sock.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. static DEFINE_MUTEX(proto_list_mutex);
  135. static LIST_HEAD(proto_list);
  136. #ifdef CONFIG_MEMCG_KMEM
  137. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  138. {
  139. struct proto *proto;
  140. int ret = 0;
  141. mutex_lock(&proto_list_mutex);
  142. list_for_each_entry(proto, &proto_list, node) {
  143. if (proto->init_cgroup) {
  144. ret = proto->init_cgroup(memcg, ss);
  145. if (ret)
  146. goto out;
  147. }
  148. }
  149. mutex_unlock(&proto_list_mutex);
  150. return ret;
  151. out:
  152. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  153. if (proto->destroy_cgroup)
  154. proto->destroy_cgroup(memcg);
  155. mutex_unlock(&proto_list_mutex);
  156. return ret;
  157. }
  158. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  159. {
  160. struct proto *proto;
  161. mutex_lock(&proto_list_mutex);
  162. list_for_each_entry_reverse(proto, &proto_list, node)
  163. if (proto->destroy_cgroup)
  164. proto->destroy_cgroup(memcg);
  165. mutex_unlock(&proto_list_mutex);
  166. }
  167. #endif
  168. /*
  169. * Each address family might have different locking rules, so we have
  170. * one slock key per address family:
  171. */
  172. static struct lock_class_key af_family_keys[AF_MAX];
  173. static struct lock_class_key af_family_slock_keys[AF_MAX];
  174. #if defined(CONFIG_MEMCG_KMEM)
  175. struct static_key memcg_socket_limit_enabled;
  176. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  177. #endif
  178. /*
  179. * Make lock validator output more readable. (we pre-construct these
  180. * strings build-time, so that runtime initialization of socket
  181. * locks is fast):
  182. */
  183. static const char *const af_family_key_strings[AF_MAX+1] = {
  184. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  185. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  186. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  187. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  188. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  189. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  190. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  191. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  192. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  193. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  194. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  195. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  196. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  197. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  198. };
  199. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  200. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  201. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  202. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  203. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  204. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  205. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  206. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  207. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  208. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  209. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  210. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  211. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  212. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  213. "slock-AF_NFC" , "slock-AF_MAX"
  214. };
  215. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  216. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  217. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  218. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  219. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  220. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  221. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  222. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  223. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  224. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  225. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  226. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  227. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  228. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  229. "clock-AF_NFC" , "clock-AF_MAX"
  230. };
  231. /*
  232. * sk_callback_lock locking rules are per-address-family,
  233. * so split the lock classes by using a per-AF key:
  234. */
  235. static struct lock_class_key af_callback_keys[AF_MAX];
  236. /* Take into consideration the size of the struct sk_buff overhead in the
  237. * determination of these values, since that is non-constant across
  238. * platforms. This makes socket queueing behavior and performance
  239. * not depend upon such differences.
  240. */
  241. #define _SK_MEM_PACKETS 256
  242. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  243. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  244. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  245. /* Run time adjustable parameters. */
  246. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  247. EXPORT_SYMBOL(sysctl_wmem_max);
  248. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  249. EXPORT_SYMBOL(sysctl_rmem_max);
  250. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  251. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  252. /* Maximal space eaten by iovec or ancillary data plus some space */
  253. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  254. EXPORT_SYMBOL(sysctl_optmem_max);
  255. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  256. EXPORT_SYMBOL_GPL(memalloc_socks);
  257. /**
  258. * sk_set_memalloc - sets %SOCK_MEMALLOC
  259. * @sk: socket to set it on
  260. *
  261. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  262. * It's the responsibility of the admin to adjust min_free_kbytes
  263. * to meet the requirements
  264. */
  265. void sk_set_memalloc(struct sock *sk)
  266. {
  267. sock_set_flag(sk, SOCK_MEMALLOC);
  268. sk->sk_allocation |= __GFP_MEMALLOC;
  269. static_key_slow_inc(&memalloc_socks);
  270. }
  271. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  272. void sk_clear_memalloc(struct sock *sk)
  273. {
  274. sock_reset_flag(sk, SOCK_MEMALLOC);
  275. sk->sk_allocation &= ~__GFP_MEMALLOC;
  276. static_key_slow_dec(&memalloc_socks);
  277. /*
  278. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  279. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  280. * it has rmem allocations there is a risk that the user of the
  281. * socket cannot make forward progress due to exceeding the rmem
  282. * limits. By rights, sk_clear_memalloc() should only be called
  283. * on sockets being torn down but warn and reset the accounting if
  284. * that assumption breaks.
  285. */
  286. if (WARN_ON(sk->sk_forward_alloc))
  287. sk_mem_reclaim(sk);
  288. }
  289. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  290. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  291. {
  292. int ret;
  293. unsigned long pflags = current->flags;
  294. /* these should have been dropped before queueing */
  295. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  296. current->flags |= PF_MEMALLOC;
  297. ret = sk->sk_backlog_rcv(sk, skb);
  298. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  299. return ret;
  300. }
  301. EXPORT_SYMBOL(__sk_backlog_rcv);
  302. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  303. {
  304. struct timeval tv;
  305. if (optlen < sizeof(tv))
  306. return -EINVAL;
  307. if (copy_from_user(&tv, optval, sizeof(tv)))
  308. return -EFAULT;
  309. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  310. return -EDOM;
  311. if (tv.tv_sec < 0) {
  312. static int warned __read_mostly;
  313. *timeo_p = 0;
  314. if (warned < 10 && net_ratelimit()) {
  315. warned++;
  316. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  317. __func__, current->comm, task_pid_nr(current));
  318. }
  319. return 0;
  320. }
  321. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  322. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  323. return 0;
  324. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  325. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  326. return 0;
  327. }
  328. static void sock_warn_obsolete_bsdism(const char *name)
  329. {
  330. static int warned;
  331. static char warncomm[TASK_COMM_LEN];
  332. if (strcmp(warncomm, current->comm) && warned < 5) {
  333. strcpy(warncomm, current->comm);
  334. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  335. warncomm, name);
  336. warned++;
  337. }
  338. }
  339. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  340. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  341. {
  342. if (sk->sk_flags & flags) {
  343. sk->sk_flags &= ~flags;
  344. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  345. net_disable_timestamp();
  346. }
  347. }
  348. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  349. {
  350. int err;
  351. int skb_len;
  352. unsigned long flags;
  353. struct sk_buff_head *list = &sk->sk_receive_queue;
  354. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  355. atomic_inc(&sk->sk_drops);
  356. trace_sock_rcvqueue_full(sk, skb);
  357. return -ENOMEM;
  358. }
  359. err = sk_filter(sk, skb);
  360. if (err)
  361. return err;
  362. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  363. atomic_inc(&sk->sk_drops);
  364. return -ENOBUFS;
  365. }
  366. skb->dev = NULL;
  367. skb_set_owner_r(skb, sk);
  368. /* Cache the SKB length before we tack it onto the receive
  369. * queue. Once it is added it no longer belongs to us and
  370. * may be freed by other threads of control pulling packets
  371. * from the queue.
  372. */
  373. skb_len = skb->len;
  374. /* we escape from rcu protected region, make sure we dont leak
  375. * a norefcounted dst
  376. */
  377. skb_dst_force(skb);
  378. spin_lock_irqsave(&list->lock, flags);
  379. skb->dropcount = atomic_read(&sk->sk_drops);
  380. __skb_queue_tail(list, skb);
  381. spin_unlock_irqrestore(&list->lock, flags);
  382. if (!sock_flag(sk, SOCK_DEAD))
  383. sk->sk_data_ready(sk, skb_len);
  384. return 0;
  385. }
  386. EXPORT_SYMBOL(sock_queue_rcv_skb);
  387. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  388. {
  389. int rc = NET_RX_SUCCESS;
  390. if (sk_filter(sk, skb))
  391. goto discard_and_relse;
  392. skb->dev = NULL;
  393. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  394. atomic_inc(&sk->sk_drops);
  395. goto discard_and_relse;
  396. }
  397. if (nested)
  398. bh_lock_sock_nested(sk);
  399. else
  400. bh_lock_sock(sk);
  401. if (!sock_owned_by_user(sk)) {
  402. /*
  403. * trylock + unlock semantics:
  404. */
  405. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  406. rc = sk_backlog_rcv(sk, skb);
  407. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  408. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  409. bh_unlock_sock(sk);
  410. atomic_inc(&sk->sk_drops);
  411. goto discard_and_relse;
  412. }
  413. bh_unlock_sock(sk);
  414. out:
  415. sock_put(sk);
  416. return rc;
  417. discard_and_relse:
  418. kfree_skb(skb);
  419. goto out;
  420. }
  421. EXPORT_SYMBOL(sk_receive_skb);
  422. void sk_reset_txq(struct sock *sk)
  423. {
  424. sk_tx_queue_clear(sk);
  425. }
  426. EXPORT_SYMBOL(sk_reset_txq);
  427. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  428. {
  429. struct dst_entry *dst = __sk_dst_get(sk);
  430. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  431. sk_tx_queue_clear(sk);
  432. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  433. dst_release(dst);
  434. return NULL;
  435. }
  436. return dst;
  437. }
  438. EXPORT_SYMBOL(__sk_dst_check);
  439. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  440. {
  441. struct dst_entry *dst = sk_dst_get(sk);
  442. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  443. sk_dst_reset(sk);
  444. dst_release(dst);
  445. return NULL;
  446. }
  447. return dst;
  448. }
  449. EXPORT_SYMBOL(sk_dst_check);
  450. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  451. int optlen)
  452. {
  453. int ret = -ENOPROTOOPT;
  454. #ifdef CONFIG_NETDEVICES
  455. struct net *net = sock_net(sk);
  456. char devname[IFNAMSIZ];
  457. int index;
  458. /* Sorry... */
  459. ret = -EPERM;
  460. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  461. goto out;
  462. ret = -EINVAL;
  463. if (optlen < 0)
  464. goto out;
  465. /* Bind this socket to a particular device like "eth0",
  466. * as specified in the passed interface name. If the
  467. * name is "" or the option length is zero the socket
  468. * is not bound.
  469. */
  470. if (optlen > IFNAMSIZ - 1)
  471. optlen = IFNAMSIZ - 1;
  472. memset(devname, 0, sizeof(devname));
  473. ret = -EFAULT;
  474. if (copy_from_user(devname, optval, optlen))
  475. goto out;
  476. index = 0;
  477. if (devname[0] != '\0') {
  478. struct net_device *dev;
  479. rcu_read_lock();
  480. dev = dev_get_by_name_rcu(net, devname);
  481. if (dev)
  482. index = dev->ifindex;
  483. rcu_read_unlock();
  484. ret = -ENODEV;
  485. if (!dev)
  486. goto out;
  487. }
  488. lock_sock(sk);
  489. sk->sk_bound_dev_if = index;
  490. sk_dst_reset(sk);
  491. release_sock(sk);
  492. ret = 0;
  493. out:
  494. #endif
  495. return ret;
  496. }
  497. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  498. int __user *optlen, int len)
  499. {
  500. int ret = -ENOPROTOOPT;
  501. #ifdef CONFIG_NETDEVICES
  502. struct net *net = sock_net(sk);
  503. struct net_device *dev;
  504. char devname[IFNAMSIZ];
  505. unsigned seq;
  506. if (sk->sk_bound_dev_if == 0) {
  507. len = 0;
  508. goto zero;
  509. }
  510. ret = -EINVAL;
  511. if (len < IFNAMSIZ)
  512. goto out;
  513. retry:
  514. seq = read_seqcount_begin(&devnet_rename_seq);
  515. rcu_read_lock();
  516. dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
  517. ret = -ENODEV;
  518. if (!dev) {
  519. rcu_read_unlock();
  520. goto out;
  521. }
  522. strcpy(devname, dev->name);
  523. rcu_read_unlock();
  524. if (read_seqcount_retry(&devnet_rename_seq, seq))
  525. goto retry;
  526. len = strlen(devname) + 1;
  527. ret = -EFAULT;
  528. if (copy_to_user(optval, devname, len))
  529. goto out;
  530. zero:
  531. ret = -EFAULT;
  532. if (put_user(len, optlen))
  533. goto out;
  534. ret = 0;
  535. out:
  536. #endif
  537. return ret;
  538. }
  539. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  540. {
  541. if (valbool)
  542. sock_set_flag(sk, bit);
  543. else
  544. sock_reset_flag(sk, bit);
  545. }
  546. /*
  547. * This is meant for all protocols to use and covers goings on
  548. * at the socket level. Everything here is generic.
  549. */
  550. int sock_setsockopt(struct socket *sock, int level, int optname,
  551. char __user *optval, unsigned int optlen)
  552. {
  553. struct sock *sk = sock->sk;
  554. int val;
  555. int valbool;
  556. struct linger ling;
  557. int ret = 0;
  558. /*
  559. * Options without arguments
  560. */
  561. if (optname == SO_BINDTODEVICE)
  562. return sock_setbindtodevice(sk, optval, optlen);
  563. if (optlen < sizeof(int))
  564. return -EINVAL;
  565. if (get_user(val, (int __user *)optval))
  566. return -EFAULT;
  567. valbool = val ? 1 : 0;
  568. lock_sock(sk);
  569. switch (optname) {
  570. case SO_DEBUG:
  571. if (val && !capable(CAP_NET_ADMIN))
  572. ret = -EACCES;
  573. else
  574. sock_valbool_flag(sk, SOCK_DBG, valbool);
  575. break;
  576. case SO_REUSEADDR:
  577. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  578. break;
  579. case SO_REUSEPORT:
  580. sk->sk_reuseport = valbool;
  581. break;
  582. case SO_TYPE:
  583. case SO_PROTOCOL:
  584. case SO_DOMAIN:
  585. case SO_ERROR:
  586. ret = -ENOPROTOOPT;
  587. break;
  588. case SO_DONTROUTE:
  589. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  590. break;
  591. case SO_BROADCAST:
  592. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  593. break;
  594. case SO_SNDBUF:
  595. /* Don't error on this BSD doesn't and if you think
  596. * about it this is right. Otherwise apps have to
  597. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  598. * are treated in BSD as hints
  599. */
  600. val = min_t(u32, val, sysctl_wmem_max);
  601. set_sndbuf:
  602. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  603. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  604. /* Wake up sending tasks if we upped the value. */
  605. sk->sk_write_space(sk);
  606. break;
  607. case SO_SNDBUFFORCE:
  608. if (!capable(CAP_NET_ADMIN)) {
  609. ret = -EPERM;
  610. break;
  611. }
  612. goto set_sndbuf;
  613. case SO_RCVBUF:
  614. /* Don't error on this BSD doesn't and if you think
  615. * about it this is right. Otherwise apps have to
  616. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  617. * are treated in BSD as hints
  618. */
  619. val = min_t(u32, val, sysctl_rmem_max);
  620. set_rcvbuf:
  621. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  622. /*
  623. * We double it on the way in to account for
  624. * "struct sk_buff" etc. overhead. Applications
  625. * assume that the SO_RCVBUF setting they make will
  626. * allow that much actual data to be received on that
  627. * socket.
  628. *
  629. * Applications are unaware that "struct sk_buff" and
  630. * other overheads allocate from the receive buffer
  631. * during socket buffer allocation.
  632. *
  633. * And after considering the possible alternatives,
  634. * returning the value we actually used in getsockopt
  635. * is the most desirable behavior.
  636. */
  637. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  638. break;
  639. case SO_RCVBUFFORCE:
  640. if (!capable(CAP_NET_ADMIN)) {
  641. ret = -EPERM;
  642. break;
  643. }
  644. goto set_rcvbuf;
  645. case SO_KEEPALIVE:
  646. #ifdef CONFIG_INET
  647. if (sk->sk_protocol == IPPROTO_TCP &&
  648. sk->sk_type == SOCK_STREAM)
  649. tcp_set_keepalive(sk, valbool);
  650. #endif
  651. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  652. break;
  653. case SO_OOBINLINE:
  654. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  655. break;
  656. case SO_NO_CHECK:
  657. sk->sk_no_check = valbool;
  658. break;
  659. case SO_PRIORITY:
  660. if ((val >= 0 && val <= 6) ||
  661. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  662. sk->sk_priority = val;
  663. else
  664. ret = -EPERM;
  665. break;
  666. case SO_LINGER:
  667. if (optlen < sizeof(ling)) {
  668. ret = -EINVAL; /* 1003.1g */
  669. break;
  670. }
  671. if (copy_from_user(&ling, optval, sizeof(ling))) {
  672. ret = -EFAULT;
  673. break;
  674. }
  675. if (!ling.l_onoff)
  676. sock_reset_flag(sk, SOCK_LINGER);
  677. else {
  678. #if (BITS_PER_LONG == 32)
  679. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  680. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  681. else
  682. #endif
  683. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  684. sock_set_flag(sk, SOCK_LINGER);
  685. }
  686. break;
  687. case SO_BSDCOMPAT:
  688. sock_warn_obsolete_bsdism("setsockopt");
  689. break;
  690. case SO_PASSCRED:
  691. if (valbool)
  692. set_bit(SOCK_PASSCRED, &sock->flags);
  693. else
  694. clear_bit(SOCK_PASSCRED, &sock->flags);
  695. break;
  696. case SO_TIMESTAMP:
  697. case SO_TIMESTAMPNS:
  698. if (valbool) {
  699. if (optname == SO_TIMESTAMP)
  700. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  701. else
  702. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  703. sock_set_flag(sk, SOCK_RCVTSTAMP);
  704. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  705. } else {
  706. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  707. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  708. }
  709. break;
  710. case SO_TIMESTAMPING:
  711. if (val & ~SOF_TIMESTAMPING_MASK) {
  712. ret = -EINVAL;
  713. break;
  714. }
  715. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  716. val & SOF_TIMESTAMPING_TX_HARDWARE);
  717. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  718. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  719. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  720. val & SOF_TIMESTAMPING_RX_HARDWARE);
  721. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  722. sock_enable_timestamp(sk,
  723. SOCK_TIMESTAMPING_RX_SOFTWARE);
  724. else
  725. sock_disable_timestamp(sk,
  726. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  727. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  728. val & SOF_TIMESTAMPING_SOFTWARE);
  729. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  730. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  731. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  732. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  733. break;
  734. case SO_RCVLOWAT:
  735. if (val < 0)
  736. val = INT_MAX;
  737. sk->sk_rcvlowat = val ? : 1;
  738. break;
  739. case SO_RCVTIMEO:
  740. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  741. break;
  742. case SO_SNDTIMEO:
  743. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  744. break;
  745. case SO_ATTACH_FILTER:
  746. ret = -EINVAL;
  747. if (optlen == sizeof(struct sock_fprog)) {
  748. struct sock_fprog fprog;
  749. ret = -EFAULT;
  750. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  751. break;
  752. ret = sk_attach_filter(&fprog, sk);
  753. }
  754. break;
  755. case SO_DETACH_FILTER:
  756. ret = sk_detach_filter(sk);
  757. break;
  758. case SO_LOCK_FILTER:
  759. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  760. ret = -EPERM;
  761. else
  762. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  763. break;
  764. case SO_PASSSEC:
  765. if (valbool)
  766. set_bit(SOCK_PASSSEC, &sock->flags);
  767. else
  768. clear_bit(SOCK_PASSSEC, &sock->flags);
  769. break;
  770. case SO_MARK:
  771. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  772. ret = -EPERM;
  773. else
  774. sk->sk_mark = val;
  775. break;
  776. /* We implement the SO_SNDLOWAT etc to
  777. not be settable (1003.1g 5.3) */
  778. case SO_RXQ_OVFL:
  779. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  780. break;
  781. case SO_WIFI_STATUS:
  782. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  783. break;
  784. case SO_PEEK_OFF:
  785. if (sock->ops->set_peek_off)
  786. sock->ops->set_peek_off(sk, val);
  787. else
  788. ret = -EOPNOTSUPP;
  789. break;
  790. case SO_NOFCS:
  791. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  792. break;
  793. default:
  794. ret = -ENOPROTOOPT;
  795. break;
  796. }
  797. release_sock(sk);
  798. return ret;
  799. }
  800. EXPORT_SYMBOL(sock_setsockopt);
  801. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  802. struct ucred *ucred)
  803. {
  804. ucred->pid = pid_vnr(pid);
  805. ucred->uid = ucred->gid = -1;
  806. if (cred) {
  807. struct user_namespace *current_ns = current_user_ns();
  808. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  809. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  810. }
  811. }
  812. EXPORT_SYMBOL_GPL(cred_to_ucred);
  813. int sock_getsockopt(struct socket *sock, int level, int optname,
  814. char __user *optval, int __user *optlen)
  815. {
  816. struct sock *sk = sock->sk;
  817. union {
  818. int val;
  819. struct linger ling;
  820. struct timeval tm;
  821. } v;
  822. int lv = sizeof(int);
  823. int len;
  824. if (get_user(len, optlen))
  825. return -EFAULT;
  826. if (len < 0)
  827. return -EINVAL;
  828. memset(&v, 0, sizeof(v));
  829. switch (optname) {
  830. case SO_DEBUG:
  831. v.val = sock_flag(sk, SOCK_DBG);
  832. break;
  833. case SO_DONTROUTE:
  834. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  835. break;
  836. case SO_BROADCAST:
  837. v.val = sock_flag(sk, SOCK_BROADCAST);
  838. break;
  839. case SO_SNDBUF:
  840. v.val = sk->sk_sndbuf;
  841. break;
  842. case SO_RCVBUF:
  843. v.val = sk->sk_rcvbuf;
  844. break;
  845. case SO_REUSEADDR:
  846. v.val = sk->sk_reuse;
  847. break;
  848. case SO_REUSEPORT:
  849. v.val = sk->sk_reuseport;
  850. break;
  851. case SO_KEEPALIVE:
  852. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  853. break;
  854. case SO_TYPE:
  855. v.val = sk->sk_type;
  856. break;
  857. case SO_PROTOCOL:
  858. v.val = sk->sk_protocol;
  859. break;
  860. case SO_DOMAIN:
  861. v.val = sk->sk_family;
  862. break;
  863. case SO_ERROR:
  864. v.val = -sock_error(sk);
  865. if (v.val == 0)
  866. v.val = xchg(&sk->sk_err_soft, 0);
  867. break;
  868. case SO_OOBINLINE:
  869. v.val = sock_flag(sk, SOCK_URGINLINE);
  870. break;
  871. case SO_NO_CHECK:
  872. v.val = sk->sk_no_check;
  873. break;
  874. case SO_PRIORITY:
  875. v.val = sk->sk_priority;
  876. break;
  877. case SO_LINGER:
  878. lv = sizeof(v.ling);
  879. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  880. v.ling.l_linger = sk->sk_lingertime / HZ;
  881. break;
  882. case SO_BSDCOMPAT:
  883. sock_warn_obsolete_bsdism("getsockopt");
  884. break;
  885. case SO_TIMESTAMP:
  886. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  887. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  888. break;
  889. case SO_TIMESTAMPNS:
  890. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  891. break;
  892. case SO_TIMESTAMPING:
  893. v.val = 0;
  894. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  895. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  896. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  897. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  898. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  899. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  900. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  901. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  902. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  903. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  904. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  905. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  906. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  907. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  908. break;
  909. case SO_RCVTIMEO:
  910. lv = sizeof(struct timeval);
  911. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  912. v.tm.tv_sec = 0;
  913. v.tm.tv_usec = 0;
  914. } else {
  915. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  916. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  917. }
  918. break;
  919. case SO_SNDTIMEO:
  920. lv = sizeof(struct timeval);
  921. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  922. v.tm.tv_sec = 0;
  923. v.tm.tv_usec = 0;
  924. } else {
  925. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  926. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  927. }
  928. break;
  929. case SO_RCVLOWAT:
  930. v.val = sk->sk_rcvlowat;
  931. break;
  932. case SO_SNDLOWAT:
  933. v.val = 1;
  934. break;
  935. case SO_PASSCRED:
  936. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  937. break;
  938. case SO_PEERCRED:
  939. {
  940. struct ucred peercred;
  941. if (len > sizeof(peercred))
  942. len = sizeof(peercred);
  943. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  944. if (copy_to_user(optval, &peercred, len))
  945. return -EFAULT;
  946. goto lenout;
  947. }
  948. case SO_PEERNAME:
  949. {
  950. char address[128];
  951. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  952. return -ENOTCONN;
  953. if (lv < len)
  954. return -EINVAL;
  955. if (copy_to_user(optval, address, len))
  956. return -EFAULT;
  957. goto lenout;
  958. }
  959. /* Dubious BSD thing... Probably nobody even uses it, but
  960. * the UNIX standard wants it for whatever reason... -DaveM
  961. */
  962. case SO_ACCEPTCONN:
  963. v.val = sk->sk_state == TCP_LISTEN;
  964. break;
  965. case SO_PASSSEC:
  966. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  967. break;
  968. case SO_PEERSEC:
  969. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  970. case SO_MARK:
  971. v.val = sk->sk_mark;
  972. break;
  973. case SO_RXQ_OVFL:
  974. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  975. break;
  976. case SO_WIFI_STATUS:
  977. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  978. break;
  979. case SO_PEEK_OFF:
  980. if (!sock->ops->set_peek_off)
  981. return -EOPNOTSUPP;
  982. v.val = sk->sk_peek_off;
  983. break;
  984. case SO_NOFCS:
  985. v.val = sock_flag(sk, SOCK_NOFCS);
  986. break;
  987. case SO_BINDTODEVICE:
  988. return sock_getbindtodevice(sk, optval, optlen, len);
  989. case SO_GET_FILTER:
  990. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  991. if (len < 0)
  992. return len;
  993. goto lenout;
  994. case SO_LOCK_FILTER:
  995. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  996. break;
  997. default:
  998. return -ENOPROTOOPT;
  999. }
  1000. if (len > lv)
  1001. len = lv;
  1002. if (copy_to_user(optval, &v, len))
  1003. return -EFAULT;
  1004. lenout:
  1005. if (put_user(len, optlen))
  1006. return -EFAULT;
  1007. return 0;
  1008. }
  1009. /*
  1010. * Initialize an sk_lock.
  1011. *
  1012. * (We also register the sk_lock with the lock validator.)
  1013. */
  1014. static inline void sock_lock_init(struct sock *sk)
  1015. {
  1016. sock_lock_init_class_and_name(sk,
  1017. af_family_slock_key_strings[sk->sk_family],
  1018. af_family_slock_keys + sk->sk_family,
  1019. af_family_key_strings[sk->sk_family],
  1020. af_family_keys + sk->sk_family);
  1021. }
  1022. /*
  1023. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1024. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1025. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1026. */
  1027. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1028. {
  1029. #ifdef CONFIG_SECURITY_NETWORK
  1030. void *sptr = nsk->sk_security;
  1031. #endif
  1032. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1033. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1034. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1035. #ifdef CONFIG_SECURITY_NETWORK
  1036. nsk->sk_security = sptr;
  1037. security_sk_clone(osk, nsk);
  1038. #endif
  1039. }
  1040. /*
  1041. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  1042. * un-modified. Special care is taken when initializing object to zero.
  1043. */
  1044. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  1045. {
  1046. if (offsetof(struct sock, sk_node.next) != 0)
  1047. memset(sk, 0, offsetof(struct sock, sk_node.next));
  1048. memset(&sk->sk_node.pprev, 0,
  1049. size - offsetof(struct sock, sk_node.pprev));
  1050. }
  1051. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1052. {
  1053. unsigned long nulls1, nulls2;
  1054. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1055. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1056. if (nulls1 > nulls2)
  1057. swap(nulls1, nulls2);
  1058. if (nulls1 != 0)
  1059. memset((char *)sk, 0, nulls1);
  1060. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1061. nulls2 - nulls1 - sizeof(void *));
  1062. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1063. size - nulls2 - sizeof(void *));
  1064. }
  1065. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1066. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1067. int family)
  1068. {
  1069. struct sock *sk;
  1070. struct kmem_cache *slab;
  1071. slab = prot->slab;
  1072. if (slab != NULL) {
  1073. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1074. if (!sk)
  1075. return sk;
  1076. if (priority & __GFP_ZERO) {
  1077. if (prot->clear_sk)
  1078. prot->clear_sk(sk, prot->obj_size);
  1079. else
  1080. sk_prot_clear_nulls(sk, prot->obj_size);
  1081. }
  1082. } else
  1083. sk = kmalloc(prot->obj_size, priority);
  1084. if (sk != NULL) {
  1085. kmemcheck_annotate_bitfield(sk, flags);
  1086. if (security_sk_alloc(sk, family, priority))
  1087. goto out_free;
  1088. if (!try_module_get(prot->owner))
  1089. goto out_free_sec;
  1090. sk_tx_queue_clear(sk);
  1091. }
  1092. return sk;
  1093. out_free_sec:
  1094. security_sk_free(sk);
  1095. out_free:
  1096. if (slab != NULL)
  1097. kmem_cache_free(slab, sk);
  1098. else
  1099. kfree(sk);
  1100. return NULL;
  1101. }
  1102. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1103. {
  1104. struct kmem_cache *slab;
  1105. struct module *owner;
  1106. owner = prot->owner;
  1107. slab = prot->slab;
  1108. security_sk_free(sk);
  1109. if (slab != NULL)
  1110. kmem_cache_free(slab, sk);
  1111. else
  1112. kfree(sk);
  1113. module_put(owner);
  1114. }
  1115. #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
  1116. void sock_update_classid(struct sock *sk, struct task_struct *task)
  1117. {
  1118. u32 classid;
  1119. classid = task_cls_classid(task);
  1120. if (classid != sk->sk_classid)
  1121. sk->sk_classid = classid;
  1122. }
  1123. EXPORT_SYMBOL(sock_update_classid);
  1124. #endif
  1125. #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
  1126. void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
  1127. {
  1128. if (in_interrupt())
  1129. return;
  1130. sk->sk_cgrp_prioidx = task_netprioidx(task);
  1131. }
  1132. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1133. #endif
  1134. /**
  1135. * sk_alloc - All socket objects are allocated here
  1136. * @net: the applicable net namespace
  1137. * @family: protocol family
  1138. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1139. * @prot: struct proto associated with this new sock instance
  1140. */
  1141. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1142. struct proto *prot)
  1143. {
  1144. struct sock *sk;
  1145. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1146. if (sk) {
  1147. sk->sk_family = family;
  1148. /*
  1149. * See comment in struct sock definition to understand
  1150. * why we need sk_prot_creator -acme
  1151. */
  1152. sk->sk_prot = sk->sk_prot_creator = prot;
  1153. sock_lock_init(sk);
  1154. sock_net_set(sk, get_net(net));
  1155. atomic_set(&sk->sk_wmem_alloc, 1);
  1156. sock_update_classid(sk, current);
  1157. sock_update_netprioidx(sk, current);
  1158. }
  1159. return sk;
  1160. }
  1161. EXPORT_SYMBOL(sk_alloc);
  1162. static void __sk_free(struct sock *sk)
  1163. {
  1164. struct sk_filter *filter;
  1165. if (sk->sk_destruct)
  1166. sk->sk_destruct(sk);
  1167. filter = rcu_dereference_check(sk->sk_filter,
  1168. atomic_read(&sk->sk_wmem_alloc) == 0);
  1169. if (filter) {
  1170. sk_filter_uncharge(sk, filter);
  1171. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1172. }
  1173. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1174. if (atomic_read(&sk->sk_omem_alloc))
  1175. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1176. __func__, atomic_read(&sk->sk_omem_alloc));
  1177. if (sk->sk_peer_cred)
  1178. put_cred(sk->sk_peer_cred);
  1179. put_pid(sk->sk_peer_pid);
  1180. put_net(sock_net(sk));
  1181. sk_prot_free(sk->sk_prot_creator, sk);
  1182. }
  1183. void sk_free(struct sock *sk)
  1184. {
  1185. /*
  1186. * We subtract one from sk_wmem_alloc and can know if
  1187. * some packets are still in some tx queue.
  1188. * If not null, sock_wfree() will call __sk_free(sk) later
  1189. */
  1190. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1191. __sk_free(sk);
  1192. }
  1193. EXPORT_SYMBOL(sk_free);
  1194. /*
  1195. * Last sock_put should drop reference to sk->sk_net. It has already
  1196. * been dropped in sk_change_net. Taking reference to stopping namespace
  1197. * is not an option.
  1198. * Take reference to a socket to remove it from hash _alive_ and after that
  1199. * destroy it in the context of init_net.
  1200. */
  1201. void sk_release_kernel(struct sock *sk)
  1202. {
  1203. if (sk == NULL || sk->sk_socket == NULL)
  1204. return;
  1205. sock_hold(sk);
  1206. sock_release(sk->sk_socket);
  1207. release_net(sock_net(sk));
  1208. sock_net_set(sk, get_net(&init_net));
  1209. sock_put(sk);
  1210. }
  1211. EXPORT_SYMBOL(sk_release_kernel);
  1212. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1213. {
  1214. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1215. sock_update_memcg(newsk);
  1216. }
  1217. /**
  1218. * sk_clone_lock - clone a socket, and lock its clone
  1219. * @sk: the socket to clone
  1220. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1221. *
  1222. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1223. */
  1224. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1225. {
  1226. struct sock *newsk;
  1227. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1228. if (newsk != NULL) {
  1229. struct sk_filter *filter;
  1230. sock_copy(newsk, sk);
  1231. /* SANITY */
  1232. get_net(sock_net(newsk));
  1233. sk_node_init(&newsk->sk_node);
  1234. sock_lock_init(newsk);
  1235. bh_lock_sock(newsk);
  1236. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1237. newsk->sk_backlog.len = 0;
  1238. atomic_set(&newsk->sk_rmem_alloc, 0);
  1239. /*
  1240. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1241. */
  1242. atomic_set(&newsk->sk_wmem_alloc, 1);
  1243. atomic_set(&newsk->sk_omem_alloc, 0);
  1244. skb_queue_head_init(&newsk->sk_receive_queue);
  1245. skb_queue_head_init(&newsk->sk_write_queue);
  1246. #ifdef CONFIG_NET_DMA
  1247. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1248. #endif
  1249. spin_lock_init(&newsk->sk_dst_lock);
  1250. rwlock_init(&newsk->sk_callback_lock);
  1251. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1252. af_callback_keys + newsk->sk_family,
  1253. af_family_clock_key_strings[newsk->sk_family]);
  1254. newsk->sk_dst_cache = NULL;
  1255. newsk->sk_wmem_queued = 0;
  1256. newsk->sk_forward_alloc = 0;
  1257. newsk->sk_send_head = NULL;
  1258. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1259. sock_reset_flag(newsk, SOCK_DONE);
  1260. skb_queue_head_init(&newsk->sk_error_queue);
  1261. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1262. if (filter != NULL)
  1263. sk_filter_charge(newsk, filter);
  1264. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1265. /* It is still raw copy of parent, so invalidate
  1266. * destructor and make plain sk_free() */
  1267. newsk->sk_destruct = NULL;
  1268. bh_unlock_sock(newsk);
  1269. sk_free(newsk);
  1270. newsk = NULL;
  1271. goto out;
  1272. }
  1273. newsk->sk_err = 0;
  1274. newsk->sk_priority = 0;
  1275. /*
  1276. * Before updating sk_refcnt, we must commit prior changes to memory
  1277. * (Documentation/RCU/rculist_nulls.txt for details)
  1278. */
  1279. smp_wmb();
  1280. atomic_set(&newsk->sk_refcnt, 2);
  1281. /*
  1282. * Increment the counter in the same struct proto as the master
  1283. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1284. * is the same as sk->sk_prot->socks, as this field was copied
  1285. * with memcpy).
  1286. *
  1287. * This _changes_ the previous behaviour, where
  1288. * tcp_create_openreq_child always was incrementing the
  1289. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1290. * to be taken into account in all callers. -acme
  1291. */
  1292. sk_refcnt_debug_inc(newsk);
  1293. sk_set_socket(newsk, NULL);
  1294. newsk->sk_wq = NULL;
  1295. sk_update_clone(sk, newsk);
  1296. if (newsk->sk_prot->sockets_allocated)
  1297. sk_sockets_allocated_inc(newsk);
  1298. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1299. net_enable_timestamp();
  1300. }
  1301. out:
  1302. return newsk;
  1303. }
  1304. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1305. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1306. {
  1307. __sk_dst_set(sk, dst);
  1308. sk->sk_route_caps = dst->dev->features;
  1309. if (sk->sk_route_caps & NETIF_F_GSO)
  1310. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1311. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1312. if (sk_can_gso(sk)) {
  1313. if (dst->header_len) {
  1314. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1315. } else {
  1316. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1317. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1318. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1319. }
  1320. }
  1321. }
  1322. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1323. /*
  1324. * Simple resource managers for sockets.
  1325. */
  1326. /*
  1327. * Write buffer destructor automatically called from kfree_skb.
  1328. */
  1329. void sock_wfree(struct sk_buff *skb)
  1330. {
  1331. struct sock *sk = skb->sk;
  1332. unsigned int len = skb->truesize;
  1333. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1334. /*
  1335. * Keep a reference on sk_wmem_alloc, this will be released
  1336. * after sk_write_space() call
  1337. */
  1338. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1339. sk->sk_write_space(sk);
  1340. len = 1;
  1341. }
  1342. /*
  1343. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1344. * could not do because of in-flight packets
  1345. */
  1346. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1347. __sk_free(sk);
  1348. }
  1349. EXPORT_SYMBOL(sock_wfree);
  1350. /*
  1351. * Read buffer destructor automatically called from kfree_skb.
  1352. */
  1353. void sock_rfree(struct sk_buff *skb)
  1354. {
  1355. struct sock *sk = skb->sk;
  1356. unsigned int len = skb->truesize;
  1357. atomic_sub(len, &sk->sk_rmem_alloc);
  1358. sk_mem_uncharge(sk, len);
  1359. }
  1360. EXPORT_SYMBOL(sock_rfree);
  1361. void sock_edemux(struct sk_buff *skb)
  1362. {
  1363. struct sock *sk = skb->sk;
  1364. #ifdef CONFIG_INET
  1365. if (sk->sk_state == TCP_TIME_WAIT)
  1366. inet_twsk_put(inet_twsk(sk));
  1367. else
  1368. #endif
  1369. sock_put(sk);
  1370. }
  1371. EXPORT_SYMBOL(sock_edemux);
  1372. kuid_t sock_i_uid(struct sock *sk)
  1373. {
  1374. kuid_t uid;
  1375. read_lock_bh(&sk->sk_callback_lock);
  1376. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1377. read_unlock_bh(&sk->sk_callback_lock);
  1378. return uid;
  1379. }
  1380. EXPORT_SYMBOL(sock_i_uid);
  1381. unsigned long sock_i_ino(struct sock *sk)
  1382. {
  1383. unsigned long ino;
  1384. read_lock_bh(&sk->sk_callback_lock);
  1385. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1386. read_unlock_bh(&sk->sk_callback_lock);
  1387. return ino;
  1388. }
  1389. EXPORT_SYMBOL(sock_i_ino);
  1390. /*
  1391. * Allocate a skb from the socket's send buffer.
  1392. */
  1393. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1394. gfp_t priority)
  1395. {
  1396. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1397. struct sk_buff *skb = alloc_skb(size, priority);
  1398. if (skb) {
  1399. skb_set_owner_w(skb, sk);
  1400. return skb;
  1401. }
  1402. }
  1403. return NULL;
  1404. }
  1405. EXPORT_SYMBOL(sock_wmalloc);
  1406. /*
  1407. * Allocate a skb from the socket's receive buffer.
  1408. */
  1409. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1410. gfp_t priority)
  1411. {
  1412. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1413. struct sk_buff *skb = alloc_skb(size, priority);
  1414. if (skb) {
  1415. skb_set_owner_r(skb, sk);
  1416. return skb;
  1417. }
  1418. }
  1419. return NULL;
  1420. }
  1421. /*
  1422. * Allocate a memory block from the socket's option memory buffer.
  1423. */
  1424. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1425. {
  1426. if ((unsigned int)size <= sysctl_optmem_max &&
  1427. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1428. void *mem;
  1429. /* First do the add, to avoid the race if kmalloc
  1430. * might sleep.
  1431. */
  1432. atomic_add(size, &sk->sk_omem_alloc);
  1433. mem = kmalloc(size, priority);
  1434. if (mem)
  1435. return mem;
  1436. atomic_sub(size, &sk->sk_omem_alloc);
  1437. }
  1438. return NULL;
  1439. }
  1440. EXPORT_SYMBOL(sock_kmalloc);
  1441. /*
  1442. * Free an option memory block.
  1443. */
  1444. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1445. {
  1446. kfree(mem);
  1447. atomic_sub(size, &sk->sk_omem_alloc);
  1448. }
  1449. EXPORT_SYMBOL(sock_kfree_s);
  1450. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1451. I think, these locks should be removed for datagram sockets.
  1452. */
  1453. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1454. {
  1455. DEFINE_WAIT(wait);
  1456. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1457. for (;;) {
  1458. if (!timeo)
  1459. break;
  1460. if (signal_pending(current))
  1461. break;
  1462. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1463. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1464. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1465. break;
  1466. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1467. break;
  1468. if (sk->sk_err)
  1469. break;
  1470. timeo = schedule_timeout(timeo);
  1471. }
  1472. finish_wait(sk_sleep(sk), &wait);
  1473. return timeo;
  1474. }
  1475. /*
  1476. * Generic send/receive buffer handlers
  1477. */
  1478. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1479. unsigned long data_len, int noblock,
  1480. int *errcode)
  1481. {
  1482. struct sk_buff *skb;
  1483. gfp_t gfp_mask;
  1484. long timeo;
  1485. int err;
  1486. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1487. err = -EMSGSIZE;
  1488. if (npages > MAX_SKB_FRAGS)
  1489. goto failure;
  1490. gfp_mask = sk->sk_allocation;
  1491. if (gfp_mask & __GFP_WAIT)
  1492. gfp_mask |= __GFP_REPEAT;
  1493. timeo = sock_sndtimeo(sk, noblock);
  1494. while (1) {
  1495. err = sock_error(sk);
  1496. if (err != 0)
  1497. goto failure;
  1498. err = -EPIPE;
  1499. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1500. goto failure;
  1501. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1502. skb = alloc_skb(header_len, gfp_mask);
  1503. if (skb) {
  1504. int i;
  1505. /* No pages, we're done... */
  1506. if (!data_len)
  1507. break;
  1508. skb->truesize += data_len;
  1509. skb_shinfo(skb)->nr_frags = npages;
  1510. for (i = 0; i < npages; i++) {
  1511. struct page *page;
  1512. page = alloc_pages(sk->sk_allocation, 0);
  1513. if (!page) {
  1514. err = -ENOBUFS;
  1515. skb_shinfo(skb)->nr_frags = i;
  1516. kfree_skb(skb);
  1517. goto failure;
  1518. }
  1519. __skb_fill_page_desc(skb, i,
  1520. page, 0,
  1521. (data_len >= PAGE_SIZE ?
  1522. PAGE_SIZE :
  1523. data_len));
  1524. data_len -= PAGE_SIZE;
  1525. }
  1526. /* Full success... */
  1527. break;
  1528. }
  1529. err = -ENOBUFS;
  1530. goto failure;
  1531. }
  1532. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1533. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1534. err = -EAGAIN;
  1535. if (!timeo)
  1536. goto failure;
  1537. if (signal_pending(current))
  1538. goto interrupted;
  1539. timeo = sock_wait_for_wmem(sk, timeo);
  1540. }
  1541. skb_set_owner_w(skb, sk);
  1542. return skb;
  1543. interrupted:
  1544. err = sock_intr_errno(timeo);
  1545. failure:
  1546. *errcode = err;
  1547. return NULL;
  1548. }
  1549. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1550. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1551. int noblock, int *errcode)
  1552. {
  1553. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1554. }
  1555. EXPORT_SYMBOL(sock_alloc_send_skb);
  1556. /* On 32bit arches, an skb frag is limited to 2^15 */
  1557. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1558. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1559. {
  1560. int order;
  1561. if (pfrag->page) {
  1562. if (atomic_read(&pfrag->page->_count) == 1) {
  1563. pfrag->offset = 0;
  1564. return true;
  1565. }
  1566. if (pfrag->offset < pfrag->size)
  1567. return true;
  1568. put_page(pfrag->page);
  1569. }
  1570. /* We restrict high order allocations to users that can afford to wait */
  1571. order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
  1572. do {
  1573. gfp_t gfp = sk->sk_allocation;
  1574. if (order)
  1575. gfp |= __GFP_COMP | __GFP_NOWARN;
  1576. pfrag->page = alloc_pages(gfp, order);
  1577. if (likely(pfrag->page)) {
  1578. pfrag->offset = 0;
  1579. pfrag->size = PAGE_SIZE << order;
  1580. return true;
  1581. }
  1582. } while (--order >= 0);
  1583. sk_enter_memory_pressure(sk);
  1584. sk_stream_moderate_sndbuf(sk);
  1585. return false;
  1586. }
  1587. EXPORT_SYMBOL(sk_page_frag_refill);
  1588. static void __lock_sock(struct sock *sk)
  1589. __releases(&sk->sk_lock.slock)
  1590. __acquires(&sk->sk_lock.slock)
  1591. {
  1592. DEFINE_WAIT(wait);
  1593. for (;;) {
  1594. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1595. TASK_UNINTERRUPTIBLE);
  1596. spin_unlock_bh(&sk->sk_lock.slock);
  1597. schedule();
  1598. spin_lock_bh(&sk->sk_lock.slock);
  1599. if (!sock_owned_by_user(sk))
  1600. break;
  1601. }
  1602. finish_wait(&sk->sk_lock.wq, &wait);
  1603. }
  1604. static void __release_sock(struct sock *sk)
  1605. __releases(&sk->sk_lock.slock)
  1606. __acquires(&sk->sk_lock.slock)
  1607. {
  1608. struct sk_buff *skb = sk->sk_backlog.head;
  1609. do {
  1610. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1611. bh_unlock_sock(sk);
  1612. do {
  1613. struct sk_buff *next = skb->next;
  1614. prefetch(next);
  1615. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1616. skb->next = NULL;
  1617. sk_backlog_rcv(sk, skb);
  1618. /*
  1619. * We are in process context here with softirqs
  1620. * disabled, use cond_resched_softirq() to preempt.
  1621. * This is safe to do because we've taken the backlog
  1622. * queue private:
  1623. */
  1624. cond_resched_softirq();
  1625. skb = next;
  1626. } while (skb != NULL);
  1627. bh_lock_sock(sk);
  1628. } while ((skb = sk->sk_backlog.head) != NULL);
  1629. /*
  1630. * Doing the zeroing here guarantee we can not loop forever
  1631. * while a wild producer attempts to flood us.
  1632. */
  1633. sk->sk_backlog.len = 0;
  1634. }
  1635. /**
  1636. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1637. * @sk: sock to wait on
  1638. * @timeo: for how long
  1639. *
  1640. * Now socket state including sk->sk_err is changed only under lock,
  1641. * hence we may omit checks after joining wait queue.
  1642. * We check receive queue before schedule() only as optimization;
  1643. * it is very likely that release_sock() added new data.
  1644. */
  1645. int sk_wait_data(struct sock *sk, long *timeo)
  1646. {
  1647. int rc;
  1648. DEFINE_WAIT(wait);
  1649. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1650. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1651. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1652. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1653. finish_wait(sk_sleep(sk), &wait);
  1654. return rc;
  1655. }
  1656. EXPORT_SYMBOL(sk_wait_data);
  1657. /**
  1658. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1659. * @sk: socket
  1660. * @size: memory size to allocate
  1661. * @kind: allocation type
  1662. *
  1663. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1664. * rmem allocation. This function assumes that protocols which have
  1665. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1666. */
  1667. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1668. {
  1669. struct proto *prot = sk->sk_prot;
  1670. int amt = sk_mem_pages(size);
  1671. long allocated;
  1672. int parent_status = UNDER_LIMIT;
  1673. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1674. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1675. /* Under limit. */
  1676. if (parent_status == UNDER_LIMIT &&
  1677. allocated <= sk_prot_mem_limits(sk, 0)) {
  1678. sk_leave_memory_pressure(sk);
  1679. return 1;
  1680. }
  1681. /* Under pressure. (we or our parents) */
  1682. if ((parent_status > SOFT_LIMIT) ||
  1683. allocated > sk_prot_mem_limits(sk, 1))
  1684. sk_enter_memory_pressure(sk);
  1685. /* Over hard limit (we or our parents) */
  1686. if ((parent_status == OVER_LIMIT) ||
  1687. (allocated > sk_prot_mem_limits(sk, 2)))
  1688. goto suppress_allocation;
  1689. /* guarantee minimum buffer size under pressure */
  1690. if (kind == SK_MEM_RECV) {
  1691. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1692. return 1;
  1693. } else { /* SK_MEM_SEND */
  1694. if (sk->sk_type == SOCK_STREAM) {
  1695. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1696. return 1;
  1697. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1698. prot->sysctl_wmem[0])
  1699. return 1;
  1700. }
  1701. if (sk_has_memory_pressure(sk)) {
  1702. int alloc;
  1703. if (!sk_under_memory_pressure(sk))
  1704. return 1;
  1705. alloc = sk_sockets_allocated_read_positive(sk);
  1706. if (sk_prot_mem_limits(sk, 2) > alloc *
  1707. sk_mem_pages(sk->sk_wmem_queued +
  1708. atomic_read(&sk->sk_rmem_alloc) +
  1709. sk->sk_forward_alloc))
  1710. return 1;
  1711. }
  1712. suppress_allocation:
  1713. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1714. sk_stream_moderate_sndbuf(sk);
  1715. /* Fail only if socket is _under_ its sndbuf.
  1716. * In this case we cannot block, so that we have to fail.
  1717. */
  1718. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1719. return 1;
  1720. }
  1721. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1722. /* Alas. Undo changes. */
  1723. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1724. sk_memory_allocated_sub(sk, amt);
  1725. return 0;
  1726. }
  1727. EXPORT_SYMBOL(__sk_mem_schedule);
  1728. /**
  1729. * __sk_reclaim - reclaim memory_allocated
  1730. * @sk: socket
  1731. */
  1732. void __sk_mem_reclaim(struct sock *sk)
  1733. {
  1734. sk_memory_allocated_sub(sk,
  1735. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1736. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1737. if (sk_under_memory_pressure(sk) &&
  1738. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1739. sk_leave_memory_pressure(sk);
  1740. }
  1741. EXPORT_SYMBOL(__sk_mem_reclaim);
  1742. /*
  1743. * Set of default routines for initialising struct proto_ops when
  1744. * the protocol does not support a particular function. In certain
  1745. * cases where it makes no sense for a protocol to have a "do nothing"
  1746. * function, some default processing is provided.
  1747. */
  1748. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1749. {
  1750. return -EOPNOTSUPP;
  1751. }
  1752. EXPORT_SYMBOL(sock_no_bind);
  1753. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1754. int len, int flags)
  1755. {
  1756. return -EOPNOTSUPP;
  1757. }
  1758. EXPORT_SYMBOL(sock_no_connect);
  1759. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1760. {
  1761. return -EOPNOTSUPP;
  1762. }
  1763. EXPORT_SYMBOL(sock_no_socketpair);
  1764. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1765. {
  1766. return -EOPNOTSUPP;
  1767. }
  1768. EXPORT_SYMBOL(sock_no_accept);
  1769. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1770. int *len, int peer)
  1771. {
  1772. return -EOPNOTSUPP;
  1773. }
  1774. EXPORT_SYMBOL(sock_no_getname);
  1775. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1776. {
  1777. return 0;
  1778. }
  1779. EXPORT_SYMBOL(sock_no_poll);
  1780. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1781. {
  1782. return -EOPNOTSUPP;
  1783. }
  1784. EXPORT_SYMBOL(sock_no_ioctl);
  1785. int sock_no_listen(struct socket *sock, int backlog)
  1786. {
  1787. return -EOPNOTSUPP;
  1788. }
  1789. EXPORT_SYMBOL(sock_no_listen);
  1790. int sock_no_shutdown(struct socket *sock, int how)
  1791. {
  1792. return -EOPNOTSUPP;
  1793. }
  1794. EXPORT_SYMBOL(sock_no_shutdown);
  1795. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1796. char __user *optval, unsigned int optlen)
  1797. {
  1798. return -EOPNOTSUPP;
  1799. }
  1800. EXPORT_SYMBOL(sock_no_setsockopt);
  1801. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1802. char __user *optval, int __user *optlen)
  1803. {
  1804. return -EOPNOTSUPP;
  1805. }
  1806. EXPORT_SYMBOL(sock_no_getsockopt);
  1807. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1808. size_t len)
  1809. {
  1810. return -EOPNOTSUPP;
  1811. }
  1812. EXPORT_SYMBOL(sock_no_sendmsg);
  1813. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1814. size_t len, int flags)
  1815. {
  1816. return -EOPNOTSUPP;
  1817. }
  1818. EXPORT_SYMBOL(sock_no_recvmsg);
  1819. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1820. {
  1821. /* Mirror missing mmap method error code */
  1822. return -ENODEV;
  1823. }
  1824. EXPORT_SYMBOL(sock_no_mmap);
  1825. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1826. {
  1827. ssize_t res;
  1828. struct msghdr msg = {.msg_flags = flags};
  1829. struct kvec iov;
  1830. char *kaddr = kmap(page);
  1831. iov.iov_base = kaddr + offset;
  1832. iov.iov_len = size;
  1833. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1834. kunmap(page);
  1835. return res;
  1836. }
  1837. EXPORT_SYMBOL(sock_no_sendpage);
  1838. /*
  1839. * Default Socket Callbacks
  1840. */
  1841. static void sock_def_wakeup(struct sock *sk)
  1842. {
  1843. struct socket_wq *wq;
  1844. rcu_read_lock();
  1845. wq = rcu_dereference(sk->sk_wq);
  1846. if (wq_has_sleeper(wq))
  1847. wake_up_interruptible_all(&wq->wait);
  1848. rcu_read_unlock();
  1849. }
  1850. static void sock_def_error_report(struct sock *sk)
  1851. {
  1852. struct socket_wq *wq;
  1853. rcu_read_lock();
  1854. wq = rcu_dereference(sk->sk_wq);
  1855. if (wq_has_sleeper(wq))
  1856. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1857. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1858. rcu_read_unlock();
  1859. }
  1860. static void sock_def_readable(struct sock *sk, int len)
  1861. {
  1862. struct socket_wq *wq;
  1863. rcu_read_lock();
  1864. wq = rcu_dereference(sk->sk_wq);
  1865. if (wq_has_sleeper(wq))
  1866. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1867. POLLRDNORM | POLLRDBAND);
  1868. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1869. rcu_read_unlock();
  1870. }
  1871. static void sock_def_write_space(struct sock *sk)
  1872. {
  1873. struct socket_wq *wq;
  1874. rcu_read_lock();
  1875. /* Do not wake up a writer until he can make "significant"
  1876. * progress. --DaveM
  1877. */
  1878. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1879. wq = rcu_dereference(sk->sk_wq);
  1880. if (wq_has_sleeper(wq))
  1881. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1882. POLLWRNORM | POLLWRBAND);
  1883. /* Should agree with poll, otherwise some programs break */
  1884. if (sock_writeable(sk))
  1885. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1886. }
  1887. rcu_read_unlock();
  1888. }
  1889. static void sock_def_destruct(struct sock *sk)
  1890. {
  1891. kfree(sk->sk_protinfo);
  1892. }
  1893. void sk_send_sigurg(struct sock *sk)
  1894. {
  1895. if (sk->sk_socket && sk->sk_socket->file)
  1896. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1897. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1898. }
  1899. EXPORT_SYMBOL(sk_send_sigurg);
  1900. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1901. unsigned long expires)
  1902. {
  1903. if (!mod_timer(timer, expires))
  1904. sock_hold(sk);
  1905. }
  1906. EXPORT_SYMBOL(sk_reset_timer);
  1907. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1908. {
  1909. if (del_timer(timer))
  1910. __sock_put(sk);
  1911. }
  1912. EXPORT_SYMBOL(sk_stop_timer);
  1913. void sock_init_data(struct socket *sock, struct sock *sk)
  1914. {
  1915. skb_queue_head_init(&sk->sk_receive_queue);
  1916. skb_queue_head_init(&sk->sk_write_queue);
  1917. skb_queue_head_init(&sk->sk_error_queue);
  1918. #ifdef CONFIG_NET_DMA
  1919. skb_queue_head_init(&sk->sk_async_wait_queue);
  1920. #endif
  1921. sk->sk_send_head = NULL;
  1922. init_timer(&sk->sk_timer);
  1923. sk->sk_allocation = GFP_KERNEL;
  1924. sk->sk_rcvbuf = sysctl_rmem_default;
  1925. sk->sk_sndbuf = sysctl_wmem_default;
  1926. sk->sk_state = TCP_CLOSE;
  1927. sk_set_socket(sk, sock);
  1928. sock_set_flag(sk, SOCK_ZAPPED);
  1929. if (sock) {
  1930. sk->sk_type = sock->type;
  1931. sk->sk_wq = sock->wq;
  1932. sock->sk = sk;
  1933. } else
  1934. sk->sk_wq = NULL;
  1935. spin_lock_init(&sk->sk_dst_lock);
  1936. rwlock_init(&sk->sk_callback_lock);
  1937. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1938. af_callback_keys + sk->sk_family,
  1939. af_family_clock_key_strings[sk->sk_family]);
  1940. sk->sk_state_change = sock_def_wakeup;
  1941. sk->sk_data_ready = sock_def_readable;
  1942. sk->sk_write_space = sock_def_write_space;
  1943. sk->sk_error_report = sock_def_error_report;
  1944. sk->sk_destruct = sock_def_destruct;
  1945. sk->sk_frag.page = NULL;
  1946. sk->sk_frag.offset = 0;
  1947. sk->sk_peek_off = -1;
  1948. sk->sk_peer_pid = NULL;
  1949. sk->sk_peer_cred = NULL;
  1950. sk->sk_write_pending = 0;
  1951. sk->sk_rcvlowat = 1;
  1952. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1953. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1954. sk->sk_stamp = ktime_set(-1L, 0);
  1955. /*
  1956. * Before updating sk_refcnt, we must commit prior changes to memory
  1957. * (Documentation/RCU/rculist_nulls.txt for details)
  1958. */
  1959. smp_wmb();
  1960. atomic_set(&sk->sk_refcnt, 1);
  1961. atomic_set(&sk->sk_drops, 0);
  1962. }
  1963. EXPORT_SYMBOL(sock_init_data);
  1964. void lock_sock_nested(struct sock *sk, int subclass)
  1965. {
  1966. might_sleep();
  1967. spin_lock_bh(&sk->sk_lock.slock);
  1968. if (sk->sk_lock.owned)
  1969. __lock_sock(sk);
  1970. sk->sk_lock.owned = 1;
  1971. spin_unlock(&sk->sk_lock.slock);
  1972. /*
  1973. * The sk_lock has mutex_lock() semantics here:
  1974. */
  1975. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1976. local_bh_enable();
  1977. }
  1978. EXPORT_SYMBOL(lock_sock_nested);
  1979. void release_sock(struct sock *sk)
  1980. {
  1981. /*
  1982. * The sk_lock has mutex_unlock() semantics:
  1983. */
  1984. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1985. spin_lock_bh(&sk->sk_lock.slock);
  1986. if (sk->sk_backlog.tail)
  1987. __release_sock(sk);
  1988. if (sk->sk_prot->release_cb)
  1989. sk->sk_prot->release_cb(sk);
  1990. sk->sk_lock.owned = 0;
  1991. if (waitqueue_active(&sk->sk_lock.wq))
  1992. wake_up(&sk->sk_lock.wq);
  1993. spin_unlock_bh(&sk->sk_lock.slock);
  1994. }
  1995. EXPORT_SYMBOL(release_sock);
  1996. /**
  1997. * lock_sock_fast - fast version of lock_sock
  1998. * @sk: socket
  1999. *
  2000. * This version should be used for very small section, where process wont block
  2001. * return false if fast path is taken
  2002. * sk_lock.slock locked, owned = 0, BH disabled
  2003. * return true if slow path is taken
  2004. * sk_lock.slock unlocked, owned = 1, BH enabled
  2005. */
  2006. bool lock_sock_fast(struct sock *sk)
  2007. {
  2008. might_sleep();
  2009. spin_lock_bh(&sk->sk_lock.slock);
  2010. if (!sk->sk_lock.owned)
  2011. /*
  2012. * Note : We must disable BH
  2013. */
  2014. return false;
  2015. __lock_sock(sk);
  2016. sk->sk_lock.owned = 1;
  2017. spin_unlock(&sk->sk_lock.slock);
  2018. /*
  2019. * The sk_lock has mutex_lock() semantics here:
  2020. */
  2021. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2022. local_bh_enable();
  2023. return true;
  2024. }
  2025. EXPORT_SYMBOL(lock_sock_fast);
  2026. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2027. {
  2028. struct timeval tv;
  2029. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2030. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2031. tv = ktime_to_timeval(sk->sk_stamp);
  2032. if (tv.tv_sec == -1)
  2033. return -ENOENT;
  2034. if (tv.tv_sec == 0) {
  2035. sk->sk_stamp = ktime_get_real();
  2036. tv = ktime_to_timeval(sk->sk_stamp);
  2037. }
  2038. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2039. }
  2040. EXPORT_SYMBOL(sock_get_timestamp);
  2041. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2042. {
  2043. struct timespec ts;
  2044. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2045. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2046. ts = ktime_to_timespec(sk->sk_stamp);
  2047. if (ts.tv_sec == -1)
  2048. return -ENOENT;
  2049. if (ts.tv_sec == 0) {
  2050. sk->sk_stamp = ktime_get_real();
  2051. ts = ktime_to_timespec(sk->sk_stamp);
  2052. }
  2053. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2054. }
  2055. EXPORT_SYMBOL(sock_get_timestampns);
  2056. void sock_enable_timestamp(struct sock *sk, int flag)
  2057. {
  2058. if (!sock_flag(sk, flag)) {
  2059. unsigned long previous_flags = sk->sk_flags;
  2060. sock_set_flag(sk, flag);
  2061. /*
  2062. * we just set one of the two flags which require net
  2063. * time stamping, but time stamping might have been on
  2064. * already because of the other one
  2065. */
  2066. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2067. net_enable_timestamp();
  2068. }
  2069. }
  2070. /*
  2071. * Get a socket option on an socket.
  2072. *
  2073. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2074. * asynchronous errors should be reported by getsockopt. We assume
  2075. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2076. */
  2077. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2078. char __user *optval, int __user *optlen)
  2079. {
  2080. struct sock *sk = sock->sk;
  2081. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2082. }
  2083. EXPORT_SYMBOL(sock_common_getsockopt);
  2084. #ifdef CONFIG_COMPAT
  2085. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2086. char __user *optval, int __user *optlen)
  2087. {
  2088. struct sock *sk = sock->sk;
  2089. if (sk->sk_prot->compat_getsockopt != NULL)
  2090. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2091. optval, optlen);
  2092. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2093. }
  2094. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2095. #endif
  2096. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2097. struct msghdr *msg, size_t size, int flags)
  2098. {
  2099. struct sock *sk = sock->sk;
  2100. int addr_len = 0;
  2101. int err;
  2102. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2103. flags & ~MSG_DONTWAIT, &addr_len);
  2104. if (err >= 0)
  2105. msg->msg_namelen = addr_len;
  2106. return err;
  2107. }
  2108. EXPORT_SYMBOL(sock_common_recvmsg);
  2109. /*
  2110. * Set socket options on an inet socket.
  2111. */
  2112. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2113. char __user *optval, unsigned int optlen)
  2114. {
  2115. struct sock *sk = sock->sk;
  2116. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2117. }
  2118. EXPORT_SYMBOL(sock_common_setsockopt);
  2119. #ifdef CONFIG_COMPAT
  2120. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2121. char __user *optval, unsigned int optlen)
  2122. {
  2123. struct sock *sk = sock->sk;
  2124. if (sk->sk_prot->compat_setsockopt != NULL)
  2125. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2126. optval, optlen);
  2127. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2128. }
  2129. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2130. #endif
  2131. void sk_common_release(struct sock *sk)
  2132. {
  2133. if (sk->sk_prot->destroy)
  2134. sk->sk_prot->destroy(sk);
  2135. /*
  2136. * Observation: when sock_common_release is called, processes have
  2137. * no access to socket. But net still has.
  2138. * Step one, detach it from networking:
  2139. *
  2140. * A. Remove from hash tables.
  2141. */
  2142. sk->sk_prot->unhash(sk);
  2143. /*
  2144. * In this point socket cannot receive new packets, but it is possible
  2145. * that some packets are in flight because some CPU runs receiver and
  2146. * did hash table lookup before we unhashed socket. They will achieve
  2147. * receive queue and will be purged by socket destructor.
  2148. *
  2149. * Also we still have packets pending on receive queue and probably,
  2150. * our own packets waiting in device queues. sock_destroy will drain
  2151. * receive queue, but transmitted packets will delay socket destruction
  2152. * until the last reference will be released.
  2153. */
  2154. sock_orphan(sk);
  2155. xfrm_sk_free_policy(sk);
  2156. sk_refcnt_debug_release(sk);
  2157. if (sk->sk_frag.page) {
  2158. put_page(sk->sk_frag.page);
  2159. sk->sk_frag.page = NULL;
  2160. }
  2161. sock_put(sk);
  2162. }
  2163. EXPORT_SYMBOL(sk_common_release);
  2164. #ifdef CONFIG_PROC_FS
  2165. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2166. struct prot_inuse {
  2167. int val[PROTO_INUSE_NR];
  2168. };
  2169. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2170. #ifdef CONFIG_NET_NS
  2171. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2172. {
  2173. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2174. }
  2175. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2176. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2177. {
  2178. int cpu, idx = prot->inuse_idx;
  2179. int res = 0;
  2180. for_each_possible_cpu(cpu)
  2181. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2182. return res >= 0 ? res : 0;
  2183. }
  2184. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2185. static int __net_init sock_inuse_init_net(struct net *net)
  2186. {
  2187. net->core.inuse = alloc_percpu(struct prot_inuse);
  2188. return net->core.inuse ? 0 : -ENOMEM;
  2189. }
  2190. static void __net_exit sock_inuse_exit_net(struct net *net)
  2191. {
  2192. free_percpu(net->core.inuse);
  2193. }
  2194. static struct pernet_operations net_inuse_ops = {
  2195. .init = sock_inuse_init_net,
  2196. .exit = sock_inuse_exit_net,
  2197. };
  2198. static __init int net_inuse_init(void)
  2199. {
  2200. if (register_pernet_subsys(&net_inuse_ops))
  2201. panic("Cannot initialize net inuse counters");
  2202. return 0;
  2203. }
  2204. core_initcall(net_inuse_init);
  2205. #else
  2206. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2207. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2208. {
  2209. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2210. }
  2211. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2212. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2213. {
  2214. int cpu, idx = prot->inuse_idx;
  2215. int res = 0;
  2216. for_each_possible_cpu(cpu)
  2217. res += per_cpu(prot_inuse, cpu).val[idx];
  2218. return res >= 0 ? res : 0;
  2219. }
  2220. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2221. #endif
  2222. static void assign_proto_idx(struct proto *prot)
  2223. {
  2224. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2225. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2226. pr_err("PROTO_INUSE_NR exhausted\n");
  2227. return;
  2228. }
  2229. set_bit(prot->inuse_idx, proto_inuse_idx);
  2230. }
  2231. static void release_proto_idx(struct proto *prot)
  2232. {
  2233. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2234. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2235. }
  2236. #else
  2237. static inline void assign_proto_idx(struct proto *prot)
  2238. {
  2239. }
  2240. static inline void release_proto_idx(struct proto *prot)
  2241. {
  2242. }
  2243. #endif
  2244. int proto_register(struct proto *prot, int alloc_slab)
  2245. {
  2246. if (alloc_slab) {
  2247. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2248. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2249. NULL);
  2250. if (prot->slab == NULL) {
  2251. pr_crit("%s: Can't create sock SLAB cache!\n",
  2252. prot->name);
  2253. goto out;
  2254. }
  2255. if (prot->rsk_prot != NULL) {
  2256. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2257. if (prot->rsk_prot->slab_name == NULL)
  2258. goto out_free_sock_slab;
  2259. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2260. prot->rsk_prot->obj_size, 0,
  2261. SLAB_HWCACHE_ALIGN, NULL);
  2262. if (prot->rsk_prot->slab == NULL) {
  2263. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2264. prot->name);
  2265. goto out_free_request_sock_slab_name;
  2266. }
  2267. }
  2268. if (prot->twsk_prot != NULL) {
  2269. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2270. if (prot->twsk_prot->twsk_slab_name == NULL)
  2271. goto out_free_request_sock_slab;
  2272. prot->twsk_prot->twsk_slab =
  2273. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2274. prot->twsk_prot->twsk_obj_size,
  2275. 0,
  2276. SLAB_HWCACHE_ALIGN |
  2277. prot->slab_flags,
  2278. NULL);
  2279. if (prot->twsk_prot->twsk_slab == NULL)
  2280. goto out_free_timewait_sock_slab_name;
  2281. }
  2282. }
  2283. mutex_lock(&proto_list_mutex);
  2284. list_add(&prot->node, &proto_list);
  2285. assign_proto_idx(prot);
  2286. mutex_unlock(&proto_list_mutex);
  2287. return 0;
  2288. out_free_timewait_sock_slab_name:
  2289. kfree(prot->twsk_prot->twsk_slab_name);
  2290. out_free_request_sock_slab:
  2291. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2292. kmem_cache_destroy(prot->rsk_prot->slab);
  2293. prot->rsk_prot->slab = NULL;
  2294. }
  2295. out_free_request_sock_slab_name:
  2296. if (prot->rsk_prot)
  2297. kfree(prot->rsk_prot->slab_name);
  2298. out_free_sock_slab:
  2299. kmem_cache_destroy(prot->slab);
  2300. prot->slab = NULL;
  2301. out:
  2302. return -ENOBUFS;
  2303. }
  2304. EXPORT_SYMBOL(proto_register);
  2305. void proto_unregister(struct proto *prot)
  2306. {
  2307. mutex_lock(&proto_list_mutex);
  2308. release_proto_idx(prot);
  2309. list_del(&prot->node);
  2310. mutex_unlock(&proto_list_mutex);
  2311. if (prot->slab != NULL) {
  2312. kmem_cache_destroy(prot->slab);
  2313. prot->slab = NULL;
  2314. }
  2315. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2316. kmem_cache_destroy(prot->rsk_prot->slab);
  2317. kfree(prot->rsk_prot->slab_name);
  2318. prot->rsk_prot->slab = NULL;
  2319. }
  2320. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2321. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2322. kfree(prot->twsk_prot->twsk_slab_name);
  2323. prot->twsk_prot->twsk_slab = NULL;
  2324. }
  2325. }
  2326. EXPORT_SYMBOL(proto_unregister);
  2327. #ifdef CONFIG_PROC_FS
  2328. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2329. __acquires(proto_list_mutex)
  2330. {
  2331. mutex_lock(&proto_list_mutex);
  2332. return seq_list_start_head(&proto_list, *pos);
  2333. }
  2334. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2335. {
  2336. return seq_list_next(v, &proto_list, pos);
  2337. }
  2338. static void proto_seq_stop(struct seq_file *seq, void *v)
  2339. __releases(proto_list_mutex)
  2340. {
  2341. mutex_unlock(&proto_list_mutex);
  2342. }
  2343. static char proto_method_implemented(const void *method)
  2344. {
  2345. return method == NULL ? 'n' : 'y';
  2346. }
  2347. static long sock_prot_memory_allocated(struct proto *proto)
  2348. {
  2349. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2350. }
  2351. static char *sock_prot_memory_pressure(struct proto *proto)
  2352. {
  2353. return proto->memory_pressure != NULL ?
  2354. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2355. }
  2356. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2357. {
  2358. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2359. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2360. proto->name,
  2361. proto->obj_size,
  2362. sock_prot_inuse_get(seq_file_net(seq), proto),
  2363. sock_prot_memory_allocated(proto),
  2364. sock_prot_memory_pressure(proto),
  2365. proto->max_header,
  2366. proto->slab == NULL ? "no" : "yes",
  2367. module_name(proto->owner),
  2368. proto_method_implemented(proto->close),
  2369. proto_method_implemented(proto->connect),
  2370. proto_method_implemented(proto->disconnect),
  2371. proto_method_implemented(proto->accept),
  2372. proto_method_implemented(proto->ioctl),
  2373. proto_method_implemented(proto->init),
  2374. proto_method_implemented(proto->destroy),
  2375. proto_method_implemented(proto->shutdown),
  2376. proto_method_implemented(proto->setsockopt),
  2377. proto_method_implemented(proto->getsockopt),
  2378. proto_method_implemented(proto->sendmsg),
  2379. proto_method_implemented(proto->recvmsg),
  2380. proto_method_implemented(proto->sendpage),
  2381. proto_method_implemented(proto->bind),
  2382. proto_method_implemented(proto->backlog_rcv),
  2383. proto_method_implemented(proto->hash),
  2384. proto_method_implemented(proto->unhash),
  2385. proto_method_implemented(proto->get_port),
  2386. proto_method_implemented(proto->enter_memory_pressure));
  2387. }
  2388. static int proto_seq_show(struct seq_file *seq, void *v)
  2389. {
  2390. if (v == &proto_list)
  2391. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2392. "protocol",
  2393. "size",
  2394. "sockets",
  2395. "memory",
  2396. "press",
  2397. "maxhdr",
  2398. "slab",
  2399. "module",
  2400. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2401. else
  2402. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2403. return 0;
  2404. }
  2405. static const struct seq_operations proto_seq_ops = {
  2406. .start = proto_seq_start,
  2407. .next = proto_seq_next,
  2408. .stop = proto_seq_stop,
  2409. .show = proto_seq_show,
  2410. };
  2411. static int proto_seq_open(struct inode *inode, struct file *file)
  2412. {
  2413. return seq_open_net(inode, file, &proto_seq_ops,
  2414. sizeof(struct seq_net_private));
  2415. }
  2416. static const struct file_operations proto_seq_fops = {
  2417. .owner = THIS_MODULE,
  2418. .open = proto_seq_open,
  2419. .read = seq_read,
  2420. .llseek = seq_lseek,
  2421. .release = seq_release_net,
  2422. };
  2423. static __net_init int proto_init_net(struct net *net)
  2424. {
  2425. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2426. return -ENOMEM;
  2427. return 0;
  2428. }
  2429. static __net_exit void proto_exit_net(struct net *net)
  2430. {
  2431. remove_proc_entry("protocols", net->proc_net);
  2432. }
  2433. static __net_initdata struct pernet_operations proto_net_ops = {
  2434. .init = proto_init_net,
  2435. .exit = proto_exit_net,
  2436. };
  2437. static int __init proto_init(void)
  2438. {
  2439. return register_pernet_subsys(&proto_net_ops);
  2440. }
  2441. subsys_initcall(proto_init);
  2442. #endif /* PROC_FS */