rtnetlink.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/pci.h>
  39. #include <linux/etherdevice.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/inet.h>
  42. #include <linux/netdevice.h>
  43. #include <net/ip.h>
  44. #include <net/protocol.h>
  45. #include <net/arp.h>
  46. #include <net/route.h>
  47. #include <net/udp.h>
  48. #include <net/sock.h>
  49. #include <net/pkt_sched.h>
  50. #include <net/fib_rules.h>
  51. #include <net/rtnetlink.h>
  52. #include <net/net_namespace.h>
  53. struct rtnl_link {
  54. rtnl_doit_func doit;
  55. rtnl_dumpit_func dumpit;
  56. rtnl_calcit_func calcit;
  57. };
  58. static DEFINE_MUTEX(rtnl_mutex);
  59. void rtnl_lock(void)
  60. {
  61. mutex_lock(&rtnl_mutex);
  62. }
  63. EXPORT_SYMBOL(rtnl_lock);
  64. void __rtnl_unlock(void)
  65. {
  66. mutex_unlock(&rtnl_mutex);
  67. }
  68. void rtnl_unlock(void)
  69. {
  70. /* This fellow will unlock it for us. */
  71. netdev_run_todo();
  72. }
  73. EXPORT_SYMBOL(rtnl_unlock);
  74. int rtnl_trylock(void)
  75. {
  76. return mutex_trylock(&rtnl_mutex);
  77. }
  78. EXPORT_SYMBOL(rtnl_trylock);
  79. int rtnl_is_locked(void)
  80. {
  81. return mutex_is_locked(&rtnl_mutex);
  82. }
  83. EXPORT_SYMBOL(rtnl_is_locked);
  84. #ifdef CONFIG_PROVE_LOCKING
  85. int lockdep_rtnl_is_held(void)
  86. {
  87. return lockdep_is_held(&rtnl_mutex);
  88. }
  89. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  90. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  91. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  92. static inline int rtm_msgindex(int msgtype)
  93. {
  94. int msgindex = msgtype - RTM_BASE;
  95. /*
  96. * msgindex < 0 implies someone tried to register a netlink
  97. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  98. * the message type has not been added to linux/rtnetlink.h
  99. */
  100. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  101. return msgindex;
  102. }
  103. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  104. {
  105. struct rtnl_link *tab;
  106. if (protocol <= RTNL_FAMILY_MAX)
  107. tab = rtnl_msg_handlers[protocol];
  108. else
  109. tab = NULL;
  110. if (tab == NULL || tab[msgindex].doit == NULL)
  111. tab = rtnl_msg_handlers[PF_UNSPEC];
  112. return tab[msgindex].doit;
  113. }
  114. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  115. {
  116. struct rtnl_link *tab;
  117. if (protocol <= RTNL_FAMILY_MAX)
  118. tab = rtnl_msg_handlers[protocol];
  119. else
  120. tab = NULL;
  121. if (tab == NULL || tab[msgindex].dumpit == NULL)
  122. tab = rtnl_msg_handlers[PF_UNSPEC];
  123. return tab[msgindex].dumpit;
  124. }
  125. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  126. {
  127. struct rtnl_link *tab;
  128. if (protocol <= RTNL_FAMILY_MAX)
  129. tab = rtnl_msg_handlers[protocol];
  130. else
  131. tab = NULL;
  132. if (tab == NULL || tab[msgindex].calcit == NULL)
  133. tab = rtnl_msg_handlers[PF_UNSPEC];
  134. return tab[msgindex].calcit;
  135. }
  136. /**
  137. * __rtnl_register - Register a rtnetlink message type
  138. * @protocol: Protocol family or PF_UNSPEC
  139. * @msgtype: rtnetlink message type
  140. * @doit: Function pointer called for each request message
  141. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  142. * @calcit: Function pointer to calc size of dump message
  143. *
  144. * Registers the specified function pointers (at least one of them has
  145. * to be non-NULL) to be called whenever a request message for the
  146. * specified protocol family and message type is received.
  147. *
  148. * The special protocol family PF_UNSPEC may be used to define fallback
  149. * function pointers for the case when no entry for the specific protocol
  150. * family exists.
  151. *
  152. * Returns 0 on success or a negative error code.
  153. */
  154. int __rtnl_register(int protocol, int msgtype,
  155. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  156. rtnl_calcit_func calcit)
  157. {
  158. struct rtnl_link *tab;
  159. int msgindex;
  160. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  161. msgindex = rtm_msgindex(msgtype);
  162. tab = rtnl_msg_handlers[protocol];
  163. if (tab == NULL) {
  164. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  165. if (tab == NULL)
  166. return -ENOBUFS;
  167. rtnl_msg_handlers[protocol] = tab;
  168. }
  169. if (doit)
  170. tab[msgindex].doit = doit;
  171. if (dumpit)
  172. tab[msgindex].dumpit = dumpit;
  173. if (calcit)
  174. tab[msgindex].calcit = calcit;
  175. return 0;
  176. }
  177. EXPORT_SYMBOL_GPL(__rtnl_register);
  178. /**
  179. * rtnl_register - Register a rtnetlink message type
  180. *
  181. * Identical to __rtnl_register() but panics on failure. This is useful
  182. * as failure of this function is very unlikely, it can only happen due
  183. * to lack of memory when allocating the chain to store all message
  184. * handlers for a protocol. Meant for use in init functions where lack
  185. * of memory implies no sense in continuing.
  186. */
  187. void rtnl_register(int protocol, int msgtype,
  188. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  189. rtnl_calcit_func calcit)
  190. {
  191. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  192. panic("Unable to register rtnetlink message handler, "
  193. "protocol = %d, message type = %d\n",
  194. protocol, msgtype);
  195. }
  196. EXPORT_SYMBOL_GPL(rtnl_register);
  197. /**
  198. * rtnl_unregister - Unregister a rtnetlink message type
  199. * @protocol: Protocol family or PF_UNSPEC
  200. * @msgtype: rtnetlink message type
  201. *
  202. * Returns 0 on success or a negative error code.
  203. */
  204. int rtnl_unregister(int protocol, int msgtype)
  205. {
  206. int msgindex;
  207. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  208. msgindex = rtm_msgindex(msgtype);
  209. if (rtnl_msg_handlers[protocol] == NULL)
  210. return -ENOENT;
  211. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  212. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL_GPL(rtnl_unregister);
  216. /**
  217. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  218. * @protocol : Protocol family or PF_UNSPEC
  219. *
  220. * Identical to calling rtnl_unregster() for all registered message types
  221. * of a certain protocol family.
  222. */
  223. void rtnl_unregister_all(int protocol)
  224. {
  225. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  226. kfree(rtnl_msg_handlers[protocol]);
  227. rtnl_msg_handlers[protocol] = NULL;
  228. }
  229. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  230. static LIST_HEAD(link_ops);
  231. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  232. {
  233. const struct rtnl_link_ops *ops;
  234. list_for_each_entry(ops, &link_ops, list) {
  235. if (!strcmp(ops->kind, kind))
  236. return ops;
  237. }
  238. return NULL;
  239. }
  240. /**
  241. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  242. * @ops: struct rtnl_link_ops * to register
  243. *
  244. * The caller must hold the rtnl_mutex. This function should be used
  245. * by drivers that create devices during module initialization. It
  246. * must be called before registering the devices.
  247. *
  248. * Returns 0 on success or a negative error code.
  249. */
  250. int __rtnl_link_register(struct rtnl_link_ops *ops)
  251. {
  252. if (rtnl_link_ops_get(ops->kind))
  253. return -EEXIST;
  254. if (!ops->dellink)
  255. ops->dellink = unregister_netdevice_queue;
  256. list_add_tail(&ops->list, &link_ops);
  257. return 0;
  258. }
  259. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  260. /**
  261. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  262. * @ops: struct rtnl_link_ops * to register
  263. *
  264. * Returns 0 on success or a negative error code.
  265. */
  266. int rtnl_link_register(struct rtnl_link_ops *ops)
  267. {
  268. int err;
  269. rtnl_lock();
  270. err = __rtnl_link_register(ops);
  271. rtnl_unlock();
  272. return err;
  273. }
  274. EXPORT_SYMBOL_GPL(rtnl_link_register);
  275. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  276. {
  277. struct net_device *dev;
  278. LIST_HEAD(list_kill);
  279. for_each_netdev(net, dev) {
  280. if (dev->rtnl_link_ops == ops)
  281. ops->dellink(dev, &list_kill);
  282. }
  283. unregister_netdevice_many(&list_kill);
  284. }
  285. /**
  286. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  287. * @ops: struct rtnl_link_ops * to unregister
  288. *
  289. * The caller must hold the rtnl_mutex.
  290. */
  291. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  292. {
  293. struct net *net;
  294. for_each_net(net) {
  295. __rtnl_kill_links(net, ops);
  296. }
  297. list_del(&ops->list);
  298. }
  299. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  300. /**
  301. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  302. * @ops: struct rtnl_link_ops * to unregister
  303. */
  304. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  305. {
  306. rtnl_lock();
  307. __rtnl_link_unregister(ops);
  308. rtnl_unlock();
  309. }
  310. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  311. static size_t rtnl_link_get_size(const struct net_device *dev)
  312. {
  313. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  314. size_t size;
  315. if (!ops)
  316. return 0;
  317. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  318. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  319. if (ops->get_size)
  320. /* IFLA_INFO_DATA + nested data */
  321. size += nla_total_size(sizeof(struct nlattr)) +
  322. ops->get_size(dev);
  323. if (ops->get_xstats_size)
  324. /* IFLA_INFO_XSTATS */
  325. size += nla_total_size(ops->get_xstats_size(dev));
  326. return size;
  327. }
  328. static LIST_HEAD(rtnl_af_ops);
  329. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  330. {
  331. const struct rtnl_af_ops *ops;
  332. list_for_each_entry(ops, &rtnl_af_ops, list) {
  333. if (ops->family == family)
  334. return ops;
  335. }
  336. return NULL;
  337. }
  338. /**
  339. * __rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  340. * @ops: struct rtnl_af_ops * to register
  341. *
  342. * The caller must hold the rtnl_mutex.
  343. *
  344. * Returns 0 on success or a negative error code.
  345. */
  346. int __rtnl_af_register(struct rtnl_af_ops *ops)
  347. {
  348. list_add_tail(&ops->list, &rtnl_af_ops);
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(__rtnl_af_register);
  352. /**
  353. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  354. * @ops: struct rtnl_af_ops * to register
  355. *
  356. * Returns 0 on success or a negative error code.
  357. */
  358. int rtnl_af_register(struct rtnl_af_ops *ops)
  359. {
  360. int err;
  361. rtnl_lock();
  362. err = __rtnl_af_register(ops);
  363. rtnl_unlock();
  364. return err;
  365. }
  366. EXPORT_SYMBOL_GPL(rtnl_af_register);
  367. /**
  368. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  369. * @ops: struct rtnl_af_ops * to unregister
  370. *
  371. * The caller must hold the rtnl_mutex.
  372. */
  373. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  374. {
  375. list_del(&ops->list);
  376. }
  377. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  378. /**
  379. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  380. * @ops: struct rtnl_af_ops * to unregister
  381. */
  382. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  383. {
  384. rtnl_lock();
  385. __rtnl_af_unregister(ops);
  386. rtnl_unlock();
  387. }
  388. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  389. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  390. {
  391. struct rtnl_af_ops *af_ops;
  392. size_t size;
  393. /* IFLA_AF_SPEC */
  394. size = nla_total_size(sizeof(struct nlattr));
  395. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  396. if (af_ops->get_link_af_size) {
  397. /* AF_* + nested data */
  398. size += nla_total_size(sizeof(struct nlattr)) +
  399. af_ops->get_link_af_size(dev);
  400. }
  401. }
  402. return size;
  403. }
  404. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  405. {
  406. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  407. struct nlattr *linkinfo, *data;
  408. int err = -EMSGSIZE;
  409. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  410. if (linkinfo == NULL)
  411. goto out;
  412. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  413. goto err_cancel_link;
  414. if (ops->fill_xstats) {
  415. err = ops->fill_xstats(skb, dev);
  416. if (err < 0)
  417. goto err_cancel_link;
  418. }
  419. if (ops->fill_info) {
  420. data = nla_nest_start(skb, IFLA_INFO_DATA);
  421. if (data == NULL)
  422. goto err_cancel_link;
  423. err = ops->fill_info(skb, dev);
  424. if (err < 0)
  425. goto err_cancel_data;
  426. nla_nest_end(skb, data);
  427. }
  428. nla_nest_end(skb, linkinfo);
  429. return 0;
  430. err_cancel_data:
  431. nla_nest_cancel(skb, data);
  432. err_cancel_link:
  433. nla_nest_cancel(skb, linkinfo);
  434. out:
  435. return err;
  436. }
  437. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  438. {
  439. struct sock *rtnl = net->rtnl;
  440. int err = 0;
  441. NETLINK_CB(skb).dst_group = group;
  442. if (echo)
  443. atomic_inc(&skb->users);
  444. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  445. if (echo)
  446. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  447. return err;
  448. }
  449. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  450. {
  451. struct sock *rtnl = net->rtnl;
  452. return nlmsg_unicast(rtnl, skb, pid);
  453. }
  454. EXPORT_SYMBOL(rtnl_unicast);
  455. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  456. struct nlmsghdr *nlh, gfp_t flags)
  457. {
  458. struct sock *rtnl = net->rtnl;
  459. int report = 0;
  460. if (nlh)
  461. report = nlmsg_report(nlh);
  462. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  463. }
  464. EXPORT_SYMBOL(rtnl_notify);
  465. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  466. {
  467. struct sock *rtnl = net->rtnl;
  468. netlink_set_err(rtnl, 0, group, error);
  469. }
  470. EXPORT_SYMBOL(rtnl_set_sk_err);
  471. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  472. {
  473. struct nlattr *mx;
  474. int i, valid = 0;
  475. mx = nla_nest_start(skb, RTA_METRICS);
  476. if (mx == NULL)
  477. return -ENOBUFS;
  478. for (i = 0; i < RTAX_MAX; i++) {
  479. if (metrics[i]) {
  480. valid++;
  481. if (nla_put_u32(skb, i+1, metrics[i]))
  482. goto nla_put_failure;
  483. }
  484. }
  485. if (!valid) {
  486. nla_nest_cancel(skb, mx);
  487. return 0;
  488. }
  489. return nla_nest_end(skb, mx);
  490. nla_put_failure:
  491. nla_nest_cancel(skb, mx);
  492. return -EMSGSIZE;
  493. }
  494. EXPORT_SYMBOL(rtnetlink_put_metrics);
  495. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  496. long expires, u32 error)
  497. {
  498. struct rta_cacheinfo ci = {
  499. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  500. .rta_used = dst->__use,
  501. .rta_clntref = atomic_read(&(dst->__refcnt)),
  502. .rta_error = error,
  503. .rta_id = id,
  504. };
  505. if (expires) {
  506. unsigned long clock;
  507. clock = jiffies_to_clock_t(abs(expires));
  508. clock = min_t(unsigned long, clock, INT_MAX);
  509. ci.rta_expires = (expires > 0) ? clock : -clock;
  510. }
  511. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  512. }
  513. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  514. static void set_operstate(struct net_device *dev, unsigned char transition)
  515. {
  516. unsigned char operstate = dev->operstate;
  517. switch (transition) {
  518. case IF_OPER_UP:
  519. if ((operstate == IF_OPER_DORMANT ||
  520. operstate == IF_OPER_UNKNOWN) &&
  521. !netif_dormant(dev))
  522. operstate = IF_OPER_UP;
  523. break;
  524. case IF_OPER_DORMANT:
  525. if (operstate == IF_OPER_UP ||
  526. operstate == IF_OPER_UNKNOWN)
  527. operstate = IF_OPER_DORMANT;
  528. break;
  529. }
  530. if (dev->operstate != operstate) {
  531. write_lock_bh(&dev_base_lock);
  532. dev->operstate = operstate;
  533. write_unlock_bh(&dev_base_lock);
  534. netdev_state_change(dev);
  535. }
  536. }
  537. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  538. {
  539. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  540. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  541. }
  542. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  543. const struct ifinfomsg *ifm)
  544. {
  545. unsigned int flags = ifm->ifi_flags;
  546. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  547. if (ifm->ifi_change)
  548. flags = (flags & ifm->ifi_change) |
  549. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  550. return flags;
  551. }
  552. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  553. const struct rtnl_link_stats64 *b)
  554. {
  555. a->rx_packets = b->rx_packets;
  556. a->tx_packets = b->tx_packets;
  557. a->rx_bytes = b->rx_bytes;
  558. a->tx_bytes = b->tx_bytes;
  559. a->rx_errors = b->rx_errors;
  560. a->tx_errors = b->tx_errors;
  561. a->rx_dropped = b->rx_dropped;
  562. a->tx_dropped = b->tx_dropped;
  563. a->multicast = b->multicast;
  564. a->collisions = b->collisions;
  565. a->rx_length_errors = b->rx_length_errors;
  566. a->rx_over_errors = b->rx_over_errors;
  567. a->rx_crc_errors = b->rx_crc_errors;
  568. a->rx_frame_errors = b->rx_frame_errors;
  569. a->rx_fifo_errors = b->rx_fifo_errors;
  570. a->rx_missed_errors = b->rx_missed_errors;
  571. a->tx_aborted_errors = b->tx_aborted_errors;
  572. a->tx_carrier_errors = b->tx_carrier_errors;
  573. a->tx_fifo_errors = b->tx_fifo_errors;
  574. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  575. a->tx_window_errors = b->tx_window_errors;
  576. a->rx_compressed = b->rx_compressed;
  577. a->tx_compressed = b->tx_compressed;
  578. }
  579. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  580. {
  581. memcpy(v, b, sizeof(*b));
  582. }
  583. /* All VF info */
  584. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  585. u32 ext_filter_mask)
  586. {
  587. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  588. (ext_filter_mask & RTEXT_FILTER_VF)) {
  589. int num_vfs = dev_num_vf(dev->dev.parent);
  590. size_t size = nla_total_size(sizeof(struct nlattr));
  591. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  592. size += num_vfs *
  593. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  594. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  595. nla_total_size(sizeof(struct ifla_vf_tx_rate)) +
  596. nla_total_size(sizeof(struct ifla_vf_spoofchk)));
  597. return size;
  598. } else
  599. return 0;
  600. }
  601. static size_t rtnl_port_size(const struct net_device *dev)
  602. {
  603. size_t port_size = nla_total_size(4) /* PORT_VF */
  604. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  605. + nla_total_size(sizeof(struct ifla_port_vsi))
  606. /* PORT_VSI_TYPE */
  607. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  608. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  609. + nla_total_size(1) /* PROT_VDP_REQUEST */
  610. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  611. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  612. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  613. + port_size;
  614. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  615. + port_size;
  616. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
  617. return 0;
  618. if (dev_num_vf(dev->dev.parent))
  619. return port_self_size + vf_ports_size +
  620. vf_port_size * dev_num_vf(dev->dev.parent);
  621. else
  622. return port_self_size;
  623. }
  624. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  625. u32 ext_filter_mask)
  626. {
  627. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  628. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  629. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  630. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  631. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  632. + nla_total_size(sizeof(struct rtnl_link_stats))
  633. + nla_total_size(sizeof(struct rtnl_link_stats64))
  634. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  635. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  636. + nla_total_size(4) /* IFLA_TXQLEN */
  637. + nla_total_size(4) /* IFLA_WEIGHT */
  638. + nla_total_size(4) /* IFLA_MTU */
  639. + nla_total_size(4) /* IFLA_LINK */
  640. + nla_total_size(4) /* IFLA_MASTER */
  641. + nla_total_size(1) /* IFLA_CARRIER */
  642. + nla_total_size(4) /* IFLA_PROMISCUITY */
  643. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  644. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  645. + nla_total_size(1) /* IFLA_OPERSTATE */
  646. + nla_total_size(1) /* IFLA_LINKMODE */
  647. + nla_total_size(ext_filter_mask
  648. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  649. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  650. + rtnl_port_size(dev) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  651. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  652. + rtnl_link_get_af_size(dev); /* IFLA_AF_SPEC */
  653. }
  654. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  655. {
  656. struct nlattr *vf_ports;
  657. struct nlattr *vf_port;
  658. int vf;
  659. int err;
  660. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  661. if (!vf_ports)
  662. return -EMSGSIZE;
  663. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  664. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  665. if (!vf_port)
  666. goto nla_put_failure;
  667. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  668. goto nla_put_failure;
  669. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  670. if (err == -EMSGSIZE)
  671. goto nla_put_failure;
  672. if (err) {
  673. nla_nest_cancel(skb, vf_port);
  674. continue;
  675. }
  676. nla_nest_end(skb, vf_port);
  677. }
  678. nla_nest_end(skb, vf_ports);
  679. return 0;
  680. nla_put_failure:
  681. nla_nest_cancel(skb, vf_ports);
  682. return -EMSGSIZE;
  683. }
  684. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  685. {
  686. struct nlattr *port_self;
  687. int err;
  688. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  689. if (!port_self)
  690. return -EMSGSIZE;
  691. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  692. if (err) {
  693. nla_nest_cancel(skb, port_self);
  694. return (err == -EMSGSIZE) ? err : 0;
  695. }
  696. nla_nest_end(skb, port_self);
  697. return 0;
  698. }
  699. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev)
  700. {
  701. int err;
  702. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
  703. return 0;
  704. err = rtnl_port_self_fill(skb, dev);
  705. if (err)
  706. return err;
  707. if (dev_num_vf(dev->dev.parent)) {
  708. err = rtnl_vf_ports_fill(skb, dev);
  709. if (err)
  710. return err;
  711. }
  712. return 0;
  713. }
  714. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  715. int type, u32 pid, u32 seq, u32 change,
  716. unsigned int flags, u32 ext_filter_mask)
  717. {
  718. struct ifinfomsg *ifm;
  719. struct nlmsghdr *nlh;
  720. struct rtnl_link_stats64 temp;
  721. const struct rtnl_link_stats64 *stats;
  722. struct nlattr *attr, *af_spec;
  723. struct rtnl_af_ops *af_ops;
  724. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  725. ASSERT_RTNL();
  726. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  727. if (nlh == NULL)
  728. return -EMSGSIZE;
  729. ifm = nlmsg_data(nlh);
  730. ifm->ifi_family = AF_UNSPEC;
  731. ifm->__ifi_pad = 0;
  732. ifm->ifi_type = dev->type;
  733. ifm->ifi_index = dev->ifindex;
  734. ifm->ifi_flags = dev_get_flags(dev);
  735. ifm->ifi_change = change;
  736. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  737. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  738. nla_put_u8(skb, IFLA_OPERSTATE,
  739. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  740. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  741. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  742. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  743. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  744. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  745. #ifdef CONFIG_RPS
  746. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  747. #endif
  748. (dev->ifindex != dev->iflink &&
  749. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  750. (upper_dev &&
  751. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  752. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  753. (dev->qdisc &&
  754. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  755. (dev->ifalias &&
  756. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)))
  757. goto nla_put_failure;
  758. if (1) {
  759. struct rtnl_link_ifmap map = {
  760. .mem_start = dev->mem_start,
  761. .mem_end = dev->mem_end,
  762. .base_addr = dev->base_addr,
  763. .irq = dev->irq,
  764. .dma = dev->dma,
  765. .port = dev->if_port,
  766. };
  767. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  768. goto nla_put_failure;
  769. }
  770. if (dev->addr_len) {
  771. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  772. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  773. goto nla_put_failure;
  774. }
  775. attr = nla_reserve(skb, IFLA_STATS,
  776. sizeof(struct rtnl_link_stats));
  777. if (attr == NULL)
  778. goto nla_put_failure;
  779. stats = dev_get_stats(dev, &temp);
  780. copy_rtnl_link_stats(nla_data(attr), stats);
  781. attr = nla_reserve(skb, IFLA_STATS64,
  782. sizeof(struct rtnl_link_stats64));
  783. if (attr == NULL)
  784. goto nla_put_failure;
  785. copy_rtnl_link_stats64(nla_data(attr), stats);
  786. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  787. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  788. goto nla_put_failure;
  789. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  790. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  791. int i;
  792. struct nlattr *vfinfo, *vf;
  793. int num_vfs = dev_num_vf(dev->dev.parent);
  794. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  795. if (!vfinfo)
  796. goto nla_put_failure;
  797. for (i = 0; i < num_vfs; i++) {
  798. struct ifla_vf_info ivi;
  799. struct ifla_vf_mac vf_mac;
  800. struct ifla_vf_vlan vf_vlan;
  801. struct ifla_vf_tx_rate vf_tx_rate;
  802. struct ifla_vf_spoofchk vf_spoofchk;
  803. /*
  804. * Not all SR-IOV capable drivers support the
  805. * spoofcheck query. Preset to -1 so the user
  806. * space tool can detect that the driver didn't
  807. * report anything.
  808. */
  809. ivi.spoofchk = -1;
  810. memset(ivi.mac, 0, sizeof(ivi.mac));
  811. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  812. break;
  813. vf_mac.vf =
  814. vf_vlan.vf =
  815. vf_tx_rate.vf =
  816. vf_spoofchk.vf = ivi.vf;
  817. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  818. vf_vlan.vlan = ivi.vlan;
  819. vf_vlan.qos = ivi.qos;
  820. vf_tx_rate.rate = ivi.tx_rate;
  821. vf_spoofchk.setting = ivi.spoofchk;
  822. vf = nla_nest_start(skb, IFLA_VF_INFO);
  823. if (!vf) {
  824. nla_nest_cancel(skb, vfinfo);
  825. goto nla_put_failure;
  826. }
  827. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  828. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  829. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  830. &vf_tx_rate) ||
  831. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  832. &vf_spoofchk))
  833. goto nla_put_failure;
  834. nla_nest_end(skb, vf);
  835. }
  836. nla_nest_end(skb, vfinfo);
  837. }
  838. if (rtnl_port_fill(skb, dev))
  839. goto nla_put_failure;
  840. if (dev->rtnl_link_ops) {
  841. if (rtnl_link_fill(skb, dev) < 0)
  842. goto nla_put_failure;
  843. }
  844. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  845. goto nla_put_failure;
  846. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  847. if (af_ops->fill_link_af) {
  848. struct nlattr *af;
  849. int err;
  850. if (!(af = nla_nest_start(skb, af_ops->family)))
  851. goto nla_put_failure;
  852. err = af_ops->fill_link_af(skb, dev);
  853. /*
  854. * Caller may return ENODATA to indicate that there
  855. * was no data to be dumped. This is not an error, it
  856. * means we should trim the attribute header and
  857. * continue.
  858. */
  859. if (err == -ENODATA)
  860. nla_nest_cancel(skb, af);
  861. else if (err < 0)
  862. goto nla_put_failure;
  863. nla_nest_end(skb, af);
  864. }
  865. }
  866. nla_nest_end(skb, af_spec);
  867. return nlmsg_end(skb, nlh);
  868. nla_put_failure:
  869. nlmsg_cancel(skb, nlh);
  870. return -EMSGSIZE;
  871. }
  872. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  873. {
  874. struct net *net = sock_net(skb->sk);
  875. int h, s_h;
  876. int idx = 0, s_idx;
  877. struct net_device *dev;
  878. struct hlist_head *head;
  879. struct nlattr *tb[IFLA_MAX+1];
  880. u32 ext_filter_mask = 0;
  881. s_h = cb->args[0];
  882. s_idx = cb->args[1];
  883. rcu_read_lock();
  884. cb->seq = net->dev_base_seq;
  885. if (nlmsg_parse(cb->nlh, sizeof(struct rtgenmsg), tb, IFLA_MAX,
  886. ifla_policy) >= 0) {
  887. if (tb[IFLA_EXT_MASK])
  888. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  889. }
  890. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  891. idx = 0;
  892. head = &net->dev_index_head[h];
  893. hlist_for_each_entry_rcu(dev, head, index_hlist) {
  894. if (idx < s_idx)
  895. goto cont;
  896. if (rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  897. NETLINK_CB(cb->skb).portid,
  898. cb->nlh->nlmsg_seq, 0,
  899. NLM_F_MULTI,
  900. ext_filter_mask) <= 0)
  901. goto out;
  902. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  903. cont:
  904. idx++;
  905. }
  906. }
  907. out:
  908. rcu_read_unlock();
  909. cb->args[1] = idx;
  910. cb->args[0] = h;
  911. return skb->len;
  912. }
  913. const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  914. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  915. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  916. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  917. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  918. [IFLA_MTU] = { .type = NLA_U32 },
  919. [IFLA_LINK] = { .type = NLA_U32 },
  920. [IFLA_MASTER] = { .type = NLA_U32 },
  921. [IFLA_CARRIER] = { .type = NLA_U8 },
  922. [IFLA_TXQLEN] = { .type = NLA_U32 },
  923. [IFLA_WEIGHT] = { .type = NLA_U32 },
  924. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  925. [IFLA_LINKMODE] = { .type = NLA_U8 },
  926. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  927. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  928. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  929. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  930. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  931. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  932. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  933. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  934. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  935. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  936. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  937. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  938. };
  939. EXPORT_SYMBOL(ifla_policy);
  940. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  941. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  942. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  943. };
  944. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  945. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  946. };
  947. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  948. [IFLA_VF_MAC] = { .type = NLA_BINARY,
  949. .len = sizeof(struct ifla_vf_mac) },
  950. [IFLA_VF_VLAN] = { .type = NLA_BINARY,
  951. .len = sizeof(struct ifla_vf_vlan) },
  952. [IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
  953. .len = sizeof(struct ifla_vf_tx_rate) },
  954. [IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
  955. .len = sizeof(struct ifla_vf_spoofchk) },
  956. };
  957. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  958. [IFLA_PORT_VF] = { .type = NLA_U32 },
  959. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  960. .len = PORT_PROFILE_MAX },
  961. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  962. .len = sizeof(struct ifla_port_vsi)},
  963. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  964. .len = PORT_UUID_MAX },
  965. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  966. .len = PORT_UUID_MAX },
  967. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  968. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  969. };
  970. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  971. {
  972. struct net *net;
  973. /* Examine the link attributes and figure out which
  974. * network namespace we are talking about.
  975. */
  976. if (tb[IFLA_NET_NS_PID])
  977. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  978. else if (tb[IFLA_NET_NS_FD])
  979. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  980. else
  981. net = get_net(src_net);
  982. return net;
  983. }
  984. EXPORT_SYMBOL(rtnl_link_get_net);
  985. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  986. {
  987. if (dev) {
  988. if (tb[IFLA_ADDRESS] &&
  989. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  990. return -EINVAL;
  991. if (tb[IFLA_BROADCAST] &&
  992. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  993. return -EINVAL;
  994. }
  995. if (tb[IFLA_AF_SPEC]) {
  996. struct nlattr *af;
  997. int rem, err;
  998. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  999. const struct rtnl_af_ops *af_ops;
  1000. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1001. return -EAFNOSUPPORT;
  1002. if (!af_ops->set_link_af)
  1003. return -EOPNOTSUPP;
  1004. if (af_ops->validate_link_af) {
  1005. err = af_ops->validate_link_af(dev, af);
  1006. if (err < 0)
  1007. return err;
  1008. }
  1009. }
  1010. }
  1011. return 0;
  1012. }
  1013. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1014. {
  1015. int rem, err = -EINVAL;
  1016. struct nlattr *vf;
  1017. const struct net_device_ops *ops = dev->netdev_ops;
  1018. nla_for_each_nested(vf, attr, rem) {
  1019. switch (nla_type(vf)) {
  1020. case IFLA_VF_MAC: {
  1021. struct ifla_vf_mac *ivm;
  1022. ivm = nla_data(vf);
  1023. err = -EOPNOTSUPP;
  1024. if (ops->ndo_set_vf_mac)
  1025. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1026. ivm->mac);
  1027. break;
  1028. }
  1029. case IFLA_VF_VLAN: {
  1030. struct ifla_vf_vlan *ivv;
  1031. ivv = nla_data(vf);
  1032. err = -EOPNOTSUPP;
  1033. if (ops->ndo_set_vf_vlan)
  1034. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1035. ivv->vlan,
  1036. ivv->qos);
  1037. break;
  1038. }
  1039. case IFLA_VF_TX_RATE: {
  1040. struct ifla_vf_tx_rate *ivt;
  1041. ivt = nla_data(vf);
  1042. err = -EOPNOTSUPP;
  1043. if (ops->ndo_set_vf_tx_rate)
  1044. err = ops->ndo_set_vf_tx_rate(dev, ivt->vf,
  1045. ivt->rate);
  1046. break;
  1047. }
  1048. case IFLA_VF_SPOOFCHK: {
  1049. struct ifla_vf_spoofchk *ivs;
  1050. ivs = nla_data(vf);
  1051. err = -EOPNOTSUPP;
  1052. if (ops->ndo_set_vf_spoofchk)
  1053. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1054. ivs->setting);
  1055. break;
  1056. }
  1057. default:
  1058. err = -EINVAL;
  1059. break;
  1060. }
  1061. if (err)
  1062. break;
  1063. }
  1064. return err;
  1065. }
  1066. static int do_set_master(struct net_device *dev, int ifindex)
  1067. {
  1068. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1069. const struct net_device_ops *ops;
  1070. int err;
  1071. if (upper_dev) {
  1072. if (upper_dev->ifindex == ifindex)
  1073. return 0;
  1074. ops = upper_dev->netdev_ops;
  1075. if (ops->ndo_del_slave) {
  1076. err = ops->ndo_del_slave(upper_dev, dev);
  1077. if (err)
  1078. return err;
  1079. } else {
  1080. return -EOPNOTSUPP;
  1081. }
  1082. }
  1083. if (ifindex) {
  1084. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1085. if (!upper_dev)
  1086. return -EINVAL;
  1087. ops = upper_dev->netdev_ops;
  1088. if (ops->ndo_add_slave) {
  1089. err = ops->ndo_add_slave(upper_dev, dev);
  1090. if (err)
  1091. return err;
  1092. } else {
  1093. return -EOPNOTSUPP;
  1094. }
  1095. }
  1096. return 0;
  1097. }
  1098. static int do_setlink(struct net_device *dev, struct ifinfomsg *ifm,
  1099. struct nlattr **tb, char *ifname, int modified)
  1100. {
  1101. const struct net_device_ops *ops = dev->netdev_ops;
  1102. int err;
  1103. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1104. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1105. if (IS_ERR(net)) {
  1106. err = PTR_ERR(net);
  1107. goto errout;
  1108. }
  1109. if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1110. err = -EPERM;
  1111. goto errout;
  1112. }
  1113. err = dev_change_net_namespace(dev, net, ifname);
  1114. put_net(net);
  1115. if (err)
  1116. goto errout;
  1117. modified = 1;
  1118. }
  1119. if (tb[IFLA_MAP]) {
  1120. struct rtnl_link_ifmap *u_map;
  1121. struct ifmap k_map;
  1122. if (!ops->ndo_set_config) {
  1123. err = -EOPNOTSUPP;
  1124. goto errout;
  1125. }
  1126. if (!netif_device_present(dev)) {
  1127. err = -ENODEV;
  1128. goto errout;
  1129. }
  1130. u_map = nla_data(tb[IFLA_MAP]);
  1131. k_map.mem_start = (unsigned long) u_map->mem_start;
  1132. k_map.mem_end = (unsigned long) u_map->mem_end;
  1133. k_map.base_addr = (unsigned short) u_map->base_addr;
  1134. k_map.irq = (unsigned char) u_map->irq;
  1135. k_map.dma = (unsigned char) u_map->dma;
  1136. k_map.port = (unsigned char) u_map->port;
  1137. err = ops->ndo_set_config(dev, &k_map);
  1138. if (err < 0)
  1139. goto errout;
  1140. modified = 1;
  1141. }
  1142. if (tb[IFLA_ADDRESS]) {
  1143. struct sockaddr *sa;
  1144. int len;
  1145. len = sizeof(sa_family_t) + dev->addr_len;
  1146. sa = kmalloc(len, GFP_KERNEL);
  1147. if (!sa) {
  1148. err = -ENOMEM;
  1149. goto errout;
  1150. }
  1151. sa->sa_family = dev->type;
  1152. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1153. dev->addr_len);
  1154. err = dev_set_mac_address(dev, sa);
  1155. kfree(sa);
  1156. if (err)
  1157. goto errout;
  1158. modified = 1;
  1159. }
  1160. if (tb[IFLA_MTU]) {
  1161. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1162. if (err < 0)
  1163. goto errout;
  1164. modified = 1;
  1165. }
  1166. if (tb[IFLA_GROUP]) {
  1167. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1168. modified = 1;
  1169. }
  1170. /*
  1171. * Interface selected by interface index but interface
  1172. * name provided implies that a name change has been
  1173. * requested.
  1174. */
  1175. if (ifm->ifi_index > 0 && ifname[0]) {
  1176. err = dev_change_name(dev, ifname);
  1177. if (err < 0)
  1178. goto errout;
  1179. modified = 1;
  1180. }
  1181. if (tb[IFLA_IFALIAS]) {
  1182. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1183. nla_len(tb[IFLA_IFALIAS]));
  1184. if (err < 0)
  1185. goto errout;
  1186. modified = 1;
  1187. }
  1188. if (tb[IFLA_BROADCAST]) {
  1189. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1190. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1191. }
  1192. if (ifm->ifi_flags || ifm->ifi_change) {
  1193. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1194. if (err < 0)
  1195. goto errout;
  1196. }
  1197. if (tb[IFLA_MASTER]) {
  1198. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1199. if (err)
  1200. goto errout;
  1201. modified = 1;
  1202. }
  1203. if (tb[IFLA_CARRIER]) {
  1204. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1205. if (err)
  1206. goto errout;
  1207. modified = 1;
  1208. }
  1209. if (tb[IFLA_TXQLEN])
  1210. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1211. if (tb[IFLA_OPERSTATE])
  1212. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1213. if (tb[IFLA_LINKMODE]) {
  1214. write_lock_bh(&dev_base_lock);
  1215. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1216. write_unlock_bh(&dev_base_lock);
  1217. }
  1218. if (tb[IFLA_VFINFO_LIST]) {
  1219. struct nlattr *attr;
  1220. int rem;
  1221. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1222. if (nla_type(attr) != IFLA_VF_INFO) {
  1223. err = -EINVAL;
  1224. goto errout;
  1225. }
  1226. err = do_setvfinfo(dev, attr);
  1227. if (err < 0)
  1228. goto errout;
  1229. modified = 1;
  1230. }
  1231. }
  1232. err = 0;
  1233. if (tb[IFLA_VF_PORTS]) {
  1234. struct nlattr *port[IFLA_PORT_MAX+1];
  1235. struct nlattr *attr;
  1236. int vf;
  1237. int rem;
  1238. err = -EOPNOTSUPP;
  1239. if (!ops->ndo_set_vf_port)
  1240. goto errout;
  1241. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1242. if (nla_type(attr) != IFLA_VF_PORT)
  1243. continue;
  1244. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1245. attr, ifla_port_policy);
  1246. if (err < 0)
  1247. goto errout;
  1248. if (!port[IFLA_PORT_VF]) {
  1249. err = -EOPNOTSUPP;
  1250. goto errout;
  1251. }
  1252. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1253. err = ops->ndo_set_vf_port(dev, vf, port);
  1254. if (err < 0)
  1255. goto errout;
  1256. modified = 1;
  1257. }
  1258. }
  1259. err = 0;
  1260. if (tb[IFLA_PORT_SELF]) {
  1261. struct nlattr *port[IFLA_PORT_MAX+1];
  1262. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1263. tb[IFLA_PORT_SELF], ifla_port_policy);
  1264. if (err < 0)
  1265. goto errout;
  1266. err = -EOPNOTSUPP;
  1267. if (ops->ndo_set_vf_port)
  1268. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1269. if (err < 0)
  1270. goto errout;
  1271. modified = 1;
  1272. }
  1273. if (tb[IFLA_AF_SPEC]) {
  1274. struct nlattr *af;
  1275. int rem;
  1276. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1277. const struct rtnl_af_ops *af_ops;
  1278. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1279. BUG();
  1280. err = af_ops->set_link_af(dev, af);
  1281. if (err < 0)
  1282. goto errout;
  1283. modified = 1;
  1284. }
  1285. }
  1286. err = 0;
  1287. errout:
  1288. if (err < 0 && modified)
  1289. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1290. dev->name);
  1291. return err;
  1292. }
  1293. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1294. {
  1295. struct net *net = sock_net(skb->sk);
  1296. struct ifinfomsg *ifm;
  1297. struct net_device *dev;
  1298. int err;
  1299. struct nlattr *tb[IFLA_MAX+1];
  1300. char ifname[IFNAMSIZ];
  1301. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1302. if (err < 0)
  1303. goto errout;
  1304. if (tb[IFLA_IFNAME])
  1305. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1306. else
  1307. ifname[0] = '\0';
  1308. err = -EINVAL;
  1309. ifm = nlmsg_data(nlh);
  1310. if (ifm->ifi_index > 0)
  1311. dev = __dev_get_by_index(net, ifm->ifi_index);
  1312. else if (tb[IFLA_IFNAME])
  1313. dev = __dev_get_by_name(net, ifname);
  1314. else
  1315. goto errout;
  1316. if (dev == NULL) {
  1317. err = -ENODEV;
  1318. goto errout;
  1319. }
  1320. err = validate_linkmsg(dev, tb);
  1321. if (err < 0)
  1322. goto errout;
  1323. err = do_setlink(dev, ifm, tb, ifname, 0);
  1324. errout:
  1325. return err;
  1326. }
  1327. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1328. {
  1329. struct net *net = sock_net(skb->sk);
  1330. const struct rtnl_link_ops *ops;
  1331. struct net_device *dev;
  1332. struct ifinfomsg *ifm;
  1333. char ifname[IFNAMSIZ];
  1334. struct nlattr *tb[IFLA_MAX+1];
  1335. int err;
  1336. LIST_HEAD(list_kill);
  1337. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1338. if (err < 0)
  1339. return err;
  1340. if (tb[IFLA_IFNAME])
  1341. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1342. ifm = nlmsg_data(nlh);
  1343. if (ifm->ifi_index > 0)
  1344. dev = __dev_get_by_index(net, ifm->ifi_index);
  1345. else if (tb[IFLA_IFNAME])
  1346. dev = __dev_get_by_name(net, ifname);
  1347. else
  1348. return -EINVAL;
  1349. if (!dev)
  1350. return -ENODEV;
  1351. ops = dev->rtnl_link_ops;
  1352. if (!ops)
  1353. return -EOPNOTSUPP;
  1354. ops->dellink(dev, &list_kill);
  1355. unregister_netdevice_many(&list_kill);
  1356. list_del(&list_kill);
  1357. return 0;
  1358. }
  1359. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1360. {
  1361. unsigned int old_flags;
  1362. int err;
  1363. old_flags = dev->flags;
  1364. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1365. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1366. if (err < 0)
  1367. return err;
  1368. }
  1369. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1370. rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
  1371. __dev_notify_flags(dev, old_flags);
  1372. return 0;
  1373. }
  1374. EXPORT_SYMBOL(rtnl_configure_link);
  1375. struct net_device *rtnl_create_link(struct net *net,
  1376. char *ifname, const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1377. {
  1378. int err;
  1379. struct net_device *dev;
  1380. unsigned int num_tx_queues = 1;
  1381. unsigned int num_rx_queues = 1;
  1382. if (tb[IFLA_NUM_TX_QUEUES])
  1383. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1384. else if (ops->get_num_tx_queues)
  1385. num_tx_queues = ops->get_num_tx_queues();
  1386. if (tb[IFLA_NUM_RX_QUEUES])
  1387. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1388. else if (ops->get_num_rx_queues)
  1389. num_rx_queues = ops->get_num_rx_queues();
  1390. err = -ENOMEM;
  1391. dev = alloc_netdev_mqs(ops->priv_size, ifname, ops->setup,
  1392. num_tx_queues, num_rx_queues);
  1393. if (!dev)
  1394. goto err;
  1395. dev_net_set(dev, net);
  1396. dev->rtnl_link_ops = ops;
  1397. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1398. if (tb[IFLA_MTU])
  1399. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1400. if (tb[IFLA_ADDRESS]) {
  1401. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1402. nla_len(tb[IFLA_ADDRESS]));
  1403. dev->addr_assign_type = NET_ADDR_SET;
  1404. }
  1405. if (tb[IFLA_BROADCAST])
  1406. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1407. nla_len(tb[IFLA_BROADCAST]));
  1408. if (tb[IFLA_TXQLEN])
  1409. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1410. if (tb[IFLA_OPERSTATE])
  1411. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1412. if (tb[IFLA_LINKMODE])
  1413. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1414. if (tb[IFLA_GROUP])
  1415. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1416. return dev;
  1417. err:
  1418. return ERR_PTR(err);
  1419. }
  1420. EXPORT_SYMBOL(rtnl_create_link);
  1421. static int rtnl_group_changelink(struct net *net, int group,
  1422. struct ifinfomsg *ifm,
  1423. struct nlattr **tb)
  1424. {
  1425. struct net_device *dev;
  1426. int err;
  1427. for_each_netdev(net, dev) {
  1428. if (dev->group == group) {
  1429. err = do_setlink(dev, ifm, tb, NULL, 0);
  1430. if (err < 0)
  1431. return err;
  1432. }
  1433. }
  1434. return 0;
  1435. }
  1436. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1437. {
  1438. struct net *net = sock_net(skb->sk);
  1439. const struct rtnl_link_ops *ops;
  1440. struct net_device *dev;
  1441. struct ifinfomsg *ifm;
  1442. char kind[MODULE_NAME_LEN];
  1443. char ifname[IFNAMSIZ];
  1444. struct nlattr *tb[IFLA_MAX+1];
  1445. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1446. int err;
  1447. #ifdef CONFIG_MODULES
  1448. replay:
  1449. #endif
  1450. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1451. if (err < 0)
  1452. return err;
  1453. if (tb[IFLA_IFNAME])
  1454. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1455. else
  1456. ifname[0] = '\0';
  1457. ifm = nlmsg_data(nlh);
  1458. if (ifm->ifi_index > 0)
  1459. dev = __dev_get_by_index(net, ifm->ifi_index);
  1460. else {
  1461. if (ifname[0])
  1462. dev = __dev_get_by_name(net, ifname);
  1463. else
  1464. dev = NULL;
  1465. }
  1466. err = validate_linkmsg(dev, tb);
  1467. if (err < 0)
  1468. return err;
  1469. if (tb[IFLA_LINKINFO]) {
  1470. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1471. tb[IFLA_LINKINFO], ifla_info_policy);
  1472. if (err < 0)
  1473. return err;
  1474. } else
  1475. memset(linkinfo, 0, sizeof(linkinfo));
  1476. if (linkinfo[IFLA_INFO_KIND]) {
  1477. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1478. ops = rtnl_link_ops_get(kind);
  1479. } else {
  1480. kind[0] = '\0';
  1481. ops = NULL;
  1482. }
  1483. if (1) {
  1484. struct nlattr *attr[ops ? ops->maxtype + 1 : 0], **data = NULL;
  1485. struct net *dest_net;
  1486. if (ops) {
  1487. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1488. err = nla_parse_nested(attr, ops->maxtype,
  1489. linkinfo[IFLA_INFO_DATA],
  1490. ops->policy);
  1491. if (err < 0)
  1492. return err;
  1493. data = attr;
  1494. }
  1495. if (ops->validate) {
  1496. err = ops->validate(tb, data);
  1497. if (err < 0)
  1498. return err;
  1499. }
  1500. }
  1501. if (dev) {
  1502. int modified = 0;
  1503. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1504. return -EEXIST;
  1505. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1506. return -EOPNOTSUPP;
  1507. if (linkinfo[IFLA_INFO_DATA]) {
  1508. if (!ops || ops != dev->rtnl_link_ops ||
  1509. !ops->changelink)
  1510. return -EOPNOTSUPP;
  1511. err = ops->changelink(dev, tb, data);
  1512. if (err < 0)
  1513. return err;
  1514. modified = 1;
  1515. }
  1516. return do_setlink(dev, ifm, tb, ifname, modified);
  1517. }
  1518. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1519. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1520. return rtnl_group_changelink(net,
  1521. nla_get_u32(tb[IFLA_GROUP]),
  1522. ifm, tb);
  1523. return -ENODEV;
  1524. }
  1525. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1526. return -EOPNOTSUPP;
  1527. if (!ops) {
  1528. #ifdef CONFIG_MODULES
  1529. if (kind[0]) {
  1530. __rtnl_unlock();
  1531. request_module("rtnl-link-%s", kind);
  1532. rtnl_lock();
  1533. ops = rtnl_link_ops_get(kind);
  1534. if (ops)
  1535. goto replay;
  1536. }
  1537. #endif
  1538. return -EOPNOTSUPP;
  1539. }
  1540. if (!ifname[0])
  1541. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1542. dest_net = rtnl_link_get_net(net, tb);
  1543. if (IS_ERR(dest_net))
  1544. return PTR_ERR(dest_net);
  1545. dev = rtnl_create_link(dest_net, ifname, ops, tb);
  1546. if (IS_ERR(dev)) {
  1547. err = PTR_ERR(dev);
  1548. goto out;
  1549. }
  1550. dev->ifindex = ifm->ifi_index;
  1551. if (ops->newlink)
  1552. err = ops->newlink(net, dev, tb, data);
  1553. else
  1554. err = register_netdevice(dev);
  1555. if (err < 0 && !IS_ERR(dev))
  1556. free_netdev(dev);
  1557. if (err < 0)
  1558. goto out;
  1559. err = rtnl_configure_link(dev, ifm);
  1560. if (err < 0)
  1561. unregister_netdevice(dev);
  1562. out:
  1563. put_net(dest_net);
  1564. return err;
  1565. }
  1566. }
  1567. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  1568. {
  1569. struct net *net = sock_net(skb->sk);
  1570. struct ifinfomsg *ifm;
  1571. char ifname[IFNAMSIZ];
  1572. struct nlattr *tb[IFLA_MAX+1];
  1573. struct net_device *dev = NULL;
  1574. struct sk_buff *nskb;
  1575. int err;
  1576. u32 ext_filter_mask = 0;
  1577. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1578. if (err < 0)
  1579. return err;
  1580. if (tb[IFLA_IFNAME])
  1581. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1582. if (tb[IFLA_EXT_MASK])
  1583. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1584. ifm = nlmsg_data(nlh);
  1585. if (ifm->ifi_index > 0)
  1586. dev = __dev_get_by_index(net, ifm->ifi_index);
  1587. else if (tb[IFLA_IFNAME])
  1588. dev = __dev_get_by_name(net, ifname);
  1589. else
  1590. return -EINVAL;
  1591. if (dev == NULL)
  1592. return -ENODEV;
  1593. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1594. if (nskb == NULL)
  1595. return -ENOBUFS;
  1596. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  1597. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1598. if (err < 0) {
  1599. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1600. WARN_ON(err == -EMSGSIZE);
  1601. kfree_skb(nskb);
  1602. } else
  1603. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  1604. return err;
  1605. }
  1606. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1607. {
  1608. struct net *net = sock_net(skb->sk);
  1609. struct net_device *dev;
  1610. struct nlattr *tb[IFLA_MAX+1];
  1611. u32 ext_filter_mask = 0;
  1612. u16 min_ifinfo_dump_size = 0;
  1613. if (nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, IFLA_MAX,
  1614. ifla_policy) >= 0) {
  1615. if (tb[IFLA_EXT_MASK])
  1616. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1617. }
  1618. if (!ext_filter_mask)
  1619. return NLMSG_GOODSIZE;
  1620. /*
  1621. * traverse the list of net devices and compute the minimum
  1622. * buffer size based upon the filter mask.
  1623. */
  1624. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1625. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1626. if_nlmsg_size(dev,
  1627. ext_filter_mask));
  1628. }
  1629. return min_ifinfo_dump_size;
  1630. }
  1631. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1632. {
  1633. int idx;
  1634. int s_idx = cb->family;
  1635. if (s_idx == 0)
  1636. s_idx = 1;
  1637. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1638. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1639. if (idx < s_idx || idx == PF_PACKET)
  1640. continue;
  1641. if (rtnl_msg_handlers[idx] == NULL ||
  1642. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1643. continue;
  1644. if (idx > s_idx)
  1645. memset(&cb->args[0], 0, sizeof(cb->args));
  1646. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1647. break;
  1648. }
  1649. cb->family = idx;
  1650. return skb->len;
  1651. }
  1652. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change)
  1653. {
  1654. struct net *net = dev_net(dev);
  1655. struct sk_buff *skb;
  1656. int err = -ENOBUFS;
  1657. size_t if_info_size;
  1658. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), GFP_KERNEL);
  1659. if (skb == NULL)
  1660. goto errout;
  1661. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1662. if (err < 0) {
  1663. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1664. WARN_ON(err == -EMSGSIZE);
  1665. kfree_skb(skb);
  1666. goto errout;
  1667. }
  1668. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
  1669. return;
  1670. errout:
  1671. if (err < 0)
  1672. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1673. }
  1674. EXPORT_SYMBOL(rtmsg_ifinfo);
  1675. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  1676. struct net_device *dev,
  1677. u8 *addr, u32 pid, u32 seq,
  1678. int type, unsigned int flags)
  1679. {
  1680. struct nlmsghdr *nlh;
  1681. struct ndmsg *ndm;
  1682. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), NLM_F_MULTI);
  1683. if (!nlh)
  1684. return -EMSGSIZE;
  1685. ndm = nlmsg_data(nlh);
  1686. ndm->ndm_family = AF_BRIDGE;
  1687. ndm->ndm_pad1 = 0;
  1688. ndm->ndm_pad2 = 0;
  1689. ndm->ndm_flags = flags;
  1690. ndm->ndm_type = 0;
  1691. ndm->ndm_ifindex = dev->ifindex;
  1692. ndm->ndm_state = NUD_PERMANENT;
  1693. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  1694. goto nla_put_failure;
  1695. return nlmsg_end(skb, nlh);
  1696. nla_put_failure:
  1697. nlmsg_cancel(skb, nlh);
  1698. return -EMSGSIZE;
  1699. }
  1700. static inline size_t rtnl_fdb_nlmsg_size(void)
  1701. {
  1702. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  1703. }
  1704. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  1705. {
  1706. struct net *net = dev_net(dev);
  1707. struct sk_buff *skb;
  1708. int err = -ENOBUFS;
  1709. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  1710. if (!skb)
  1711. goto errout;
  1712. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF);
  1713. if (err < 0) {
  1714. kfree_skb(skb);
  1715. goto errout;
  1716. }
  1717. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  1718. return;
  1719. errout:
  1720. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  1721. }
  1722. /**
  1723. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  1724. */
  1725. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  1726. struct nlattr *tb[],
  1727. struct net_device *dev,
  1728. const unsigned char *addr,
  1729. u16 flags)
  1730. {
  1731. int err = -EINVAL;
  1732. /* If aging addresses are supported device will need to
  1733. * implement its own handler for this.
  1734. */
  1735. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  1736. pr_info("%s: FDB only supports static addresses\n", dev->name);
  1737. return err;
  1738. }
  1739. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  1740. err = dev_uc_add_excl(dev, addr);
  1741. else if (is_multicast_ether_addr(addr))
  1742. err = dev_mc_add_excl(dev, addr);
  1743. /* Only return duplicate errors if NLM_F_EXCL is set */
  1744. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  1745. err = 0;
  1746. return err;
  1747. }
  1748. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  1749. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  1750. {
  1751. struct net *net = sock_net(skb->sk);
  1752. struct ndmsg *ndm;
  1753. struct nlattr *tb[NDA_MAX+1];
  1754. struct net_device *dev;
  1755. u8 *addr;
  1756. int err;
  1757. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  1758. if (err < 0)
  1759. return err;
  1760. ndm = nlmsg_data(nlh);
  1761. if (ndm->ndm_ifindex == 0) {
  1762. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  1763. return -EINVAL;
  1764. }
  1765. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  1766. if (dev == NULL) {
  1767. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  1768. return -ENODEV;
  1769. }
  1770. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  1771. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  1772. return -EINVAL;
  1773. }
  1774. addr = nla_data(tb[NDA_LLADDR]);
  1775. if (is_zero_ether_addr(addr)) {
  1776. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ether address\n");
  1777. return -EINVAL;
  1778. }
  1779. err = -EOPNOTSUPP;
  1780. /* Support fdb on master device the net/bridge default case */
  1781. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  1782. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  1783. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1784. const struct net_device_ops *ops = br_dev->netdev_ops;
  1785. err = ops->ndo_fdb_add(ndm, tb, dev, addr, nlh->nlmsg_flags);
  1786. if (err)
  1787. goto out;
  1788. else
  1789. ndm->ndm_flags &= ~NTF_MASTER;
  1790. }
  1791. /* Embedded bridge, macvlan, and any other device support */
  1792. if ((ndm->ndm_flags & NTF_SELF)) {
  1793. if (dev->netdev_ops->ndo_fdb_add)
  1794. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  1795. nlh->nlmsg_flags);
  1796. else
  1797. err = ndo_dflt_fdb_add(ndm, tb, dev, addr,
  1798. nlh->nlmsg_flags);
  1799. if (!err) {
  1800. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  1801. ndm->ndm_flags &= ~NTF_SELF;
  1802. }
  1803. }
  1804. out:
  1805. return err;
  1806. }
  1807. /**
  1808. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  1809. */
  1810. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  1811. struct nlattr *tb[],
  1812. struct net_device *dev,
  1813. const unsigned char *addr)
  1814. {
  1815. int err = -EOPNOTSUPP;
  1816. /* If aging addresses are supported device will need to
  1817. * implement its own handler for this.
  1818. */
  1819. if (ndm->ndm_state & NUD_PERMANENT) {
  1820. pr_info("%s: FDB only supports static addresses\n", dev->name);
  1821. return -EINVAL;
  1822. }
  1823. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  1824. err = dev_uc_del(dev, addr);
  1825. else if (is_multicast_ether_addr(addr))
  1826. err = dev_mc_del(dev, addr);
  1827. else
  1828. err = -EINVAL;
  1829. return err;
  1830. }
  1831. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  1832. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  1833. {
  1834. struct net *net = sock_net(skb->sk);
  1835. struct ndmsg *ndm;
  1836. struct nlattr *tb[NDA_MAX+1];
  1837. struct net_device *dev;
  1838. int err = -EINVAL;
  1839. __u8 *addr;
  1840. if (!capable(CAP_NET_ADMIN))
  1841. return -EPERM;
  1842. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  1843. if (err < 0)
  1844. return err;
  1845. ndm = nlmsg_data(nlh);
  1846. if (ndm->ndm_ifindex == 0) {
  1847. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  1848. return -EINVAL;
  1849. }
  1850. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  1851. if (dev == NULL) {
  1852. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  1853. return -ENODEV;
  1854. }
  1855. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  1856. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  1857. return -EINVAL;
  1858. }
  1859. addr = nla_data(tb[NDA_LLADDR]);
  1860. if (!is_valid_ether_addr(addr)) {
  1861. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ether address\n");
  1862. return -EINVAL;
  1863. }
  1864. err = -EOPNOTSUPP;
  1865. /* Support fdb on master device the net/bridge default case */
  1866. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  1867. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  1868. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1869. const struct net_device_ops *ops = br_dev->netdev_ops;
  1870. if (ops->ndo_fdb_del)
  1871. err = ops->ndo_fdb_del(ndm, tb, dev, addr);
  1872. if (err)
  1873. goto out;
  1874. else
  1875. ndm->ndm_flags &= ~NTF_MASTER;
  1876. }
  1877. /* Embedded bridge, macvlan, and any other device support */
  1878. if (ndm->ndm_flags & NTF_SELF) {
  1879. if (dev->netdev_ops->ndo_fdb_del)
  1880. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr);
  1881. else
  1882. err = ndo_dflt_fdb_del(ndm, tb, dev, addr);
  1883. if (!err) {
  1884. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  1885. ndm->ndm_flags &= ~NTF_SELF;
  1886. }
  1887. }
  1888. out:
  1889. return err;
  1890. }
  1891. static int nlmsg_populate_fdb(struct sk_buff *skb,
  1892. struct netlink_callback *cb,
  1893. struct net_device *dev,
  1894. int *idx,
  1895. struct netdev_hw_addr_list *list)
  1896. {
  1897. struct netdev_hw_addr *ha;
  1898. int err;
  1899. u32 portid, seq;
  1900. portid = NETLINK_CB(cb->skb).portid;
  1901. seq = cb->nlh->nlmsg_seq;
  1902. list_for_each_entry(ha, &list->list, list) {
  1903. if (*idx < cb->args[0])
  1904. goto skip;
  1905. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  1906. portid, seq,
  1907. RTM_NEWNEIGH, NTF_SELF);
  1908. if (err < 0)
  1909. return err;
  1910. skip:
  1911. *idx += 1;
  1912. }
  1913. return 0;
  1914. }
  1915. /**
  1916. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  1917. * @nlh: netlink message header
  1918. * @dev: netdevice
  1919. *
  1920. * Default netdevice operation to dump the existing unicast address list.
  1921. * Returns zero on success.
  1922. */
  1923. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  1924. struct netlink_callback *cb,
  1925. struct net_device *dev,
  1926. int idx)
  1927. {
  1928. int err;
  1929. netif_addr_lock_bh(dev);
  1930. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  1931. if (err)
  1932. goto out;
  1933. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  1934. out:
  1935. netif_addr_unlock_bh(dev);
  1936. return idx;
  1937. }
  1938. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  1939. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  1940. {
  1941. int idx = 0;
  1942. struct net *net = sock_net(skb->sk);
  1943. struct net_device *dev;
  1944. rcu_read_lock();
  1945. for_each_netdev_rcu(net, dev) {
  1946. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  1947. struct net_device *br_dev;
  1948. const struct net_device_ops *ops;
  1949. br_dev = netdev_master_upper_dev_get(dev);
  1950. ops = br_dev->netdev_ops;
  1951. if (ops->ndo_fdb_dump)
  1952. idx = ops->ndo_fdb_dump(skb, cb, dev, idx);
  1953. }
  1954. if (dev->netdev_ops->ndo_fdb_dump)
  1955. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, idx);
  1956. else
  1957. ndo_dflt_fdb_dump(skb, cb, dev, idx);
  1958. }
  1959. rcu_read_unlock();
  1960. cb->args[0] = idx;
  1961. return skb->len;
  1962. }
  1963. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  1964. struct net_device *dev, u16 mode)
  1965. {
  1966. struct nlmsghdr *nlh;
  1967. struct ifinfomsg *ifm;
  1968. struct nlattr *br_afspec;
  1969. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  1970. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1971. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
  1972. if (nlh == NULL)
  1973. return -EMSGSIZE;
  1974. ifm = nlmsg_data(nlh);
  1975. ifm->ifi_family = AF_BRIDGE;
  1976. ifm->__ifi_pad = 0;
  1977. ifm->ifi_type = dev->type;
  1978. ifm->ifi_index = dev->ifindex;
  1979. ifm->ifi_flags = dev_get_flags(dev);
  1980. ifm->ifi_change = 0;
  1981. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  1982. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  1983. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  1984. (br_dev &&
  1985. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  1986. (dev->addr_len &&
  1987. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  1988. (dev->ifindex != dev->iflink &&
  1989. nla_put_u32(skb, IFLA_LINK, dev->iflink)))
  1990. goto nla_put_failure;
  1991. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  1992. if (!br_afspec)
  1993. goto nla_put_failure;
  1994. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF) ||
  1995. nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  1996. nla_nest_cancel(skb, br_afspec);
  1997. goto nla_put_failure;
  1998. }
  1999. nla_nest_end(skb, br_afspec);
  2000. return nlmsg_end(skb, nlh);
  2001. nla_put_failure:
  2002. nlmsg_cancel(skb, nlh);
  2003. return -EMSGSIZE;
  2004. }
  2005. EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
  2006. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2007. {
  2008. struct net *net = sock_net(skb->sk);
  2009. struct net_device *dev;
  2010. int idx = 0;
  2011. u32 portid = NETLINK_CB(cb->skb).portid;
  2012. u32 seq = cb->nlh->nlmsg_seq;
  2013. struct nlattr *extfilt;
  2014. u32 filter_mask = 0;
  2015. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct rtgenmsg),
  2016. IFLA_EXT_MASK);
  2017. if (extfilt)
  2018. filter_mask = nla_get_u32(extfilt);
  2019. rcu_read_lock();
  2020. for_each_netdev_rcu(net, dev) {
  2021. const struct net_device_ops *ops = dev->netdev_ops;
  2022. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2023. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2024. if (idx >= cb->args[0] &&
  2025. br_dev->netdev_ops->ndo_bridge_getlink(
  2026. skb, portid, seq, dev, filter_mask) < 0)
  2027. break;
  2028. idx++;
  2029. }
  2030. if (ops->ndo_bridge_getlink) {
  2031. if (idx >= cb->args[0] &&
  2032. ops->ndo_bridge_getlink(skb, portid, seq, dev,
  2033. filter_mask) < 0)
  2034. break;
  2035. idx++;
  2036. }
  2037. }
  2038. rcu_read_unlock();
  2039. cb->args[0] = idx;
  2040. return skb->len;
  2041. }
  2042. static inline size_t bridge_nlmsg_size(void)
  2043. {
  2044. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2045. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2046. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2047. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2048. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2049. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2050. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2051. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2052. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2053. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2054. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2055. }
  2056. static int rtnl_bridge_notify(struct net_device *dev, u16 flags)
  2057. {
  2058. struct net *net = dev_net(dev);
  2059. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2060. struct sk_buff *skb;
  2061. int err = -EOPNOTSUPP;
  2062. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2063. if (!skb) {
  2064. err = -ENOMEM;
  2065. goto errout;
  2066. }
  2067. if ((!flags || (flags & BRIDGE_FLAGS_MASTER)) &&
  2068. br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2069. err = br_dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2070. if (err < 0)
  2071. goto errout;
  2072. }
  2073. if ((flags & BRIDGE_FLAGS_SELF) &&
  2074. dev->netdev_ops->ndo_bridge_getlink) {
  2075. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2076. if (err < 0)
  2077. goto errout;
  2078. }
  2079. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2080. return 0;
  2081. errout:
  2082. WARN_ON(err == -EMSGSIZE);
  2083. kfree_skb(skb);
  2084. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2085. return err;
  2086. }
  2087. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2088. {
  2089. struct net *net = sock_net(skb->sk);
  2090. struct ifinfomsg *ifm;
  2091. struct net_device *dev;
  2092. struct nlattr *br_spec, *attr = NULL;
  2093. int rem, err = -EOPNOTSUPP;
  2094. u16 oflags, flags = 0;
  2095. bool have_flags = false;
  2096. if (nlmsg_len(nlh) < sizeof(*ifm))
  2097. return -EINVAL;
  2098. ifm = nlmsg_data(nlh);
  2099. if (ifm->ifi_family != AF_BRIDGE)
  2100. return -EPFNOSUPPORT;
  2101. dev = __dev_get_by_index(net, ifm->ifi_index);
  2102. if (!dev) {
  2103. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2104. return -ENODEV;
  2105. }
  2106. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2107. if (br_spec) {
  2108. nla_for_each_nested(attr, br_spec, rem) {
  2109. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2110. have_flags = true;
  2111. flags = nla_get_u16(attr);
  2112. break;
  2113. }
  2114. }
  2115. }
  2116. oflags = flags;
  2117. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2118. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2119. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2120. err = -EOPNOTSUPP;
  2121. goto out;
  2122. }
  2123. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2124. if (err)
  2125. goto out;
  2126. flags &= ~BRIDGE_FLAGS_MASTER;
  2127. }
  2128. if ((flags & BRIDGE_FLAGS_SELF)) {
  2129. if (!dev->netdev_ops->ndo_bridge_setlink)
  2130. err = -EOPNOTSUPP;
  2131. else
  2132. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2133. if (!err)
  2134. flags &= ~BRIDGE_FLAGS_SELF;
  2135. }
  2136. if (have_flags)
  2137. memcpy(nla_data(attr), &flags, sizeof(flags));
  2138. /* Generate event to notify upper layer of bridge change */
  2139. if (!err)
  2140. err = rtnl_bridge_notify(dev, oflags);
  2141. out:
  2142. return err;
  2143. }
  2144. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2145. {
  2146. struct net *net = sock_net(skb->sk);
  2147. struct ifinfomsg *ifm;
  2148. struct net_device *dev;
  2149. struct nlattr *br_spec, *attr = NULL;
  2150. int rem, err = -EOPNOTSUPP;
  2151. u16 oflags, flags = 0;
  2152. bool have_flags = false;
  2153. if (nlmsg_len(nlh) < sizeof(*ifm))
  2154. return -EINVAL;
  2155. ifm = nlmsg_data(nlh);
  2156. if (ifm->ifi_family != AF_BRIDGE)
  2157. return -EPFNOSUPPORT;
  2158. dev = __dev_get_by_index(net, ifm->ifi_index);
  2159. if (!dev) {
  2160. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2161. return -ENODEV;
  2162. }
  2163. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2164. if (br_spec) {
  2165. nla_for_each_nested(attr, br_spec, rem) {
  2166. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2167. have_flags = true;
  2168. flags = nla_get_u16(attr);
  2169. break;
  2170. }
  2171. }
  2172. }
  2173. oflags = flags;
  2174. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2175. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2176. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2177. err = -EOPNOTSUPP;
  2178. goto out;
  2179. }
  2180. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2181. if (err)
  2182. goto out;
  2183. flags &= ~BRIDGE_FLAGS_MASTER;
  2184. }
  2185. if ((flags & BRIDGE_FLAGS_SELF)) {
  2186. if (!dev->netdev_ops->ndo_bridge_dellink)
  2187. err = -EOPNOTSUPP;
  2188. else
  2189. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2190. if (!err)
  2191. flags &= ~BRIDGE_FLAGS_SELF;
  2192. }
  2193. if (have_flags)
  2194. memcpy(nla_data(attr), &flags, sizeof(flags));
  2195. /* Generate event to notify upper layer of bridge change */
  2196. if (!err)
  2197. err = rtnl_bridge_notify(dev, oflags);
  2198. out:
  2199. return err;
  2200. }
  2201. /* Process one rtnetlink message. */
  2202. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2203. {
  2204. struct net *net = sock_net(skb->sk);
  2205. rtnl_doit_func doit;
  2206. int sz_idx, kind;
  2207. int family;
  2208. int type;
  2209. int err;
  2210. type = nlh->nlmsg_type;
  2211. if (type > RTM_MAX)
  2212. return -EOPNOTSUPP;
  2213. type -= RTM_BASE;
  2214. /* All the messages must have at least 1 byte length */
  2215. if (nlh->nlmsg_len < NLMSG_LENGTH(sizeof(struct rtgenmsg)))
  2216. return 0;
  2217. family = ((struct rtgenmsg *)NLMSG_DATA(nlh))->rtgen_family;
  2218. sz_idx = type>>2;
  2219. kind = type&3;
  2220. if (kind != 2 && !ns_capable(net->user_ns, CAP_NET_ADMIN))
  2221. return -EPERM;
  2222. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2223. struct sock *rtnl;
  2224. rtnl_dumpit_func dumpit;
  2225. rtnl_calcit_func calcit;
  2226. u16 min_dump_alloc = 0;
  2227. dumpit = rtnl_get_dumpit(family, type);
  2228. if (dumpit == NULL)
  2229. return -EOPNOTSUPP;
  2230. calcit = rtnl_get_calcit(family, type);
  2231. if (calcit)
  2232. min_dump_alloc = calcit(skb, nlh);
  2233. __rtnl_unlock();
  2234. rtnl = net->rtnl;
  2235. {
  2236. struct netlink_dump_control c = {
  2237. .dump = dumpit,
  2238. .min_dump_alloc = min_dump_alloc,
  2239. };
  2240. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2241. }
  2242. rtnl_lock();
  2243. return err;
  2244. }
  2245. doit = rtnl_get_doit(family, type);
  2246. if (doit == NULL)
  2247. return -EOPNOTSUPP;
  2248. return doit(skb, nlh);
  2249. }
  2250. static void rtnetlink_rcv(struct sk_buff *skb)
  2251. {
  2252. rtnl_lock();
  2253. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2254. rtnl_unlock();
  2255. }
  2256. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2257. {
  2258. struct net_device *dev = ptr;
  2259. switch (event) {
  2260. case NETDEV_UP:
  2261. case NETDEV_DOWN:
  2262. case NETDEV_PRE_UP:
  2263. case NETDEV_POST_INIT:
  2264. case NETDEV_REGISTER:
  2265. case NETDEV_CHANGE:
  2266. case NETDEV_PRE_TYPE_CHANGE:
  2267. case NETDEV_GOING_DOWN:
  2268. case NETDEV_UNREGISTER:
  2269. case NETDEV_UNREGISTER_FINAL:
  2270. case NETDEV_RELEASE:
  2271. case NETDEV_JOIN:
  2272. break;
  2273. default:
  2274. rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
  2275. break;
  2276. }
  2277. return NOTIFY_DONE;
  2278. }
  2279. static struct notifier_block rtnetlink_dev_notifier = {
  2280. .notifier_call = rtnetlink_event,
  2281. };
  2282. static int __net_init rtnetlink_net_init(struct net *net)
  2283. {
  2284. struct sock *sk;
  2285. struct netlink_kernel_cfg cfg = {
  2286. .groups = RTNLGRP_MAX,
  2287. .input = rtnetlink_rcv,
  2288. .cb_mutex = &rtnl_mutex,
  2289. .flags = NL_CFG_F_NONROOT_RECV,
  2290. };
  2291. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2292. if (!sk)
  2293. return -ENOMEM;
  2294. net->rtnl = sk;
  2295. return 0;
  2296. }
  2297. static void __net_exit rtnetlink_net_exit(struct net *net)
  2298. {
  2299. netlink_kernel_release(net->rtnl);
  2300. net->rtnl = NULL;
  2301. }
  2302. static struct pernet_operations rtnetlink_net_ops = {
  2303. .init = rtnetlink_net_init,
  2304. .exit = rtnetlink_net_exit,
  2305. };
  2306. void __init rtnetlink_init(void)
  2307. {
  2308. if (register_pernet_subsys(&rtnetlink_net_ops))
  2309. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2310. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2311. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2312. rtnl_dump_ifinfo, rtnl_calcit);
  2313. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2314. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2315. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2316. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2317. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2318. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2319. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2320. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2321. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2322. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2323. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2324. }