (unlikely(all_pinned)) {
  3659. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3660. if (!cpumask_empty(cpus))
  3661. goto redo;
  3662. }
  3663. }
  3664. if (!ld_moved) {
  3665. int active_balance = 0;
  3666. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3667. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3668. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3669. return -1;
  3670. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3671. return -1;
  3672. if (sd->nr_balance_failed++ < 2)
  3673. return -1;
  3674. /*
  3675. * The only task running in a non-idle cpu can be moved to this
  3676. * cpu in an attempt to completely freeup the other CPU
  3677. * package. The same method used to move task in load_balance()
  3678. * have been extended for load_balance_newidle() to speedup
  3679. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3680. *
  3681. * The package power saving logic comes from
  3682. * find_busiest_group(). If there are no imbalance, then
  3683. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3684. * f_b_g() will select a group from which a running task may be
  3685. * pulled to this cpu in order to make the other package idle.
  3686. * If there is no opportunity to make a package idle and if
  3687. * there are no imbalance, then f_b_g() will return NULL and no
  3688. * action will be taken in load_balance_newidle().
  3689. *
  3690. * Under normal task pull operation due to imbalance, there
  3691. * will be more than one task in the source run queue and
  3692. * move_tasks() will succeed. ld_moved will be true and this
  3693. * active balance code will not be triggered.
  3694. */
  3695. /* Lock busiest in correct order while this_rq is held */
  3696. double_lock_balance(this_rq, busiest);
  3697. /*
  3698. * don't kick the migration_thread, if the curr
  3699. * task on busiest cpu can't be moved to this_cpu
  3700. */
  3701. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3702. double_unlock_balance(this_rq, busiest);
  3703. all_pinned = 1;
  3704. return ld_moved;
  3705. }
  3706. if (!busiest->active_balance) {
  3707. busiest->active_balance = 1;
  3708. busiest->push_cpu = this_cpu;
  3709. active_balance = 1;
  3710. }
  3711. double_unlock_balance(this_rq, busiest);
  3712. /*
  3713. * Should not call ttwu while holding a rq->lock
  3714. */
  3715. spin_unlock(&this_rq->lock);
  3716. if (active_balance)
  3717. wake_up_process(busiest->migration_thread);
  3718. spin_lock(&this_rq->lock);
  3719. } else
  3720. sd->nr_balance_failed = 0;
  3721. update_shares_locked(this_rq, sd);
  3722. return ld_moved;
  3723. out_balanced:
  3724. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3725. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3726. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3727. return -1;
  3728. sd->nr_balance_failed = 0;
  3729. return 0;
  3730. }
  3731. /*
  3732. * idle_balance is called by schedule() if this_cpu is about to become
  3733. * idle. Attempts to pull tasks from other CPUs.
  3734. */
  3735. static void idle_balance(int this_cpu, struct rq *this_rq)
  3736. {
  3737. struct sched_domain *sd;
  3738. int pulled_task = 0;
  3739. unsigned long next_balance = jiffies + HZ;
  3740. this_rq->idle_stamp = this_rq->clock;
  3741. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3742. return;
  3743. for_each_domain(this_cpu, sd) {
  3744. unsigned long interval;
  3745. if (!(sd->flags & SD_LOAD_BALANCE))
  3746. continue;
  3747. if (sd->flags & SD_BALANCE_NEWIDLE)
  3748. /* If we've pulled tasks over stop searching: */
  3749. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3750. sd);
  3751. interval = msecs_to_jiffies(sd->balance_interval);
  3752. if (time_after(next_balance, sd->last_balance + interval))
  3753. next_balance = sd->last_balance + interval;
  3754. if (pulled_task) {
  3755. this_rq->idle_stamp = 0;
  3756. break;
  3757. }
  3758. }
  3759. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3760. /*
  3761. * We are going idle. next_balance may be set based on
  3762. * a busy processor. So reset next_balance.
  3763. */
  3764. this_rq->next_balance = next_balance;
  3765. }
  3766. }
  3767. /*
  3768. * active_load_balance is run by migration threads. It pushes running tasks
  3769. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3770. * running on each physical CPU where possible, and avoids physical /
  3771. * logical imbalances.
  3772. *
  3773. * Called with busiest_rq locked.
  3774. */
  3775. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3776. {
  3777. int target_cpu = busiest_rq->push_cpu;
  3778. struct sched_domain *sd;
  3779. struct rq *target_rq;
  3780. /* Is there any task to move? */
  3781. if (busiest_rq->nr_running <= 1)
  3782. return;
  3783. target_rq = cpu_rq(target_cpu);
  3784. /*
  3785. * This condition is "impossible", if it occurs
  3786. * we need to fix it. Originally reported by
  3787. * Bjorn Helgaas on a 128-cpu setup.
  3788. */
  3789. BUG_ON(busiest_rq == target_rq);
  3790. /* move a task from busiest_rq to target_rq */
  3791. double_lock_balance(busiest_rq, target_rq);
  3792. update_rq_clock(busiest_rq);
  3793. update_rq_clock(target_rq);
  3794. /* Search for an sd spanning us and the target CPU. */
  3795. for_each_domain(target_cpu, sd) {
  3796. if ((sd->flags & SD_LOAD_BALANCE) &&
  3797. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3798. break;
  3799. }
  3800. if (likely(sd)) {
  3801. schedstat_inc(sd, alb_count);
  3802. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3803. sd, CPU_IDLE))
  3804. schedstat_inc(sd, alb_pushed);
  3805. else
  3806. schedstat_inc(sd, alb_failed);
  3807. }
  3808. double_unlock_balance(busiest_rq, target_rq);
  3809. }
  3810. #ifdef CONFIG_NO_HZ
  3811. static struct {
  3812. atomic_t load_balancer;
  3813. cpumask_var_t cpu_mask;
  3814. cpumask_var_t ilb_grp_nohz_mask;
  3815. } nohz ____cacheline_aligned = {
  3816. .load_balancer = ATOMIC_INIT(-1),
  3817. };
  3818. int get_nohz_load_balancer(void)
  3819. {
  3820. return atomic_read(&nohz.load_balancer);
  3821. }
  3822. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3823. /**
  3824. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3825. * @cpu: The cpu whose lowest level of sched domain is to
  3826. * be returned.
  3827. * @flag: The flag to check for the lowest sched_domain
  3828. * for the given cpu.
  3829. *
  3830. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3831. */
  3832. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3833. {
  3834. struct sched_domain *sd;
  3835. for_each_domain(cpu, sd)
  3836. if (sd && (sd->flags & flag))
  3837. break;
  3838. return sd;
  3839. }
  3840. /**
  3841. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3842. * @cpu: The cpu whose domains we're iterating over.
  3843. * @sd: variable holding the value of the power_savings_sd
  3844. * for cpu.
  3845. * @flag: The flag to filter the sched_domains to be iterated.
  3846. *
  3847. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3848. * set, starting from the lowest sched_domain to the highest.
  3849. */
  3850. #define for_each_flag_domain(cpu, sd, flag) \
  3851. for (sd = lowest_flag_domain(cpu, flag); \
  3852. (sd && (sd->flags & flag)); sd = sd->parent)
  3853. /**
  3854. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3855. * @ilb_group: group to be checked for semi-idleness
  3856. *
  3857. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3858. *
  3859. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3860. * and atleast one non-idle CPU. This helper function checks if the given
  3861. * sched_group is semi-idle or not.
  3862. */
  3863. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3864. {
  3865. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3866. sched_group_cpus(ilb_group));
  3867. /*
  3868. * A sched_group is semi-idle when it has atleast one busy cpu
  3869. * and atleast one idle cpu.
  3870. */
  3871. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3872. return 0;
  3873. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3874. return 0;
  3875. return 1;
  3876. }
  3877. /**
  3878. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3879. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3880. *
  3881. * Returns: Returns the id of the idle load balancer if it exists,
  3882. * Else, returns >= nr_cpu_ids.
  3883. *
  3884. * This algorithm picks the idle load balancer such that it belongs to a
  3885. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3886. * completely idle packages/cores just for the purpose of idle load balancing
  3887. * when there are other idle cpu's which are better suited for that job.
  3888. */
  3889. static int find_new_ilb(int cpu)
  3890. {
  3891. struct sched_domain *sd;
  3892. struct sched_group *ilb_group;
  3893. /*
  3894. * Have idle load balancer selection from semi-idle packages only
  3895. * when power-aware load balancing is enabled
  3896. */
  3897. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3898. goto out_done;
  3899. /*
  3900. * Optimize for the case when we have no idle CPUs or only one
  3901. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3902. */
  3903. if (cpumask_weight(nohz.cpu_mask) < 2)
  3904. goto out_done;
  3905. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3906. ilb_group = sd->groups;
  3907. do {
  3908. if (is_semi_idle_group(ilb_group))
  3909. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3910. ilb_group = ilb_group->next;
  3911. } while (ilb_group != sd->groups);
  3912. }
  3913. out_done:
  3914. return cpumask_first(nohz.cpu_mask);
  3915. }
  3916. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3917. static inline int find_new_ilb(int call_cpu)
  3918. {
  3919. return cpumask_first(nohz.cpu_mask);
  3920. }
  3921. #endif
  3922. /*
  3923. * This routine will try to nominate the ilb (idle load balancing)
  3924. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3925. * load balancing on behalf of all those cpus. If all the cpus in the system
  3926. * go into this tickless mode, then there will be no ilb owner (as there is
  3927. * no need for one) and all the cpus will sleep till the next wakeup event
  3928. * arrives...
  3929. *
  3930. * For the ilb owner, tick is not stopped. And this tick will be used
  3931. * for idle load balancing. ilb owner will still be part of
  3932. * nohz.cpu_mask..
  3933. *
  3934. * While stopping the tick, this cpu will become the ilb owner if there
  3935. * is no other owner. And will be the owner till that cpu becomes busy
  3936. * or if all cpus in the system stop their ticks at which point
  3937. * there is no need for ilb owner.
  3938. *
  3939. * When the ilb owner becomes busy, it nominates another owner, during the
  3940. * next busy scheduler_tick()
  3941. */
  3942. int select_nohz_load_balancer(int stop_tick)
  3943. {
  3944. int cpu = smp_processor_id();
  3945. if (stop_tick) {
  3946. cpu_rq(cpu)->in_nohz_recently = 1;
  3947. if (!cpu_active(cpu)) {
  3948. if (atomic_read(&nohz.load_balancer) != cpu)
  3949. return 0;
  3950. /*
  3951. * If we are going offline and still the leader,
  3952. * give up!
  3953. */
  3954. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3955. BUG();
  3956. return 0;
  3957. }
  3958. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3959. /* time for ilb owner also to sleep */
  3960. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3961. if (atomic_read(&nohz.load_balancer) == cpu)
  3962. atomic_set(&nohz.load_balancer, -1);
  3963. return 0;
  3964. }
  3965. if (atomic_read(&nohz.load_balancer) == -1) {
  3966. /* make me the ilb owner */
  3967. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3968. return 1;
  3969. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3970. int new_ilb;
  3971. if (!(sched_smt_power_savings ||
  3972. sched_mc_power_savings))
  3973. return 1;
  3974. /*
  3975. * Check to see if there is a more power-efficient
  3976. * ilb.
  3977. */
  3978. new_ilb = find_new_ilb(cpu);
  3979. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3980. atomic_set(&nohz.load_balancer, -1);
  3981. resched_cpu(new_ilb);
  3982. return 0;
  3983. }
  3984. return 1;
  3985. }
  3986. } else {
  3987. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3988. return 0;
  3989. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3990. if (atomic_read(&nohz.load_balancer) == cpu)
  3991. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3992. BUG();
  3993. }
  3994. return 0;
  3995. }
  3996. #endif
  3997. static DEFINE_SPINLOCK(balancing);
  3998. /*
  3999. * It checks each scheduling domain to see if it is due to be balanced,
  4000. * and initiates a balancing operation if so.
  4001. *
  4002. * Balancing parameters are set up in arch_init_sched_domains.
  4003. */
  4004. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4005. {
  4006. int balance = 1;
  4007. struct rq *rq = cpu_rq(cpu);
  4008. unsigned long interval;
  4009. struct sched_domain *sd;
  4010. /* Earliest time when we have to do rebalance again */
  4011. unsigned long next_balance = jiffies + 60*HZ;
  4012. int update_next_balance = 0;
  4013. int need_serialize;
  4014. for_each_domain(cpu, sd) {
  4015. if (!(sd->flags & SD_LOAD_BALANCE))
  4016. continue;
  4017. interval = sd->balance_interval;
  4018. if (idle != CPU_IDLE)
  4019. interval *= sd->busy_factor;
  4020. /* scale ms to jiffies */
  4021. interval = msecs_to_jiffies(interval);
  4022. if (unlikely(!interval))
  4023. interval = 1;
  4024. if (interval > HZ*NR_CPUS/10)
  4025. interval = HZ*NR_CPUS/10;
  4026. need_serialize = sd->flags & SD_SERIALIZE;
  4027. if (need_serialize) {
  4028. if (!spin_trylock(&balancing))
  4029. goto out;
  4030. }
  4031. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4032. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4033. /*
  4034. * We've pulled tasks over so either we're no
  4035. * longer idle, or one of our SMT siblings is
  4036. * not idle.
  4037. */
  4038. idle = CPU_NOT_IDLE;
  4039. }
  4040. sd->last_balance = jiffies;
  4041. }
  4042. if (need_serialize)
  4043. spin_unlock(&balancing);
  4044. out:
  4045. if (time_after(next_balance, sd->last_balance + interval)) {
  4046. next_balance = sd->last_balance + interval;
  4047. update_next_balance = 1;
  4048. }
  4049. /*
  4050. * Stop the load balance at this level. There is another
  4051. * CPU in our sched group which is doing load balancing more
  4052. * actively.
  4053. */
  4054. if (!balance)
  4055. break;
  4056. }
  4057. /*
  4058. * next_balance will be updated only when there is a need.
  4059. * When the cpu is attached to null domain for ex, it will not be
  4060. * updated.
  4061. */
  4062. if (likely(update_next_balance))
  4063. rq->next_balance = next_balance;
  4064. }
  4065. /*
  4066. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4067. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4068. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4069. */
  4070. static void run_rebalance_domains(struct softirq_action *h)
  4071. {
  4072. int this_cpu = smp_processor_id();
  4073. struct rq *this_rq = cpu_rq(this_cpu);
  4074. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4075. CPU_IDLE : CPU_NOT_IDLE;
  4076. rebalance_domains(this_cpu, idle);
  4077. #ifdef CONFIG_NO_HZ
  4078. /*
  4079. * If this cpu is the owner for idle load balancing, then do the
  4080. * balancing on behalf of the other idle cpus whose ticks are
  4081. * stopped.
  4082. */
  4083. if (this_rq->idle_at_tick &&
  4084. atomic_read(&nohz.load_balancer) == this_cpu) {
  4085. struct rq *rq;
  4086. int balance_cpu;
  4087. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4088. if (balance_cpu == this_cpu)
  4089. continue;
  4090. /*
  4091. * If this cpu gets work to do, stop the load balancing
  4092. * work being done for other cpus. Next load
  4093. * balancing owner will pick it up.
  4094. */
  4095. if (need_resched())
  4096. break;
  4097. rebalance_domains(balance_cpu, CPU_IDLE);
  4098. rq = cpu_rq(balance_cpu);
  4099. if (time_after(this_rq->next_balance, rq->next_balance))
  4100. this_rq->next_balance = rq->next_balance;
  4101. }
  4102. }
  4103. #endif
  4104. }
  4105. static inline int on_null_domain(int cpu)
  4106. {
  4107. return !rcu_dereference(cpu_rq(cpu)->sd);
  4108. }
  4109. /*
  4110. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4111. *
  4112. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4113. * idle load balancing owner or decide to stop the periodic load balancing,
  4114. * if the whole system is idle.
  4115. */
  4116. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4117. {
  4118. #ifdef CONFIG_NO_HZ
  4119. /*
  4120. * If we were in the nohz mode recently and busy at the current
  4121. * scheduler tick, then check if we need to nominate new idle
  4122. * load balancer.
  4123. */
  4124. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4125. rq->in_nohz_recently = 0;
  4126. if (atomic_read(&nohz.load_balancer) == cpu) {
  4127. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4128. atomic_set(&nohz.load_balancer, -1);
  4129. }
  4130. if (atomic_read(&nohz.load_balancer) == -1) {
  4131. int ilb = find_new_ilb(cpu);
  4132. if (ilb < nr_cpu_ids)
  4133. resched_cpu(ilb);
  4134. }
  4135. }
  4136. /*
  4137. * If this cpu is idle and doing idle load balancing for all the
  4138. * cpus with ticks stopped, is it time for that to stop?
  4139. */
  4140. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4141. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4142. resched_cpu(cpu);
  4143. return;
  4144. }
  4145. /*
  4146. * If this cpu is idle and the idle load balancing is done by
  4147. * someone else, then no need raise the SCHED_SOFTIRQ
  4148. */
  4149. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4150. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4151. return;
  4152. #endif
  4153. /* Don't need to rebalance while attached to NULL domain */
  4154. if (time_after_eq(jiffies, rq->next_balance) &&
  4155. likely(!on_null_domain(cpu)))
  4156. raise_softirq(SCHED_SOFTIRQ);
  4157. }
  4158. #else /* CONFIG_SMP */
  4159. /*
  4160. * on UP we do not need to balance between CPUs:
  4161. */
  4162. static inline void idle_balance(int cpu, struct rq *rq)
  4163. {
  4164. }
  4165. #endif
  4166. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4167. EXPORT_PER_CPU_SYMBOL(kstat);
  4168. /*
  4169. * Return any ns on the sched_clock that have not yet been accounted in
  4170. * @p in case that task is currently running.
  4171. *
  4172. * Called with task_rq_lock() held on @rq.
  4173. */
  4174. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4175. {
  4176. u64 ns = 0;
  4177. if (task_current(rq, p)) {
  4178. update_rq_clock(rq);
  4179. ns = rq->clock - p->se.exec_start;
  4180. if ((s64)ns < 0)
  4181. ns = 0;
  4182. }
  4183. return ns;
  4184. }
  4185. unsigned long long task_delta_exec(struct task_struct *p)
  4186. {
  4187. unsigned long flags;
  4188. struct rq *rq;
  4189. u64 ns = 0;
  4190. rq = task_rq_lock(p, &flags);
  4191. ns = do_task_delta_exec(p, rq);
  4192. task_rq_unlock(rq, &flags);
  4193. return ns;
  4194. }
  4195. /*
  4196. * Return accounted runtime for the task.
  4197. * In case the task is currently running, return the runtime plus current's
  4198. * pending runtime that have not been accounted yet.
  4199. */
  4200. unsigned long long task_sched_runtime(struct task_struct *p)
  4201. {
  4202. unsigned long flags;
  4203. struct rq *rq;
  4204. u64 ns = 0;
  4205. rq = task_rq_lock(p, &flags);
  4206. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4207. task_rq_unlock(rq, &flags);
  4208. return ns;
  4209. }
  4210. /*
  4211. * Return sum_exec_runtime for the thread group.
  4212. * In case the task is currently running, return the sum plus current's
  4213. * pending runtime that have not been accounted yet.
  4214. *
  4215. * Note that the thread group might have other running tasks as well,
  4216. * so the return value not includes other pending runtime that other
  4217. * running tasks might have.
  4218. */
  4219. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4220. {
  4221. struct task_cputime totals;
  4222. unsigned long flags;
  4223. struct rq *rq;
  4224. u64 ns;
  4225. rq = task_rq_lock(p, &flags);
  4226. thread_group_cputime(p, &totals);
  4227. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4228. task_rq_unlock(rq, &flags);
  4229. return ns;
  4230. }
  4231. /*
  4232. * Account user cpu time to a process.
  4233. * @p: the process that the cpu time gets accounted to
  4234. * @cputime: the cpu time spent in user space since the last update
  4235. * @cputime_scaled: cputime scaled by cpu frequency
  4236. */
  4237. void account_user_time(struct task_struct *p, cputime_t cputime,
  4238. cputime_t cputime_scaled)
  4239. {
  4240. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4241. cputime64_t tmp;
  4242. /* Add user time to process. */
  4243. p->utime = cputime_add(p->utime, cputime);
  4244. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4245. account_group_user_time(p, cputime);
  4246. /* Add user time to cpustat. */
  4247. tmp = cputime_to_cputime64(cputime);
  4248. if (TASK_NICE(p) > 0)
  4249. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4250. else
  4251. cpustat->user = cputime64_add(cpustat->user, tmp);
  4252. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4253. /* Account for user time used */
  4254. acct_update_integrals(p);
  4255. }
  4256. /*
  4257. * Account guest cpu time to a process.
  4258. * @p: the process that the cpu time gets accounted to
  4259. * @cputime: the cpu time spent in virtual machine since the last update
  4260. * @cputime_scaled: cputime scaled by cpu frequency
  4261. */
  4262. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4263. cputime_t cputime_scaled)
  4264. {
  4265. cputime64_t tmp;
  4266. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4267. tmp = cputime_to_cputime64(cputime);
  4268. /* Add guest time to process. */
  4269. p->utime = cputime_add(p->utime, cputime);
  4270. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4271. account_group_user_time(p, cputime);
  4272. p->gtime = cputime_add(p->gtime, cputime);
  4273. /* Add guest time to cpustat. */
  4274. if (TASK_NICE(p) > 0) {
  4275. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4276. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4277. } else {
  4278. cpustat->user = cputime64_add(cpustat->user, tmp);
  4279. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4280. }
  4281. }
  4282. /*
  4283. * Account system cpu time to a process.
  4284. * @p: the process that the cpu time gets accounted to
  4285. * @hardirq_offset: the offset to subtract from hardirq_count()
  4286. * @cputime: the cpu time spent in kernel space since the last update
  4287. * @cputime_scaled: cputime scaled by cpu frequency
  4288. */
  4289. void account_system_time(struct task_struct *p, int hardirq_offset,
  4290. cputime_t cputime, cputime_t cputime_scaled)
  4291. {
  4292. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4293. cputime64_t tmp;
  4294. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4295. account_guest_time(p, cputime, cputime_scaled);
  4296. return;
  4297. }
  4298. /* Add system time to process. */
  4299. p->stime = cputime_add(p->stime, cputime);
  4300. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4301. account_group_system_time(p, cputime);
  4302. /* Add system time to cpustat. */
  4303. tmp = cputime_to_cputime64(cputime);
  4304. if (hardirq_count() - hardirq_offset)
  4305. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4306. else if (softirq_count())
  4307. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4308. else
  4309. cpustat->system = cputime64_add(cpustat->system, tmp);
  4310. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4311. /* Account for system time used */
  4312. acct_update_integrals(p);
  4313. }
  4314. /*
  4315. * Account for involuntary wait time.
  4316. * @steal: the cpu time spent in involuntary wait
  4317. */
  4318. void account_steal_time(cputime_t cputime)
  4319. {
  4320. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4321. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4322. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4323. }
  4324. /*
  4325. * Account for idle time.
  4326. * @cputime: the cpu time spent in idle wait
  4327. */
  4328. void account_idle_time(cputime_t cputime)
  4329. {
  4330. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4331. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4332. struct rq *rq = this_rq();
  4333. if (atomic_read(&rq->nr_iowait) > 0)
  4334. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4335. else
  4336. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4337. }
  4338. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4339. /*
  4340. * Account a single tick of cpu time.
  4341. * @p: the process that the cpu time gets accounted to
  4342. * @user_tick: indicates if the tick is a user or a system tick
  4343. */
  4344. void account_process_tick(struct task_struct *p, int user_tick)
  4345. {
  4346. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4347. struct rq *rq = this_rq();
  4348. if (user_tick)
  4349. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4350. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4351. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4352. one_jiffy_scaled);
  4353. else
  4354. account_idle_time(cputime_one_jiffy);
  4355. }
  4356. /*
  4357. * Account multiple ticks of steal time.
  4358. * @p: the process from which the cpu time has been stolen
  4359. * @ticks: number of stolen ticks
  4360. */
  4361. void account_steal_ticks(unsigned long ticks)
  4362. {
  4363. account_steal_time(jiffies_to_cputime(ticks));
  4364. }
  4365. /*
  4366. * Account multiple ticks of idle time.
  4367. * @ticks: number of stolen ticks
  4368. */
  4369. void account_idle_ticks(unsigned long ticks)
  4370. {
  4371. account_idle_time(jiffies_to_cputime(ticks));
  4372. }
  4373. #endif
  4374. /*
  4375. * Use precise platform statistics if available:
  4376. */
  4377. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4378. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4379. {
  4380. *ut = p->utime;
  4381. *st = p->stime;
  4382. }
  4383. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4384. {
  4385. struct task_cputime cputime;
  4386. thread_group_cputime(p, &cputime);
  4387. *ut = cputime.utime;
  4388. *st = cputime.stime;
  4389. }
  4390. #else
  4391. #ifndef nsecs_to_cputime
  4392. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4393. #endif
  4394. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4395. {
  4396. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4397. /*
  4398. * Use CFS's precise accounting:
  4399. */
  4400. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4401. if (total) {
  4402. u64 temp;
  4403. temp = (u64)(rtime * utime);
  4404. do_div(temp, total);
  4405. utime = (cputime_t)temp;
  4406. } else
  4407. utime = rtime;
  4408. /*
  4409. * Compare with previous values, to keep monotonicity:
  4410. */
  4411. p->prev_utime = max(p->prev_utime, utime);
  4412. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4413. *ut = p->prev_utime;
  4414. *st = p->prev_stime;
  4415. }
  4416. /*
  4417. * Must be called with siglock held.
  4418. */
  4419. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4420. {
  4421. struct signal_struct *sig = p->signal;
  4422. struct task_cputime cputime;
  4423. cputime_t rtime, utime, total;
  4424. thread_group_cputime(p, &cputime);
  4425. total = cputime_add(cputime.utime, cputime.stime);
  4426. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4427. if (total) {
  4428. u64 temp;
  4429. temp = (u64)(rtime * cputime.utime);
  4430. do_div(temp, total);
  4431. utime = (cputime_t)temp;
  4432. } else
  4433. utime = rtime;
  4434. sig->prev_utime = max(sig->prev_utime, utime);
  4435. sig->prev_stime = max(sig->prev_stime,
  4436. cputime_sub(rtime, sig->prev_utime));
  4437. *ut = sig->prev_utime;
  4438. *st = sig->prev_stime;
  4439. }
  4440. #endif
  4441. /*
  4442. * This function gets called by the timer code, with HZ frequency.
  4443. * We call it with interrupts disabled.
  4444. *
  4445. * It also gets called by the fork code, when changing the parent's
  4446. * timeslices.
  4447. */
  4448. void scheduler_tick(void)
  4449. {
  4450. int cpu = smp_processor_id();
  4451. struct rq *rq = cpu_rq(cpu);
  4452. struct task_struct *curr = rq->curr;
  4453. sched_clock_tick();
  4454. spin_lock(&rq->lock);
  4455. update_rq_clock(rq);
  4456. update_cpu_load(rq);
  4457. curr->sched_class->task_tick(rq, curr, 0);
  4458. spin_unlock(&rq->lock);
  4459. perf_event_task_tick(curr, cpu);
  4460. #ifdef CONFIG_SMP
  4461. rq->idle_at_tick = idle_cpu(cpu);
  4462. trigger_load_balance(rq, cpu);
  4463. #endif
  4464. }
  4465. notrace unsigned long get_parent_ip(unsigned long addr)
  4466. {
  4467. if (in_lock_functions(addr)) {
  4468. addr = CALLER_ADDR2;
  4469. if (in_lock_functions(addr))
  4470. addr = CALLER_ADDR3;
  4471. }
  4472. return addr;
  4473. }
  4474. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4475. defined(CONFIG_PREEMPT_TRACER))
  4476. void __kprobes add_preempt_count(int val)
  4477. {
  4478. #ifdef CONFIG_DEBUG_PREEMPT
  4479. /*
  4480. * Underflow?
  4481. */
  4482. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4483. return;
  4484. #endif
  4485. preempt_count() += val;
  4486. #ifdef CONFIG_DEBUG_PREEMPT
  4487. /*
  4488. * Spinlock count overflowing soon?
  4489. */
  4490. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4491. PREEMPT_MASK - 10);
  4492. #endif
  4493. if (preempt_count() == val)
  4494. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4495. }
  4496. EXPORT_SYMBOL(add_preempt_count);
  4497. void __kprobes sub_preempt_count(int val)
  4498. {
  4499. #ifdef CONFIG_DEBUG_PREEMPT
  4500. /*
  4501. * Underflow?
  4502. */
  4503. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4504. return;
  4505. /*
  4506. * Is the spinlock portion underflowing?
  4507. */
  4508. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4509. !(preempt_count() & PREEMPT_MASK)))
  4510. return;
  4511. #endif
  4512. if (preempt_count() == val)
  4513. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4514. preempt_count() -= val;
  4515. }
  4516. EXPORT_SYMBOL(sub_preempt_count);
  4517. #endif
  4518. /*
  4519. * Print scheduling while atomic bug:
  4520. */
  4521. static noinline void __schedule_bug(struct task_struct *prev)
  4522. {
  4523. struct pt_regs *regs = get_irq_regs();
  4524. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4525. prev->comm, prev->pid, preempt_count());
  4526. debug_show_held_locks(prev);
  4527. print_modules();
  4528. if (irqs_disabled())
  4529. print_irqtrace_events(prev);
  4530. if (regs)
  4531. show_regs(regs);
  4532. else
  4533. dump_stack();
  4534. }
  4535. /*
  4536. * Various schedule()-time debugging checks and statistics:
  4537. */
  4538. static inline void schedule_debug(struct task_struct *prev)
  4539. {
  4540. /*
  4541. * Test if we are atomic. Since do_exit() needs to call into
  4542. * schedule() atomically, we ignore that path for now.
  4543. * Otherwise, whine if we are scheduling when we should not be.
  4544. */
  4545. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4546. __schedule_bug(prev);
  4547. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4548. schedstat_inc(this_rq(), sched_count);
  4549. #ifdef CONFIG_SCHEDSTATS
  4550. if (unlikely(prev->lock_depth >= 0)) {
  4551. schedstat_inc(this_rq(), bkl_count);
  4552. schedstat_inc(prev, sched_info.bkl_count);
  4553. }
  4554. #endif
  4555. }
  4556. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4557. {
  4558. if (prev->state == TASK_RUNNING) {
  4559. u64 runtime = prev->se.sum_exec_runtime;
  4560. runtime -= prev->se.prev_sum_exec_runtime;
  4561. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4562. /*
  4563. * In order to avoid avg_overlap growing stale when we are
  4564. * indeed overlapping and hence not getting put to sleep, grow
  4565. * the avg_overlap on preemption.
  4566. *
  4567. * We use the average preemption runtime because that
  4568. * correlates to the amount of cache footprint a task can
  4569. * build up.
  4570. */
  4571. update_avg(&prev->se.avg_overlap, runtime);
  4572. }
  4573. prev->sched_class->put_prev_task(rq, prev);
  4574. }
  4575. /*
  4576. * Pick up the highest-prio task:
  4577. */
  4578. static inline struct task_struct *
  4579. pick_next_task(struct rq *rq)
  4580. {
  4581. const struct sched_class *class;
  4582. struct task_struct *p;
  4583. /*
  4584. * Optimization: we know that if all tasks are in
  4585. * the fair class we can call that function directly:
  4586. */
  4587. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4588. p = fair_sched_class.pick_next_task(rq);
  4589. if (likely(p))
  4590. return p;
  4591. }
  4592. class = sched_class_highest;
  4593. for ( ; ; ) {
  4594. p = class->pick_next_task(rq);
  4595. if (p)
  4596. return p;
  4597. /*
  4598. * Will never be NULL as the idle class always
  4599. * returns a non-NULL p:
  4600. */
  4601. class = class->next;
  4602. }
  4603. }
  4604. /*
  4605. * schedule() is the main scheduler function.
  4606. */
  4607. asmlinkage void __sched schedule(void)
  4608. {
  4609. struct task_struct *prev, *next;
  4610. unsigned long *switch_count;
  4611. struct rq *rq;
  4612. int cpu;
  4613. need_resched:
  4614. preempt_disable();
  4615. cpu = smp_processor_id();
  4616. rq = cpu_rq(cpu);
  4617. rcu_sched_qs(cpu);
  4618. prev = rq->curr;
  4619. switch_count = &prev->nivcsw;
  4620. release_kernel_lock(prev);
  4621. need_resched_nonpreemptible:
  4622. schedule_debug(prev);
  4623. if (sched_feat(HRTICK))
  4624. hrtick_clear(rq);
  4625. spin_lock_irq(&rq->lock);
  4626. update_rq_clock(rq);
  4627. clear_tsk_need_resched(prev);
  4628. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4629. if (unlikely(signal_pending_state(prev->state, prev)))
  4630. prev->state = TASK_RUNNING;
  4631. else
  4632. deactivate_task(rq, prev, 1);
  4633. switch_count = &prev->nvcsw;
  4634. }
  4635. pre_schedule(rq, prev);
  4636. if (unlikely(!rq->nr_running))
  4637. idle_balance(cpu, rq);
  4638. put_prev_task(rq, prev);
  4639. next = pick_next_task(rq);
  4640. if (likely(prev != next)) {
  4641. sched_info_switch(prev, next);
  4642. perf_event_task_sched_out(prev, next, cpu);
  4643. rq->nr_switches++;
  4644. rq->curr = next;
  4645. ++*switch_count;
  4646. context_switch(rq, prev, next); /* unlocks the rq */
  4647. /*
  4648. * the context switch might have flipped the stack from under
  4649. * us, hence refresh the local variables.
  4650. */
  4651. cpu = smp_processor_id();
  4652. rq = cpu_rq(cpu);
  4653. } else
  4654. spin_unlock_irq(&rq->lock);
  4655. post_schedule(rq);
  4656. if (unlikely(reacquire_kernel_lock(current) < 0))
  4657. goto need_resched_nonpreemptible;
  4658. preempt_enable_no_resched();
  4659. if (need_resched())
  4660. goto need_resched;
  4661. }
  4662. EXPORT_SYMBOL(schedule);
  4663. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4664. /*
  4665. * Look out! "owner" is an entirely speculative pointer
  4666. * access and not reliable.
  4667. */
  4668. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4669. {
  4670. unsigned int cpu;
  4671. struct rq *rq;
  4672. if (!sched_feat(OWNER_SPIN))
  4673. return 0;
  4674. #ifdef CONFIG_DEBUG_PAGEALLOC
  4675. /*
  4676. * Need to access the cpu field knowing that
  4677. * DEBUG_PAGEALLOC could have unmapped it if
  4678. * the mutex owner just released it and exited.
  4679. */
  4680. if (probe_kernel_address(&owner->cpu, cpu))
  4681. goto out;
  4682. #else
  4683. cpu = owner->cpu;
  4684. #endif
  4685. /*
  4686. * Even if the access succeeded (likely case),
  4687. * the cpu field may no longer be valid.
  4688. */
  4689. if (cpu >= nr_cpumask_bits)
  4690. goto out;
  4691. /*
  4692. * We need to validate that we can do a
  4693. * get_cpu() and that we have the percpu area.
  4694. */
  4695. if (!cpu_online(cpu))
  4696. goto out;
  4697. rq = cpu_rq(cpu);
  4698. for (;;) {
  4699. /*
  4700. * Owner changed, break to re-assess state.
  4701. */
  4702. if (lock->owner != owner)
  4703. break;
  4704. /*
  4705. * Is that owner really running on that cpu?
  4706. */
  4707. if (task_thread_info(rq->curr) != owner || need_resched())
  4708. return 0;
  4709. cpu_relax();
  4710. }
  4711. out:
  4712. return 1;
  4713. }
  4714. #endif
  4715. #ifdef CONFIG_PREEMPT
  4716. /*
  4717. * this is the entry point to schedule() from in-kernel preemption
  4718. * off of preempt_enable. Kernel preemptions off return from interrupt
  4719. * occur there and call schedule directly.
  4720. */
  4721. asmlinkage void __sched preempt_schedule(void)
  4722. {
  4723. struct thread_info *ti = current_thread_info();
  4724. /*
  4725. * If there is a non-zero preempt_count or interrupts are disabled,
  4726. * we do not want to preempt the current task. Just return..
  4727. */
  4728. if (likely(ti->preempt_count || irqs_disabled()))
  4729. return;
  4730. do {
  4731. add_preempt_count(PREEMPT_ACTIVE);
  4732. schedule();
  4733. sub_preempt_count(PREEMPT_ACTIVE);
  4734. /*
  4735. * Check again in case we missed a preemption opportunity
  4736. * between schedule and now.
  4737. */
  4738. barrier();
  4739. } while (need_resched());
  4740. }
  4741. EXPORT_SYMBOL(preempt_schedule);
  4742. /*
  4743. * this is the entry point to schedule() from kernel preemption
  4744. * off of irq context.
  4745. * Note, that this is called and return with irqs disabled. This will
  4746. * protect us against recursive calling from irq.
  4747. */
  4748. asmlinkage void __sched preempt_schedule_irq(void)
  4749. {
  4750. struct thread_info *ti = current_thread_info();
  4751. /* Catch callers which need to be fixed */
  4752. BUG_ON(ti->preempt_count || !irqs_disabled());
  4753. do {
  4754. add_preempt_count(PREEMPT_ACTIVE);
  4755. local_irq_enable();
  4756. schedule();
  4757. local_irq_disable();
  4758. sub_preempt_count(PREEMPT_ACTIVE);
  4759. /*
  4760. * Check again in case we missed a preemption opportunity
  4761. * between schedule and now.
  4762. */
  4763. barrier();
  4764. } while (need_resched());
  4765. }
  4766. #endif /* CONFIG_PREEMPT */
  4767. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4768. void *key)
  4769. {
  4770. return try_to_wake_up(curr->private, mode, wake_flags);
  4771. }
  4772. EXPORT_SYMBOL(default_wake_function);
  4773. /*
  4774. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4775. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4776. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4777. *
  4778. * There are circumstances in which we can try to wake a task which has already
  4779. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4780. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4781. */
  4782. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4783. int nr_exclusive, int wake_flags, void *key)
  4784. {
  4785. wait_queue_t *curr, *next;
  4786. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4787. unsigned flags = curr->flags;
  4788. if (curr->func(curr, mode, wake_flags, key) &&
  4789. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4790. break;
  4791. }
  4792. }
  4793. /**
  4794. * __wake_up - wake up threads blocked on a waitqueue.
  4795. * @q: the waitqueue
  4796. * @mode: which threads
  4797. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4798. * @key: is directly passed to the wakeup function
  4799. *
  4800. * It may be assumed that this function implies a write memory barrier before
  4801. * changing the task state if and only if any tasks are woken up.
  4802. */
  4803. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4804. int nr_exclusive, void *key)
  4805. {
  4806. unsigned long flags;
  4807. spin_lock_irqsave(&q->lock, flags);
  4808. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4809. spin_unlock_irqrestore(&q->lock, flags);
  4810. }
  4811. EXPORT_SYMBOL(__wake_up);
  4812. /*
  4813. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4814. */
  4815. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4816. {
  4817. __wake_up_common(q, mode, 1, 0, NULL);
  4818. }
  4819. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4820. {
  4821. __wake_up_common(q, mode, 1, 0, key);
  4822. }
  4823. /**
  4824. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4825. * @q: the waitqueue
  4826. * @mode: which threads
  4827. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4828. * @key: opaque value to be passed to wakeup targets
  4829. *
  4830. * The sync wakeup differs that the waker knows that it will schedule
  4831. * away soon, so while the target thread will be woken up, it will not
  4832. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4833. * with each other. This can prevent needless bouncing between CPUs.
  4834. *
  4835. * On UP it can prevent extra preemption.
  4836. *
  4837. * It may be assumed that this function implies a write memory barrier before
  4838. * changing the task state if and only if any tasks are woken up.
  4839. */
  4840. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4841. int nr_exclusive, void *key)
  4842. {
  4843. unsigned long flags;
  4844. int wake_flags = WF_SYNC;
  4845. if (unlikely(!q))
  4846. return;
  4847. if (unlikely(!nr_exclusive))
  4848. wake_flags = 0;
  4849. spin_lock_irqsave(&q->lock, flags);
  4850. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4851. spin_unlock_irqrestore(&q->lock, flags);
  4852. }
  4853. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4854. /*
  4855. * __wake_up_sync - see __wake_up_sync_key()
  4856. */
  4857. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4858. {
  4859. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4860. }
  4861. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4862. /**
  4863. * complete: - signals a single thread waiting on this completion
  4864. * @x: holds the state of this particular completion
  4865. *
  4866. * This will wake up a single thread waiting on this completion. Threads will be
  4867. * awakened in the same order in which they were queued.
  4868. *
  4869. * See also complete_all(), wait_for_completion() and related routines.
  4870. *
  4871. * It may be assumed that this function implies a write memory barrier before
  4872. * changing the task state if and only if any tasks are woken up.
  4873. */
  4874. void complete(struct completion *x)
  4875. {
  4876. unsigned long flags;
  4877. spin_lock_irqsave(&x->wait.lock, flags);
  4878. x->done++;
  4879. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4880. spin_unlock_irqrestore(&x->wait.lock, flags);
  4881. }
  4882. EXPORT_SYMBOL(complete);
  4883. /**
  4884. * complete_all: - signals all threads waiting on this completion
  4885. * @x: holds the state of this particular completion
  4886. *
  4887. * This will wake up all threads waiting on this particular completion event.
  4888. *
  4889. * It may be assumed that this function implies a write memory barrier before
  4890. * changing the task state if and only if any tasks are woken up.
  4891. */
  4892. void complete_all(struct completion *x)
  4893. {
  4894. unsigned long flags;
  4895. spin_lock_irqsave(&x->wait.lock, flags);
  4896. x->done += UINT_MAX/2;
  4897. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4898. spin_unlock_irqrestore(&x->wait.lock, flags);
  4899. }
  4900. EXPORT_SYMBOL(complete_all);
  4901. static inline long __sched
  4902. do_wait_for_common(struct completion *x, long timeout, int state)
  4903. {
  4904. if (!x->done) {
  4905. DECLARE_WAITQUEUE(wait, current);
  4906. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4907. __add_wait_queue_tail(&x->wait, &wait);
  4908. do {
  4909. if (signal_pending_state(state, current)) {
  4910. timeout = -ERESTARTSYS;
  4911. break;
  4912. }
  4913. __set_current_state(state);
  4914. spin_unlock_irq(&x->wait.lock);
  4915. timeout = schedule_timeout(timeout);
  4916. spin_lock_irq(&x->wait.lock);
  4917. } while (!x->done && timeout);
  4918. __remove_wait_queue(&x->wait, &wait);
  4919. if (!x->done)
  4920. return timeout;
  4921. }
  4922. x->done--;
  4923. return timeout ?: 1;
  4924. }
  4925. static long __sched
  4926. wait_for_common(struct completion *x, long timeout, int state)
  4927. {
  4928. might_sleep();
  4929. spin_lock_irq(&x->wait.lock);
  4930. timeout = do_wait_for_common(x, timeout, state);
  4931. spin_unlock_irq(&x->wait.lock);
  4932. return timeout;
  4933. }
  4934. /**
  4935. * wait_for_completion: - waits for completion of a task
  4936. * @x: holds the state of this particular completion
  4937. *
  4938. * This waits to be signaled for completion of a specific task. It is NOT
  4939. * interruptible and there is no timeout.
  4940. *
  4941. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4942. * and interrupt capability. Also see complete().
  4943. */
  4944. void __sched wait_for_completion(struct completion *x)
  4945. {
  4946. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4947. }
  4948. EXPORT_SYMBOL(wait_for_completion);
  4949. /**
  4950. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4951. * @x: holds the state of this particular completion
  4952. * @timeout: timeout value in jiffies
  4953. *
  4954. * This waits for either a completion of a specific task to be signaled or for a
  4955. * specified timeout to expire. The timeout is in jiffies. It is not
  4956. * interruptible.
  4957. */
  4958. unsigned long __sched
  4959. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4960. {
  4961. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4962. }
  4963. EXPORT_SYMBOL(wait_for_completion_timeout);
  4964. /**
  4965. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4966. * @x: holds the state of this particular completion
  4967. *
  4968. * This waits for completion of a specific task to be signaled. It is
  4969. * interruptible.
  4970. */
  4971. int __sched wait_for_completion_interruptible(struct completion *x)
  4972. {
  4973. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4974. if (t == -ERESTARTSYS)
  4975. return t;
  4976. return 0;
  4977. }
  4978. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4979. /**
  4980. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4981. * @x: holds the state of this particular completion
  4982. * @timeout: timeout value in jiffies
  4983. *
  4984. * This waits for either a completion of a specific task to be signaled or for a
  4985. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4986. */
  4987. unsigned long __sched
  4988. wait_for_completion_interruptible_timeout(struct completion *x,
  4989. unsigned long timeout)
  4990. {
  4991. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4992. }
  4993. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4994. /**
  4995. * wait_for_completion_killable: - waits for completion of a task (killable)
  4996. * @x: holds the state of this particular completion
  4997. *
  4998. * This waits to be signaled for completion of a specific task. It can be
  4999. * interrupted by a kill signal.
  5000. */
  5001. int __sched wait_for_completion_killable(struct completion *x)
  5002. {
  5003. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5004. if (t == -ERESTARTSYS)
  5005. return t;
  5006. return 0;
  5007. }
  5008. EXPORT_SYMBOL(wait_for_completion_killable);
  5009. /**
  5010. * try_wait_for_completion - try to decrement a completion without blocking
  5011. * @x: completion structure
  5012. *
  5013. * Returns: 0 if a decrement cannot be done without blocking
  5014. * 1 if a decrement succeeded.
  5015. *
  5016. * If a completion is being used as a counting completion,
  5017. * attempt to decrement the counter without blocking. This
  5018. * enables us to avoid waiting if the resource the completion
  5019. * is protecting is not available.
  5020. */
  5021. bool try_wait_for_completion(struct completion *x)
  5022. {
  5023. unsigned long flags;
  5024. int ret = 1;
  5025. spin_lock_irqsave(&x->wait.lock, flags);
  5026. if (!x->done)
  5027. ret = 0;
  5028. else
  5029. x->done--;
  5030. spin_unlock_irqrestore(&x->wait.lock, flags);
  5031. return ret;
  5032. }
  5033. EXPORT_SYMBOL(try_wait_for_completion);
  5034. /**
  5035. * completion_done - Test to see if a completion has any waiters
  5036. * @x: completion structure
  5037. *
  5038. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5039. * 1 if there are no waiters.
  5040. *
  5041. */
  5042. bool completion_done(struct completion *x)
  5043. {
  5044. unsigned long flags;
  5045. int ret = 1;
  5046. spin_lock_irqsave(&x->wait.lock, flags);
  5047. if (!x->done)
  5048. ret = 0;
  5049. spin_unlock_irqrestore(&x->wait.lock, flags);
  5050. return ret;
  5051. }
  5052. EXPORT_SYMBOL(completion_done);
  5053. static long __sched
  5054. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5055. {
  5056. unsigned long flags;
  5057. wait_queue_t wait;
  5058. init_waitqueue_entry(&wait, current);
  5059. __set_current_state(state);
  5060. spin_lock_irqsave(&q->lock, flags);
  5061. __add_wait_queue(q, &wait);
  5062. spin_unlock(&q->lock);
  5063. timeout = schedule_timeout(timeout);
  5064. spin_lock_irq(&q->lock);
  5065. __remove_wait_queue(q, &wait);
  5066. spin_unlock_irqrestore(&q->lock, flags);
  5067. return timeout;
  5068. }
  5069. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5070. {
  5071. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5072. }
  5073. EXPORT_SYMBOL(interruptible_sleep_on);
  5074. long __sched
  5075. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5076. {
  5077. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5078. }
  5079. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5080. void __sched sleep_on(wait_queue_head_t *q)
  5081. {
  5082. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5083. }
  5084. EXPORT_SYMBOL(sleep_on);
  5085. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5086. {
  5087. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5088. }
  5089. EXPORT_SYMBOL(sleep_on_timeout);
  5090. #ifdef CONFIG_RT_MUTEXES
  5091. /*
  5092. * rt_mutex_setprio - set the current priority of a task
  5093. * @p: task
  5094. * @prio: prio value (kernel-internal form)
  5095. *
  5096. * This function changes the 'effective' priority of a task. It does
  5097. * not touch ->normal_prio like __setscheduler().
  5098. *
  5099. * Used by the rt_mutex code to implement priority inheritance logic.
  5100. */
  5101. void rt_mutex_setprio(struct task_struct *p, int prio)
  5102. {
  5103. unsigned long flags;
  5104. int oldprio, on_rq, running;
  5105. struct rq *rq;
  5106. const struct sched_class *prev_class = p->sched_class;
  5107. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5108. rq = task_rq_lock(p, &flags);
  5109. update_rq_clock(rq);
  5110. oldprio = p->prio;
  5111. on_rq = p->se.on_rq;
  5112. running = task_current(rq, p);
  5113. if (on_rq)
  5114. dequeue_task(rq, p, 0);
  5115. if (running)
  5116. p->sched_class->put_prev_task(rq, p);
  5117. if (rt_prio(prio))
  5118. p->sched_class = &rt_sched_class;
  5119. else
  5120. p->sched_class = &fair_sched_class;
  5121. p->prio = prio;
  5122. if (running)
  5123. p->sched_class->set_curr_task(rq);
  5124. if (on_rq) {
  5125. enqueue_task(rq, p, 0);
  5126. check_class_changed(rq, p, prev_class, oldprio, running);
  5127. }
  5128. task_rq_unlock(rq, &flags);
  5129. }
  5130. #endif
  5131. void set_user_nice(struct task_struct *p, long nice)
  5132. {
  5133. int old_prio, delta, on_rq;
  5134. unsigned long flags;
  5135. struct rq *rq;
  5136. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5137. return;
  5138. /*
  5139. * We have to be careful, if called from sys_setpriority(),
  5140. * the task might be in the middle of scheduling on another CPU.
  5141. */
  5142. rq = task_rq_lock(p, &flags);
  5143. update_rq_clock(rq);
  5144. /*
  5145. * The RT priorities are set via sched_setscheduler(), but we still
  5146. * allow the 'normal' nice value to be set - but as expected
  5147. * it wont have any effect on scheduling until the task is
  5148. * SCHED_FIFO/SCHED_RR:
  5149. */
  5150. if (task_has_rt_policy(p)) {
  5151. p->static_prio = NICE_TO_PRIO(nice);
  5152. goto out_unlock;
  5153. }
  5154. on_rq = p->se.on_rq;
  5155. if (on_rq)
  5156. dequeue_task(rq, p, 0);
  5157. p->static_prio = NICE_TO_PRIO(nice);
  5158. set_load_weight(p);
  5159. old_prio = p->prio;
  5160. p->prio = effective_prio(p);
  5161. delta = p->prio - old_prio;
  5162. if (on_rq) {
  5163. enqueue_task(rq, p, 0);
  5164. /*
  5165. * If the task increased its priority or is running and
  5166. * lowered its priority, then reschedule its CPU:
  5167. */
  5168. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5169. resched_task(rq->curr);
  5170. }
  5171. out_unlock:
  5172. task_rq_unlock(rq, &flags);
  5173. }
  5174. EXPORT_SYMBOL(set_user_nice);
  5175. /*
  5176. * can_nice - check if a task can reduce its nice value
  5177. * @p: task
  5178. * @nice: nice value
  5179. */
  5180. int can_nice(const struct task_struct *p, const int nice)
  5181. {
  5182. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5183. int nice_rlim = 20 - nice;
  5184. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5185. capable(CAP_SYS_NICE));
  5186. }
  5187. #ifdef __ARCH_WANT_SYS_NICE
  5188. /*
  5189. * sys_nice - change the priority of the current process.
  5190. * @increment: priority increment
  5191. *
  5192. * sys_setpriority is a more generic, but much slower function that
  5193. * does similar things.
  5194. */
  5195. SYSCALL_DEFINE1(nice, int, increment)
  5196. {
  5197. long nice, retval;
  5198. /*
  5199. * Setpriority might change our priority at the same moment.
  5200. * We don't have to worry. Conceptually one call occurs first
  5201. * and we have a single winner.
  5202. */
  5203. if (increment < -40)
  5204. increment = -40;
  5205. if (increment > 40)
  5206. increment = 40;
  5207. nice = TASK_NICE(current) + increment;
  5208. if (nice < -20)
  5209. nice = -20;
  5210. if (nice > 19)
  5211. nice = 19;
  5212. if (increment < 0 && !can_nice(current, nice))
  5213. return -EPERM;
  5214. retval = security_task_setnice(current, nice);
  5215. if (retval)
  5216. return retval;
  5217. set_user_nice(current, nice);
  5218. return 0;
  5219. }
  5220. #endif
  5221. /**
  5222. * task_prio - return the priority value of a given task.
  5223. * @p: the task in question.
  5224. *
  5225. * This is the priority value as seen by users in /proc.
  5226. * RT tasks are offset by -200. Normal tasks are centered
  5227. * around 0, value goes from -16 to +15.
  5228. */
  5229. int task_prio(const struct task_struct *p)
  5230. {
  5231. return p->prio - MAX_RT_PRIO;
  5232. }
  5233. /**
  5234. * task_nice - return the nice value of a given task.
  5235. * @p: the task in question.
  5236. */
  5237. int task_nice(const struct task_struct *p)
  5238. {
  5239. return TASK_NICE(p);
  5240. }
  5241. EXPORT_SYMBOL(task_nice);
  5242. /**
  5243. * idle_cpu - is a given cpu idle currently?
  5244. * @cpu: the processor in question.
  5245. */
  5246. int idle_cpu(int cpu)
  5247. {
  5248. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5249. }
  5250. /**
  5251. * idle_task - return the idle task for a given cpu.
  5252. * @cpu: the processor in question.
  5253. */
  5254. struct task_struct *idle_task(int cpu)
  5255. {
  5256. return cpu_rq(cpu)->idle;
  5257. }
  5258. /**
  5259. * find_process_by_pid - find a process with a matching PID value.
  5260. * @pid: the pid in question.
  5261. */
  5262. static struct task_struct *find_process_by_pid(pid_t pid)
  5263. {
  5264. return pid ? find_task_by_vpid(pid) : current;
  5265. }
  5266. /* Actually do priority change: must hold rq lock. */
  5267. static void
  5268. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5269. {
  5270. BUG_ON(p->se.on_rq);
  5271. p->policy = policy;
  5272. p->rt_priority = prio;
  5273. p->normal_prio = normal_prio(p);
  5274. /* we are holding p->pi_lock already */
  5275. p->prio = rt_mutex_getprio(p);
  5276. if (rt_prio(p->prio))
  5277. p->sched_class = &rt_sched_class;
  5278. else
  5279. p->sched_class = &fair_sched_class;
  5280. set_load_weight(p);
  5281. }
  5282. /*
  5283. * check the target process has a UID that matches the current process's
  5284. */
  5285. static bool check_same_owner(struct task_struct *p)
  5286. {
  5287. const struct cred *cred = current_cred(), *pcred;
  5288. bool match;
  5289. rcu_read_lock();
  5290. pcred = __task_cred(p);
  5291. match = (cred->euid == pcred->euid ||
  5292. cred->euid == pcred->uid);
  5293. rcu_read_unlock();
  5294. return match;
  5295. }
  5296. static int __sched_setscheduler(struct task_struct *p, int policy,
  5297. struct sched_param *param, bool user)
  5298. {
  5299. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5300. unsigned long flags;
  5301. const struct sched_class *prev_class = p->sched_class;
  5302. struct rq *rq;
  5303. int reset_on_fork;
  5304. /* may grab non-irq protected spin_locks */
  5305. BUG_ON(in_interrupt());
  5306. recheck:
  5307. /* double check policy once rq lock held */
  5308. if (policy < 0) {
  5309. reset_on_fork = p->sched_reset_on_fork;
  5310. policy = oldpolicy = p->policy;
  5311. } else {
  5312. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5313. policy &= ~SCHED_RESET_ON_FORK;
  5314. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5315. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5316. policy != SCHED_IDLE)
  5317. return -EINVAL;
  5318. }
  5319. /*
  5320. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5321. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5322. * SCHED_BATCH and SCHED_IDLE is 0.
  5323. */
  5324. if (param->sched_priority < 0 ||
  5325. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5326. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5327. return -EINVAL;
  5328. if (rt_policy(policy) != (param->sched_priority != 0))
  5329. return -EINVAL;
  5330. /*
  5331. * Allow unprivileged RT tasks to decrease priority:
  5332. */
  5333. if (user && !capable(CAP_SYS_NICE)) {
  5334. if (rt_policy(policy)) {
  5335. unsigned long rlim_rtprio;
  5336. if (!lock_task_sighand(p, &flags))
  5337. return -ESRCH;
  5338. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5339. unlock_task_sighand(p, &flags);
  5340. /* can't set/change the rt policy */
  5341. if (policy != p->policy && !rlim_rtprio)
  5342. return -EPERM;
  5343. /* can't increase priority */
  5344. if (param->sched_priority > p->rt_priority &&
  5345. param->sched_priority > rlim_rtprio)
  5346. return -EPERM;
  5347. }
  5348. /*
  5349. * Like positive nice levels, dont allow tasks to
  5350. * move out of SCHED_IDLE either:
  5351. */
  5352. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5353. return -EPERM;
  5354. /* can't change other user's priorities */
  5355. if (!check_same_owner(p))
  5356. return -EPERM;
  5357. /* Normal users shall not reset the sched_reset_on_fork flag */
  5358. if (p->sched_reset_on_fork && !reset_on_fork)
  5359. return -EPERM;
  5360. }
  5361. if (user) {
  5362. #ifdef CONFIG_RT_GROUP_SCHED
  5363. /*
  5364. * Do not allow realtime tasks into groups that have no runtime
  5365. * assigned.
  5366. */
  5367. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5368. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5369. return -EPERM;
  5370. #endif
  5371. retval = security_task_setscheduler(p, policy, param);
  5372. if (retval)
  5373. return retval;
  5374. }
  5375. /*
  5376. * make sure no PI-waiters arrive (or leave) while we are
  5377. * changing the priority of the task:
  5378. */
  5379. spin_lock_irqsave(&p->pi_lock, flags);
  5380. /*
  5381. * To be able to change p->policy safely, the apropriate
  5382. * runqueue lock must be held.
  5383. */
  5384. rq = __task_rq_lock(p);
  5385. /* recheck policy now with rq lock held */
  5386. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5387. policy = oldpolicy = -1;
  5388. __task_rq_unlock(rq);
  5389. spin_unlock_irqrestore(&p->pi_lock, flags);
  5390. goto recheck;
  5391. }
  5392. update_rq_clock(rq);
  5393. on_rq = p->se.on_rq;
  5394. running = task_current(rq, p);
  5395. if (on_rq)
  5396. deactivate_task(rq, p, 0);
  5397. if (running)
  5398. p->sched_class->put_prev_task(rq, p);
  5399. p->sched_reset_on_fork = reset_on_fork;
  5400. oldprio = p->prio;
  5401. __setscheduler(rq, p, policy, param->sched_priority);
  5402. if (running)
  5403. p->sched_class->set_curr_task(rq);
  5404. if (on_rq) {
  5405. activate_task(rq, p, 0);
  5406. check_class_changed(rq, p, prev_class, oldprio, running);
  5407. }
  5408. __task_rq_unlock(rq);
  5409. spin_unlock_irqrestore(&p->pi_lock, flags);
  5410. rt_mutex_adjust_pi(p);
  5411. return 0;
  5412. }
  5413. /**
  5414. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5415. * @p: the task in question.
  5416. * @policy: new policy.
  5417. * @param: structure containing the new RT priority.
  5418. *
  5419. * NOTE that the task may be already dead.
  5420. */
  5421. int sched_setscheduler(struct task_struct *p, int policy,
  5422. struct sched_param *param)
  5423. {
  5424. return __sched_setscheduler(p, policy, param, true);
  5425. }
  5426. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5427. /**
  5428. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5429. * @p: the task in question.
  5430. * @policy: new policy.
  5431. * @param: structure containing the new RT priority.
  5432. *
  5433. * Just like sched_setscheduler, only don't bother checking if the
  5434. * current context has permission. For example, this is needed in
  5435. * stop_machine(): we create temporary high priority worker threads,
  5436. * but our caller might not have that capability.
  5437. */
  5438. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5439. struct sched_param *param)
  5440. {
  5441. return __sched_setscheduler(p, policy, param, false);
  5442. }
  5443. static int
  5444. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5445. {
  5446. struct sched_param lparam;
  5447. struct task_struct *p;
  5448. int retval;
  5449. if (!param || pid < 0)
  5450. return -EINVAL;
  5451. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5452. return -EFAULT;
  5453. rcu_read_lock();
  5454. retval = -ESRCH;
  5455. p = find_process_by_pid(pid);
  5456. if (p != NULL)
  5457. retval = sched_setscheduler(p, policy, &lparam);
  5458. rcu_read_unlock();
  5459. return retval;
  5460. }
  5461. /**
  5462. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5463. * @pid: the pid in question.
  5464. * @policy: new policy.
  5465. * @param: structure containing the new RT priority.
  5466. */
  5467. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5468. struct sched_param __user *, param)
  5469. {
  5470. /* negative values for policy are not valid */
  5471. if (policy < 0)
  5472. return -EINVAL;
  5473. return do_sched_setscheduler(pid, policy, param);
  5474. }
  5475. /**
  5476. * sys_sched_setparam - set/change the RT priority of a thread
  5477. * @pid: the pid in question.
  5478. * @param: structure containing the new RT priority.
  5479. */
  5480. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5481. {
  5482. return do_sched_setscheduler(pid, -1, param);
  5483. }
  5484. /**
  5485. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5486. * @pid: the pid in question.
  5487. */
  5488. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5489. {
  5490. struct task_struct *p;
  5491. int retval;
  5492. if (pid < 0)
  5493. return -EINVAL;
  5494. retval = -ESRCH;
  5495. read_lock(&tasklist_lock);
  5496. p = find_process_by_pid(pid);
  5497. if (p) {
  5498. retval = security_task_getscheduler(p);
  5499. if (!retval)
  5500. retval = p->policy
  5501. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5502. }
  5503. read_unlock(&tasklist_lock);
  5504. return retval;
  5505. }
  5506. /**
  5507. * sys_sched_getparam - get the RT priority of a thread
  5508. * @pid: the pid in question.
  5509. * @param: structure containing the RT priority.
  5510. */
  5511. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5512. {
  5513. struct sched_param lp;
  5514. struct task_struct *p;
  5515. int retval;
  5516. if (!param || pid < 0)
  5517. return -EINVAL;
  5518. read_lock(&tasklist_lock);
  5519. p = find_process_by_pid(pid);
  5520. retval = -ESRCH;
  5521. if (!p)
  5522. goto out_unlock;
  5523. retval = security_task_getscheduler(p);
  5524. if (retval)
  5525. goto out_unlock;
  5526. lp.sched_priority = p->rt_priority;
  5527. read_unlock(&tasklist_lock);
  5528. /*
  5529. * This one might sleep, we cannot do it with a spinlock held ...
  5530. */
  5531. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5532. return retval;
  5533. out_unlock:
  5534. read_unlock(&tasklist_lock);
  5535. return retval;
  5536. }
  5537. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5538. {
  5539. cpumask_var_t cpus_allowed, new_mask;
  5540. struct task_struct *p;
  5541. int retval;
  5542. get_online_cpus();
  5543. read_lock(&tasklist_lock);
  5544. p = find_process_by_pid(pid);
  5545. if (!p) {
  5546. read_unlock(&tasklist_lock);
  5547. put_online_cpus();
  5548. return -ESRCH;
  5549. }
  5550. /*
  5551. * It is not safe to call set_cpus_allowed with the
  5552. * tasklist_lock held. We will bump the task_struct's
  5553. * usage count and then drop tasklist_lock.
  5554. */
  5555. get_task_struct(p);
  5556. read_unlock(&tasklist_lock);
  5557. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5558. retval = -ENOMEM;
  5559. goto out_put_task;
  5560. }
  5561. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5562. retval = -ENOMEM;
  5563. goto out_free_cpus_allowed;
  5564. }
  5565. retval = -EPERM;
  5566. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5567. goto out_unlock;
  5568. retval = security_task_setscheduler(p, 0, NULL);
  5569. if (retval)
  5570. goto out_unlock;
  5571. cpuset_cpus_allowed(p, cpus_allowed);
  5572. cpumask_and(new_mask, in_mask, cpus_allowed);
  5573. again:
  5574. retval = set_cpus_allowed_ptr(p, new_mask);
  5575. if (!retval) {
  5576. cpuset_cpus_allowed(p, cpus_allowed);
  5577. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5578. /*
  5579. * We must have raced with a concurrent cpuset
  5580. * update. Just reset the cpus_allowed to the
  5581. * cpuset's cpus_allowed
  5582. */
  5583. cpumask_copy(new_mask, cpus_allowed);
  5584. goto again;
  5585. }
  5586. }
  5587. out_unlock:
  5588. free_cpumask_var(new_mask);
  5589. out_free_cpus_allowed:
  5590. free_cpumask_var(cpus_allowed);
  5591. out_put_task:
  5592. put_task_struct(p);
  5593. put_online_cpus();
  5594. return retval;
  5595. }
  5596. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5597. struct cpumask *new_mask)
  5598. {
  5599. if (len < cpumask_size())
  5600. cpumask_clear(new_mask);
  5601. else if (len > cpumask_size())
  5602. len = cpumask_size();
  5603. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5604. }
  5605. /**
  5606. * sys_sched_setaffinity - set the cpu affinity of a process
  5607. * @pid: pid of the process
  5608. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5609. * @user_mask_ptr: user-space pointer to the new cpu mask
  5610. */
  5611. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5612. unsigned long __user *, user_mask_ptr)
  5613. {
  5614. cpumask_var_t new_mask;
  5615. int retval;
  5616. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5617. return -ENOMEM;
  5618. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5619. if (retval == 0)
  5620. retval = sched_setaffinity(pid, new_mask);
  5621. free_cpumask_var(new_mask);
  5622. return retval;
  5623. }
  5624. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5625. {
  5626. struct task_struct *p;
  5627. unsigned long flags;
  5628. struct rq *rq;
  5629. int retval;
  5630. get_online_cpus();
  5631. read_lock(&tasklist_lock);
  5632. retval = -ESRCH;
  5633. p = find_process_by_pid(pid);
  5634. if (!p)
  5635. goto out_unlock;
  5636. retval = security_task_getscheduler(p);
  5637. if (retval)
  5638. goto out_unlock;
  5639. rq = task_rq_lock(p, &flags);
  5640. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5641. task_rq_unlock(rq, &flags);
  5642. out_unlock:
  5643. read_unlock(&tasklist_lock);
  5644. put_online_cpus();
  5645. return retval;
  5646. }
  5647. /**
  5648. * sys_sched_getaffinity - get the cpu affinity of a process
  5649. * @pid: pid of the process
  5650. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5651. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5652. */
  5653. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5654. unsigned long __user *, user_mask_ptr)
  5655. {
  5656. int ret;
  5657. cpumask_var_t mask;
  5658. if (len < cpumask_size())
  5659. return -EINVAL;
  5660. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5661. return -ENOMEM;
  5662. ret = sched_getaffinity(pid, mask);
  5663. if (ret == 0) {
  5664. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5665. ret = -EFAULT;
  5666. else
  5667. ret = cpumask_size();
  5668. }
  5669. free_cpumask_var(mask);
  5670. return ret;
  5671. }
  5672. /**
  5673. * sys_sched_yield - yield the current processor to other threads.
  5674. *
  5675. * This function yields the current CPU to other tasks. If there are no
  5676. * other threads running on this CPU then this function will return.
  5677. */
  5678. SYSCALL_DEFINE0(sched_yield)
  5679. {
  5680. struct rq *rq = this_rq_lock();
  5681. schedstat_inc(rq, yld_count);
  5682. current->sched_class->yield_task(rq);
  5683. /*
  5684. * Since we are going to call schedule() anyway, there's
  5685. * no need to preempt or enable interrupts:
  5686. */
  5687. __release(rq->lock);
  5688. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5689. _raw_spin_unlock(&rq->lock);
  5690. preempt_enable_no_resched();
  5691. schedule();
  5692. return 0;
  5693. }
  5694. static inline int should_resched(void)
  5695. {
  5696. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5697. }
  5698. static void __cond_resched(void)
  5699. {
  5700. add_preempt_count(PREEMPT_ACTIVE);
  5701. schedule();
  5702. sub_preempt_count(PREEMPT_ACTIVE);
  5703. }
  5704. int __sched _cond_resched(void)
  5705. {
  5706. if (should_resched()) {
  5707. __cond_resched();
  5708. return 1;
  5709. }
  5710. return 0;
  5711. }
  5712. EXPORT_SYMBOL(_cond_resched);
  5713. /*
  5714. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5715. * call schedule, and on return reacquire the lock.
  5716. *
  5717. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5718. * operations here to prevent schedule() from being called twice (once via
  5719. * spin_unlock(), once by hand).
  5720. */
  5721. int __cond_resched_lock(spinlock_t *lock)
  5722. {
  5723. int resched = should_resched();
  5724. int ret = 0;
  5725. lockdep_assert_held(lock);
  5726. if (spin_needbreak(lock) || resched) {
  5727. spin_unlock(lock);
  5728. if (resched)
  5729. __cond_resched();
  5730. else
  5731. cpu_relax();
  5732. ret = 1;
  5733. spin_lock(lock);
  5734. }
  5735. return ret;
  5736. }
  5737. EXPORT_SYMBOL(__cond_resched_lock);
  5738. int __sched __cond_resched_softirq(void)
  5739. {
  5740. BUG_ON(!in_softirq());
  5741. if (should_resched()) {
  5742. local_bh_enable();
  5743. __cond_resched();
  5744. local_bh_disable();
  5745. return 1;
  5746. }
  5747. return 0;
  5748. }
  5749. EXPORT_SYMBOL(__cond_resched_softirq);
  5750. /**
  5751. * yield - yield the current processor to other threads.
  5752. *
  5753. * This is a shortcut for kernel-space yielding - it marks the
  5754. * thread runnable and calls sys_sched_yield().
  5755. */
  5756. void __sched yield(void)
  5757. {
  5758. set_current_state(TASK_RUNNING);
  5759. sys_sched_yield();
  5760. }
  5761. EXPORT_SYMBOL(yield);
  5762. /*
  5763. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5764. * that process accounting knows that this is a task in IO wait state.
  5765. */
  5766. void __sched io_schedule(void)
  5767. {
  5768. struct rq *rq = raw_rq();
  5769. delayacct_blkio_start();
  5770. atomic_inc(&rq->nr_iowait);
  5771. current->in_iowait = 1;
  5772. schedule();
  5773. current->in_iowait = 0;
  5774. atomic_dec(&rq->nr_iowait);
  5775. delayacct_blkio_end();
  5776. }
  5777. EXPORT_SYMBOL(io_schedule);
  5778. long __sched io_schedule_timeout(long timeout)
  5779. {
  5780. struct rq *rq = raw_rq();
  5781. long ret;
  5782. delayacct_blkio_start();
  5783. atomic_inc(&rq->nr_iowait);
  5784. current->in_iowait = 1;
  5785. ret = schedule_timeout(timeout);
  5786. current->in_iowait = 0;
  5787. atomic_dec(&rq->nr_iowait);
  5788. delayacct_blkio_end();
  5789. return ret;
  5790. }
  5791. /**
  5792. * sys_sched_get_priority_max - return maximum RT priority.
  5793. * @policy: scheduling class.
  5794. *
  5795. * this syscall returns the maximum rt_priority that can be used
  5796. * by a given scheduling class.
  5797. */
  5798. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5799. {
  5800. int ret = -EINVAL;
  5801. switch (policy) {
  5802. case SCHED_FIFO:
  5803. case SCHED_RR:
  5804. ret = MAX_USER_RT_PRIO-1;
  5805. break;
  5806. case SCHED_NORMAL:
  5807. case SCHED_BATCH:
  5808. case SCHED_IDLE:
  5809. ret = 0;
  5810. break;
  5811. }
  5812. return ret;
  5813. }
  5814. /**
  5815. * sys_sched_get_priority_min - return minimum RT priority.
  5816. * @policy: scheduling class.
  5817. *
  5818. * this syscall returns the minimum rt_priority that can be used
  5819. * by a given scheduling class.
  5820. */
  5821. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5822. {
  5823. int ret = -EINVAL;
  5824. switch (policy) {
  5825. case SCHED_FIFO:
  5826. case SCHED_RR:
  5827. ret = 1;
  5828. break;
  5829. case SCHED_NORMAL:
  5830. case SCHED_BATCH:
  5831. case SCHED_IDLE:
  5832. ret = 0;
  5833. }
  5834. return ret;
  5835. }
  5836. /**
  5837. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5838. * @pid: pid of the process.
  5839. * @interval: userspace pointer to the timeslice value.
  5840. *
  5841. * this syscall writes the default timeslice value of a given process
  5842. * into the user-space timespec buffer. A value of '0' means infinity.
  5843. */
  5844. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5845. struct timespec __user *, interval)
  5846. {
  5847. struct task_struct *p;
  5848. unsigned int time_slice;
  5849. unsigned long flags;
  5850. struct rq *rq;
  5851. int retval;
  5852. struct timespec t;
  5853. if (pid < 0)
  5854. return -EINVAL;
  5855. retval = -ESRCH;
  5856. read_lock(&tasklist_lock);
  5857. p = find_process_by_pid(pid);
  5858. if (!p)
  5859. goto out_unlock;
  5860. retval = security_task_getscheduler(p);
  5861. if (retval)
  5862. goto out_unlock;
  5863. rq = task_rq_lock(p, &flags);
  5864. time_slice = p->sched_class->get_rr_interval(rq, p);
  5865. task_rq_unlock(rq, &flags);
  5866. read_unlock(&tasklist_lock);
  5867. jiffies_to_timespec(time_slice, &t);
  5868. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5869. return retval;
  5870. out_unlock:
  5871. read_unlock(&tasklist_lock);
  5872. return retval;
  5873. }
  5874. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5875. void sched_show_task(struct task_struct *p)
  5876. {
  5877. unsigned long free = 0;
  5878. unsigned state;
  5879. state = p->state ? __ffs(p->state) + 1 : 0;
  5880. pr_info("%-13.13s %c", p->comm,
  5881. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5882. #if BITS_PER_LONG == 32
  5883. if (state == TASK_RUNNING)
  5884. pr_cont(" running ");
  5885. else
  5886. pr_cont(" %08lx ", thread_saved_pc(p));
  5887. #else
  5888. if (state == TASK_RUNNING)
  5889. pr_cont(" running task ");
  5890. else
  5891. pr_cont(" %016lx ", thread_saved_pc(p));
  5892. #endif
  5893. #ifdef CONFIG_DEBUG_STACK_USAGE
  5894. free = stack_not_used(p);
  5895. #endif
  5896. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5897. task_pid_nr(p), task_pid_nr(p->real_parent),
  5898. (unsigned long)task_thread_info(p)->flags);
  5899. show_stack(p, NULL);
  5900. }
  5901. void show_state_filter(unsigned long state_filter)
  5902. {
  5903. struct task_struct *g, *p;
  5904. #if BITS_PER_LONG == 32
  5905. pr_info(" task PC stack pid father\n");
  5906. #else
  5907. pr_info(" task PC stack pid father\n");
  5908. #endif
  5909. read_lock(&tasklist_lock);
  5910. do_each_thread(g, p) {
  5911. /*
  5912. * reset the NMI-timeout, listing all files on a slow
  5913. * console might take alot of time:
  5914. */
  5915. touch_nmi_watchdog();
  5916. if (!state_filter || (p->state & state_filter))
  5917. sched_show_task(p);
  5918. } while_each_thread(g, p);
  5919. touch_all_softlockup_watchdogs();
  5920. #ifdef CONFIG_SCHED_DEBUG
  5921. sysrq_sched_debug_show();
  5922. #endif
  5923. read_unlock(&tasklist_lock);
  5924. /*
  5925. * Only show locks if all tasks are dumped:
  5926. */
  5927. if (!state_filter)
  5928. debug_show_all_locks();
  5929. }
  5930. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5931. {
  5932. idle->sched_class = &idle_sched_class;
  5933. }
  5934. /**
  5935. * init_idle - set up an idle thread for a given CPU
  5936. * @idle: task in question
  5937. * @cpu: cpu the idle task belongs to
  5938. *
  5939. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5940. * flag, to make booting more robust.
  5941. */
  5942. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5943. {
  5944. struct rq *rq = cpu_rq(cpu);
  5945. unsigned long flags;
  5946. spin_lock_irqsave(&rq->lock, flags);
  5947. __sched_fork(idle);
  5948. idle->se.exec_start = sched_clock();
  5949. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5950. __set_task_cpu(idle, cpu);
  5951. rq->curr = rq->idle = idle;
  5952. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5953. idle->oncpu = 1;
  5954. #endif
  5955. spin_unlock_irqrestore(&rq->lock, flags);
  5956. /* Set the preempt count _outside_ the spinlocks! */
  5957. #if defined(CONFIG_PREEMPT)
  5958. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5959. #else
  5960. task_thread_info(idle)->preempt_count = 0;
  5961. #endif
  5962. /*
  5963. * The idle tasks have their own, simple scheduling class:
  5964. */
  5965. idle->sched_class = &idle_sched_class;
  5966. ftrace_graph_init_task(idle);
  5967. }
  5968. /*
  5969. * In a system that switches off the HZ timer nohz_cpu_mask
  5970. * indicates which cpus entered this state. This is used
  5971. * in the rcu update to wait only for active cpus. For system
  5972. * which do not switch off the HZ timer nohz_cpu_mask should
  5973. * always be CPU_BITS_NONE.
  5974. */
  5975. cpumask_var_t nohz_cpu_mask;
  5976. /*
  5977. * Increase the granularity value when there are more CPUs,
  5978. * because with more CPUs the 'effective latency' as visible
  5979. * to users decreases. But the relationship is not linear,
  5980. * so pick a second-best guess by going with the log2 of the
  5981. * number of CPUs.
  5982. *
  5983. * This idea comes from the SD scheduler of Con Kolivas:
  5984. */
  5985. static int get_update_sysctl_factor(void)
  5986. {
  5987. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5988. unsigned int factor;
  5989. switch (sysctl_sched_tunable_scaling) {
  5990. case SCHED_TUNABLESCALING_NONE:
  5991. factor = 1;
  5992. break;
  5993. case SCHED_TUNABLESCALING_LINEAR:
  5994. factor = cpus;
  5995. break;
  5996. case SCHED_TUNABLESCALING_LOG:
  5997. default:
  5998. factor = 1 + ilog2(cpus);
  5999. break;
  6000. }
  6001. return factor;
  6002. }
  6003. static void update_sysctl(void)
  6004. {
  6005. unsigned int factor = get_update_sysctl_factor();
  6006. #define SET_SYSCTL(name) \
  6007. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6008. SET_SYSCTL(sched_min_granularity);
  6009. SET_SYSCTL(sched_latency);
  6010. SET_SYSCTL(sched_wakeup_granularity);
  6011. SET_SYSCTL(sched_shares_ratelimit);
  6012. #undef SET_SYSCTL
  6013. }
  6014. static inline void sched_init_granularity(void)
  6015. {
  6016. update_sysctl();
  6017. }
  6018. #ifdef CONFIG_SMP
  6019. /*
  6020. * This is how migration works:
  6021. *
  6022. * 1) we queue a struct migration_req structure in the source CPU's
  6023. * runqueue and wake up that CPU's migration thread.
  6024. * 2) we down() the locked semaphore => thread blocks.
  6025. * 3) migration thread wakes up (implicitly it forces the migrated
  6026. * thread off the CPU)
  6027. * 4) it gets the migration request and checks whether the migrated
  6028. * task is still in the wrong runqueue.
  6029. * 5) if it's in the wrong runqueue then the migration thread removes
  6030. * it and puts it into the right queue.
  6031. * 6) migration thread up()s the semaphore.
  6032. * 7) we wake up and the migration is done.
  6033. */
  6034. /*
  6035. * Change a given task's CPU affinity. Migrate the thread to a
  6036. * proper CPU and schedule it away if the CPU it's executing on
  6037. * is removed from the allowed bitmask.
  6038. *
  6039. * NOTE: the caller must have a valid reference to the task, the
  6040. * task must not exit() & deallocate itself prematurely. The
  6041. * call is not atomic; no spinlocks may be held.
  6042. */
  6043. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6044. {
  6045. struct migration_req req;
  6046. unsigned long flags;
  6047. struct rq *rq;
  6048. int ret = 0;
  6049. rq = task_rq_lock(p, &flags);
  6050. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6051. ret = -EINVAL;
  6052. goto out;
  6053. }
  6054. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6055. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6056. ret = -EINVAL;
  6057. goto out;
  6058. }
  6059. if (p->sched_class->set_cpus_allowed)
  6060. p->sched_class->set_cpus_allowed(p, new_mask);
  6061. else {
  6062. cpumask_copy(&p->cpus_allowed, new_mask);
  6063. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6064. }
  6065. /* Can the task run on the task's current CPU? If so, we're done */
  6066. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6067. goto out;
  6068. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6069. /* Need help from migration thread: drop lock and wait. */
  6070. struct task_struct *mt = rq->migration_thread;
  6071. get_task_struct(mt);
  6072. task_rq_unlock(rq, &flags);
  6073. wake_up_process(rq->migration_thread);
  6074. put_task_struct(mt);
  6075. wait_for_completion(&req.done);
  6076. tlb_migrate_finish(p->mm);
  6077. return 0;
  6078. }
  6079. out:
  6080. task_rq_unlock(rq, &flags);
  6081. return ret;
  6082. }
  6083. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6084. /*
  6085. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6086. * this because either it can't run here any more (set_cpus_allowed()
  6087. * away from this CPU, or CPU going down), or because we're
  6088. * attempting to rebalance this task on exec (sched_exec).
  6089. *
  6090. * So we race with normal scheduler movements, but that's OK, as long
  6091. * as the task is no longer on this CPU.
  6092. *
  6093. * Returns non-zero if task was successfully migrated.
  6094. */
  6095. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6096. {
  6097. struct rq *rq_dest, *rq_src;
  6098. int ret = 0, on_rq;
  6099. if (unlikely(!cpu_active(dest_cpu)))
  6100. return ret;
  6101. rq_src = cpu_rq(src_cpu);
  6102. rq_dest = cpu_rq(dest_cpu);
  6103. double_rq_lock(rq_src, rq_dest);
  6104. /* Already moved. */
  6105. if (task_cpu(p) != src_cpu)
  6106. goto done;
  6107. /* Affinity changed (again). */
  6108. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6109. goto fail;
  6110. on_rq = p->se.on_rq;
  6111. if (on_rq)
  6112. deactivate_task(rq_src, p, 0);
  6113. set_task_cpu(p, dest_cpu);
  6114. if (on_rq) {
  6115. activate_task(rq_dest, p, 0);
  6116. check_preempt_curr(rq_dest, p, 0);
  6117. }
  6118. done:
  6119. ret = 1;
  6120. fail:
  6121. double_rq_unlock(rq_src, rq_dest);
  6122. return ret;
  6123. }
  6124. #define RCU_MIGRATION_IDLE 0
  6125. #define RCU_MIGRATION_NEED_QS 1
  6126. #define RCU_MIGRATION_GOT_QS 2
  6127. #define RCU_MIGRATION_MUST_SYNC 3
  6128. /*
  6129. * migration_thread - this is a highprio system thread that performs
  6130. * thread migration by bumping thread off CPU then 'pushing' onto
  6131. * another runqueue.
  6132. */
  6133. static int migration_thread(void *data)
  6134. {
  6135. int badcpu;
  6136. int cpu = (long)data;
  6137. struct rq *rq;
  6138. rq = cpu_rq(cpu);
  6139. BUG_ON(rq->migration_thread != current);
  6140. set_current_state(TASK_INTERRUPTIBLE);
  6141. while (!kthread_should_stop()) {
  6142. struct migration_req *req;
  6143. struct list_head *head;
  6144. spin_lock_irq(&rq->lock);
  6145. if (cpu_is_offline(cpu)) {
  6146. spin_unlock_irq(&rq->lock);
  6147. break;
  6148. }
  6149. if (rq->active_balance) {
  6150. active_load_balance(rq, cpu);
  6151. rq->active_balance = 0;
  6152. }
  6153. head = &rq->migration_queue;
  6154. if (list_empty(head)) {
  6155. spin_unlock_irq(&rq->lock);
  6156. schedule();
  6157. set_current_state(TASK_INTERRUPTIBLE);
  6158. continue;
  6159. }
  6160. req = list_entry(head->next, struct migration_req, list);
  6161. list_del_init(head->next);
  6162. if (req->task != NULL) {
  6163. spin_unlock(&rq->lock);
  6164. __migrate_task(req->task, cpu, req->dest_cpu);
  6165. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6166. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6167. spin_unlock(&rq->lock);
  6168. } else {
  6169. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6170. spin_unlock(&rq->lock);
  6171. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6172. }
  6173. local_irq_enable();
  6174. complete(&req->done);
  6175. }
  6176. __set_current_state(TASK_RUNNING);
  6177. return 0;
  6178. }
  6179. #ifdef CONFIG_HOTPLUG_CPU
  6180. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6181. {
  6182. int ret;
  6183. local_irq_disable();
  6184. ret = __migrate_task(p, src_cpu, dest_cpu);
  6185. local_irq_enable();
  6186. return ret;
  6187. }
  6188. /*
  6189. * Figure out where task on dead CPU should go, use force if necessary.
  6190. */
  6191. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6192. {
  6193. int dest_cpu;
  6194. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6195. again:
  6196. /* Look for allowed, online CPU in same node. */
  6197. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6198. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6199. goto move;
  6200. /* Any allowed, online CPU? */
  6201. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6202. if (dest_cpu < nr_cpu_ids)
  6203. goto move;
  6204. /* No more Mr. Nice Guy. */
  6205. if (dest_cpu >= nr_cpu_ids) {
  6206. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6207. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6208. /*
  6209. * Don't tell them about moving exiting tasks or
  6210. * kernel threads (both mm NULL), since they never
  6211. * leave kernel.
  6212. */
  6213. if (p->mm && printk_ratelimit()) {
  6214. pr_info("process %d (%s) no longer affine to cpu%d\n",
  6215. task_pid_nr(p), p->comm, dead_cpu);
  6216. }
  6217. }
  6218. move:
  6219. /* It can have affinity changed while we were choosing. */
  6220. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6221. goto again;
  6222. }
  6223. /*
  6224. * While a dead CPU has no uninterruptible tasks queued at this point,
  6225. * it might still have a nonzero ->nr_uninterruptible counter, because
  6226. * for performance reasons the counter is not stricly tracking tasks to
  6227. * their home CPUs. So we just add the counter to another CPU's counter,
  6228. * to keep the global sum constant after CPU-down:
  6229. */
  6230. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6231. {
  6232. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6233. unsigned long flags;
  6234. local_irq_save(flags);
  6235. double_rq_lock(rq_src, rq_dest);
  6236. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6237. rq_src->nr_uninterruptible = 0;
  6238. double_rq_unlock(rq_src, rq_dest);
  6239. local_irq_restore(flags);
  6240. }
  6241. /* Run through task list and migrate tasks from the dead cpu. */
  6242. static void migrate_live_tasks(int src_cpu)
  6243. {
  6244. struct task_struct *p, *t;
  6245. read_lock(&tasklist_lock);
  6246. do_each_thread(t, p) {
  6247. if (p == current)
  6248. continue;
  6249. if (task_cpu(p) == src_cpu)
  6250. move_task_off_dead_cpu(src_cpu, p);
  6251. } while_each_thread(t, p);
  6252. read_unlock(&tasklist_lock);
  6253. }
  6254. /*
  6255. * Schedules idle task to be the next runnable task on current CPU.
  6256. * It does so by boosting its priority to highest possible.
  6257. * Used by CPU offline code.
  6258. */
  6259. void sched_idle_next(void)
  6260. {
  6261. int this_cpu = smp_processor_id();
  6262. struct rq *rq = cpu_rq(this_cpu);
  6263. struct task_struct *p = rq->idle;
  6264. unsigned long flags;
  6265. /* cpu has to be offline */
  6266. BUG_ON(cpu_online(this_cpu));
  6267. /*
  6268. * Strictly not necessary since rest of the CPUs are stopped by now
  6269. * and interrupts disabled on the current cpu.
  6270. */
  6271. spin_lock_irqsave(&rq->lock, flags);
  6272. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6273. update_rq_clock(rq);
  6274. activate_task(rq, p, 0);
  6275. spin_unlock_irqrestore(&rq->lock, flags);
  6276. }
  6277. /*
  6278. * Ensures that the idle task is using init_mm right before its cpu goes
  6279. * offline.
  6280. */
  6281. void idle_task_exit(void)
  6282. {
  6283. struct mm_struct *mm = current->active_mm;
  6284. BUG_ON(cpu_online(smp_processor_id()));
  6285. if (mm != &init_mm)
  6286. switch_mm(mm, &init_mm, current);
  6287. mmdrop(mm);
  6288. }
  6289. /* called under rq->lock with disabled interrupts */
  6290. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6291. {
  6292. struct rq *rq = cpu_rq(dead_cpu);
  6293. /* Must be exiting, otherwise would be on tasklist. */
  6294. BUG_ON(!p->exit_state);
  6295. /* Cannot have done final schedule yet: would have vanished. */
  6296. BUG_ON(p->state == TASK_DEAD);
  6297. get_task_struct(p);
  6298. /*
  6299. * Drop lock around migration; if someone else moves it,
  6300. * that's OK. No task can be added to this CPU, so iteration is
  6301. * fine.
  6302. */
  6303. spin_unlock_irq(&rq->lock);
  6304. move_task_off_dead_cpu(dead_cpu, p);
  6305. spin_lock_irq(&rq->lock);
  6306. put_task_struct(p);
  6307. }
  6308. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6309. static void migrate_dead_tasks(unsigned int dead_cpu)
  6310. {
  6311. struct rq *rq = cpu_rq(dead_cpu);
  6312. struct task_struct *next;
  6313. for ( ; ; ) {
  6314. if (!rq->nr_running)
  6315. break;
  6316. update_rq_clock(rq);
  6317. next = pick_next_task(rq);
  6318. if (!next)
  6319. break;
  6320. next->sched_class->put_prev_task(rq, next);
  6321. migrate_dead(dead_cpu, next);
  6322. }
  6323. }
  6324. /*
  6325. * remove the tasks which were accounted by rq from calc_load_tasks.
  6326. */
  6327. static void calc_global_load_remove(struct rq *rq)
  6328. {
  6329. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6330. rq->calc_load_active = 0;
  6331. }
  6332. #endif /* CONFIG_HOTPLUG_CPU */
  6333. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6334. static struct ctl_table sd_ctl_dir[] = {
  6335. {
  6336. .procname = "sched_domain",
  6337. .mode = 0555,
  6338. },
  6339. {}
  6340. };
  6341. static struct ctl_table sd_ctl_root[] = {
  6342. {
  6343. .procname = "kernel",
  6344. .mode = 0555,
  6345. .child = sd_ctl_dir,
  6346. },
  6347. {}
  6348. };
  6349. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6350. {
  6351. struct ctl_table *entry =
  6352. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6353. return entry;
  6354. }
  6355. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6356. {
  6357. struct ctl_table *entry;
  6358. /*
  6359. * In the intermediate directories, both the child directory and
  6360. * procname are dynamically allocated and could fail but the mode
  6361. * will always be set. In the lowest directory the names are
  6362. * static strings and all have proc handlers.
  6363. */
  6364. for (entry = *tablep; entry->mode; entry++) {
  6365. if (entry->child)
  6366. sd_free_ctl_entry(&entry->child);
  6367. if (entry->proc_handler == NULL)
  6368. kfree(entry->procname);
  6369. }
  6370. kfree(*tablep);
  6371. *tablep = NULL;
  6372. }
  6373. static void
  6374. set_table_entry(struct ctl_table *entry,
  6375. const char *procname, void *data, int maxlen,
  6376. mode_t mode, proc_handler *proc_handler)
  6377. {
  6378. entry->procname = procname;
  6379. entry->data = data;
  6380. entry->maxlen = maxlen;
  6381. entry->mode = mode;
  6382. entry->proc_handler = proc_handler;
  6383. }
  6384. static struct ctl_table *
  6385. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6386. {
  6387. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6388. if (table == NULL)
  6389. return NULL;
  6390. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6391. sizeof(long), 0644, proc_doulongvec_minmax);
  6392. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6393. sizeof(long), 0644, proc_doulongvec_minmax);
  6394. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6395. sizeof(int), 0644, proc_dointvec_minmax);
  6396. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6397. sizeof(int), 0644, proc_dointvec_minmax);
  6398. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6399. sizeof(int), 0644, proc_dointvec_minmax);
  6400. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6401. sizeof(int), 0644, proc_dointvec_minmax);
  6402. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6403. sizeof(int), 0644, proc_dointvec_minmax);
  6404. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6405. sizeof(int), 0644, proc_dointvec_minmax);
  6406. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6407. sizeof(int), 0644, proc_dointvec_minmax);
  6408. set_table_entry(&table[9], "cache_nice_tries",
  6409. &sd->cache_nice_tries,
  6410. sizeof(int), 0644, proc_dointvec_minmax);
  6411. set_table_entry(&table[10], "flags", &sd->flags,
  6412. sizeof(int), 0644, proc_dointvec_minmax);
  6413. set_table_entry(&table[11], "name", sd->name,
  6414. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6415. /* &table[12] is terminator */
  6416. return table;
  6417. }
  6418. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6419. {
  6420. struct ctl_table *entry, *table;
  6421. struct sched_domain *sd;
  6422. int domain_num = 0, i;
  6423. char buf[32];
  6424. for_each_domain(cpu, sd)
  6425. domain_num++;
  6426. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6427. if (table == NULL)
  6428. return NULL;
  6429. i = 0;
  6430. for_each_domain(cpu, sd) {
  6431. snprintf(buf, 32, "domain%d", i);
  6432. entry->procname = kstrdup(buf, GFP_KERNEL);
  6433. entry->mode = 0555;
  6434. entry->child = sd_alloc_ctl_domain_table(sd);
  6435. entry++;
  6436. i++;
  6437. }
  6438. return table;
  6439. }
  6440. static struct ctl_table_header *sd_sysctl_header;
  6441. static void register_sched_domain_sysctl(void)
  6442. {
  6443. int i, cpu_num = num_possible_cpus();
  6444. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6445. char buf[32];
  6446. WARN_ON(sd_ctl_dir[0].child);
  6447. sd_ctl_dir[0].child = entry;
  6448. if (entry == NULL)
  6449. return;
  6450. for_each_possible_cpu(i) {
  6451. snprintf(buf, 32, "cpu%d", i);
  6452. entry->procname = kstrdup(buf, GFP_KERNEL);
  6453. entry->mode = 0555;
  6454. entry->child = sd_alloc_ctl_cpu_table(i);
  6455. entry++;
  6456. }
  6457. WARN_ON(sd_sysctl_header);
  6458. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6459. }
  6460. /* may be called multiple times per register */
  6461. static void unregister_sched_domain_sysctl(void)
  6462. {
  6463. if (sd_sysctl_header)
  6464. unregister_sysctl_table(sd_sysctl_header);
  6465. sd_sysctl_header = NULL;
  6466. if (sd_ctl_dir[0].child)
  6467. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6468. }
  6469. #else
  6470. static void register_sched_domain_sysctl(void)
  6471. {
  6472. }
  6473. static void unregister_sched_domain_sysctl(void)
  6474. {
  6475. }
  6476. #endif
  6477. static void set_rq_online(struct rq *rq)
  6478. {
  6479. if (!rq->online) {
  6480. const struct sched_class *class;
  6481. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6482. rq->online = 1;
  6483. for_each_class(class) {
  6484. if (class->rq_online)
  6485. class->rq_online(rq);
  6486. }
  6487. }
  6488. }
  6489. static void set_rq_offline(struct rq *rq)
  6490. {
  6491. if (rq->online) {
  6492. const struct sched_class *class;
  6493. for_each_class(class) {
  6494. if (class->rq_offline)
  6495. class->rq_offline(rq);
  6496. }
  6497. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6498. rq->online = 0;
  6499. }
  6500. }
  6501. /*
  6502. * migration_call - callback that gets triggered when a CPU is added.
  6503. * Here we can start up the necessary migration thread for the new CPU.
  6504. */
  6505. static int __cpuinit
  6506. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6507. {
  6508. struct task_struct *p;
  6509. int cpu = (long)hcpu;
  6510. unsigned long flags;
  6511. struct rq *rq;
  6512. switch (action) {
  6513. case CPU_UP_PREPARE:
  6514. case CPU_UP_PREPARE_FROZEN:
  6515. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6516. if (IS_ERR(p))
  6517. return NOTIFY_BAD;
  6518. kthread_bind(p, cpu);
  6519. /* Must be high prio: stop_machine expects to yield to it. */
  6520. rq = task_rq_lock(p, &flags);
  6521. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6522. task_rq_unlock(rq, &flags);
  6523. get_task_struct(p);
  6524. cpu_rq(cpu)->migration_thread = p;
  6525. rq->calc_load_update = calc_load_update;
  6526. break;
  6527. case CPU_ONLINE:
  6528. case CPU_ONLINE_FROZEN:
  6529. /* Strictly unnecessary, as first user will wake it. */
  6530. wake_up_process(cpu_rq(cpu)->migration_thread);
  6531. /* Update our root-domain */
  6532. rq = cpu_rq(cpu);
  6533. spin_lock_irqsave(&rq->lock, flags);
  6534. if (rq->rd) {
  6535. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6536. set_rq_online(rq);
  6537. }
  6538. spin_unlock_irqrestore(&rq->lock, flags);
  6539. break;
  6540. #ifdef CONFIG_HOTPLUG_CPU
  6541. case CPU_UP_CANCELED:
  6542. case CPU_UP_CANCELED_FROZEN:
  6543. if (!cpu_rq(cpu)->migration_thread)
  6544. break;
  6545. /* Unbind it from offline cpu so it can run. Fall thru. */
  6546. kthread_bind(cpu_rq(cpu)->migration_thread,
  6547. cpumask_any(cpu_online_mask));
  6548. kthread_stop(cpu_rq(cpu)->migration_thread);
  6549. put_task_struct(cpu_rq(cpu)->migration_thread);
  6550. cpu_rq(cpu)->migration_thread = NULL;
  6551. break;
  6552. case CPU_DEAD:
  6553. case CPU_DEAD_FROZEN:
  6554. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6555. migrate_live_tasks(cpu);
  6556. rq = cpu_rq(cpu);
  6557. kthread_stop(rq->migration_thread);
  6558. put_task_struct(rq->migration_thread);
  6559. rq->migration_thread = NULL;
  6560. /* Idle task back to normal (off runqueue, low prio) */
  6561. spin_lock_irq(&rq->lock);
  6562. update_rq_clock(rq);
  6563. deactivate_task(rq, rq->idle, 0);
  6564. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6565. rq->idle->sched_class = &idle_sched_class;
  6566. migrate_dead_tasks(cpu);
  6567. spin_unlock_irq(&rq->lock);
  6568. cpuset_unlock();
  6569. migrate_nr_uninterruptible(rq);
  6570. BUG_ON(rq->nr_running != 0);
  6571. calc_global_load_remove(rq);
  6572. /*
  6573. * No need to migrate the tasks: it was best-effort if
  6574. * they didn't take sched_hotcpu_mutex. Just wake up
  6575. * the requestors.
  6576. */
  6577. spin_lock_irq(&rq->lock);
  6578. while (!list_empty(&rq->migration_queue)) {
  6579. struct migration_req *req;
  6580. req = list_entry(rq->migration_queue.next,
  6581. struct migration_req, list);
  6582. list_del_init(&req->list);
  6583. spin_unlock_irq(&rq->lock);
  6584. complete(&req->done);
  6585. spin_lock_irq(&rq->lock);
  6586. }
  6587. spin_unlock_irq(&rq->lock);
  6588. break;
  6589. case CPU_DYING:
  6590. case CPU_DYING_FROZEN:
  6591. /* Update our root-domain */
  6592. rq = cpu_rq(cpu);
  6593. spin_lock_irqsave(&rq->lock, flags);
  6594. if (rq->rd) {
  6595. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6596. set_rq_offline(rq);
  6597. }
  6598. spin_unlock_irqrestore(&rq->lock, flags);
  6599. break;
  6600. #endif
  6601. }
  6602. return NOTIFY_OK;
  6603. }
  6604. /*
  6605. * Register at high priority so that task migration (migrate_all_tasks)
  6606. * happens before everything else. This has to be lower priority than
  6607. * the notifier in the perf_event subsystem, though.
  6608. */
  6609. static struct notifier_block __cpuinitdata migration_notifier = {
  6610. .notifier_call = migration_call,
  6611. .priority = 10
  6612. };
  6613. static int __init migration_init(void)
  6614. {
  6615. void *cpu = (void *)(long)smp_processor_id();
  6616. int err;
  6617. /* Start one for the boot CPU: */
  6618. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6619. BUG_ON(err == NOTIFY_BAD);
  6620. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6621. register_cpu_notifier(&migration_notifier);
  6622. return 0;
  6623. }
  6624. early_initcall(migration_init);
  6625. #endif
  6626. #ifdef CONFIG_SMP
  6627. #ifdef CONFIG_SCHED_DEBUG
  6628. static __read_mostly int sched_domain_debug_enabled;
  6629. static int __init sched_domain_debug_setup(char *str)
  6630. {
  6631. sched_domain_debug_enabled = 1;
  6632. return 0;
  6633. }
  6634. early_param("sched_debug", sched_domain_debug_setup);
  6635. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6636. struct cpumask *groupmask)
  6637. {
  6638. struct sched_group *group = sd->groups;
  6639. char str[256];
  6640. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6641. cpumask_clear(groupmask);
  6642. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6643. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6644. pr_cont("does not load-balance\n");
  6645. if (sd->parent)
  6646. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6647. return -1;
  6648. }
  6649. pr_cont("span %s level %s\n", str, sd->name);
  6650. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6651. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6652. }
  6653. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6654. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6655. }
  6656. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6657. do {
  6658. if (!group) {
  6659. pr_cont("\n");
  6660. pr_err("ERROR: group is NULL\n");
  6661. break;
  6662. }
  6663. if (!group->cpu_power) {
  6664. pr_cont("\n");
  6665. pr_err("ERROR: domain->cpu_power not set\n");
  6666. break;
  6667. }
  6668. if (!cpumask_weight(sched_group_cpus(group))) {
  6669. pr_cont("\n");
  6670. pr_err("ERROR: empty group\n");
  6671. break;
  6672. }
  6673. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6674. pr_cont("\n");
  6675. pr_err("ERROR: repeated CPUs\n");
  6676. break;
  6677. }
  6678. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6679. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6680. pr_cont(" %s", str);
  6681. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6682. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6683. }
  6684. group = group->next;
  6685. } while (group != sd->groups);
  6686. pr_cont("\n");
  6687. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6688. pr_err("ERROR: groups don't span domain->span\n");
  6689. if (sd->parent &&
  6690. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6691. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6692. return 0;
  6693. }
  6694. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6695. {
  6696. cpumask_var_t groupmask;
  6697. int level = 0;
  6698. if (!sched_domain_debug_enabled)
  6699. return;
  6700. if (!sd) {
  6701. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6702. return;
  6703. }
  6704. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6705. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6706. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6707. return;
  6708. }
  6709. for (;;) {
  6710. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6711. break;
  6712. level++;
  6713. sd = sd->parent;
  6714. if (!sd)
  6715. break;
  6716. }
  6717. free_cpumask_var(groupmask);
  6718. }
  6719. #else /* !CONFIG_SCHED_DEBUG */
  6720. # define sched_domain_debug(sd, cpu) do { } while (0)
  6721. #endif /* CONFIG_SCHED_DEBUG */
  6722. static int sd_degenerate(struct sched_domain *sd)
  6723. {
  6724. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6725. return 1;
  6726. /* Following flags need at least 2 groups */
  6727. if (sd->flags & (SD_LOAD_BALANCE |
  6728. SD_BALANCE_NEWIDLE |
  6729. SD_BALANCE_FORK |
  6730. SD_BALANCE_EXEC |
  6731. SD_SHARE_CPUPOWER |
  6732. SD_SHARE_PKG_RESOURCES)) {
  6733. if (sd->groups != sd->groups->next)
  6734. return 0;
  6735. }
  6736. /* Following flags don't use groups */
  6737. if (sd->flags & (SD_WAKE_AFFINE))
  6738. return 0;
  6739. return 1;
  6740. }
  6741. static int
  6742. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6743. {
  6744. unsigned long cflags = sd->flags, pflags = parent->flags;
  6745. if (sd_degenerate(parent))
  6746. return 1;
  6747. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6748. return 0;
  6749. /* Flags needing groups don't count if only 1 group in parent */
  6750. if (parent->groups == parent->groups->next) {
  6751. pflags &= ~(SD_LOAD_BALANCE |
  6752. SD_BALANCE_NEWIDLE |
  6753. SD_BALANCE_FORK |
  6754. SD_BALANCE_EXEC |
  6755. SD_SHARE_CPUPOWER |
  6756. SD_SHARE_PKG_RESOURCES);
  6757. if (nr_node_ids == 1)
  6758. pflags &= ~SD_SERIALIZE;
  6759. }
  6760. if (~cflags & pflags)
  6761. return 0;
  6762. return 1;
  6763. }
  6764. static void free_rootdomain(struct root_domain *rd)
  6765. {
  6766. synchronize_sched();
  6767. cpupri_cleanup(&rd->cpupri);
  6768. free_cpumask_var(rd->rto_mask);
  6769. free_cpumask_var(rd->online);
  6770. free_cpumask_var(rd->span);
  6771. kfree(rd);
  6772. }
  6773. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6774. {
  6775. struct root_domain *old_rd = NULL;
  6776. unsigned long flags;
  6777. spin_lock_irqsave(&rq->lock, flags);
  6778. if (rq->rd) {
  6779. old_rd = rq->rd;
  6780. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6781. set_rq_offline(rq);
  6782. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6783. /*
  6784. * If we dont want to free the old_rt yet then
  6785. * set old_rd to NULL to skip the freeing later
  6786. * in this function:
  6787. */
  6788. if (!atomic_dec_and_test(&old_rd->refcount))
  6789. old_rd = NULL;
  6790. }
  6791. atomic_inc(&rd->refcount);
  6792. rq->rd = rd;
  6793. cpumask_set_cpu(rq->cpu, rd->span);
  6794. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6795. set_rq_online(rq);
  6796. spin_unlock_irqrestore(&rq->lock, flags);
  6797. if (old_rd)
  6798. free_rootdomain(old_rd);
  6799. }
  6800. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6801. {
  6802. gfp_t gfp = GFP_KERNEL;
  6803. memset(rd, 0, sizeof(*rd));
  6804. if (bootmem)
  6805. gfp = GFP_NOWAIT;
  6806. if (!alloc_cpumask_var(&rd->span, gfp))
  6807. goto out;
  6808. if (!alloc_cpumask_var(&rd->online, gfp))
  6809. goto free_span;
  6810. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6811. goto free_online;
  6812. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6813. goto free_rto_mask;
  6814. return 0;
  6815. free_rto_mask:
  6816. free_cpumask_var(rd->rto_mask);
  6817. free_online:
  6818. free_cpumask_var(rd->online);
  6819. free_span:
  6820. free_cpumask_var(rd->span);
  6821. out:
  6822. return -ENOMEM;
  6823. }
  6824. static void init_defrootdomain(void)
  6825. {
  6826. init_rootdomain(&def_root_domain, true);
  6827. atomic_set(&def_root_domain.refcount, 1);
  6828. }
  6829. static struct root_domain *alloc_rootdomain(void)
  6830. {
  6831. struct root_domain *rd;
  6832. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6833. if (!rd)
  6834. return NULL;
  6835. if (init_rootdomain(rd, false) != 0) {
  6836. kfree(rd);
  6837. return NULL;
  6838. }
  6839. return rd;
  6840. }
  6841. /*
  6842. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6843. * hold the hotplug lock.
  6844. */
  6845. static void
  6846. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6847. {
  6848. struct rq *rq = cpu_rq(cpu);
  6849. struct sched_domain *tmp;
  6850. /* Remove the sched domains which do not contribute to scheduling. */
  6851. for (tmp = sd; tmp; ) {
  6852. struct sched_domain *parent = tmp->parent;
  6853. if (!parent)
  6854. break;
  6855. if (sd_parent_degenerate(tmp, parent)) {
  6856. tmp->parent = parent->parent;
  6857. if (parent->parent)
  6858. parent->parent->child = tmp;
  6859. } else
  6860. tmp = tmp->parent;
  6861. }
  6862. if (sd && sd_degenerate(sd)) {
  6863. sd = sd->parent;
  6864. if (sd)
  6865. sd->child = NULL;
  6866. }
  6867. sched_domain_debug(sd, cpu);
  6868. rq_attach_root(rq, rd);
  6869. rcu_assign_pointer(rq->sd, sd);
  6870. }
  6871. /* cpus with isolated domains */
  6872. static cpumask_var_t cpu_isolated_map;
  6873. /* Setup the mask of cpus configured for isolated domains */
  6874. static int __init isolated_cpu_setup(char *str)
  6875. {
  6876. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6877. cpulist_parse(str, cpu_isolated_map);
  6878. return 1;
  6879. }
  6880. __setup("isolcpus=", isolated_cpu_setup);
  6881. /*
  6882. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6883. * to a function which identifies what group(along with sched group) a CPU
  6884. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6885. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6886. *
  6887. * init_sched_build_groups will build a circular linked list of the groups
  6888. * covered by the given span, and will set each group's ->cpumask correctly,
  6889. * and ->cpu_power to 0.
  6890. */
  6891. static void
  6892. init_sched_build_groups(const struct cpumask *span,
  6893. const struct cpumask *cpu_map,
  6894. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6895. struct sched_group **sg,
  6896. struct cpumask *tmpmask),
  6897. struct cpumask *covered, struct cpumask *tmpmask)
  6898. {
  6899. struct sched_group *first = NULL, *last = NULL;
  6900. int i;
  6901. cpumask_clear(covered);
  6902. for_each_cpu(i, span) {
  6903. struct sched_group *sg;
  6904. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6905. int j;
  6906. if (cpumask_test_cpu(i, covered))
  6907. continue;
  6908. cpumask_clear(sched_group_cpus(sg));
  6909. sg->cpu_power = 0;
  6910. for_each_cpu(j, span) {
  6911. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6912. continue;
  6913. cpumask_set_cpu(j, covered);
  6914. cpumask_set_cpu(j, sched_group_cpus(sg));
  6915. }
  6916. if (!first)
  6917. first = sg;
  6918. if (last)
  6919. last->next = sg;
  6920. last = sg;
  6921. }
  6922. last->next = first;
  6923. }
  6924. #define SD_NODES_PER_DOMAIN 16
  6925. #ifdef CONFIG_NUMA
  6926. /**
  6927. * find_next_best_node - find the next node to include in a sched_domain
  6928. * @node: node whose sched_domain we're building
  6929. * @used_nodes: nodes already in the sched_domain
  6930. *
  6931. * Find the next node to include in a given scheduling domain. Simply
  6932. * finds the closest node not already in the @used_nodes map.
  6933. *
  6934. * Should use nodemask_t.
  6935. */
  6936. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6937. {
  6938. int i, n, val, min_val, best_node = 0;
  6939. min_val = INT_MAX;
  6940. for (i = 0; i < nr_node_ids; i++) {
  6941. /* Start at @node */
  6942. n = (node + i) % nr_node_ids;
  6943. if (!nr_cpus_node(n))
  6944. continue;
  6945. /* Skip already used nodes */
  6946. if (node_isset(n, *used_nodes))
  6947. continue;
  6948. /* Simple min distance search */
  6949. val = node_distance(node, n);
  6950. if (val < min_val) {
  6951. min_val = val;
  6952. best_node = n;
  6953. }
  6954. }
  6955. node_set(best_node, *used_nodes);
  6956. return best_node;
  6957. }
  6958. /**
  6959. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6960. * @node: node whose cpumask we're constructing
  6961. * @span: resulting cpumask
  6962. *
  6963. * Given a node, construct a good cpumask for its sched_domain to span. It
  6964. * should be one that prevents unnecessary balancing, but also spreads tasks
  6965. * out optimally.
  6966. */
  6967. static void sched_domain_node_span(int node, struct cpumask *span)
  6968. {
  6969. nodemask_t used_nodes;
  6970. int i;
  6971. cpumask_clear(span);
  6972. nodes_clear(used_nodes);
  6973. cpumask_or(span, span, cpumask_of_node(node));
  6974. node_set(node, used_nodes);
  6975. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6976. int next_node = find_next_best_node(node, &used_nodes);
  6977. cpumask_or(span, span, cpumask_of_node(next_node));
  6978. }
  6979. }
  6980. #endif /* CONFIG_NUMA */
  6981. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6982. /*
  6983. * The cpus mask in sched_group and sched_domain hangs off the end.
  6984. *
  6985. * ( See the the comments in include/linux/sched.h:struct sched_group
  6986. * and struct sched_domain. )
  6987. */
  6988. struct static_sched_group {
  6989. struct sched_group sg;
  6990. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6991. };
  6992. struct static_sched_domain {
  6993. struct sched_domain sd;
  6994. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6995. };
  6996. struct s_data {
  6997. #ifdef CONFIG_NUMA
  6998. int sd_allnodes;
  6999. cpumask_var_t domainspan;
  7000. cpumask_var_t covered;
  7001. cpumask_var_t notcovered;
  7002. #endif
  7003. cpumask_var_t nodemask;
  7004. cpumask_var_t this_sibling_map;
  7005. cpumask_var_t this_core_map;
  7006. cpumask_var_t send_covered;
  7007. cpumask_var_t tmpmask;
  7008. struct sched_group **sched_group_nodes;
  7009. struct root_domain *rd;
  7010. };
  7011. enum s_alloc {
  7012. sa_sched_groups = 0,
  7013. sa_rootdomain,
  7014. sa_tmpmask,
  7015. sa_send_covered,
  7016. sa_this_core_map,
  7017. sa_this_sibling_map,
  7018. sa_nodemask,
  7019. sa_sched_group_nodes,
  7020. #ifdef CONFIG_NUMA
  7021. sa_notcovered,
  7022. sa_covered,
  7023. sa_domainspan,
  7024. #endif
  7025. sa_none,
  7026. };
  7027. /*
  7028. * SMT sched-domains:
  7029. */
  7030. #ifdef CONFIG_SCHED_SMT
  7031. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7032. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7033. static int
  7034. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7035. struct sched_group **sg, struct cpumask *unused)
  7036. {
  7037. if (sg)
  7038. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7039. return cpu;
  7040. }
  7041. #endif /* CONFIG_SCHED_SMT */
  7042. /*
  7043. * multi-core sched-domains:
  7044. */
  7045. #ifdef CONFIG_SCHED_MC
  7046. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7047. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7048. #endif /* CONFIG_SCHED_MC */
  7049. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7050. static int
  7051. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7052. struct sched_group **sg, struct cpumask *mask)
  7053. {
  7054. int group;
  7055. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7056. group = cpumask_first(mask);
  7057. if (sg)
  7058. *sg = &per_cpu(sched_group_core, group).sg;
  7059. return group;
  7060. }
  7061. #elif defined(CONFIG_SCHED_MC)
  7062. static int
  7063. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7064. struct sched_group **sg, struct cpumask *unused)
  7065. {
  7066. if (sg)
  7067. *sg = &per_cpu(sched_group_core, cpu).sg;
  7068. return cpu;
  7069. }
  7070. #endif
  7071. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7072. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7073. static int
  7074. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7075. struct sched_group **sg, struct cpumask *mask)
  7076. {
  7077. int group;
  7078. #ifdef CONFIG_SCHED_MC
  7079. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7080. group = cpumask_first(mask);
  7081. #elif defined(CONFIG_SCHED_SMT)
  7082. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7083. group = cpumask_first(mask);
  7084. #else
  7085. group = cpu;
  7086. #endif
  7087. if (sg)
  7088. *sg = &per_cpu(sched_group_phys, group).sg;
  7089. return group;
  7090. }
  7091. #ifdef CONFIG_NUMA
  7092. /*
  7093. * The init_sched_build_groups can't handle what we want to do with node
  7094. * groups, so roll our own. Now each node has its own list of groups which
  7095. * gets dynamically allocated.
  7096. */
  7097. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7098. static struct sched_group ***sched_group_nodes_bycpu;
  7099. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7100. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7101. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7102. struct sched_group **sg,
  7103. struct cpumask *nodemask)
  7104. {
  7105. int group;
  7106. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7107. group = cpumask_first(nodemask);
  7108. if (sg)
  7109. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7110. return group;
  7111. }
  7112. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7113. {
  7114. struct sched_group *sg = group_head;
  7115. int j;
  7116. if (!sg)
  7117. return;
  7118. do {
  7119. for_each_cpu(j, sched_group_cpus(sg)) {
  7120. struct sched_domain *sd;
  7121. sd = &per_cpu(phys_domains, j).sd;
  7122. if (j != group_first_cpu(sd->groups)) {
  7123. /*
  7124. * Only add "power" once for each
  7125. * physical package.
  7126. */
  7127. continue;
  7128. }
  7129. sg->cpu_power += sd->groups->cpu_power;
  7130. }
  7131. sg = sg->next;
  7132. } while (sg != group_head);
  7133. }
  7134. static int build_numa_sched_groups(struct s_data *d,
  7135. const struct cpumask *cpu_map, int num)
  7136. {
  7137. struct sched_domain *sd;
  7138. struct sched_group *sg, *prev;
  7139. int n, j;
  7140. cpumask_clear(d->covered);
  7141. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7142. if (cpumask_empty(d->nodemask)) {
  7143. d->sched_group_nodes[num] = NULL;
  7144. goto out;
  7145. }
  7146. sched_domain_node_span(num, d->domainspan);
  7147. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7148. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7149. GFP_KERNEL, num);
  7150. if (!sg) {
  7151. pr_warning("Can not alloc domain group for node %d\n", num);
  7152. return -ENOMEM;
  7153. }
  7154. d->sched_group_nodes[num] = sg;
  7155. for_each_cpu(j, d->nodemask) {
  7156. sd = &per_cpu(node_domains, j).sd;
  7157. sd->groups = sg;
  7158. }
  7159. sg->cpu_power = 0;
  7160. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7161. sg->next = sg;
  7162. cpumask_or(d->covered, d->covered, d->nodemask);
  7163. prev = sg;
  7164. for (j = 0; j < nr_node_ids; j++) {
  7165. n = (num + j) % nr_node_ids;
  7166. cpumask_complement(d->notcovered, d->covered);
  7167. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7168. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7169. if (cpumask_empty(d->tmpmask))
  7170. break;
  7171. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7172. if (cpumask_empty(d->tmpmask))
  7173. continue;
  7174. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7175. GFP_KERNEL, num);
  7176. if (!sg) {
  7177. pr_warning("Can not alloc domain group for node %d\n",
  7178. j);
  7179. return -ENOMEM;
  7180. }
  7181. sg->cpu_power = 0;
  7182. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7183. sg->next = prev->next;
  7184. cpumask_or(d->covered, d->covered, d->tmpmask);
  7185. prev->next = sg;
  7186. prev = sg;
  7187. }
  7188. out:
  7189. return 0;
  7190. }
  7191. #endif /* CONFIG_NUMA */
  7192. #ifdef CONFIG_NUMA
  7193. /* Free memory allocated for various sched_group structures */
  7194. static void free_sched_groups(const struct cpumask *cpu_map,
  7195. struct cpumask *nodemask)
  7196. {
  7197. int cpu, i;
  7198. for_each_cpu(cpu, cpu_map) {
  7199. struct sched_group **sched_group_nodes
  7200. = sched_group_nodes_bycpu[cpu];
  7201. if (!sched_group_nodes)
  7202. continue;
  7203. for (i = 0; i < nr_node_ids; i++) {
  7204. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7205. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7206. if (cpumask_empty(nodemask))
  7207. continue;
  7208. if (sg == NULL)
  7209. continue;
  7210. sg = sg->next;
  7211. next_sg:
  7212. oldsg = sg;
  7213. sg = sg->next;
  7214. kfree(oldsg);
  7215. if (oldsg != sched_group_nodes[i])
  7216. goto next_sg;
  7217. }
  7218. kfree(sched_group_nodes);
  7219. sched_group_nodes_bycpu[cpu] = NULL;
  7220. }
  7221. }
  7222. #else /* !CONFIG_NUMA */
  7223. static void free_sched_groups(const struct cpumask *cpu_map,
  7224. struct cpumask *nodemask)
  7225. {
  7226. }
  7227. #endif /* CONFIG_NUMA */
  7228. /*
  7229. * Initialize sched groups cpu_power.
  7230. *
  7231. * cpu_power indicates the capacity of sched group, which is used while
  7232. * distributing the load between different sched groups in a sched domain.
  7233. * Typically cpu_power for all the groups in a sched domain will be same unless
  7234. * there are asymmetries in the topology. If there are asymmetries, group
  7235. * having more cpu_power will pickup more load compared to the group having
  7236. * less cpu_power.
  7237. */
  7238. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7239. {
  7240. struct sched_domain *child;
  7241. struct sched_group *group;
  7242. long power;
  7243. int weight;
  7244. WARN_ON(!sd || !sd->groups);
  7245. if (cpu != group_first_cpu(sd->groups))
  7246. return;
  7247. child = sd->child;
  7248. sd->groups->cpu_power = 0;
  7249. if (!child) {
  7250. power = SCHED_LOAD_SCALE;
  7251. weight = cpumask_weight(sched_domain_span(sd));
  7252. /*
  7253. * SMT siblings share the power of a single core.
  7254. * Usually multiple threads get a better yield out of
  7255. * that one core than a single thread would have,
  7256. * reflect that in sd->smt_gain.
  7257. */
  7258. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7259. power *= sd->smt_gain;
  7260. power /= weight;
  7261. power >>= SCHED_LOAD_SHIFT;
  7262. }
  7263. sd->groups->cpu_power += power;
  7264. return;
  7265. }
  7266. /*
  7267. * Add cpu_power of each child group to this groups cpu_power.
  7268. */
  7269. group = child->groups;
  7270. do {
  7271. sd->groups->cpu_power += group->cpu_power;
  7272. group = group->next;
  7273. } while (group != child->groups);
  7274. }
  7275. /*
  7276. * Initializers for schedule domains
  7277. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7278. */
  7279. #ifdef CONFIG_SCHED_DEBUG
  7280. # define SD_INIT_NAME(sd, type) sd->name = #type
  7281. #else
  7282. # define SD_INIT_NAME(sd, type) do { } while (0)
  7283. #endif
  7284. #define SD_INIT(sd, type) sd_init_##type(sd)
  7285. #define SD_INIT_FUNC(type) \
  7286. static noinline void sd_init_##type(struct sched_domain *sd) \
  7287. { \
  7288. memset(sd, 0, sizeof(*sd)); \
  7289. *sd = SD_##type##_INIT; \
  7290. sd->level = SD_LV_##type; \
  7291. SD_INIT_NAME(sd, type); \
  7292. }
  7293. SD_INIT_FUNC(CPU)
  7294. #ifdef CONFIG_NUMA
  7295. SD_INIT_FUNC(ALLNODES)
  7296. SD_INIT_FUNC(NODE)
  7297. #endif
  7298. #ifdef CONFIG_SCHED_SMT
  7299. SD_INIT_FUNC(SIBLING)
  7300. #endif
  7301. #ifdef CONFIG_SCHED_MC
  7302. SD_INIT_FUNC(MC)
  7303. #endif
  7304. static int default_relax_domain_level = -1;
  7305. static int __init setup_relax_domain_level(char *str)
  7306. {
  7307. unsigned long val;
  7308. val = simple_strtoul(str, NULL, 0);
  7309. if (val < SD_LV_MAX)
  7310. default_relax_domain_level = val;
  7311. return 1;
  7312. }
  7313. __setup("relax_domain_level=", setup_relax_domain_level);
  7314. static void set_domain_attribute(struct sched_domain *sd,
  7315. struct sched_domain_attr *attr)
  7316. {
  7317. int request;
  7318. if (!attr || attr->relax_domain_level < 0) {
  7319. if (default_relax_domain_level < 0)
  7320. return;
  7321. else
  7322. request = default_relax_domain_level;
  7323. } else
  7324. request = attr->relax_domain_level;
  7325. if (request < sd->level) {
  7326. /* turn off idle balance on this domain */
  7327. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7328. } else {
  7329. /* turn on idle balance on this domain */
  7330. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7331. }
  7332. }
  7333. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7334. const struct cpumask *cpu_map)
  7335. {
  7336. switch (what) {
  7337. case sa_sched_groups:
  7338. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7339. d->sched_group_nodes = NULL;
  7340. case sa_rootdomain:
  7341. free_rootdomain(d->rd); /* fall through */
  7342. case sa_tmpmask:
  7343. free_cpumask_var(d->tmpmask); /* fall through */
  7344. case sa_send_covered:
  7345. free_cpumask_var(d->send_covered); /* fall through */
  7346. case sa_this_core_map:
  7347. free_cpumask_var(d->this_core_map); /* fall through */
  7348. case sa_this_sibling_map:
  7349. free_cpumask_var(d->this_sibling_map); /* fall through */
  7350. case sa_nodemask:
  7351. free_cpumask_var(d->nodemask); /* fall through */
  7352. case sa_sched_group_nodes:
  7353. #ifdef CONFIG_NUMA
  7354. kfree(d->sched_group_nodes); /* fall through */
  7355. case sa_notcovered:
  7356. free_cpumask_var(d->notcovered); /* fall through */
  7357. case sa_covered:
  7358. free_cpumask_var(d->covered); /* fall through */
  7359. case sa_domainspan:
  7360. free_cpumask_var(d->domainspan); /* fall through */
  7361. #endif
  7362. case sa_none:
  7363. break;
  7364. }
  7365. }
  7366. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7367. const struct cpumask *cpu_map)
  7368. {
  7369. #ifdef CONFIG_NUMA
  7370. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7371. return sa_none;
  7372. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7373. return sa_domainspan;
  7374. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7375. return sa_covered;
  7376. /* Allocate the per-node list of sched groups */
  7377. d->sched_group_nodes = kcalloc(nr_node_ids,
  7378. sizeof(struct sched_group *), GFP_KERNEL);
  7379. if (!d->sched_group_nodes) {
  7380. pr_warning("Can not alloc sched group node list\n");
  7381. return sa_notcovered;
  7382. }
  7383. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7384. #endif
  7385. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7386. return sa_sched_group_nodes;
  7387. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7388. return sa_nodemask;
  7389. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7390. return sa_this_sibling_map;
  7391. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7392. return sa_this_core_map;
  7393. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7394. return sa_send_covered;
  7395. d->rd = alloc_rootdomain();
  7396. if (!d->rd) {
  7397. pr_warning("Cannot alloc root domain\n");
  7398. return sa_tmpmask;
  7399. }
  7400. return sa_rootdomain;
  7401. }
  7402. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7403. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7404. {
  7405. struct sched_domain *sd = NULL;
  7406. #ifdef CONFIG_NUMA
  7407. struct sched_domain *parent;
  7408. d->sd_allnodes = 0;
  7409. if (cpumask_weight(cpu_map) >
  7410. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7411. sd = &per_cpu(allnodes_domains, i).sd;
  7412. SD_INIT(sd, ALLNODES);
  7413. set_domain_attribute(sd, attr);
  7414. cpumask_copy(sched_domain_span(sd), cpu_map);
  7415. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7416. d->sd_allnodes = 1;
  7417. }
  7418. parent = sd;
  7419. sd = &per_cpu(node_domains, i).sd;
  7420. SD_INIT(sd, NODE);
  7421. set_domain_attribute(sd, attr);
  7422. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7423. sd->parent = parent;
  7424. if (parent)
  7425. parent->child = sd;
  7426. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7427. #endif
  7428. return sd;
  7429. }
  7430. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7431. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7432. struct sched_domain *parent, int i)
  7433. {
  7434. struct sched_domain *sd;
  7435. sd = &per_cpu(phys_domains, i).sd;
  7436. SD_INIT(sd, CPU);
  7437. set_domain_attribute(sd, attr);
  7438. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7439. sd->parent = parent;
  7440. if (parent)
  7441. parent->child = sd;
  7442. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7443. return sd;
  7444. }
  7445. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7446. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7447. struct sched_domain *parent, int i)
  7448. {
  7449. struct sched_domain *sd = parent;
  7450. #ifdef CONFIG_SCHED_MC
  7451. sd = &per_cpu(core_domains, i).sd;
  7452. SD_INIT(sd, MC);
  7453. set_domain_attribute(sd, attr);
  7454. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7455. sd->parent = parent;
  7456. parent->child = sd;
  7457. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7458. #endif
  7459. return sd;
  7460. }
  7461. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7462. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7463. struct sched_domain *parent, int i)
  7464. {
  7465. struct sched_domain *sd = parent;
  7466. #ifdef CONFIG_SCHED_SMT
  7467. sd = &per_cpu(cpu_domains, i).sd;
  7468. SD_INIT(sd, SIBLING);
  7469. set_domain_attribute(sd, attr);
  7470. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7471. sd->parent = parent;
  7472. parent->child = sd;
  7473. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7474. #endif
  7475. return sd;
  7476. }
  7477. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7478. const struct cpumask *cpu_map, int cpu)
  7479. {
  7480. switch (l) {
  7481. #ifdef CONFIG_SCHED_SMT
  7482. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7483. cpumask_and(d->this_sibling_map, cpu_map,
  7484. topology_thread_cpumask(cpu));
  7485. if (cpu == cpumask_first(d->this_sibling_map))
  7486. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7487. &cpu_to_cpu_group,
  7488. d->send_covered, d->tmpmask);
  7489. break;
  7490. #endif
  7491. #ifdef CONFIG_SCHED_MC
  7492. case SD_LV_MC: /* set up multi-core groups */
  7493. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7494. if (cpu == cpumask_first(d->this_core_map))
  7495. init_sched_build_groups(d->this_core_map, cpu_map,
  7496. &cpu_to_core_group,
  7497. d->send_covered, d->tmpmask);
  7498. break;
  7499. #endif
  7500. case SD_LV_CPU: /* set up physical groups */
  7501. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7502. if (!cpumask_empty(d->nodemask))
  7503. init_sched_build_groups(d->nodemask, cpu_map,
  7504. &cpu_to_phys_group,
  7505. d->send_covered, d->tmpmask);
  7506. break;
  7507. #ifdef CONFIG_NUMA
  7508. case SD_LV_ALLNODES:
  7509. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7510. d->send_covered, d->tmpmask);
  7511. break;
  7512. #endif
  7513. default:
  7514. break;
  7515. }
  7516. }
  7517. /*
  7518. * Build sched domains for a given set of cpus and attach the sched domains
  7519. * to the individual cpus
  7520. */
  7521. static int __build_sched_domains(const struct cpumask *cpu_map,
  7522. struct sched_domain_attr *attr)
  7523. {
  7524. enum s_alloc alloc_state = sa_none;
  7525. struct s_data d;
  7526. struct sched_domain *sd;
  7527. int i;
  7528. #ifdef CONFIG_NUMA
  7529. d.sd_allnodes = 0;
  7530. #endif
  7531. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7532. if (alloc_state != sa_rootdomain)
  7533. goto error;
  7534. alloc_state = sa_sched_groups;
  7535. /*
  7536. * Set up domains for cpus specified by the cpu_map.
  7537. */
  7538. for_each_cpu(i, cpu_map) {
  7539. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7540. cpu_map);
  7541. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7542. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7543. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7544. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7545. }
  7546. for_each_cpu(i, cpu_map) {
  7547. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7548. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7549. }
  7550. /* Set up physical groups */
  7551. for (i = 0; i < nr_node_ids; i++)
  7552. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7553. #ifdef CONFIG_NUMA
  7554. /* Set up node groups */
  7555. if (d.sd_allnodes)
  7556. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7557. for (i = 0; i < nr_node_ids; i++)
  7558. if (build_numa_sched_groups(&d, cpu_map, i))
  7559. goto error;
  7560. #endif
  7561. /* Calculate CPU power for physical packages and nodes */
  7562. #ifdef CONFIG_SCHED_SMT
  7563. for_each_cpu(i, cpu_map) {
  7564. sd = &per_cpu(cpu_domains, i).sd;
  7565. init_sched_groups_power(i, sd);
  7566. }
  7567. #endif
  7568. #ifdef CONFIG_SCHED_MC
  7569. for_each_cpu(i, cpu_map) {
  7570. sd = &per_cpu(core_domains, i).sd;
  7571. init_sched_groups_power(i, sd);
  7572. }
  7573. #endif
  7574. for_each_cpu(i, cpu_map) {
  7575. sd = &per_cpu(phys_domains, i).sd;
  7576. init_sched_groups_power(i, sd);
  7577. }
  7578. #ifdef CONFIG_NUMA
  7579. for (i = 0; i < nr_node_ids; i++)
  7580. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7581. if (d.sd_allnodes) {
  7582. struct sched_group *sg;
  7583. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7584. d.tmpmask);
  7585. init_numa_sched_groups_power(sg);
  7586. }
  7587. #endif
  7588. /* Attach the domains */
  7589. for_each_cpu(i, cpu_map) {
  7590. #ifdef CONFIG_SCHED_SMT
  7591. sd = &per_cpu(cpu_domains, i).sd;
  7592. #elif defined(CONFIG_SCHED_MC)
  7593. sd = &per_cpu(core_domains, i).sd;
  7594. #else
  7595. sd = &per_cpu(phys_domains, i).sd;
  7596. #endif
  7597. cpu_attach_domain(sd, d.rd, i);
  7598. }
  7599. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7600. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7601. return 0;
  7602. error:
  7603. __free_domain_allocs(&d, alloc_state, cpu_map);
  7604. return -ENOMEM;
  7605. }
  7606. static int build_sched_domains(const struct cpumask *cpu_map)
  7607. {
  7608. return __build_sched_domains(cpu_map, NULL);
  7609. }
  7610. static cpumask_var_t *doms_cur; /* current sched domains */
  7611. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7612. static struct sched_domain_attr *dattr_cur;
  7613. /* attribues of custom domains in 'doms_cur' */
  7614. /*
  7615. * Special case: If a kmalloc of a doms_cur partition (array of
  7616. * cpumask) fails, then fallback to a single sched domain,
  7617. * as determined by the single cpumask fallback_doms.
  7618. */
  7619. static cpumask_var_t fallback_doms;
  7620. /*
  7621. * arch_update_cpu_topology lets virtualized architectures update the
  7622. * cpu core maps. It is supposed to return 1 if the topology changed
  7623. * or 0 if it stayed the same.
  7624. */
  7625. int __attribute__((weak)) arch_update_cpu_topology(void)
  7626. {
  7627. return 0;
  7628. }
  7629. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7630. {
  7631. int i;
  7632. cpumask_var_t *doms;
  7633. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7634. if (!doms)
  7635. return NULL;
  7636. for (i = 0; i < ndoms; i++) {
  7637. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7638. free_sched_domains(doms, i);
  7639. return NULL;
  7640. }
  7641. }
  7642. return doms;
  7643. }
  7644. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7645. {
  7646. unsigned int i;
  7647. for (i = 0; i < ndoms; i++)
  7648. free_cpumask_var(doms[i]);
  7649. kfree(doms);
  7650. }
  7651. /*
  7652. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7653. * For now this just excludes isolated cpus, but could be used to
  7654. * exclude other special cases in the future.
  7655. */
  7656. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7657. {
  7658. int err;
  7659. arch_update_cpu_topology();
  7660. ndoms_cur = 1;
  7661. doms_cur = alloc_sched_domains(ndoms_cur);
  7662. if (!doms_cur)
  7663. doms_cur = &fallback_doms;
  7664. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7665. dattr_cur = NULL;
  7666. err = build_sched_domains(doms_cur[0]);
  7667. register_sched_domain_sysctl();
  7668. return err;
  7669. }
  7670. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7671. struct cpumask *tmpmask)
  7672. {
  7673. free_sched_groups(cpu_map, tmpmask);
  7674. }
  7675. /*
  7676. * Detach sched domains from a group of cpus specified in cpu_map
  7677. * These cpus will now be attached to the NULL domain
  7678. */
  7679. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7680. {
  7681. /* Save because hotplug lock held. */
  7682. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7683. int i;
  7684. for_each_cpu(i, cpu_map)
  7685. cpu_attach_domain(NULL, &def_root_domain, i);
  7686. synchronize_sched();
  7687. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7688. }
  7689. /* handle null as "default" */
  7690. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7691. struct sched_domain_attr *new, int idx_new)
  7692. {
  7693. struct sched_domain_attr tmp;
  7694. /* fast path */
  7695. if (!new && !cur)
  7696. return 1;
  7697. tmp = SD_ATTR_INIT;
  7698. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7699. new ? (new + idx_new) : &tmp,
  7700. sizeof(struct sched_domain_attr));
  7701. }
  7702. /*
  7703. * Partition sched domains as specified by the 'ndoms_new'
  7704. * cpumasks in the array doms_new[] of cpumasks. This compares
  7705. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7706. * It destroys each deleted domain and builds each new domain.
  7707. *
  7708. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7709. * The masks don't intersect (don't overlap.) We should setup one
  7710. * sched domain for each mask. CPUs not in any of the cpumasks will
  7711. * not be load balanced. If the same cpumask appears both in the
  7712. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7713. * it as it is.
  7714. *
  7715. * The passed in 'doms_new' should be allocated using
  7716. * alloc_sched_domains. This routine takes ownership of it and will
  7717. * free_sched_domains it when done with it. If the caller failed the
  7718. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7719. * and partition_sched_domains() will fallback to the single partition
  7720. * 'fallback_doms', it also forces the domains to be rebuilt.
  7721. *
  7722. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7723. * ndoms_new == 0 is a special case for destroying existing domains,
  7724. * and it will not create the default domain.
  7725. *
  7726. * Call with hotplug lock held
  7727. */
  7728. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7729. struct sched_domain_attr *dattr_new)
  7730. {
  7731. int i, j, n;
  7732. int new_topology;
  7733. mutex_lock(&sched_domains_mutex);
  7734. /* always unregister in case we don't destroy any domains */
  7735. unregister_sched_domain_sysctl();
  7736. /* Let architecture update cpu core mappings. */
  7737. new_topology = arch_update_cpu_topology();
  7738. n = doms_new ? ndoms_new : 0;
  7739. /* Destroy deleted domains */
  7740. for (i = 0; i < ndoms_cur; i++) {
  7741. for (j = 0; j < n && !new_topology; j++) {
  7742. if (cpumask_equal(doms_cur[i], doms_new[j])
  7743. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7744. goto match1;
  7745. }
  7746. /* no match - a current sched domain not in new doms_new[] */
  7747. detach_destroy_domains(doms_cur[i]);
  7748. match1:
  7749. ;
  7750. }
  7751. if (doms_new == NULL) {
  7752. ndoms_cur = 0;
  7753. doms_new = &fallback_doms;
  7754. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7755. WARN_ON_ONCE(dattr_new);
  7756. }
  7757. /* Build new domains */
  7758. for (i = 0; i < ndoms_new; i++) {
  7759. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7760. if (cpumask_equal(doms_new[i], doms_cur[j])
  7761. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7762. goto match2;
  7763. }
  7764. /* no match - add a new doms_new */
  7765. __build_sched_domains(doms_new[i],
  7766. dattr_new ? dattr_new + i : NULL);
  7767. match2:
  7768. ;
  7769. }
  7770. /* Remember the new sched domains */
  7771. if (doms_cur != &fallback_doms)
  7772. free_sched_domains(doms_cur, ndoms_cur);
  7773. kfree(dattr_cur); /* kfree(NULL) is safe */
  7774. doms_cur = doms_new;
  7775. dattr_cur = dattr_new;
  7776. ndoms_cur = ndoms_new;
  7777. register_sched_domain_sysctl();
  7778. mutex_unlock(&sched_domains_mutex);
  7779. }
  7780. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7781. static void arch_reinit_sched_domains(void)
  7782. {
  7783. get_online_cpus();
  7784. /* Destroy domains first to force the rebuild */
  7785. partition_sched_domains(0, NULL, NULL);
  7786. rebuild_sched_domains();
  7787. put_online_cpus();
  7788. }
  7789. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7790. {
  7791. unsigned int level = 0;
  7792. if (sscanf(buf, "%u", &level) != 1)
  7793. return -EINVAL;
  7794. /*
  7795. * level is always be positive so don't check for
  7796. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7797. * What happens on 0 or 1 byte write,
  7798. * need to check for count as well?
  7799. */
  7800. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7801. return -EINVAL;
  7802. if (smt)
  7803. sched_smt_power_savings = level;
  7804. else
  7805. sched_mc_power_savings = level;
  7806. arch_reinit_sched_domains();
  7807. return count;
  7808. }
  7809. #ifdef CONFIG_SCHED_MC
  7810. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7811. char *page)
  7812. {
  7813. return sprintf(page, "%u\n", sched_mc_power_savings);
  7814. }
  7815. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7816. const char *buf, size_t count)
  7817. {
  7818. return sched_power_savings_store(buf, count, 0);
  7819. }
  7820. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7821. sched_mc_power_savings_show,
  7822. sched_mc_power_savings_store);
  7823. #endif
  7824. #ifdef CONFIG_SCHED_SMT
  7825. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7826. char *page)
  7827. {
  7828. return sprintf(page, "%u\n", sched_smt_power_savings);
  7829. }
  7830. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7831. const char *buf, size_t count)
  7832. {
  7833. return sched_power_savings_store(buf, count, 1);
  7834. }
  7835. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7836. sched_smt_power_savings_show,
  7837. sched_smt_power_savings_store);
  7838. #endif
  7839. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7840. {
  7841. int err = 0;
  7842. #ifdef CONFIG_SCHED_SMT
  7843. if (smt_capable())
  7844. err = sysfs_create_file(&cls->kset.kobj,
  7845. &attr_sched_smt_power_savings.attr);
  7846. #endif
  7847. #ifdef CONFIG_SCHED_MC
  7848. if (!err && mc_capable())
  7849. err = sysfs_create_file(&cls->kset.kobj,
  7850. &attr_sched_mc_power_savings.attr);
  7851. #endif
  7852. return err;
  7853. }
  7854. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7855. #ifndef CONFIG_CPUSETS
  7856. /*
  7857. * Add online and remove offline CPUs from the scheduler domains.
  7858. * When cpusets are enabled they take over this function.
  7859. */
  7860. static int update_sched_domains(struct notifier_block *nfb,
  7861. unsigned long action, void *hcpu)
  7862. {
  7863. switch (action) {
  7864. case CPU_ONLINE:
  7865. case CPU_ONLINE_FROZEN:
  7866. case CPU_DOWN_PREPARE:
  7867. case CPU_DOWN_PREPARE_FROZEN:
  7868. case CPU_DOWN_FAILED:
  7869. case CPU_DOWN_FAILED_FROZEN:
  7870. partition_sched_domains(1, NULL, NULL);
  7871. return NOTIFY_OK;
  7872. default:
  7873. return NOTIFY_DONE;
  7874. }
  7875. }
  7876. #endif
  7877. static int update_runtime(struct notifier_block *nfb,
  7878. unsigned long action, void *hcpu)
  7879. {
  7880. int cpu = (int)(long)hcpu;
  7881. switch (action) {
  7882. case CPU_DOWN_PREPARE:
  7883. case CPU_DOWN_PREPARE_FROZEN:
  7884. disable_runtime(cpu_rq(cpu));
  7885. return NOTIFY_OK;
  7886. case CPU_DOWN_FAILED:
  7887. case CPU_DOWN_FAILED_FROZEN:
  7888. case CPU_ONLINE:
  7889. case CPU_ONLINE_FROZEN:
  7890. enable_runtime(cpu_rq(cpu));
  7891. return NOTIFY_OK;
  7892. default:
  7893. return NOTIFY_DONE;
  7894. }
  7895. }
  7896. void __init sched_init_smp(void)
  7897. {
  7898. cpumask_var_t non_isolated_cpus;
  7899. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7900. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7901. #if defined(CONFIG_NUMA)
  7902. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7903. GFP_KERNEL);
  7904. BUG_ON(sched_group_nodes_bycpu == NULL);
  7905. #endif
  7906. get_online_cpus();
  7907. mutex_lock(&sched_domains_mutex);
  7908. arch_init_sched_domains(cpu_active_mask);
  7909. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7910. if (cpumask_empty(non_isolated_cpus))
  7911. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7912. mutex_unlock(&sched_domains_mutex);
  7913. put_online_cpus();
  7914. #ifndef CONFIG_CPUSETS
  7915. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7916. hotcpu_notifier(update_sched_domains, 0);
  7917. #endif
  7918. /* RT runtime code needs to handle some hotplug events */
  7919. hotcpu_notifier(update_runtime, 0);
  7920. init_hrtick();
  7921. /* Move init over to a non-isolated CPU */
  7922. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7923. BUG();
  7924. sched_init_granularity();
  7925. free_cpumask_var(non_isolated_cpus);
  7926. init_sched_rt_class();
  7927. }
  7928. #else
  7929. void __init sched_init_smp(void)
  7930. {
  7931. sched_init_granularity();
  7932. }
  7933. #endif /* CONFIG_SMP */
  7934. const_debug unsigned int sysctl_timer_migration = 1;
  7935. int in_sched_functions(unsigned long addr)
  7936. {
  7937. return in_lock_functions(addr) ||
  7938. (addr >= (unsigned long)__sched_text_start
  7939. && addr < (unsigned long)__sched_text_end);
  7940. }
  7941. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7942. {
  7943. cfs_rq->tasks_timeline = RB_ROOT;
  7944. INIT_LIST_HEAD(&cfs_rq->tasks);
  7945. #ifdef CONFIG_FAIR_GROUP_SCHED
  7946. cfs_rq->rq = rq;
  7947. #endif
  7948. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7949. }
  7950. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7951. {
  7952. struct rt_prio_array *array;
  7953. int i;
  7954. array = &rt_rq->active;
  7955. for (i = 0; i < MAX_RT_PRIO; i++) {
  7956. INIT_LIST_HEAD(array->queue + i);
  7957. __clear_bit(i, array->bitmap);
  7958. }
  7959. /* delimiter for bitsearch: */
  7960. __set_bit(MAX_RT_PRIO, array->bitmap);
  7961. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7962. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7963. #ifdef CONFIG_SMP
  7964. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7965. #endif
  7966. #endif
  7967. #ifdef CONFIG_SMP
  7968. rt_rq->rt_nr_migratory = 0;
  7969. rt_rq->overloaded = 0;
  7970. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7971. #endif
  7972. rt_rq->rt_time = 0;
  7973. rt_rq->rt_throttled = 0;
  7974. rt_rq->rt_runtime = 0;
  7975. spin_lock_init(&rt_rq->rt_runtime_lock);
  7976. #ifdef CONFIG_RT_GROUP_SCHED
  7977. rt_rq->rt_nr_boosted = 0;
  7978. rt_rq->rq = rq;
  7979. #endif
  7980. }
  7981. #ifdef CONFIG_FAIR_GROUP_SCHED
  7982. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7983. struct sched_entity *se, int cpu, int add,
  7984. struct sched_entity *parent)
  7985. {
  7986. struct rq *rq = cpu_rq(cpu);
  7987. tg->cfs_rq[cpu] = cfs_rq;
  7988. init_cfs_rq(cfs_rq, rq);
  7989. cfs_rq->tg = tg;
  7990. if (add)
  7991. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7992. tg->se[cpu] = se;
  7993. /* se could be NULL for init_task_group */
  7994. if (!se)
  7995. return;
  7996. if (!parent)
  7997. se->cfs_rq = &rq->cfs;
  7998. else
  7999. se->cfs_rq = parent->my_q;
  8000. se->my_q = cfs_rq;
  8001. se->load.weight = tg->shares;
  8002. se->load.inv_weight = 0;
  8003. se->parent = parent;
  8004. }
  8005. #endif
  8006. #ifdef CONFIG_RT_GROUP_SCHED
  8007. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8008. struct sched_rt_entity *rt_se, int cpu, int add,
  8009. struct sched_rt_entity *parent)
  8010. {
  8011. struct rq *rq = cpu_rq(cpu);
  8012. tg->rt_rq[cpu] = rt_rq;
  8013. init_rt_rq(rt_rq, rq);
  8014. rt_rq->tg = tg;
  8015. rt_rq->rt_se = rt_se;
  8016. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8017. if (add)
  8018. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8019. tg->rt_se[cpu] = rt_se;
  8020. if (!rt_se)
  8021. return;
  8022. if (!parent)
  8023. rt_se->rt_rq = &rq->rt;
  8024. else
  8025. rt_se->rt_rq = parent->my_q;
  8026. rt_se->my_q = rt_rq;
  8027. rt_se->parent = parent;
  8028. INIT_LIST_HEAD(&rt_se->run_list);
  8029. }
  8030. #endif
  8031. void __init sched_init(void)
  8032. {
  8033. int i, j;
  8034. unsigned long alloc_size = 0, ptr;
  8035. #ifdef CONFIG_FAIR_GROUP_SCHED
  8036. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8037. #endif
  8038. #ifdef CONFIG_RT_GROUP_SCHED
  8039. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8040. #endif
  8041. #ifdef CONFIG_USER_SCHED
  8042. alloc_size *= 2;
  8043. #endif
  8044. #ifdef CONFIG_CPUMASK_OFFSTACK
  8045. alloc_size += num_possible_cpus() * cpumask_size();
  8046. #endif
  8047. if (alloc_size) {
  8048. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8049. #ifdef CONFIG_FAIR_GROUP_SCHED
  8050. init_task_group.se = (struct sched_entity **)ptr;
  8051. ptr += nr_cpu_ids * sizeof(void **);
  8052. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8053. ptr += nr_cpu_ids * sizeof(void **);
  8054. #ifdef CONFIG_USER_SCHED
  8055. root_task_group.se = (struct sched_entity **)ptr;
  8056. ptr += nr_cpu_ids * sizeof(void **);
  8057. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8058. ptr += nr_cpu_ids * sizeof(void **);
  8059. #endif /* CONFIG_USER_SCHED */
  8060. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8061. #ifdef CONFIG_RT_GROUP_SCHED
  8062. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8063. ptr += nr_cpu_ids * sizeof(void **);
  8064. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8065. ptr += nr_cpu_ids * sizeof(void **);
  8066. #ifdef CONFIG_USER_SCHED
  8067. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8068. ptr += nr_cpu_ids * sizeof(void **);
  8069. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8070. ptr += nr_cpu_ids * sizeof(void **);
  8071. #endif /* CONFIG_USER_SCHED */
  8072. #endif /* CONFIG_RT_GROUP_SCHED */
  8073. #ifdef CONFIG_CPUMASK_OFFSTACK
  8074. for_each_possible_cpu(i) {
  8075. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8076. ptr += cpumask_size();
  8077. }
  8078. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8079. }
  8080. #ifdef CONFIG_SMP
  8081. init_defrootdomain();
  8082. #endif
  8083. init_rt_bandwidth(&def_rt_bandwidth,
  8084. global_rt_period(), global_rt_runtime());
  8085. #ifdef CONFIG_RT_GROUP_SCHED
  8086. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8087. global_rt_period(), global_rt_runtime());
  8088. #ifdef CONFIG_USER_SCHED
  8089. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8090. global_rt_period(), RUNTIME_INF);
  8091. #endif /* CONFIG_USER_SCHED */
  8092. #endif /* CONFIG_RT_GROUP_SCHED */
  8093. #ifdef CONFIG_GROUP_SCHED
  8094. list_add(&init_task_group.list, &task_groups);
  8095. INIT_LIST_HEAD(&init_task_group.children);
  8096. #ifdef CONFIG_USER_SCHED
  8097. INIT_LIST_HEAD(&root_task_group.children);
  8098. init_task_group.parent = &root_task_group;
  8099. list_add(&init_task_group.siblings, &root_task_group.children);
  8100. #endif /* CONFIG_USER_SCHED */
  8101. #endif /* CONFIG_GROUP_SCHED */
  8102. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8103. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8104. __alignof__(unsigned long));
  8105. #endif
  8106. for_each_possible_cpu(i) {
  8107. struct rq *rq;
  8108. rq = cpu_rq(i);
  8109. spin_lock_init(&rq->lock);
  8110. rq->nr_running = 0;
  8111. rq->calc_load_active = 0;
  8112. rq->calc_load_update = jiffies + LOAD_FREQ;
  8113. init_cfs_rq(&rq->cfs, rq);
  8114. init_rt_rq(&rq->rt, rq);
  8115. #ifdef CONFIG_FAIR_GROUP_SCHED
  8116. init_task_group.shares = init_task_group_load;
  8117. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8118. #ifdef CONFIG_CGROUP_SCHED
  8119. /*
  8120. * How much cpu bandwidth does init_task_group get?
  8121. *
  8122. * In case of task-groups formed thr' the cgroup filesystem, it
  8123. * gets 100% of the cpu resources in the system. This overall
  8124. * system cpu resource is divided among the tasks of
  8125. * init_task_group and its child task-groups in a fair manner,
  8126. * based on each entity's (task or task-group's) weight
  8127. * (se->load.weight).
  8128. *
  8129. * In other words, if init_task_group has 10 tasks of weight
  8130. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8131. * then A0's share of the cpu resource is:
  8132. *
  8133. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8134. *
  8135. * We achieve this by letting init_task_group's tasks sit
  8136. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8137. */
  8138. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8139. #elif defined CONFIG_USER_SCHED
  8140. root_task_group.shares = NICE_0_LOAD;
  8141. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8142. /*
  8143. * In case of task-groups formed thr' the user id of tasks,
  8144. * init_task_group represents tasks belonging to root user.
  8145. * Hence it forms a sibling of all subsequent groups formed.
  8146. * In this case, init_task_group gets only a fraction of overall
  8147. * system cpu resource, based on the weight assigned to root
  8148. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8149. * by letting tasks of init_task_group sit in a separate cfs_rq
  8150. * (init_tg_cfs_rq) and having one entity represent this group of
  8151. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8152. */
  8153. init_tg_cfs_entry(&init_task_group,
  8154. &per_cpu(init_tg_cfs_rq, i),
  8155. &per_cpu(init_sched_entity, i), i, 1,
  8156. root_task_group.se[i]);
  8157. #endif
  8158. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8159. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8160. #ifdef CONFIG_RT_GROUP_SCHED
  8161. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8162. #ifdef CONFIG_CGROUP_SCHED
  8163. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8164. #elif defined CONFIG_USER_SCHED
  8165. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8166. init_tg_rt_entry(&init_task_group,
  8167. &per_cpu(init_rt_rq, i),
  8168. &per_cpu(init_sched_rt_entity, i), i, 1,
  8169. root_task_group.rt_se[i]);
  8170. #endif
  8171. #endif
  8172. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8173. rq->cpu_load[j] = 0;
  8174. #ifdef CONFIG_SMP
  8175. rq->sd = NULL;
  8176. rq->rd = NULL;
  8177. rq->post_schedule = 0;
  8178. rq->active_balance = 0;
  8179. rq->next_balance = jiffies;
  8180. rq->push_cpu = 0;
  8181. rq->cpu = i;
  8182. rq->online = 0;
  8183. rq->migration_thread = NULL;
  8184. rq->idle_stamp = 0;
  8185. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8186. INIT_LIST_HEAD(&rq->migration_queue);
  8187. rq_attach_root(rq, &def_root_domain);
  8188. #endif
  8189. init_rq_hrtick(rq);
  8190. atomic_set(&rq->nr_iowait, 0);
  8191. }
  8192. set_load_weight(&init_task);
  8193. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8194. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8195. #endif
  8196. #ifdef CONFIG_SMP
  8197. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8198. #endif
  8199. #ifdef CONFIG_RT_MUTEXES
  8200. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8201. #endif
  8202. /*
  8203. * The boot idle thread does lazy MMU switching as well:
  8204. */
  8205. atomic_inc(&init_mm.mm_count);
  8206. enter_lazy_tlb(&init_mm, current);
  8207. /*
  8208. * Make us the idle thread. Technically, schedule() should not be
  8209. * called from this thread, however somewhere below it might be,
  8210. * but because we are the idle thread, we just pick up running again
  8211. * when this runqueue becomes "idle".
  8212. */
  8213. init_idle(current, smp_processor_id());
  8214. calc_load_update = jiffies + LOAD_FREQ;
  8215. /*
  8216. * During early bootup we pretend to be a normal task:
  8217. */
  8218. current->sched_class = &fair_sched_class;
  8219. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8220. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8221. #ifdef CONFIG_SMP
  8222. #ifdef CONFIG_NO_HZ
  8223. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8224. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8225. #endif
  8226. /* May be allocated at isolcpus cmdline parse time */
  8227. if (cpu_isolated_map == NULL)
  8228. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8229. #endif /* SMP */
  8230. perf_event_init();
  8231. scheduler_running = 1;
  8232. }
  8233. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8234. static inline int preempt_count_equals(int preempt_offset)
  8235. {
  8236. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8237. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8238. }
  8239. void __might_sleep(char *file, int line, int preempt_offset)
  8240. {
  8241. #ifdef in_atomic
  8242. static unsigned long prev_jiffy; /* ratelimiting */
  8243. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8244. system_state != SYSTEM_RUNNING || oops_in_progress)
  8245. return;
  8246. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8247. return;
  8248. prev_jiffy = jiffies;
  8249. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8250. file, line);
  8251. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8252. in_atomic(), irqs_disabled(),
  8253. current->pid, current->comm);
  8254. debug_show_held_locks(current);
  8255. if (irqs_disabled())
  8256. print_irqtrace_events(current);
  8257. dump_stack();
  8258. #endif
  8259. }
  8260. EXPORT_SYMBOL(__might_sleep);
  8261. #endif
  8262. #ifdef CONFIG_MAGIC_SYSRQ
  8263. static void normalize_task(struct rq *rq, struct task_struct *p)
  8264. {
  8265. int on_rq;
  8266. update_rq_clock(rq);
  8267. on_rq = p->se.on_rq;
  8268. if (on_rq)
  8269. deactivate_task(rq, p, 0);
  8270. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8271. if (on_rq) {
  8272. activate_task(rq, p, 0);
  8273. resched_task(rq->curr);
  8274. }
  8275. }
  8276. void normalize_rt_tasks(void)
  8277. {
  8278. struct task_struct *g, *p;
  8279. unsigned long flags;
  8280. struct rq *rq;
  8281. read_lock_irqsave(&tasklist_lock, flags);
  8282. do_each_thread(g, p) {
  8283. /*
  8284. * Only normalize user tasks:
  8285. */
  8286. if (!p->mm)
  8287. continue;
  8288. p->se.exec_start = 0;
  8289. #ifdef CONFIG_SCHEDSTATS
  8290. p->se.wait_start = 0;
  8291. p->se.sleep_start = 0;
  8292. p->se.block_start = 0;
  8293. #endif
  8294. if (!rt_task(p)) {
  8295. /*
  8296. * Renice negative nice level userspace
  8297. * tasks back to 0:
  8298. */
  8299. if (TASK_NICE(p) < 0 && p->mm)
  8300. set_user_nice(p, 0);
  8301. continue;
  8302. }
  8303. spin_lock(&p->pi_lock);
  8304. rq = __task_rq_lock(p);
  8305. normalize_task(rq, p);
  8306. __task_rq_unlock(rq);
  8307. spin_unlock(&p->pi_lock);
  8308. } while_each_thread(g, p);
  8309. read_unlock_irqrestore(&tasklist_lock, flags);
  8310. }
  8311. #endif /* CONFIG_MAGIC_SYSRQ */
  8312. #ifdef CONFIG_IA64
  8313. /*
  8314. * These functions are only useful for the IA64 MCA handling.
  8315. *
  8316. * They can only be called when the whole system has been
  8317. * stopped - every CPU needs to be quiescent, and no scheduling
  8318. * activity can take place. Using them for anything else would
  8319. * be a serious bug, and as a result, they aren't even visible
  8320. * under any other configuration.
  8321. */
  8322. /**
  8323. * curr_task - return the current task for a given cpu.
  8324. * @cpu: the processor in question.
  8325. *
  8326. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8327. */
  8328. struct task_struct *curr_task(int cpu)
  8329. {
  8330. return cpu_curr(cpu);
  8331. }
  8332. /**
  8333. * set_curr_task - set the current task for a given cpu.
  8334. * @cpu: the processor in question.
  8335. * @p: the task pointer to set.
  8336. *
  8337. * Description: This function must only be used when non-maskable interrupts
  8338. * are serviced on a separate stack. It allows the architecture to switch the
  8339. * notion of the current task on a cpu in a non-blocking manner. This function
  8340. * must be called with all CPU's synchronized, and interrupts disabled, the
  8341. * and caller must save the original value of the current task (see
  8342. * curr_task() above) and restore that value before reenabling interrupts and
  8343. * re-starting the system.
  8344. *
  8345. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8346. */
  8347. void set_curr_task(int cpu, struct task_struct *p)
  8348. {
  8349. cpu_curr(cpu) = p;
  8350. }
  8351. #endif
  8352. #ifdef CONFIG_FAIR_GROUP_SCHED
  8353. static void free_fair_sched_group(struct task_group *tg)
  8354. {
  8355. int i;
  8356. for_each_possible_cpu(i) {
  8357. if (tg->cfs_rq)
  8358. kfree(tg->cfs_rq[i]);
  8359. if (tg->se)
  8360. kfree(tg->se[i]);
  8361. }
  8362. kfree(tg->cfs_rq);
  8363. kfree(tg->se);
  8364. }
  8365. static
  8366. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8367. {
  8368. struct cfs_rq *cfs_rq;
  8369. struct sched_entity *se;
  8370. struct rq *rq;
  8371. int i;
  8372. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8373. if (!tg->cfs_rq)
  8374. goto err;
  8375. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8376. if (!tg->se)
  8377. goto err;
  8378. tg->shares = NICE_0_LOAD;
  8379. for_each_possible_cpu(i) {
  8380. rq = cpu_rq(i);
  8381. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8382. GFP_KERNEL, cpu_to_node(i));
  8383. if (!cfs_rq)
  8384. goto err;
  8385. se = kzalloc_node(sizeof(struct sched_entity),
  8386. GFP_KERNEL, cpu_to_node(i));
  8387. if (!se)
  8388. goto err_free_rq;
  8389. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8390. }
  8391. return 1;
  8392. err_free_rq:
  8393. kfree(cfs_rq);
  8394. err:
  8395. return 0;
  8396. }
  8397. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8398. {
  8399. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8400. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8401. }
  8402. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8403. {
  8404. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8405. }
  8406. #else /* !CONFG_FAIR_GROUP_SCHED */
  8407. static inline void free_fair_sched_group(struct task_group *tg)
  8408. {
  8409. }
  8410. static inline
  8411. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8412. {
  8413. return 1;
  8414. }
  8415. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8416. {
  8417. }
  8418. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8419. {
  8420. }
  8421. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8422. #ifdef CONFIG_RT_GROUP_SCHED
  8423. static void free_rt_sched_group(struct task_group *tg)
  8424. {
  8425. int i;
  8426. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8427. for_each_possible_cpu(i) {
  8428. if (tg->rt_rq)
  8429. kfree(tg->rt_rq[i]);
  8430. if (tg->rt_se)
  8431. kfree(tg->rt_se[i]);
  8432. }
  8433. kfree(tg->rt_rq);
  8434. kfree(tg->rt_se);
  8435. }
  8436. static
  8437. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8438. {
  8439. struct rt_rq *rt_rq;
  8440. struct sched_rt_entity *rt_se;
  8441. struct rq *rq;
  8442. int i;
  8443. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8444. if (!tg->rt_rq)
  8445. goto err;
  8446. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8447. if (!tg->rt_se)
  8448. goto err;
  8449. init_rt_bandwidth(&tg->rt_bandwidth,
  8450. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8451. for_each_possible_cpu(i) {
  8452. rq = cpu_rq(i);
  8453. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8454. GFP_KERNEL, cpu_to_node(i));
  8455. if (!rt_rq)
  8456. goto err;
  8457. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8458. GFP_KERNEL, cpu_to_node(i));
  8459. if (!rt_se)
  8460. goto err_free_rq;
  8461. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8462. }
  8463. return 1;
  8464. err_free_rq:
  8465. kfree(rt_rq);
  8466. err:
  8467. return 0;
  8468. }
  8469. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8470. {
  8471. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8472. &cpu_rq(cpu)->leaf_rt_rq_list);
  8473. }
  8474. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8475. {
  8476. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8477. }
  8478. #else /* !CONFIG_RT_GROUP_SCHED */
  8479. static inline void free_rt_sched_group(struct task_group *tg)
  8480. {
  8481. }
  8482. static inline
  8483. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8484. {
  8485. return 1;
  8486. }
  8487. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8488. {
  8489. }
  8490. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8491. {
  8492. }
  8493. #endif /* CONFIG_RT_GROUP_SCHED */
  8494. #ifdef CONFIG_GROUP_SCHED
  8495. static void free_sched_group(struct task_group *tg)
  8496. {
  8497. free_fair_sched_group(tg);
  8498. free_rt_sched_group(tg);
  8499. kfree(tg);
  8500. }
  8501. /* allocate runqueue etc for a new task group */
  8502. struct task_group *sched_create_group(struct task_group *parent)
  8503. {
  8504. struct task_group *tg;
  8505. unsigned long flags;
  8506. int i;
  8507. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8508. if (!tg)
  8509. return ERR_PTR(-ENOMEM);
  8510. if (!alloc_fair_sched_group(tg, parent))
  8511. goto err;
  8512. if (!alloc_rt_sched_group(tg, parent))
  8513. goto err;
  8514. spin_lock_irqsave(&task_group_lock, flags);
  8515. for_each_possible_cpu(i) {
  8516. register_fair_sched_group(tg, i);
  8517. register_rt_sched_group(tg, i);
  8518. }
  8519. list_add_rcu(&tg->list, &task_groups);
  8520. WARN_ON(!parent); /* root should already exist */
  8521. tg->parent = parent;
  8522. INIT_LIST_HEAD(&tg->children);
  8523. list_add_rcu(&tg->siblings, &parent->children);
  8524. spin_unlock_irqrestore(&task_group_lock, flags);
  8525. return tg;
  8526. err:
  8527. free_sched_group(tg);
  8528. return ERR_PTR(-ENOMEM);
  8529. }
  8530. /* rcu callback to free various structures associated with a task group */
  8531. static void free_sched_group_rcu(struct rcu_head *rhp)
  8532. {
  8533. /* now it should be safe to free those cfs_rqs */
  8534. free_sched_group(container_of(rhp, struct task_group, rcu));
  8535. }
  8536. /* Destroy runqueue etc associated with a task group */
  8537. void sched_destroy_group(struct task_group *tg)
  8538. {
  8539. unsigned long flags;
  8540. int i;
  8541. spin_lock_irqsave(&task_group_lock, flags);
  8542. for_each_possible_cpu(i) {
  8543. unregister_fair_sched_group(tg, i);
  8544. unregister_rt_sched_group(tg, i);
  8545. }
  8546. list_del_rcu(&tg->list);
  8547. list_del_rcu(&tg->siblings);
  8548. spin_unlock_irqrestore(&task_group_lock, flags);
  8549. /* wait for possible concurrent references to cfs_rqs complete */
  8550. call_rcu(&tg->rcu, free_sched_group_rcu);
  8551. }
  8552. /* change task's runqueue when it moves between groups.
  8553. * The caller of this function should have put the task in its new group
  8554. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8555. * reflect its new group.
  8556. */
  8557. void sched_move_task(struct task_struct *tsk)
  8558. {
  8559. int on_rq, running;
  8560. unsigned long flags;
  8561. struct rq *rq;
  8562. rq = task_rq_lock(tsk, &flags);
  8563. update_rq_clock(rq);
  8564. running = task_current(rq, tsk);
  8565. on_rq = tsk->se.on_rq;
  8566. if (on_rq)
  8567. dequeue_task(rq, tsk, 0);
  8568. if (unlikely(running))
  8569. tsk->sched_class->put_prev_task(rq, tsk);
  8570. set_task_rq(tsk, task_cpu(tsk));
  8571. #ifdef CONFIG_FAIR_GROUP_SCHED
  8572. if (tsk->sched_class->moved_group)
  8573. tsk->sched_class->moved_group(tsk);
  8574. #endif
  8575. if (unlikely(running))
  8576. tsk->sched_class->set_curr_task(rq);
  8577. if (on_rq)
  8578. enqueue_task(rq, tsk, 0);
  8579. task_rq_unlock(rq, &flags);
  8580. }
  8581. #endif /* CONFIG_GROUP_SCHED */
  8582. #ifdef CONFIG_FAIR_GROUP_SCHED
  8583. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8584. {
  8585. struct cfs_rq *cfs_rq = se->cfs_rq;
  8586. int on_rq;
  8587. on_rq = se->on_rq;
  8588. if (on_rq)
  8589. dequeue_entity(cfs_rq, se, 0);
  8590. se->load.weight = shares;
  8591. se->load.inv_weight = 0;
  8592. if (on_rq)
  8593. enqueue_entity(cfs_rq, se, 0);
  8594. }
  8595. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8596. {
  8597. struct cfs_rq *cfs_rq = se->cfs_rq;
  8598. struct rq *rq = cfs_rq->rq;
  8599. unsigned long flags;
  8600. spin_lock_irqsave(&rq->lock, flags);
  8601. __set_se_shares(se, shares);
  8602. spin_unlock_irqrestore(&rq->lock, flags);
  8603. }
  8604. static DEFINE_MUTEX(shares_mutex);
  8605. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8606. {
  8607. int i;
  8608. unsigned long flags;
  8609. /*
  8610. * We can't change the weight of the root cgroup.
  8611. */
  8612. if (!tg->se[0])
  8613. return -EINVAL;
  8614. if (shares < MIN_SHARES)
  8615. shares = MIN_SHARES;
  8616. else if (shares > MAX_SHARES)
  8617. shares = MAX_SHARES;
  8618. mutex_lock(&shares_mutex);
  8619. if (tg->shares == shares)
  8620. goto done;
  8621. spin_lock_irqsave(&task_group_lock, flags);
  8622. for_each_possible_cpu(i)
  8623. unregister_fair_sched_group(tg, i);
  8624. list_del_rcu(&tg->siblings);
  8625. spin_unlock_irqrestore(&task_group_lock, flags);
  8626. /* wait for any ongoing reference to this group to finish */
  8627. synchronize_sched();
  8628. /*
  8629. * Now we are free to modify the group's share on each cpu
  8630. * w/o tripping rebalance_share or load_balance_fair.
  8631. */
  8632. tg->shares = shares;
  8633. for_each_possible_cpu(i) {
  8634. /*
  8635. * force a rebalance
  8636. */
  8637. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8638. set_se_shares(tg->se[i], shares);
  8639. }
  8640. /*
  8641. * Enable load balance activity on this group, by inserting it back on
  8642. * each cpu's rq->leaf_cfs_rq_list.
  8643. */
  8644. spin_lock_irqsave(&task_group_lock, flags);
  8645. for_each_possible_cpu(i)
  8646. register_fair_sched_group(tg, i);
  8647. list_add_rcu(&tg->siblings, &tg->parent->children);
  8648. spin_unlock_irqrestore(&task_group_lock, flags);
  8649. done:
  8650. mutex_unlock(&shares_mutex);
  8651. return 0;
  8652. }
  8653. unsigned long sched_group_shares(struct task_group *tg)
  8654. {
  8655. return tg->shares;
  8656. }
  8657. #endif
  8658. #ifdef CONFIG_RT_GROUP_SCHED
  8659. /*
  8660. * Ensure that the real time constraints are schedulable.
  8661. */
  8662. static DEFINE_MUTEX(rt_constraints_mutex);
  8663. static unsigned long to_ratio(u64 period, u64 runtime)
  8664. {
  8665. if (runtime == RUNTIME_INF)
  8666. return 1ULL << 20;
  8667. return div64_u64(runtime << 20, period);
  8668. }
  8669. /* Must be called with tasklist_lock held */
  8670. static inline int tg_has_rt_tasks(struct task_group *tg)
  8671. {
  8672. struct task_struct *g, *p;
  8673. do_each_thread(g, p) {
  8674. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8675. return 1;
  8676. } while_each_thread(g, p);
  8677. return 0;
  8678. }
  8679. struct rt_schedulable_data {
  8680. struct task_group *tg;
  8681. u64 rt_period;
  8682. u64 rt_runtime;
  8683. };
  8684. static int tg_schedulable(struct task_group *tg, void *data)
  8685. {
  8686. struct rt_schedulable_data *d = data;
  8687. struct task_group *child;
  8688. unsigned long total, sum = 0;
  8689. u64 period, runtime;
  8690. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8691. runtime = tg->rt_bandwidth.rt_runtime;
  8692. if (tg == d->tg) {
  8693. period = d->rt_period;
  8694. runtime = d->rt_runtime;
  8695. }
  8696. #ifdef CONFIG_USER_SCHED
  8697. if (tg == &root_task_group) {
  8698. period = global_rt_period();
  8699. runtime = global_rt_runtime();
  8700. }
  8701. #endif
  8702. /*
  8703. * Cannot have more runtime than the period.
  8704. */
  8705. if (runtime > period && runtime != RUNTIME_INF)
  8706. return -EINVAL;
  8707. /*
  8708. * Ensure we don't starve existing RT tasks.
  8709. */
  8710. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8711. return -EBUSY;
  8712. total = to_ratio(period, runtime);
  8713. /*
  8714. * Nobody can have more than the global setting allows.
  8715. */
  8716. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8717. return -EINVAL;
  8718. /*
  8719. * The sum of our children's runtime should not exceed our own.
  8720. */
  8721. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8722. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8723. runtime = child->rt_bandwidth.rt_runtime;
  8724. if (child == d->tg) {
  8725. period = d->rt_period;
  8726. runtime = d->rt_runtime;
  8727. }
  8728. sum += to_ratio(period, runtime);
  8729. }
  8730. if (sum > total)
  8731. return -EINVAL;
  8732. return 0;
  8733. }
  8734. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8735. {
  8736. struct rt_schedulable_data data = {
  8737. .tg = tg,
  8738. .rt_period = period,
  8739. .rt_runtime = runtime,
  8740. };
  8741. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8742. }
  8743. static int tg_set_bandwidth(struct task_group *tg,
  8744. u64 rt_period, u64 rt_runtime)
  8745. {
  8746. int i, err = 0;
  8747. mutex_lock(&rt_constraints_mutex);
  8748. read_lock(&tasklist_lock);
  8749. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8750. if (err)
  8751. goto unlock;
  8752. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8753. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8754. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8755. for_each_possible_cpu(i) {
  8756. struct rt_rq *rt_rq = tg->rt_rq[i];
  8757. spin_lock(&rt_rq->rt_runtime_lock);
  8758. rt_rq->rt_runtime = rt_runtime;
  8759. spin_unlock(&rt_rq->rt_runtime_lock);
  8760. }
  8761. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8762. unlock:
  8763. read_unlock(&tasklist_lock);
  8764. mutex_unlock(&rt_constraints_mutex);
  8765. return err;
  8766. }
  8767. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8768. {
  8769. u64 rt_runtime, rt_period;
  8770. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8771. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8772. if (rt_runtime_us < 0)
  8773. rt_runtime = RUNTIME_INF;
  8774. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8775. }
  8776. long sched_group_rt_runtime(struct task_group *tg)
  8777. {
  8778. u64 rt_runtime_us;
  8779. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8780. return -1;
  8781. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8782. do_div(rt_runtime_us, NSEC_PER_USEC);
  8783. return rt_runtime_us;
  8784. }
  8785. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8786. {
  8787. u64 rt_runtime, rt_period;
  8788. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8789. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8790. if (rt_period == 0)
  8791. return -EINVAL;
  8792. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8793. }
  8794. long sched_group_rt_period(struct task_group *tg)
  8795. {
  8796. u64 rt_period_us;
  8797. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8798. do_div(rt_period_us, NSEC_PER_USEC);
  8799. return rt_period_us;
  8800. }
  8801. static int sched_rt_global_constraints(void)
  8802. {
  8803. u64 runtime, period;
  8804. int ret = 0;
  8805. if (sysctl_sched_rt_period <= 0)
  8806. return -EINVAL;
  8807. runtime = global_rt_runtime();
  8808. period = global_rt_period();
  8809. /*
  8810. * Sanity check on the sysctl variables.
  8811. */
  8812. if (runtime > period && runtime != RUNTIME_INF)
  8813. return -EINVAL;
  8814. mutex_lock(&rt_constraints_mutex);
  8815. read_lock(&tasklist_lock);
  8816. ret = __rt_schedulable(NULL, 0, 0);
  8817. read_unlock(&tasklist_lock);
  8818. mutex_unlock(&rt_constraints_mutex);
  8819. return ret;
  8820. }
  8821. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8822. {
  8823. /* Don't accept realtime tasks when there is no way for them to run */
  8824. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8825. return 0;
  8826. return 1;
  8827. }
  8828. #else /* !CONFIG_RT_GROUP_SCHED */
  8829. static int sched_rt_global_constraints(void)
  8830. {
  8831. unsigned long flags;
  8832. int i;
  8833. if (sysctl_sched_rt_period <= 0)
  8834. return -EINVAL;
  8835. /*
  8836. * There's always some RT tasks in the root group
  8837. * -- migration, kstopmachine etc..
  8838. */
  8839. if (sysctl_sched_rt_runtime == 0)
  8840. return -EBUSY;
  8841. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8842. for_each_possible_cpu(i) {
  8843. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8844. spin_lock(&rt_rq->rt_runtime_lock);
  8845. rt_rq->rt_runtime = global_rt_runtime();
  8846. spin_unlock(&rt_rq->rt_runtime_lock);
  8847. }
  8848. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8849. return 0;
  8850. }
  8851. #endif /* CONFIG_RT_GROUP_SCHED */
  8852. int sched_rt_handler(struct ctl_table *table, int write,
  8853. void __user *buffer, size_t *lenp,
  8854. loff_t *ppos)
  8855. {
  8856. int ret;
  8857. int old_period, old_runtime;
  8858. static DEFINE_MUTEX(mutex);
  8859. mutex_lock(&mutex);
  8860. old_period = sysctl_sched_rt_period;
  8861. old_runtime = sysctl_sched_rt_runtime;
  8862. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8863. if (!ret && write) {
  8864. ret = sched_rt_global_constraints();
  8865. if (ret) {
  8866. sysctl_sched_rt_period = old_period;
  8867. sysctl_sched_rt_runtime = old_runtime;
  8868. } else {
  8869. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8870. def_rt_bandwidth.rt_period =
  8871. ns_to_ktime(global_rt_period());
  8872. }
  8873. }
  8874. mutex_unlock(&mutex);
  8875. return ret;
  8876. }
  8877. #ifdef CONFIG_CGROUP_SCHED
  8878. /* return corresponding task_group object of a cgroup */
  8879. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8880. {
  8881. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8882. struct task_group, css);
  8883. }
  8884. static struct cgroup_subsys_state *
  8885. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8886. {
  8887. struct task_group *tg, *parent;
  8888. if (!cgrp->parent) {
  8889. /* This is early initialization for the top cgroup */
  8890. return &init_task_group.css;
  8891. }
  8892. parent = cgroup_tg(cgrp->parent);
  8893. tg = sched_create_group(parent);
  8894. if (IS_ERR(tg))
  8895. return ERR_PTR(-ENOMEM);
  8896. return &tg->css;
  8897. }
  8898. static void
  8899. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8900. {
  8901. struct task_group *tg = cgroup_tg(cgrp);
  8902. sched_destroy_group(tg);
  8903. }
  8904. static int
  8905. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8906. {
  8907. #ifdef CONFIG_RT_GROUP_SCHED
  8908. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8909. return -EINVAL;
  8910. #else
  8911. /* We don't support RT-tasks being in separate groups */
  8912. if (tsk->sched_class != &fair_sched_class)
  8913. return -EINVAL;
  8914. #endif
  8915. return 0;
  8916. }
  8917. static int
  8918. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8919. struct task_struct *tsk, bool threadgroup)
  8920. {
  8921. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8922. if (retval)
  8923. return retval;
  8924. if (threadgroup) {
  8925. struct task_struct *c;
  8926. rcu_read_lock();
  8927. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8928. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8929. if (retval) {
  8930. rcu_read_unlock();
  8931. return retval;
  8932. }
  8933. }
  8934. rcu_read_unlock();
  8935. }
  8936. return 0;
  8937. }
  8938. static void
  8939. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8940. struct cgroup *old_cont, struct task_struct *tsk,
  8941. bool threadgroup)
  8942. {
  8943. sched_move_task(tsk);
  8944. if (threadgroup) {
  8945. struct task_struct *c;
  8946. rcu_read_lock();
  8947. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8948. sched_move_task(c);
  8949. }
  8950. rcu_read_unlock();
  8951. }
  8952. }
  8953. #ifdef CONFIG_FAIR_GROUP_SCHED
  8954. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8955. u64 shareval)
  8956. {
  8957. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8958. }
  8959. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8960. {
  8961. struct task_group *tg = cgroup_tg(cgrp);
  8962. return (u64) tg->shares;
  8963. }
  8964. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8965. #ifdef CONFIG_RT_GROUP_SCHED
  8966. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8967. s64 val)
  8968. {
  8969. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8970. }
  8971. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8972. {
  8973. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8974. }
  8975. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8976. u64 rt_period_us)
  8977. {
  8978. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8979. }
  8980. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8981. {
  8982. return sched_group_rt_period(cgroup_tg(cgrp));
  8983. }
  8984. #endif /* CONFIG_RT_GROUP_SCHED */
  8985. static struct cftype cpu_files[] = {
  8986. #ifdef CONFIG_FAIR_GROUP_SCHED
  8987. {
  8988. .name = "shares",
  8989. .read_u64 = cpu_shares_read_u64,
  8990. .write_u64 = cpu_shares_write_u64,
  8991. },
  8992. #endif
  8993. #ifdef CONFIG_RT_GROUP_SCHED
  8994. {
  8995. .name = "rt_runtime_us",
  8996. .read_s64 = cpu_rt_runtime_read,
  8997. .write_s64 = cpu_rt_runtime_write,
  8998. },
  8999. {
  9000. .name = "rt_period_us",
  9001. .read_u64 = cpu_rt_period_read_uint,
  9002. .write_u64 = cpu_rt_period_write_uint,
  9003. },
  9004. #endif
  9005. };
  9006. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9007. {
  9008. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9009. }
  9010. struct cgroup_subsys cpu_cgroup_subsys = {
  9011. .name = "cpu",
  9012. .create = cpu_cgroup_create,
  9013. .destroy = cpu_cgroup_destroy,
  9014. .can_attach = cpu_cgroup_can_attach,
  9015. .attach = cpu_cgroup_attach,
  9016. .populate = cpu_cgroup_populate,
  9017. .subsys_id = cpu_cgroup_subsys_id,
  9018. .early_init = 1,
  9019. };
  9020. #endif /* CONFIG_CGROUP_SCHED */
  9021. #ifdef CONFIG_CGROUP_CPUACCT
  9022. /*
  9023. * CPU accounting code for task groups.
  9024. *
  9025. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9026. * (balbir@in.ibm.com).
  9027. */
  9028. /* track cpu usage of a group of tasks and its child groups */
  9029. struct cpuacct {
  9030. struct cgroup_subsys_state css;
  9031. /* cpuusage holds pointer to a u64-type object on every cpu */
  9032. u64 *cpuusage;
  9033. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9034. struct cpuacct *parent;
  9035. };
  9036. struct cgroup_subsys cpuacct_subsys;
  9037. /* return cpu accounting group corresponding to this container */
  9038. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9039. {
  9040. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9041. struct cpuacct, css);
  9042. }
  9043. /* return cpu accounting group to which this task belongs */
  9044. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9045. {
  9046. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9047. struct cpuacct, css);
  9048. }
  9049. /* create a new cpu accounting group */
  9050. static struct cgroup_subsys_state *cpuacct_create(
  9051. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9052. {
  9053. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9054. int i;
  9055. if (!ca)
  9056. goto out;
  9057. ca->cpuusage = alloc_percpu(u64);
  9058. if (!ca->cpuusage)
  9059. goto out_free_ca;
  9060. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9061. if (percpu_counter_init(&ca->cpustat[i], 0))
  9062. goto out_free_counters;
  9063. if (cgrp->parent)
  9064. ca->parent = cgroup_ca(cgrp->parent);
  9065. return &ca->css;
  9066. out_free_counters:
  9067. while (--i >= 0)
  9068. percpu_counter_destroy(&ca->cpustat[i]);
  9069. free_percpu(ca->cpuusage);
  9070. out_free_ca:
  9071. kfree(ca);
  9072. out:
  9073. return ERR_PTR(-ENOMEM);
  9074. }
  9075. /* destroy an existing cpu accounting group */
  9076. static void
  9077. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9078. {
  9079. struct cpuacct *ca = cgroup_ca(cgrp);
  9080. int i;
  9081. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9082. percpu_counter_destroy(&ca->cpustat[i]);
  9083. free_percpu(ca->cpuusage);
  9084. kfree(ca);
  9085. }
  9086. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9087. {
  9088. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9089. u64 data;
  9090. #ifndef CONFIG_64BIT
  9091. /*
  9092. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9093. */
  9094. spin_lock_irq(&cpu_rq(cpu)->lock);
  9095. data = *cpuusage;
  9096. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9097. #else
  9098. data = *cpuusage;
  9099. #endif
  9100. return data;
  9101. }
  9102. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9103. {
  9104. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9105. #ifndef CONFIG_64BIT
  9106. /*
  9107. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9108. */
  9109. spin_lock_irq(&cpu_rq(cpu)->lock);
  9110. *cpuusage = val;
  9111. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9112. #else
  9113. *cpuusage = val;
  9114. #endif
  9115. }
  9116. /* return total cpu usage (in nanoseconds) of a group */
  9117. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9118. {
  9119. struct cpuacct *ca = cgroup_ca(cgrp);
  9120. u64 totalcpuusage = 0;
  9121. int i;
  9122. for_each_present_cpu(i)
  9123. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9124. return totalcpuusage;
  9125. }
  9126. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9127. u64 reset)
  9128. {
  9129. struct cpuacct *ca = cgroup_ca(cgrp);
  9130. int err = 0;
  9131. int i;
  9132. if (reset) {
  9133. err = -EINVAL;
  9134. goto out;
  9135. }
  9136. for_each_present_cpu(i)
  9137. cpuacct_cpuusage_write(ca, i, 0);
  9138. out:
  9139. return err;
  9140. }
  9141. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9142. struct seq_file *m)
  9143. {
  9144. struct cpuacct *ca = cgroup_ca(cgroup);
  9145. u64 percpu;
  9146. int i;
  9147. for_each_present_cpu(i) {
  9148. percpu = cpuacct_cpuusage_read(ca, i);
  9149. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9150. }
  9151. seq_printf(m, "\n");
  9152. return 0;
  9153. }
  9154. static const char *cpuacct_stat_desc[] = {
  9155. [CPUACCT_STAT_USER] = "user",
  9156. [CPUACCT_STAT_SYSTEM] = "system",
  9157. };
  9158. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9159. struct cgroup_map_cb *cb)
  9160. {
  9161. struct cpuacct *ca = cgroup_ca(cgrp);
  9162. int i;
  9163. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9164. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9165. val = cputime64_to_clock_t(val);
  9166. cb->fill(cb, cpuacct_stat_desc[i], val);
  9167. }
  9168. return 0;
  9169. }
  9170. static struct cftype files[] = {
  9171. {
  9172. .name = "usage",
  9173. .read_u64 = cpuusage_read,
  9174. .write_u64 = cpuusage_write,
  9175. },
  9176. {
  9177. .name = "usage_percpu",
  9178. .read_seq_string = cpuacct_percpu_seq_read,
  9179. },
  9180. {
  9181. .name = "stat",
  9182. .read_map = cpuacct_stats_show,
  9183. },
  9184. };
  9185. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9186. {
  9187. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9188. }
  9189. /*
  9190. * charge this task's execution time to its accounting group.
  9191. *
  9192. * called with rq->lock held.
  9193. */
  9194. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9195. {
  9196. struct cpuacct *ca;
  9197. int cpu;
  9198. if (unlikely(!cpuacct_subsys.active))
  9199. return;
  9200. cpu = task_cpu(tsk);
  9201. rcu_read_lock();
  9202. ca = task_ca(tsk);
  9203. for (; ca; ca = ca->parent) {
  9204. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9205. *cpuusage += cputime;
  9206. }
  9207. rcu_read_unlock();
  9208. }
  9209. /*
  9210. * Charge the system/user time to the task's accounting group.
  9211. */
  9212. static void cpuacct_update_stats(struct task_struct *tsk,
  9213. enum cpuacct_stat_index idx, cputime_t val)
  9214. {
  9215. struct cpuacct *ca;
  9216. if (unlikely(!cpuacct_subsys.active))
  9217. return;
  9218. rcu_read_lock();
  9219. ca = task_ca(tsk);
  9220. do {
  9221. percpu_counter_add(&ca->cpustat[idx], val);
  9222. ca = ca->parent;
  9223. } while (ca);
  9224. rcu_read_unlock();
  9225. }
  9226. struct cgroup_subsys cpuacct_subsys = {
  9227. .name = "cpuacct",
  9228. .create = cpuacct_create,
  9229. .destroy = cpuacct_destroy,
  9230. .populate = cpuacct_populate,
  9231. .subsys_id = cpuacct_subsys_id,
  9232. };
  9233. #endif /* CONFIG_CGROUP_CPUACCT */
  9234. #ifndef CONFIG_SMP
  9235. int rcu_expedited_torture_stats(char *page)
  9236. {
  9237. return 0;
  9238. }
  9239. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9240. void synchronize_sched_expedited(void)
  9241. {
  9242. }
  9243. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9244. #else /* #ifndef CONFIG_SMP */
  9245. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9246. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9247. #define RCU_EXPEDITED_STATE_POST -2
  9248. #define RCU_EXPEDITED_STATE_IDLE -1
  9249. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9250. int rcu_expedited_torture_stats(char *page)
  9251. {
  9252. int cnt = 0;
  9253. int cpu;
  9254. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9255. for_each_online_cpu(cpu) {
  9256. cnt += sprintf(&page[cnt], " %d:%d",
  9257. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9258. }
  9259. cnt += sprintf(&page[cnt], "\n");
  9260. return cnt;
  9261. }
  9262. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9263. static long synchronize_sched_expedited_count;
  9264. /*
  9265. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9266. * approach to force grace period to end quickly. This consumes
  9267. * significant time on all CPUs, and is thus not recommended for
  9268. * any sort of common-case code.
  9269. *
  9270. * Note that it is illegal to call this function while holding any
  9271. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9272. * observe this restriction will result in deadlock.
  9273. */
  9274. void synchronize_sched_expedited(void)
  9275. {
  9276. int cpu;
  9277. unsigned long flags;
  9278. bool need_full_sync = 0;
  9279. struct rq *rq;
  9280. struct migration_req *req;
  9281. long snap;
  9282. int trycount = 0;
  9283. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9284. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9285. get_online_cpus();
  9286. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9287. put_online_cpus();
  9288. if (trycount++ < 10)
  9289. udelay(trycount * num_online_cpus());
  9290. else {
  9291. synchronize_sched();
  9292. return;
  9293. }
  9294. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9295. smp_mb(); /* ensure test happens before caller kfree */
  9296. return;
  9297. }
  9298. get_online_cpus();
  9299. }
  9300. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9301. for_each_online_cpu(cpu) {
  9302. rq = cpu_rq(cpu);
  9303. req = &per_cpu(rcu_migration_req, cpu);
  9304. init_completion(&req->done);
  9305. req->task = NULL;
  9306. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9307. spin_lock_irqsave(&rq->lock, flags);
  9308. list_add(&req->list, &rq->migration_queue);
  9309. spin_unlock_irqrestore(&rq->lock, flags);
  9310. wake_up_process(rq->migration_thread);
  9311. }
  9312. for_each_online_cpu(cpu) {
  9313. rcu_expedited_state = cpu;
  9314. req = &per_cpu(rcu_migration_req, cpu);
  9315. rq = cpu_rq(cpu);
  9316. wait_for_completion(&req->done);
  9317. spin_lock_irqsave(&rq->lock, flags);
  9318. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9319. need_full_sync = 1;
  9320. req->dest_cpu = RCU_MIGRATION_IDLE;
  9321. spin_unlock_irqrestore(&rq->lock, flags);
  9322. }
  9323. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9324. synchronize_sched_expedited_count++;
  9325. mutex_unlock(&rcu_sched_expedited_mutex);
  9326. put_online_cpus();
  9327. if (need_full_sync)
  9328. synchronize_sched();
  9329. }
  9330. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9331. #endif /* #else #ifndef CONFIG_SMP */