qlge_main.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  223. if (status)
  224. return status;
  225. switch (type) {
  226. case MAC_ADDR_TYPE_MULTI_MAC:
  227. case MAC_ADDR_TYPE_CAM_MAC:
  228. {
  229. status =
  230. ql_wait_reg_rdy(qdev,
  231. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  232. if (status)
  233. goto exit;
  234. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  235. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  236. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  237. status =
  238. ql_wait_reg_rdy(qdev,
  239. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  240. if (status)
  241. goto exit;
  242. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  243. status =
  244. ql_wait_reg_rdy(qdev,
  245. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  246. if (status)
  247. goto exit;
  248. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  249. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  250. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  251. status =
  252. ql_wait_reg_rdy(qdev,
  253. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  254. if (status)
  255. goto exit;
  256. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  257. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  258. status =
  259. ql_wait_reg_rdy(qdev,
  260. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  261. if (status)
  262. goto exit;
  263. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  264. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  265. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  266. status =
  267. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  268. MAC_ADDR_MR, 0);
  269. if (status)
  270. goto exit;
  271. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  272. }
  273. break;
  274. }
  275. case MAC_ADDR_TYPE_VLAN:
  276. case MAC_ADDR_TYPE_MULTI_FLTR:
  277. default:
  278. QPRINTK(qdev, IFUP, CRIT,
  279. "Address type %d not yet supported.\n", type);
  280. status = -EPERM;
  281. }
  282. exit:
  283. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  284. return status;
  285. }
  286. /* Set up a MAC, multicast or VLAN address for the
  287. * inbound frame matching.
  288. */
  289. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  290. u16 index)
  291. {
  292. u32 offset = 0;
  293. int status = 0;
  294. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  295. if (status)
  296. return status;
  297. switch (type) {
  298. case MAC_ADDR_TYPE_MULTI_MAC:
  299. case MAC_ADDR_TYPE_CAM_MAC:
  300. {
  301. u32 cam_output;
  302. u32 upper = (addr[0] << 8) | addr[1];
  303. u32 lower =
  304. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  305. (addr[5]);
  306. QPRINTK(qdev, IFUP, INFO,
  307. "Adding %s address %pM"
  308. " at index %d in the CAM.\n",
  309. ((type ==
  310. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  311. "UNICAST"), addr, index);
  312. status =
  313. ql_wait_reg_rdy(qdev,
  314. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  315. if (status)
  316. goto exit;
  317. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  318. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  319. type); /* type */
  320. ql_write32(qdev, MAC_ADDR_DATA, lower);
  321. status =
  322. ql_wait_reg_rdy(qdev,
  323. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  324. if (status)
  325. goto exit;
  326. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  327. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  328. type); /* type */
  329. ql_write32(qdev, MAC_ADDR_DATA, upper);
  330. status =
  331. ql_wait_reg_rdy(qdev,
  332. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  333. if (status)
  334. goto exit;
  335. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  336. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  337. type); /* type */
  338. /* This field should also include the queue id
  339. and possibly the function id. Right now we hardcode
  340. the route field to NIC core.
  341. */
  342. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  343. cam_output = (CAM_OUT_ROUTE_NIC |
  344. (qdev->
  345. func << CAM_OUT_FUNC_SHIFT) |
  346. (qdev->
  347. rss_ring_first_cq_id <<
  348. CAM_OUT_CQ_ID_SHIFT));
  349. if (qdev->vlgrp)
  350. cam_output |= CAM_OUT_RV;
  351. /* route to NIC core */
  352. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  353. }
  354. break;
  355. }
  356. case MAC_ADDR_TYPE_VLAN:
  357. {
  358. u32 enable_bit = *((u32 *) &addr[0]);
  359. /* For VLAN, the addr actually holds a bit that
  360. * either enables or disables the vlan id we are
  361. * addressing. It's either MAC_ADDR_E on or off.
  362. * That's bit-27 we're talking about.
  363. */
  364. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  365. (enable_bit ? "Adding" : "Removing"),
  366. index, (enable_bit ? "to" : "from"));
  367. status =
  368. ql_wait_reg_rdy(qdev,
  369. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  370. if (status)
  371. goto exit;
  372. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  373. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  374. type | /* type */
  375. enable_bit); /* enable/disable */
  376. break;
  377. }
  378. case MAC_ADDR_TYPE_MULTI_FLTR:
  379. default:
  380. QPRINTK(qdev, IFUP, CRIT,
  381. "Address type %d not yet supported.\n", type);
  382. status = -EPERM;
  383. }
  384. exit:
  385. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  386. return status;
  387. }
  388. /* Get a specific frame routing value from the CAM.
  389. * Used for debug and reg dump.
  390. */
  391. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  392. {
  393. int status = 0;
  394. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  395. if (status)
  396. goto exit;
  397. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  398. if (status)
  399. goto exit;
  400. ql_write32(qdev, RT_IDX,
  401. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  402. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  403. if (status)
  404. goto exit;
  405. *value = ql_read32(qdev, RT_DATA);
  406. exit:
  407. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  408. return status;
  409. }
  410. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  411. * to route different frame types to various inbound queues. We send broadcast/
  412. * multicast/error frames to the default queue for slow handling,
  413. * and CAM hit/RSS frames to the fast handling queues.
  414. */
  415. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  416. int enable)
  417. {
  418. int status;
  419. u32 value = 0;
  420. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  421. if (status)
  422. return status;
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  425. (enable ? "Adding" : "Removing"),
  426. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  427. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  428. ((index ==
  429. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  430. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  431. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  432. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  434. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  435. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  436. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  437. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  438. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  439. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  440. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  441. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  442. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  443. (enable ? "to" : "from"));
  444. switch (mask) {
  445. case RT_IDX_CAM_HIT:
  446. {
  447. value = RT_IDX_DST_CAM_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  460. {
  461. value = RT_IDX_DST_DFLT_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  467. {
  468. value = RT_IDX_DST_DFLT_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  474. {
  475. value = RT_IDX_DST_CAM_Q | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  481. {
  482. value = RT_IDX_DST_CAM_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  488. {
  489. value = RT_IDX_DST_RSS | /* dest */
  490. RT_IDX_TYPE_NICQ | /* type */
  491. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  492. break;
  493. }
  494. case 0: /* Clear the E-bit on an entry. */
  495. {
  496. value = RT_IDX_DST_DFLT_Q | /* dest */
  497. RT_IDX_TYPE_NICQ | /* type */
  498. (index << RT_IDX_IDX_SHIFT);/* index */
  499. break;
  500. }
  501. default:
  502. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  503. mask);
  504. status = -EPERM;
  505. goto exit;
  506. }
  507. if (value) {
  508. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  509. if (status)
  510. goto exit;
  511. value |= (enable ? RT_IDX_E : 0);
  512. ql_write32(qdev, RT_IDX, value);
  513. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  514. }
  515. exit:
  516. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  517. return status;
  518. }
  519. static void ql_enable_interrupts(struct ql_adapter *qdev)
  520. {
  521. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  522. }
  523. static void ql_disable_interrupts(struct ql_adapter *qdev)
  524. {
  525. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  526. }
  527. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  528. * Otherwise, we may have multiple outstanding workers and don't want to
  529. * enable until the last one finishes. In this case, the irq_cnt gets
  530. * incremented everytime we queue a worker and decremented everytime
  531. * a worker finishes. Once it hits zero we enable the interrupt.
  532. */
  533. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  534. {
  535. u32 var = 0;
  536. unsigned long hw_flags = 0;
  537. struct intr_context *ctx = qdev->intr_context + intr;
  538. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  539. /* Always enable if we're MSIX multi interrupts and
  540. * it's not the default (zeroeth) interrupt.
  541. */
  542. ql_write32(qdev, INTR_EN,
  543. ctx->intr_en_mask);
  544. var = ql_read32(qdev, STS);
  545. return var;
  546. }
  547. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  548. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  549. ql_write32(qdev, INTR_EN,
  550. ctx->intr_en_mask);
  551. var = ql_read32(qdev, STS);
  552. }
  553. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  554. return var;
  555. }
  556. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  557. {
  558. u32 var = 0;
  559. unsigned long hw_flags;
  560. struct intr_context *ctx;
  561. /* HW disables for us if we're MSIX multi interrupts and
  562. * it's not the default (zeroeth) interrupt.
  563. */
  564. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  565. return 0;
  566. ctx = qdev->intr_context + intr;
  567. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  568. if (!atomic_read(&ctx->irq_cnt)) {
  569. ql_write32(qdev, INTR_EN,
  570. ctx->intr_dis_mask);
  571. var = ql_read32(qdev, STS);
  572. }
  573. atomic_inc(&ctx->irq_cnt);
  574. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  575. return var;
  576. }
  577. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  578. {
  579. int i;
  580. for (i = 0; i < qdev->intr_count; i++) {
  581. /* The enable call does a atomic_dec_and_test
  582. * and enables only if the result is zero.
  583. * So we precharge it here.
  584. */
  585. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  586. i == 0))
  587. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  588. ql_enable_completion_interrupt(qdev, i);
  589. }
  590. }
  591. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  592. {
  593. int status = 0;
  594. /* wait for reg to come ready */
  595. status = ql_wait_reg_rdy(qdev,
  596. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  597. if (status)
  598. goto exit;
  599. /* set up for reg read */
  600. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  601. /* wait for reg to come ready */
  602. status = ql_wait_reg_rdy(qdev,
  603. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  604. if (status)
  605. goto exit;
  606. /* This data is stored on flash as an array of
  607. * __le32. Since ql_read32() returns cpu endian
  608. * we need to swap it back.
  609. */
  610. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  611. exit:
  612. return status;
  613. }
  614. static int ql_get_flash_params(struct ql_adapter *qdev)
  615. {
  616. int i;
  617. int status;
  618. __le32 *p = (__le32 *)&qdev->flash;
  619. u32 offset = 0;
  620. /* Second function's parameters follow the first
  621. * function's.
  622. */
  623. if (qdev->func)
  624. offset = sizeof(qdev->flash) / sizeof(u32);
  625. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  626. return -ETIMEDOUT;
  627. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  628. status = ql_read_flash_word(qdev, i+offset, p);
  629. if (status) {
  630. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  631. goto exit;
  632. }
  633. }
  634. exit:
  635. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  636. return status;
  637. }
  638. /* xgmac register are located behind the xgmac_addr and xgmac_data
  639. * register pair. Each read/write requires us to wait for the ready
  640. * bit before reading/writing the data.
  641. */
  642. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  643. {
  644. int status;
  645. /* wait for reg to come ready */
  646. status = ql_wait_reg_rdy(qdev,
  647. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  648. if (status)
  649. return status;
  650. /* write the data to the data reg */
  651. ql_write32(qdev, XGMAC_DATA, data);
  652. /* trigger the write */
  653. ql_write32(qdev, XGMAC_ADDR, reg);
  654. return status;
  655. }
  656. /* xgmac register are located behind the xgmac_addr and xgmac_data
  657. * register pair. Each read/write requires us to wait for the ready
  658. * bit before reading/writing the data.
  659. */
  660. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  661. {
  662. int status = 0;
  663. /* wait for reg to come ready */
  664. status = ql_wait_reg_rdy(qdev,
  665. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  666. if (status)
  667. goto exit;
  668. /* set up for reg read */
  669. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  670. /* wait for reg to come ready */
  671. status = ql_wait_reg_rdy(qdev,
  672. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  673. if (status)
  674. goto exit;
  675. /* get the data */
  676. *data = ql_read32(qdev, XGMAC_DATA);
  677. exit:
  678. return status;
  679. }
  680. /* This is used for reading the 64-bit statistics regs. */
  681. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  682. {
  683. int status = 0;
  684. u32 hi = 0;
  685. u32 lo = 0;
  686. status = ql_read_xgmac_reg(qdev, reg, &lo);
  687. if (status)
  688. goto exit;
  689. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  690. if (status)
  691. goto exit;
  692. *data = (u64) lo | ((u64) hi << 32);
  693. exit:
  694. return status;
  695. }
  696. /* Take the MAC Core out of reset.
  697. * Enable statistics counting.
  698. * Take the transmitter/receiver out of reset.
  699. * This functionality may be done in the MPI firmware at a
  700. * later date.
  701. */
  702. static int ql_port_initialize(struct ql_adapter *qdev)
  703. {
  704. int status = 0;
  705. u32 data;
  706. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  707. /* Another function has the semaphore, so
  708. * wait for the port init bit to come ready.
  709. */
  710. QPRINTK(qdev, LINK, INFO,
  711. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  712. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  713. if (status) {
  714. QPRINTK(qdev, LINK, CRIT,
  715. "Port initialize timed out.\n");
  716. }
  717. return status;
  718. }
  719. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  720. /* Set the core reset. */
  721. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  722. if (status)
  723. goto end;
  724. data |= GLOBAL_CFG_RESET;
  725. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  726. if (status)
  727. goto end;
  728. /* Clear the core reset and turn on jumbo for receiver. */
  729. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  730. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  731. data |= GLOBAL_CFG_TX_STAT_EN;
  732. data |= GLOBAL_CFG_RX_STAT_EN;
  733. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  734. if (status)
  735. goto end;
  736. /* Enable transmitter, and clear it's reset. */
  737. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  738. if (status)
  739. goto end;
  740. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  741. data |= TX_CFG_EN; /* Enable the transmitter. */
  742. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  743. if (status)
  744. goto end;
  745. /* Enable receiver and clear it's reset. */
  746. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  747. if (status)
  748. goto end;
  749. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  750. data |= RX_CFG_EN; /* Enable the receiver. */
  751. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  752. if (status)
  753. goto end;
  754. /* Turn on jumbo. */
  755. status =
  756. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  757. if (status)
  758. goto end;
  759. status =
  760. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  761. if (status)
  762. goto end;
  763. /* Signal to the world that the port is enabled. */
  764. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  765. end:
  766. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  767. return status;
  768. }
  769. /* Get the next large buffer. */
  770. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  771. {
  772. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  773. rx_ring->lbq_curr_idx++;
  774. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  775. rx_ring->lbq_curr_idx = 0;
  776. rx_ring->lbq_free_cnt++;
  777. return lbq_desc;
  778. }
  779. /* Get the next small buffer. */
  780. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  781. {
  782. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  783. rx_ring->sbq_curr_idx++;
  784. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  785. rx_ring->sbq_curr_idx = 0;
  786. rx_ring->sbq_free_cnt++;
  787. return sbq_desc;
  788. }
  789. /* Update an rx ring index. */
  790. static void ql_update_cq(struct rx_ring *rx_ring)
  791. {
  792. rx_ring->cnsmr_idx++;
  793. rx_ring->curr_entry++;
  794. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  795. rx_ring->cnsmr_idx = 0;
  796. rx_ring->curr_entry = rx_ring->cq_base;
  797. }
  798. }
  799. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  800. {
  801. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  802. }
  803. /* Process (refill) a large buffer queue. */
  804. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  805. {
  806. int clean_idx = rx_ring->lbq_clean_idx;
  807. struct bq_desc *lbq_desc;
  808. u64 map;
  809. int i;
  810. while (rx_ring->lbq_free_cnt > 16) {
  811. for (i = 0; i < 16; i++) {
  812. QPRINTK(qdev, RX_STATUS, DEBUG,
  813. "lbq: try cleaning clean_idx = %d.\n",
  814. clean_idx);
  815. lbq_desc = &rx_ring->lbq[clean_idx];
  816. if (lbq_desc->p.lbq_page == NULL) {
  817. QPRINTK(qdev, RX_STATUS, DEBUG,
  818. "lbq: getting new page for index %d.\n",
  819. lbq_desc->index);
  820. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  821. if (lbq_desc->p.lbq_page == NULL) {
  822. rx_ring->lbq_clean_idx = clean_idx;
  823. QPRINTK(qdev, RX_STATUS, ERR,
  824. "Couldn't get a page.\n");
  825. return;
  826. }
  827. map = pci_map_page(qdev->pdev,
  828. lbq_desc->p.lbq_page,
  829. 0, PAGE_SIZE,
  830. PCI_DMA_FROMDEVICE);
  831. if (pci_dma_mapping_error(qdev->pdev, map)) {
  832. rx_ring->lbq_clean_idx = clean_idx;
  833. put_page(lbq_desc->p.lbq_page);
  834. lbq_desc->p.lbq_page = NULL;
  835. QPRINTK(qdev, RX_STATUS, ERR,
  836. "PCI mapping failed.\n");
  837. return;
  838. }
  839. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  840. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  841. *lbq_desc->addr = cpu_to_le64(map);
  842. }
  843. clean_idx++;
  844. if (clean_idx == rx_ring->lbq_len)
  845. clean_idx = 0;
  846. }
  847. rx_ring->lbq_clean_idx = clean_idx;
  848. rx_ring->lbq_prod_idx += 16;
  849. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  850. rx_ring->lbq_prod_idx = 0;
  851. QPRINTK(qdev, RX_STATUS, DEBUG,
  852. "lbq: updating prod idx = %d.\n",
  853. rx_ring->lbq_prod_idx);
  854. ql_write_db_reg(rx_ring->lbq_prod_idx,
  855. rx_ring->lbq_prod_idx_db_reg);
  856. rx_ring->lbq_free_cnt -= 16;
  857. }
  858. }
  859. /* Process (refill) a small buffer queue. */
  860. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  861. {
  862. int clean_idx = rx_ring->sbq_clean_idx;
  863. struct bq_desc *sbq_desc;
  864. u64 map;
  865. int i;
  866. while (rx_ring->sbq_free_cnt > 16) {
  867. for (i = 0; i < 16; i++) {
  868. sbq_desc = &rx_ring->sbq[clean_idx];
  869. QPRINTK(qdev, RX_STATUS, DEBUG,
  870. "sbq: try cleaning clean_idx = %d.\n",
  871. clean_idx);
  872. if (sbq_desc->p.skb == NULL) {
  873. QPRINTK(qdev, RX_STATUS, DEBUG,
  874. "sbq: getting new skb for index %d.\n",
  875. sbq_desc->index);
  876. sbq_desc->p.skb =
  877. netdev_alloc_skb(qdev->ndev,
  878. rx_ring->sbq_buf_size);
  879. if (sbq_desc->p.skb == NULL) {
  880. QPRINTK(qdev, PROBE, ERR,
  881. "Couldn't get an skb.\n");
  882. rx_ring->sbq_clean_idx = clean_idx;
  883. return;
  884. }
  885. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  886. map = pci_map_single(qdev->pdev,
  887. sbq_desc->p.skb->data,
  888. rx_ring->sbq_buf_size /
  889. 2, PCI_DMA_FROMDEVICE);
  890. if (pci_dma_mapping_error(qdev->pdev, map)) {
  891. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  892. rx_ring->sbq_clean_idx = clean_idx;
  893. dev_kfree_skb_any(sbq_desc->p.skb);
  894. sbq_desc->p.skb = NULL;
  895. return;
  896. }
  897. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  898. pci_unmap_len_set(sbq_desc, maplen,
  899. rx_ring->sbq_buf_size / 2);
  900. *sbq_desc->addr = cpu_to_le64(map);
  901. }
  902. clean_idx++;
  903. if (clean_idx == rx_ring->sbq_len)
  904. clean_idx = 0;
  905. }
  906. rx_ring->sbq_clean_idx = clean_idx;
  907. rx_ring->sbq_prod_idx += 16;
  908. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  909. rx_ring->sbq_prod_idx = 0;
  910. QPRINTK(qdev, RX_STATUS, DEBUG,
  911. "sbq: updating prod idx = %d.\n",
  912. rx_ring->sbq_prod_idx);
  913. ql_write_db_reg(rx_ring->sbq_prod_idx,
  914. rx_ring->sbq_prod_idx_db_reg);
  915. rx_ring->sbq_free_cnt -= 16;
  916. }
  917. }
  918. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  919. struct rx_ring *rx_ring)
  920. {
  921. ql_update_sbq(qdev, rx_ring);
  922. ql_update_lbq(qdev, rx_ring);
  923. }
  924. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  925. * fails at some stage, or from the interrupt when a tx completes.
  926. */
  927. static void ql_unmap_send(struct ql_adapter *qdev,
  928. struct tx_ring_desc *tx_ring_desc, int mapped)
  929. {
  930. int i;
  931. for (i = 0; i < mapped; i++) {
  932. if (i == 0 || (i == 7 && mapped > 7)) {
  933. /*
  934. * Unmap the skb->data area, or the
  935. * external sglist (AKA the Outbound
  936. * Address List (OAL)).
  937. * If its the zeroeth element, then it's
  938. * the skb->data area. If it's the 7th
  939. * element and there is more than 6 frags,
  940. * then its an OAL.
  941. */
  942. if (i == 7) {
  943. QPRINTK(qdev, TX_DONE, DEBUG,
  944. "unmapping OAL area.\n");
  945. }
  946. pci_unmap_single(qdev->pdev,
  947. pci_unmap_addr(&tx_ring_desc->map[i],
  948. mapaddr),
  949. pci_unmap_len(&tx_ring_desc->map[i],
  950. maplen),
  951. PCI_DMA_TODEVICE);
  952. } else {
  953. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  954. i);
  955. pci_unmap_page(qdev->pdev,
  956. pci_unmap_addr(&tx_ring_desc->map[i],
  957. mapaddr),
  958. pci_unmap_len(&tx_ring_desc->map[i],
  959. maplen), PCI_DMA_TODEVICE);
  960. }
  961. }
  962. }
  963. /* Map the buffers for this transmit. This will return
  964. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  965. */
  966. static int ql_map_send(struct ql_adapter *qdev,
  967. struct ob_mac_iocb_req *mac_iocb_ptr,
  968. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  969. {
  970. int len = skb_headlen(skb);
  971. dma_addr_t map;
  972. int frag_idx, err, map_idx = 0;
  973. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  974. int frag_cnt = skb_shinfo(skb)->nr_frags;
  975. if (frag_cnt) {
  976. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  977. }
  978. /*
  979. * Map the skb buffer first.
  980. */
  981. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  982. err = pci_dma_mapping_error(qdev->pdev, map);
  983. if (err) {
  984. QPRINTK(qdev, TX_QUEUED, ERR,
  985. "PCI mapping failed with error: %d\n", err);
  986. return NETDEV_TX_BUSY;
  987. }
  988. tbd->len = cpu_to_le32(len);
  989. tbd->addr = cpu_to_le64(map);
  990. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  991. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  992. map_idx++;
  993. /*
  994. * This loop fills the remainder of the 8 address descriptors
  995. * in the IOCB. If there are more than 7 fragments, then the
  996. * eighth address desc will point to an external list (OAL).
  997. * When this happens, the remainder of the frags will be stored
  998. * in this list.
  999. */
  1000. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1001. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1002. tbd++;
  1003. if (frag_idx == 6 && frag_cnt > 7) {
  1004. /* Let's tack on an sglist.
  1005. * Our control block will now
  1006. * look like this:
  1007. * iocb->seg[0] = skb->data
  1008. * iocb->seg[1] = frag[0]
  1009. * iocb->seg[2] = frag[1]
  1010. * iocb->seg[3] = frag[2]
  1011. * iocb->seg[4] = frag[3]
  1012. * iocb->seg[5] = frag[4]
  1013. * iocb->seg[6] = frag[5]
  1014. * iocb->seg[7] = ptr to OAL (external sglist)
  1015. * oal->seg[0] = frag[6]
  1016. * oal->seg[1] = frag[7]
  1017. * oal->seg[2] = frag[8]
  1018. * oal->seg[3] = frag[9]
  1019. * oal->seg[4] = frag[10]
  1020. * etc...
  1021. */
  1022. /* Tack on the OAL in the eighth segment of IOCB. */
  1023. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1024. sizeof(struct oal),
  1025. PCI_DMA_TODEVICE);
  1026. err = pci_dma_mapping_error(qdev->pdev, map);
  1027. if (err) {
  1028. QPRINTK(qdev, TX_QUEUED, ERR,
  1029. "PCI mapping outbound address list with error: %d\n",
  1030. err);
  1031. goto map_error;
  1032. }
  1033. tbd->addr = cpu_to_le64(map);
  1034. /*
  1035. * The length is the number of fragments
  1036. * that remain to be mapped times the length
  1037. * of our sglist (OAL).
  1038. */
  1039. tbd->len =
  1040. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1041. (frag_cnt - frag_idx)) | TX_DESC_C);
  1042. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1043. map);
  1044. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1045. sizeof(struct oal));
  1046. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1047. map_idx++;
  1048. }
  1049. map =
  1050. pci_map_page(qdev->pdev, frag->page,
  1051. frag->page_offset, frag->size,
  1052. PCI_DMA_TODEVICE);
  1053. err = pci_dma_mapping_error(qdev->pdev, map);
  1054. if (err) {
  1055. QPRINTK(qdev, TX_QUEUED, ERR,
  1056. "PCI mapping frags failed with error: %d.\n",
  1057. err);
  1058. goto map_error;
  1059. }
  1060. tbd->addr = cpu_to_le64(map);
  1061. tbd->len = cpu_to_le32(frag->size);
  1062. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1063. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1064. frag->size);
  1065. }
  1066. /* Save the number of segments we've mapped. */
  1067. tx_ring_desc->map_cnt = map_idx;
  1068. /* Terminate the last segment. */
  1069. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1070. return NETDEV_TX_OK;
  1071. map_error:
  1072. /*
  1073. * If the first frag mapping failed, then i will be zero.
  1074. * This causes the unmap of the skb->data area. Otherwise
  1075. * we pass in the number of frags that mapped successfully
  1076. * so they can be umapped.
  1077. */
  1078. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1079. return NETDEV_TX_BUSY;
  1080. }
  1081. static void ql_realign_skb(struct sk_buff *skb, int len)
  1082. {
  1083. void *temp_addr = skb->data;
  1084. /* Undo the skb_reserve(skb,32) we did before
  1085. * giving to hardware, and realign data on
  1086. * a 2-byte boundary.
  1087. */
  1088. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1089. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1090. skb_copy_to_linear_data(skb, temp_addr,
  1091. (unsigned int)len);
  1092. }
  1093. /*
  1094. * This function builds an skb for the given inbound
  1095. * completion. It will be rewritten for readability in the near
  1096. * future, but for not it works well.
  1097. */
  1098. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1099. struct rx_ring *rx_ring,
  1100. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1101. {
  1102. struct bq_desc *lbq_desc;
  1103. struct bq_desc *sbq_desc;
  1104. struct sk_buff *skb = NULL;
  1105. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1106. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1107. /*
  1108. * Handle the header buffer if present.
  1109. */
  1110. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1111. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1112. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1113. /*
  1114. * Headers fit nicely into a small buffer.
  1115. */
  1116. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1117. pci_unmap_single(qdev->pdev,
  1118. pci_unmap_addr(sbq_desc, mapaddr),
  1119. pci_unmap_len(sbq_desc, maplen),
  1120. PCI_DMA_FROMDEVICE);
  1121. skb = sbq_desc->p.skb;
  1122. ql_realign_skb(skb, hdr_len);
  1123. skb_put(skb, hdr_len);
  1124. sbq_desc->p.skb = NULL;
  1125. }
  1126. /*
  1127. * Handle the data buffer(s).
  1128. */
  1129. if (unlikely(!length)) { /* Is there data too? */
  1130. QPRINTK(qdev, RX_STATUS, DEBUG,
  1131. "No Data buffer in this packet.\n");
  1132. return skb;
  1133. }
  1134. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1135. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1136. QPRINTK(qdev, RX_STATUS, DEBUG,
  1137. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1138. /*
  1139. * Data is less than small buffer size so it's
  1140. * stuffed in a small buffer.
  1141. * For this case we append the data
  1142. * from the "data" small buffer to the "header" small
  1143. * buffer.
  1144. */
  1145. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1146. pci_dma_sync_single_for_cpu(qdev->pdev,
  1147. pci_unmap_addr
  1148. (sbq_desc, mapaddr),
  1149. pci_unmap_len
  1150. (sbq_desc, maplen),
  1151. PCI_DMA_FROMDEVICE);
  1152. memcpy(skb_put(skb, length),
  1153. sbq_desc->p.skb->data, length);
  1154. pci_dma_sync_single_for_device(qdev->pdev,
  1155. pci_unmap_addr
  1156. (sbq_desc,
  1157. mapaddr),
  1158. pci_unmap_len
  1159. (sbq_desc,
  1160. maplen),
  1161. PCI_DMA_FROMDEVICE);
  1162. } else {
  1163. QPRINTK(qdev, RX_STATUS, DEBUG,
  1164. "%d bytes in a single small buffer.\n", length);
  1165. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1166. skb = sbq_desc->p.skb;
  1167. ql_realign_skb(skb, length);
  1168. skb_put(skb, length);
  1169. pci_unmap_single(qdev->pdev,
  1170. pci_unmap_addr(sbq_desc,
  1171. mapaddr),
  1172. pci_unmap_len(sbq_desc,
  1173. maplen),
  1174. PCI_DMA_FROMDEVICE);
  1175. sbq_desc->p.skb = NULL;
  1176. }
  1177. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1178. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1179. QPRINTK(qdev, RX_STATUS, DEBUG,
  1180. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1181. /*
  1182. * The data is in a single large buffer. We
  1183. * chain it to the header buffer's skb and let
  1184. * it rip.
  1185. */
  1186. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1187. pci_unmap_page(qdev->pdev,
  1188. pci_unmap_addr(lbq_desc,
  1189. mapaddr),
  1190. pci_unmap_len(lbq_desc, maplen),
  1191. PCI_DMA_FROMDEVICE);
  1192. QPRINTK(qdev, RX_STATUS, DEBUG,
  1193. "Chaining page to skb.\n");
  1194. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1195. 0, length);
  1196. skb->len += length;
  1197. skb->data_len += length;
  1198. skb->truesize += length;
  1199. lbq_desc->p.lbq_page = NULL;
  1200. } else {
  1201. /*
  1202. * The headers and data are in a single large buffer. We
  1203. * copy it to a new skb and let it go. This can happen with
  1204. * jumbo mtu on a non-TCP/UDP frame.
  1205. */
  1206. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1207. skb = netdev_alloc_skb(qdev->ndev, length);
  1208. if (skb == NULL) {
  1209. QPRINTK(qdev, PROBE, DEBUG,
  1210. "No skb available, drop the packet.\n");
  1211. return NULL;
  1212. }
  1213. pci_unmap_page(qdev->pdev,
  1214. pci_unmap_addr(lbq_desc,
  1215. mapaddr),
  1216. pci_unmap_len(lbq_desc, maplen),
  1217. PCI_DMA_FROMDEVICE);
  1218. skb_reserve(skb, NET_IP_ALIGN);
  1219. QPRINTK(qdev, RX_STATUS, DEBUG,
  1220. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1221. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1222. 0, length);
  1223. skb->len += length;
  1224. skb->data_len += length;
  1225. skb->truesize += length;
  1226. length -= length;
  1227. lbq_desc->p.lbq_page = NULL;
  1228. __pskb_pull_tail(skb,
  1229. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1230. VLAN_ETH_HLEN : ETH_HLEN);
  1231. }
  1232. } else {
  1233. /*
  1234. * The data is in a chain of large buffers
  1235. * pointed to by a small buffer. We loop
  1236. * thru and chain them to the our small header
  1237. * buffer's skb.
  1238. * frags: There are 18 max frags and our small
  1239. * buffer will hold 32 of them. The thing is,
  1240. * we'll use 3 max for our 9000 byte jumbo
  1241. * frames. If the MTU goes up we could
  1242. * eventually be in trouble.
  1243. */
  1244. int size, offset, i = 0;
  1245. __le64 *bq, bq_array[8];
  1246. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1247. pci_unmap_single(qdev->pdev,
  1248. pci_unmap_addr(sbq_desc, mapaddr),
  1249. pci_unmap_len(sbq_desc, maplen),
  1250. PCI_DMA_FROMDEVICE);
  1251. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1252. /*
  1253. * This is an non TCP/UDP IP frame, so
  1254. * the headers aren't split into a small
  1255. * buffer. We have to use the small buffer
  1256. * that contains our sg list as our skb to
  1257. * send upstairs. Copy the sg list here to
  1258. * a local buffer and use it to find the
  1259. * pages to chain.
  1260. */
  1261. QPRINTK(qdev, RX_STATUS, DEBUG,
  1262. "%d bytes of headers & data in chain of large.\n", length);
  1263. skb = sbq_desc->p.skb;
  1264. bq = &bq_array[0];
  1265. memcpy(bq, skb->data, sizeof(bq_array));
  1266. sbq_desc->p.skb = NULL;
  1267. skb_reserve(skb, NET_IP_ALIGN);
  1268. } else {
  1269. QPRINTK(qdev, RX_STATUS, DEBUG,
  1270. "Headers in small, %d bytes of data in chain of large.\n", length);
  1271. bq = (__le64 *)sbq_desc->p.skb->data;
  1272. }
  1273. while (length > 0) {
  1274. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1275. pci_unmap_page(qdev->pdev,
  1276. pci_unmap_addr(lbq_desc,
  1277. mapaddr),
  1278. pci_unmap_len(lbq_desc,
  1279. maplen),
  1280. PCI_DMA_FROMDEVICE);
  1281. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1282. offset = 0;
  1283. QPRINTK(qdev, RX_STATUS, DEBUG,
  1284. "Adding page %d to skb for %d bytes.\n",
  1285. i, size);
  1286. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1287. offset, size);
  1288. skb->len += size;
  1289. skb->data_len += size;
  1290. skb->truesize += size;
  1291. length -= size;
  1292. lbq_desc->p.lbq_page = NULL;
  1293. bq++;
  1294. i++;
  1295. }
  1296. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1297. VLAN_ETH_HLEN : ETH_HLEN);
  1298. }
  1299. return skb;
  1300. }
  1301. /* Process an inbound completion from an rx ring. */
  1302. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1303. struct rx_ring *rx_ring,
  1304. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1305. {
  1306. struct net_device *ndev = qdev->ndev;
  1307. struct sk_buff *skb = NULL;
  1308. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1309. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1310. if (unlikely(!skb)) {
  1311. QPRINTK(qdev, RX_STATUS, DEBUG,
  1312. "No skb available, drop packet.\n");
  1313. return;
  1314. }
  1315. prefetch(skb->data);
  1316. skb->dev = ndev;
  1317. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1318. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1319. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1320. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1321. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1322. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1323. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1324. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1325. }
  1326. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1327. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1328. }
  1329. skb->protocol = eth_type_trans(skb, ndev);
  1330. skb->ip_summed = CHECKSUM_NONE;
  1331. /* If rx checksum is on, and there are no
  1332. * csum or frame errors.
  1333. */
  1334. if (qdev->rx_csum &&
  1335. !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
  1336. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1337. /* TCP frame. */
  1338. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1339. QPRINTK(qdev, RX_STATUS, DEBUG,
  1340. "TCP checksum done!\n");
  1341. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1342. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1343. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1344. /* Unfragmented ipv4 UDP frame. */
  1345. struct iphdr *iph = (struct iphdr *) skb->data;
  1346. if (!(iph->frag_off &
  1347. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1348. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1349. QPRINTK(qdev, RX_STATUS, DEBUG,
  1350. "TCP checksum done!\n");
  1351. }
  1352. }
  1353. }
  1354. qdev->stats.rx_packets++;
  1355. qdev->stats.rx_bytes += skb->len;
  1356. skb->protocol = eth_type_trans(skb, ndev);
  1357. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1358. QPRINTK(qdev, RX_STATUS, DEBUG,
  1359. "Passing a VLAN packet upstream.\n");
  1360. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1361. le16_to_cpu(ib_mac_rsp->vlan_id));
  1362. } else {
  1363. QPRINTK(qdev, RX_STATUS, DEBUG,
  1364. "Passing a normal packet upstream.\n");
  1365. netif_receive_skb(skb);
  1366. }
  1367. }
  1368. /* Process an outbound completion from an rx ring. */
  1369. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1370. struct ob_mac_iocb_rsp *mac_rsp)
  1371. {
  1372. struct tx_ring *tx_ring;
  1373. struct tx_ring_desc *tx_ring_desc;
  1374. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1375. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1376. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1377. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1378. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1379. qdev->stats.tx_packets++;
  1380. dev_kfree_skb(tx_ring_desc->skb);
  1381. tx_ring_desc->skb = NULL;
  1382. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1383. OB_MAC_IOCB_RSP_S |
  1384. OB_MAC_IOCB_RSP_L |
  1385. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1386. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1387. QPRINTK(qdev, TX_DONE, WARNING,
  1388. "Total descriptor length did not match transfer length.\n");
  1389. }
  1390. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1391. QPRINTK(qdev, TX_DONE, WARNING,
  1392. "Frame too short to be legal, not sent.\n");
  1393. }
  1394. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1395. QPRINTK(qdev, TX_DONE, WARNING,
  1396. "Frame too long, but sent anyway.\n");
  1397. }
  1398. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1399. QPRINTK(qdev, TX_DONE, WARNING,
  1400. "PCI backplane error. Frame not sent.\n");
  1401. }
  1402. }
  1403. atomic_inc(&tx_ring->tx_count);
  1404. }
  1405. /* Fire up a handler to reset the MPI processor. */
  1406. void ql_queue_fw_error(struct ql_adapter *qdev)
  1407. {
  1408. netif_stop_queue(qdev->ndev);
  1409. netif_carrier_off(qdev->ndev);
  1410. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1411. }
  1412. void ql_queue_asic_error(struct ql_adapter *qdev)
  1413. {
  1414. netif_stop_queue(qdev->ndev);
  1415. netif_carrier_off(qdev->ndev);
  1416. ql_disable_interrupts(qdev);
  1417. /* Clear adapter up bit to signal the recovery
  1418. * process that it shouldn't kill the reset worker
  1419. * thread
  1420. */
  1421. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1422. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1423. }
  1424. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1425. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1426. {
  1427. switch (ib_ae_rsp->event) {
  1428. case MGMT_ERR_EVENT:
  1429. QPRINTK(qdev, RX_ERR, ERR,
  1430. "Management Processor Fatal Error.\n");
  1431. ql_queue_fw_error(qdev);
  1432. return;
  1433. case CAM_LOOKUP_ERR_EVENT:
  1434. QPRINTK(qdev, LINK, ERR,
  1435. "Multiple CAM hits lookup occurred.\n");
  1436. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1437. ql_queue_asic_error(qdev);
  1438. return;
  1439. case SOFT_ECC_ERROR_EVENT:
  1440. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1441. ql_queue_asic_error(qdev);
  1442. break;
  1443. case PCI_ERR_ANON_BUF_RD:
  1444. QPRINTK(qdev, RX_ERR, ERR,
  1445. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1446. ib_ae_rsp->q_id);
  1447. ql_queue_asic_error(qdev);
  1448. break;
  1449. default:
  1450. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1451. ib_ae_rsp->event);
  1452. ql_queue_asic_error(qdev);
  1453. break;
  1454. }
  1455. }
  1456. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1457. {
  1458. struct ql_adapter *qdev = rx_ring->qdev;
  1459. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1460. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1461. int count = 0;
  1462. /* While there are entries in the completion queue. */
  1463. while (prod != rx_ring->cnsmr_idx) {
  1464. QPRINTK(qdev, RX_STATUS, DEBUG,
  1465. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1466. prod, rx_ring->cnsmr_idx);
  1467. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1468. rmb();
  1469. switch (net_rsp->opcode) {
  1470. case OPCODE_OB_MAC_TSO_IOCB:
  1471. case OPCODE_OB_MAC_IOCB:
  1472. ql_process_mac_tx_intr(qdev, net_rsp);
  1473. break;
  1474. default:
  1475. QPRINTK(qdev, RX_STATUS, DEBUG,
  1476. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1477. net_rsp->opcode);
  1478. }
  1479. count++;
  1480. ql_update_cq(rx_ring);
  1481. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1482. }
  1483. ql_write_cq_idx(rx_ring);
  1484. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1485. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1486. if (atomic_read(&tx_ring->queue_stopped) &&
  1487. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1488. /*
  1489. * The queue got stopped because the tx_ring was full.
  1490. * Wake it up, because it's now at least 25% empty.
  1491. */
  1492. netif_wake_queue(qdev->ndev);
  1493. }
  1494. return count;
  1495. }
  1496. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1497. {
  1498. struct ql_adapter *qdev = rx_ring->qdev;
  1499. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1500. struct ql_net_rsp_iocb *net_rsp;
  1501. int count = 0;
  1502. /* While there are entries in the completion queue. */
  1503. while (prod != rx_ring->cnsmr_idx) {
  1504. QPRINTK(qdev, RX_STATUS, DEBUG,
  1505. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1506. prod, rx_ring->cnsmr_idx);
  1507. net_rsp = rx_ring->curr_entry;
  1508. rmb();
  1509. switch (net_rsp->opcode) {
  1510. case OPCODE_IB_MAC_IOCB:
  1511. ql_process_mac_rx_intr(qdev, rx_ring,
  1512. (struct ib_mac_iocb_rsp *)
  1513. net_rsp);
  1514. break;
  1515. case OPCODE_IB_AE_IOCB:
  1516. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1517. net_rsp);
  1518. break;
  1519. default:
  1520. {
  1521. QPRINTK(qdev, RX_STATUS, DEBUG,
  1522. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1523. net_rsp->opcode);
  1524. }
  1525. }
  1526. count++;
  1527. ql_update_cq(rx_ring);
  1528. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1529. if (count == budget)
  1530. break;
  1531. }
  1532. ql_update_buffer_queues(qdev, rx_ring);
  1533. ql_write_cq_idx(rx_ring);
  1534. return count;
  1535. }
  1536. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1537. {
  1538. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1539. struct ql_adapter *qdev = rx_ring->qdev;
  1540. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1541. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1542. rx_ring->cq_id);
  1543. if (work_done < budget) {
  1544. __netif_rx_complete(napi);
  1545. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1546. }
  1547. return work_done;
  1548. }
  1549. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1550. {
  1551. struct ql_adapter *qdev = netdev_priv(ndev);
  1552. qdev->vlgrp = grp;
  1553. if (grp) {
  1554. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1555. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1556. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1557. } else {
  1558. QPRINTK(qdev, IFUP, DEBUG,
  1559. "Turning off VLAN in NIC_RCV_CFG.\n");
  1560. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1561. }
  1562. }
  1563. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1564. {
  1565. struct ql_adapter *qdev = netdev_priv(ndev);
  1566. u32 enable_bit = MAC_ADDR_E;
  1567. spin_lock(&qdev->hw_lock);
  1568. if (ql_set_mac_addr_reg
  1569. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1570. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1571. }
  1572. spin_unlock(&qdev->hw_lock);
  1573. }
  1574. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1575. {
  1576. struct ql_adapter *qdev = netdev_priv(ndev);
  1577. u32 enable_bit = 0;
  1578. spin_lock(&qdev->hw_lock);
  1579. if (ql_set_mac_addr_reg
  1580. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1581. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1582. }
  1583. spin_unlock(&qdev->hw_lock);
  1584. }
  1585. /* Worker thread to process a given rx_ring that is dedicated
  1586. * to outbound completions.
  1587. */
  1588. static void ql_tx_clean(struct work_struct *work)
  1589. {
  1590. struct rx_ring *rx_ring =
  1591. container_of(work, struct rx_ring, rx_work.work);
  1592. ql_clean_outbound_rx_ring(rx_ring);
  1593. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1594. }
  1595. /* Worker thread to process a given rx_ring that is dedicated
  1596. * to inbound completions.
  1597. */
  1598. static void ql_rx_clean(struct work_struct *work)
  1599. {
  1600. struct rx_ring *rx_ring =
  1601. container_of(work, struct rx_ring, rx_work.work);
  1602. ql_clean_inbound_rx_ring(rx_ring, 64);
  1603. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1604. }
  1605. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1606. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1607. {
  1608. struct rx_ring *rx_ring = dev_id;
  1609. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1610. &rx_ring->rx_work, 0);
  1611. return IRQ_HANDLED;
  1612. }
  1613. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1614. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1615. {
  1616. struct rx_ring *rx_ring = dev_id;
  1617. netif_rx_schedule(&rx_ring->napi);
  1618. return IRQ_HANDLED;
  1619. }
  1620. /* This handles a fatal error, MPI activity, and the default
  1621. * rx_ring in an MSI-X multiple vector environment.
  1622. * In MSI/Legacy environment it also process the rest of
  1623. * the rx_rings.
  1624. */
  1625. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1626. {
  1627. struct rx_ring *rx_ring = dev_id;
  1628. struct ql_adapter *qdev = rx_ring->qdev;
  1629. struct intr_context *intr_context = &qdev->intr_context[0];
  1630. u32 var;
  1631. int i;
  1632. int work_done = 0;
  1633. spin_lock(&qdev->hw_lock);
  1634. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1635. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1636. spin_unlock(&qdev->hw_lock);
  1637. return IRQ_NONE;
  1638. }
  1639. spin_unlock(&qdev->hw_lock);
  1640. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1641. /*
  1642. * Check for fatal error.
  1643. */
  1644. if (var & STS_FE) {
  1645. ql_queue_asic_error(qdev);
  1646. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1647. var = ql_read32(qdev, ERR_STS);
  1648. QPRINTK(qdev, INTR, ERR,
  1649. "Resetting chip. Error Status Register = 0x%x\n", var);
  1650. return IRQ_HANDLED;
  1651. }
  1652. /*
  1653. * Check MPI processor activity.
  1654. */
  1655. if (var & STS_PI) {
  1656. /*
  1657. * We've got an async event or mailbox completion.
  1658. * Handle it and clear the source of the interrupt.
  1659. */
  1660. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1661. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1662. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1663. &qdev->mpi_work, 0);
  1664. work_done++;
  1665. }
  1666. /*
  1667. * Check the default queue and wake handler if active.
  1668. */
  1669. rx_ring = &qdev->rx_ring[0];
  1670. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1671. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1672. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1673. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1674. &rx_ring->rx_work, 0);
  1675. work_done++;
  1676. }
  1677. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1678. /*
  1679. * Start the DPC for each active queue.
  1680. */
  1681. for (i = 1; i < qdev->rx_ring_count; i++) {
  1682. rx_ring = &qdev->rx_ring[i];
  1683. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1684. rx_ring->cnsmr_idx) {
  1685. QPRINTK(qdev, INTR, INFO,
  1686. "Waking handler for rx_ring[%d].\n", i);
  1687. ql_disable_completion_interrupt(qdev,
  1688. intr_context->
  1689. intr);
  1690. if (i < qdev->rss_ring_first_cq_id)
  1691. queue_delayed_work_on(rx_ring->cpu,
  1692. qdev->q_workqueue,
  1693. &rx_ring->rx_work,
  1694. 0);
  1695. else
  1696. netif_rx_schedule(&rx_ring->napi);
  1697. work_done++;
  1698. }
  1699. }
  1700. }
  1701. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1702. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1703. }
  1704. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1705. {
  1706. if (skb_is_gso(skb)) {
  1707. int err;
  1708. if (skb_header_cloned(skb)) {
  1709. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1710. if (err)
  1711. return err;
  1712. }
  1713. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1714. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1715. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1716. mac_iocb_ptr->total_hdrs_len =
  1717. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1718. mac_iocb_ptr->net_trans_offset =
  1719. cpu_to_le16(skb_network_offset(skb) |
  1720. skb_transport_offset(skb)
  1721. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1722. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1723. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1724. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1725. struct iphdr *iph = ip_hdr(skb);
  1726. iph->check = 0;
  1727. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1728. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1729. iph->daddr, 0,
  1730. IPPROTO_TCP,
  1731. 0);
  1732. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1733. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1734. tcp_hdr(skb)->check =
  1735. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1736. &ipv6_hdr(skb)->daddr,
  1737. 0, IPPROTO_TCP, 0);
  1738. }
  1739. return 1;
  1740. }
  1741. return 0;
  1742. }
  1743. static void ql_hw_csum_setup(struct sk_buff *skb,
  1744. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1745. {
  1746. int len;
  1747. struct iphdr *iph = ip_hdr(skb);
  1748. __sum16 *check;
  1749. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1750. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1751. mac_iocb_ptr->net_trans_offset =
  1752. cpu_to_le16(skb_network_offset(skb) |
  1753. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1754. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1755. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1756. if (likely(iph->protocol == IPPROTO_TCP)) {
  1757. check = &(tcp_hdr(skb)->check);
  1758. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1759. mac_iocb_ptr->total_hdrs_len =
  1760. cpu_to_le16(skb_transport_offset(skb) +
  1761. (tcp_hdr(skb)->doff << 2));
  1762. } else {
  1763. check = &(udp_hdr(skb)->check);
  1764. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1765. mac_iocb_ptr->total_hdrs_len =
  1766. cpu_to_le16(skb_transport_offset(skb) +
  1767. sizeof(struct udphdr));
  1768. }
  1769. *check = ~csum_tcpudp_magic(iph->saddr,
  1770. iph->daddr, len, iph->protocol, 0);
  1771. }
  1772. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1773. {
  1774. struct tx_ring_desc *tx_ring_desc;
  1775. struct ob_mac_iocb_req *mac_iocb_ptr;
  1776. struct ql_adapter *qdev = netdev_priv(ndev);
  1777. int tso;
  1778. struct tx_ring *tx_ring;
  1779. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1780. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1781. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1782. QPRINTK(qdev, TX_QUEUED, INFO,
  1783. "%s: shutting down tx queue %d du to lack of resources.\n",
  1784. __func__, tx_ring_idx);
  1785. netif_stop_queue(ndev);
  1786. atomic_inc(&tx_ring->queue_stopped);
  1787. return NETDEV_TX_BUSY;
  1788. }
  1789. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1790. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1791. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1792. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1793. mac_iocb_ptr->tid = tx_ring_desc->index;
  1794. /* We use the upper 32-bits to store the tx queue for this IO.
  1795. * When we get the completion we can use it to establish the context.
  1796. */
  1797. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1798. tx_ring_desc->skb = skb;
  1799. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1800. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1801. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1802. vlan_tx_tag_get(skb));
  1803. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1804. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1805. }
  1806. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1807. if (tso < 0) {
  1808. dev_kfree_skb_any(skb);
  1809. return NETDEV_TX_OK;
  1810. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1811. ql_hw_csum_setup(skb,
  1812. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1813. }
  1814. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1815. NETDEV_TX_OK) {
  1816. QPRINTK(qdev, TX_QUEUED, ERR,
  1817. "Could not map the segments.\n");
  1818. return NETDEV_TX_BUSY;
  1819. }
  1820. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1821. tx_ring->prod_idx++;
  1822. if (tx_ring->prod_idx == tx_ring->wq_len)
  1823. tx_ring->prod_idx = 0;
  1824. wmb();
  1825. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1826. ndev->trans_start = jiffies;
  1827. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1828. tx_ring->prod_idx, skb->len);
  1829. atomic_dec(&tx_ring->tx_count);
  1830. return NETDEV_TX_OK;
  1831. }
  1832. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1833. {
  1834. if (qdev->rx_ring_shadow_reg_area) {
  1835. pci_free_consistent(qdev->pdev,
  1836. PAGE_SIZE,
  1837. qdev->rx_ring_shadow_reg_area,
  1838. qdev->rx_ring_shadow_reg_dma);
  1839. qdev->rx_ring_shadow_reg_area = NULL;
  1840. }
  1841. if (qdev->tx_ring_shadow_reg_area) {
  1842. pci_free_consistent(qdev->pdev,
  1843. PAGE_SIZE,
  1844. qdev->tx_ring_shadow_reg_area,
  1845. qdev->tx_ring_shadow_reg_dma);
  1846. qdev->tx_ring_shadow_reg_area = NULL;
  1847. }
  1848. }
  1849. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1850. {
  1851. qdev->rx_ring_shadow_reg_area =
  1852. pci_alloc_consistent(qdev->pdev,
  1853. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1854. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1855. QPRINTK(qdev, IFUP, ERR,
  1856. "Allocation of RX shadow space failed.\n");
  1857. return -ENOMEM;
  1858. }
  1859. qdev->tx_ring_shadow_reg_area =
  1860. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1861. &qdev->tx_ring_shadow_reg_dma);
  1862. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1863. QPRINTK(qdev, IFUP, ERR,
  1864. "Allocation of TX shadow space failed.\n");
  1865. goto err_wqp_sh_area;
  1866. }
  1867. return 0;
  1868. err_wqp_sh_area:
  1869. pci_free_consistent(qdev->pdev,
  1870. PAGE_SIZE,
  1871. qdev->rx_ring_shadow_reg_area,
  1872. qdev->rx_ring_shadow_reg_dma);
  1873. return -ENOMEM;
  1874. }
  1875. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1876. {
  1877. struct tx_ring_desc *tx_ring_desc;
  1878. int i;
  1879. struct ob_mac_iocb_req *mac_iocb_ptr;
  1880. mac_iocb_ptr = tx_ring->wq_base;
  1881. tx_ring_desc = tx_ring->q;
  1882. for (i = 0; i < tx_ring->wq_len; i++) {
  1883. tx_ring_desc->index = i;
  1884. tx_ring_desc->skb = NULL;
  1885. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1886. mac_iocb_ptr++;
  1887. tx_ring_desc++;
  1888. }
  1889. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1890. atomic_set(&tx_ring->queue_stopped, 0);
  1891. }
  1892. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1893. struct tx_ring *tx_ring)
  1894. {
  1895. if (tx_ring->wq_base) {
  1896. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1897. tx_ring->wq_base, tx_ring->wq_base_dma);
  1898. tx_ring->wq_base = NULL;
  1899. }
  1900. kfree(tx_ring->q);
  1901. tx_ring->q = NULL;
  1902. }
  1903. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1904. struct tx_ring *tx_ring)
  1905. {
  1906. tx_ring->wq_base =
  1907. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1908. &tx_ring->wq_base_dma);
  1909. if ((tx_ring->wq_base == NULL)
  1910. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1911. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1912. return -ENOMEM;
  1913. }
  1914. tx_ring->q =
  1915. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1916. if (tx_ring->q == NULL)
  1917. goto err;
  1918. return 0;
  1919. err:
  1920. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1921. tx_ring->wq_base, tx_ring->wq_base_dma);
  1922. return -ENOMEM;
  1923. }
  1924. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1925. {
  1926. int i;
  1927. struct bq_desc *lbq_desc;
  1928. for (i = 0; i < rx_ring->lbq_len; i++) {
  1929. lbq_desc = &rx_ring->lbq[i];
  1930. if (lbq_desc->p.lbq_page) {
  1931. pci_unmap_page(qdev->pdev,
  1932. pci_unmap_addr(lbq_desc, mapaddr),
  1933. pci_unmap_len(lbq_desc, maplen),
  1934. PCI_DMA_FROMDEVICE);
  1935. put_page(lbq_desc->p.lbq_page);
  1936. lbq_desc->p.lbq_page = NULL;
  1937. }
  1938. }
  1939. }
  1940. /*
  1941. * Allocate and map a page for each element of the lbq.
  1942. */
  1943. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1944. struct rx_ring *rx_ring)
  1945. {
  1946. int i;
  1947. struct bq_desc *lbq_desc;
  1948. u64 map;
  1949. __le64 *bq = rx_ring->lbq_base;
  1950. for (i = 0; i < rx_ring->lbq_len; i++) {
  1951. lbq_desc = &rx_ring->lbq[i];
  1952. memset(lbq_desc, 0, sizeof(lbq_desc));
  1953. lbq_desc->addr = bq;
  1954. lbq_desc->index = i;
  1955. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1956. if (unlikely(!lbq_desc->p.lbq_page)) {
  1957. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1958. goto mem_error;
  1959. } else {
  1960. map = pci_map_page(qdev->pdev,
  1961. lbq_desc->p.lbq_page,
  1962. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1963. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1964. QPRINTK(qdev, IFUP, ERR,
  1965. "PCI mapping failed.\n");
  1966. goto mem_error;
  1967. }
  1968. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1969. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1970. *lbq_desc->addr = cpu_to_le64(map);
  1971. }
  1972. bq++;
  1973. }
  1974. return 0;
  1975. mem_error:
  1976. ql_free_lbq_buffers(qdev, rx_ring);
  1977. return -ENOMEM;
  1978. }
  1979. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1980. {
  1981. int i;
  1982. struct bq_desc *sbq_desc;
  1983. for (i = 0; i < rx_ring->sbq_len; i++) {
  1984. sbq_desc = &rx_ring->sbq[i];
  1985. if (sbq_desc == NULL) {
  1986. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1987. return;
  1988. }
  1989. if (sbq_desc->p.skb) {
  1990. pci_unmap_single(qdev->pdev,
  1991. pci_unmap_addr(sbq_desc, mapaddr),
  1992. pci_unmap_len(sbq_desc, maplen),
  1993. PCI_DMA_FROMDEVICE);
  1994. dev_kfree_skb(sbq_desc->p.skb);
  1995. sbq_desc->p.skb = NULL;
  1996. }
  1997. }
  1998. }
  1999. /* Allocate and map an skb for each element of the sbq. */
  2000. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  2001. struct rx_ring *rx_ring)
  2002. {
  2003. int i;
  2004. struct bq_desc *sbq_desc;
  2005. struct sk_buff *skb;
  2006. u64 map;
  2007. __le64 *bq = rx_ring->sbq_base;
  2008. for (i = 0; i < rx_ring->sbq_len; i++) {
  2009. sbq_desc = &rx_ring->sbq[i];
  2010. memset(sbq_desc, 0, sizeof(sbq_desc));
  2011. sbq_desc->index = i;
  2012. sbq_desc->addr = bq;
  2013. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  2014. if (unlikely(!skb)) {
  2015. /* Better luck next round */
  2016. QPRINTK(qdev, IFUP, ERR,
  2017. "small buff alloc failed for %d bytes at index %d.\n",
  2018. rx_ring->sbq_buf_size, i);
  2019. goto mem_err;
  2020. }
  2021. skb_reserve(skb, QLGE_SB_PAD);
  2022. sbq_desc->p.skb = skb;
  2023. /*
  2024. * Map only half the buffer. Because the
  2025. * other half may get some data copied to it
  2026. * when the completion arrives.
  2027. */
  2028. map = pci_map_single(qdev->pdev,
  2029. skb->data,
  2030. rx_ring->sbq_buf_size / 2,
  2031. PCI_DMA_FROMDEVICE);
  2032. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2033. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2034. goto mem_err;
  2035. }
  2036. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2037. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2038. *sbq_desc->addr = cpu_to_le64(map);
  2039. bq++;
  2040. }
  2041. return 0;
  2042. mem_err:
  2043. ql_free_sbq_buffers(qdev, rx_ring);
  2044. return -ENOMEM;
  2045. }
  2046. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2047. struct rx_ring *rx_ring)
  2048. {
  2049. if (rx_ring->sbq_len)
  2050. ql_free_sbq_buffers(qdev, rx_ring);
  2051. if (rx_ring->lbq_len)
  2052. ql_free_lbq_buffers(qdev, rx_ring);
  2053. /* Free the small buffer queue. */
  2054. if (rx_ring->sbq_base) {
  2055. pci_free_consistent(qdev->pdev,
  2056. rx_ring->sbq_size,
  2057. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2058. rx_ring->sbq_base = NULL;
  2059. }
  2060. /* Free the small buffer queue control blocks. */
  2061. kfree(rx_ring->sbq);
  2062. rx_ring->sbq = NULL;
  2063. /* Free the large buffer queue. */
  2064. if (rx_ring->lbq_base) {
  2065. pci_free_consistent(qdev->pdev,
  2066. rx_ring->lbq_size,
  2067. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2068. rx_ring->lbq_base = NULL;
  2069. }
  2070. /* Free the large buffer queue control blocks. */
  2071. kfree(rx_ring->lbq);
  2072. rx_ring->lbq = NULL;
  2073. /* Free the rx queue. */
  2074. if (rx_ring->cq_base) {
  2075. pci_free_consistent(qdev->pdev,
  2076. rx_ring->cq_size,
  2077. rx_ring->cq_base, rx_ring->cq_base_dma);
  2078. rx_ring->cq_base = NULL;
  2079. }
  2080. }
  2081. /* Allocate queues and buffers for this completions queue based
  2082. * on the values in the parameter structure. */
  2083. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2084. struct rx_ring *rx_ring)
  2085. {
  2086. /*
  2087. * Allocate the completion queue for this rx_ring.
  2088. */
  2089. rx_ring->cq_base =
  2090. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2091. &rx_ring->cq_base_dma);
  2092. if (rx_ring->cq_base == NULL) {
  2093. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2094. return -ENOMEM;
  2095. }
  2096. if (rx_ring->sbq_len) {
  2097. /*
  2098. * Allocate small buffer queue.
  2099. */
  2100. rx_ring->sbq_base =
  2101. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2102. &rx_ring->sbq_base_dma);
  2103. if (rx_ring->sbq_base == NULL) {
  2104. QPRINTK(qdev, IFUP, ERR,
  2105. "Small buffer queue allocation failed.\n");
  2106. goto err_mem;
  2107. }
  2108. /*
  2109. * Allocate small buffer queue control blocks.
  2110. */
  2111. rx_ring->sbq =
  2112. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2113. GFP_KERNEL);
  2114. if (rx_ring->sbq == NULL) {
  2115. QPRINTK(qdev, IFUP, ERR,
  2116. "Small buffer queue control block allocation failed.\n");
  2117. goto err_mem;
  2118. }
  2119. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2120. QPRINTK(qdev, IFUP, ERR,
  2121. "Small buffer allocation failed.\n");
  2122. goto err_mem;
  2123. }
  2124. }
  2125. if (rx_ring->lbq_len) {
  2126. /*
  2127. * Allocate large buffer queue.
  2128. */
  2129. rx_ring->lbq_base =
  2130. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2131. &rx_ring->lbq_base_dma);
  2132. if (rx_ring->lbq_base == NULL) {
  2133. QPRINTK(qdev, IFUP, ERR,
  2134. "Large buffer queue allocation failed.\n");
  2135. goto err_mem;
  2136. }
  2137. /*
  2138. * Allocate large buffer queue control blocks.
  2139. */
  2140. rx_ring->lbq =
  2141. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2142. GFP_KERNEL);
  2143. if (rx_ring->lbq == NULL) {
  2144. QPRINTK(qdev, IFUP, ERR,
  2145. "Large buffer queue control block allocation failed.\n");
  2146. goto err_mem;
  2147. }
  2148. /*
  2149. * Allocate the buffers.
  2150. */
  2151. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2152. QPRINTK(qdev, IFUP, ERR,
  2153. "Large buffer allocation failed.\n");
  2154. goto err_mem;
  2155. }
  2156. }
  2157. return 0;
  2158. err_mem:
  2159. ql_free_rx_resources(qdev, rx_ring);
  2160. return -ENOMEM;
  2161. }
  2162. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2163. {
  2164. struct tx_ring *tx_ring;
  2165. struct tx_ring_desc *tx_ring_desc;
  2166. int i, j;
  2167. /*
  2168. * Loop through all queues and free
  2169. * any resources.
  2170. */
  2171. for (j = 0; j < qdev->tx_ring_count; j++) {
  2172. tx_ring = &qdev->tx_ring[j];
  2173. for (i = 0; i < tx_ring->wq_len; i++) {
  2174. tx_ring_desc = &tx_ring->q[i];
  2175. if (tx_ring_desc && tx_ring_desc->skb) {
  2176. QPRINTK(qdev, IFDOWN, ERR,
  2177. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2178. tx_ring_desc->skb, j,
  2179. tx_ring_desc->index);
  2180. ql_unmap_send(qdev, tx_ring_desc,
  2181. tx_ring_desc->map_cnt);
  2182. dev_kfree_skb(tx_ring_desc->skb);
  2183. tx_ring_desc->skb = NULL;
  2184. }
  2185. }
  2186. }
  2187. }
  2188. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2189. {
  2190. int i;
  2191. for (i = 0; i < qdev->tx_ring_count; i++)
  2192. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2193. for (i = 0; i < qdev->rx_ring_count; i++)
  2194. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2195. ql_free_shadow_space(qdev);
  2196. }
  2197. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2198. {
  2199. int i;
  2200. /* Allocate space for our shadow registers and such. */
  2201. if (ql_alloc_shadow_space(qdev))
  2202. return -ENOMEM;
  2203. for (i = 0; i < qdev->rx_ring_count; i++) {
  2204. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2205. QPRINTK(qdev, IFUP, ERR,
  2206. "RX resource allocation failed.\n");
  2207. goto err_mem;
  2208. }
  2209. }
  2210. /* Allocate tx queue resources */
  2211. for (i = 0; i < qdev->tx_ring_count; i++) {
  2212. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2213. QPRINTK(qdev, IFUP, ERR,
  2214. "TX resource allocation failed.\n");
  2215. goto err_mem;
  2216. }
  2217. }
  2218. return 0;
  2219. err_mem:
  2220. ql_free_mem_resources(qdev);
  2221. return -ENOMEM;
  2222. }
  2223. /* Set up the rx ring control block and pass it to the chip.
  2224. * The control block is defined as
  2225. * "Completion Queue Initialization Control Block", or cqicb.
  2226. */
  2227. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2228. {
  2229. struct cqicb *cqicb = &rx_ring->cqicb;
  2230. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2231. (rx_ring->cq_id * sizeof(u64) * 4);
  2232. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2233. (rx_ring->cq_id * sizeof(u64) * 4);
  2234. void __iomem *doorbell_area =
  2235. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2236. int err = 0;
  2237. u16 bq_len;
  2238. /* Set up the shadow registers for this ring. */
  2239. rx_ring->prod_idx_sh_reg = shadow_reg;
  2240. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2241. shadow_reg += sizeof(u64);
  2242. shadow_reg_dma += sizeof(u64);
  2243. rx_ring->lbq_base_indirect = shadow_reg;
  2244. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2245. shadow_reg += sizeof(u64);
  2246. shadow_reg_dma += sizeof(u64);
  2247. rx_ring->sbq_base_indirect = shadow_reg;
  2248. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2249. /* PCI doorbell mem area + 0x00 for consumer index register */
  2250. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2251. rx_ring->cnsmr_idx = 0;
  2252. rx_ring->curr_entry = rx_ring->cq_base;
  2253. /* PCI doorbell mem area + 0x04 for valid register */
  2254. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2255. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2256. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2257. /* PCI doorbell mem area + 0x1c */
  2258. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2259. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2260. cqicb->msix_vect = rx_ring->irq;
  2261. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2262. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2263. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2264. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2265. /*
  2266. * Set up the control block load flags.
  2267. */
  2268. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2269. FLAGS_LV | /* Load MSI-X vector */
  2270. FLAGS_LI; /* Load irq delay values */
  2271. if (rx_ring->lbq_len) {
  2272. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2273. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2274. cqicb->lbq_addr =
  2275. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2276. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2277. (u16) rx_ring->lbq_buf_size;
  2278. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2279. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2280. (u16) rx_ring->lbq_len;
  2281. cqicb->lbq_len = cpu_to_le16(bq_len);
  2282. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2283. rx_ring->lbq_curr_idx = 0;
  2284. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2285. rx_ring->lbq_free_cnt = 16;
  2286. }
  2287. if (rx_ring->sbq_len) {
  2288. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2289. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2290. cqicb->sbq_addr =
  2291. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2292. cqicb->sbq_buf_size =
  2293. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2294. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2295. (u16) rx_ring->sbq_len;
  2296. cqicb->sbq_len = cpu_to_le16(bq_len);
  2297. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2298. rx_ring->sbq_curr_idx = 0;
  2299. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2300. rx_ring->sbq_free_cnt = 16;
  2301. }
  2302. switch (rx_ring->type) {
  2303. case TX_Q:
  2304. /* If there's only one interrupt, then we use
  2305. * worker threads to process the outbound
  2306. * completion handling rx_rings. We do this so
  2307. * they can be run on multiple CPUs. There is
  2308. * room to play with this more where we would only
  2309. * run in a worker if there are more than x number
  2310. * of outbound completions on the queue and more
  2311. * than one queue active. Some threshold that
  2312. * would indicate a benefit in spite of the cost
  2313. * of a context switch.
  2314. * If there's more than one interrupt, then the
  2315. * outbound completions are processed in the ISR.
  2316. */
  2317. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2318. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2319. else {
  2320. /* With all debug warnings on we see a WARN_ON message
  2321. * when we free the skb in the interrupt context.
  2322. */
  2323. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2324. }
  2325. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2326. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2327. break;
  2328. case DEFAULT_Q:
  2329. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2330. cqicb->irq_delay = 0;
  2331. cqicb->pkt_delay = 0;
  2332. break;
  2333. case RX_Q:
  2334. /* Inbound completion handling rx_rings run in
  2335. * separate NAPI contexts.
  2336. */
  2337. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2338. 64);
  2339. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2340. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2341. break;
  2342. default:
  2343. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2344. rx_ring->type);
  2345. }
  2346. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2347. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2348. CFG_LCQ, rx_ring->cq_id);
  2349. if (err) {
  2350. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2351. return err;
  2352. }
  2353. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2354. /*
  2355. * Advance the producer index for the buffer queues.
  2356. */
  2357. wmb();
  2358. if (rx_ring->lbq_len)
  2359. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2360. rx_ring->lbq_prod_idx_db_reg);
  2361. if (rx_ring->sbq_len)
  2362. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2363. rx_ring->sbq_prod_idx_db_reg);
  2364. return err;
  2365. }
  2366. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2367. {
  2368. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2369. void __iomem *doorbell_area =
  2370. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2371. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2372. (tx_ring->wq_id * sizeof(u64));
  2373. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2374. (tx_ring->wq_id * sizeof(u64));
  2375. int err = 0;
  2376. /*
  2377. * Assign doorbell registers for this tx_ring.
  2378. */
  2379. /* TX PCI doorbell mem area for tx producer index */
  2380. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2381. tx_ring->prod_idx = 0;
  2382. /* TX PCI doorbell mem area + 0x04 */
  2383. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2384. /*
  2385. * Assign shadow registers for this tx_ring.
  2386. */
  2387. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2388. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2389. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2390. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2391. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2392. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2393. wqicb->rid = 0;
  2394. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2395. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2396. ql_init_tx_ring(qdev, tx_ring);
  2397. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2398. (u16) tx_ring->wq_id);
  2399. if (err) {
  2400. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2401. return err;
  2402. }
  2403. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2404. return err;
  2405. }
  2406. static void ql_disable_msix(struct ql_adapter *qdev)
  2407. {
  2408. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2409. pci_disable_msix(qdev->pdev);
  2410. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2411. kfree(qdev->msi_x_entry);
  2412. qdev->msi_x_entry = NULL;
  2413. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2414. pci_disable_msi(qdev->pdev);
  2415. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2416. }
  2417. }
  2418. static void ql_enable_msix(struct ql_adapter *qdev)
  2419. {
  2420. int i;
  2421. qdev->intr_count = 1;
  2422. /* Get the MSIX vectors. */
  2423. if (irq_type == MSIX_IRQ) {
  2424. /* Try to alloc space for the msix struct,
  2425. * if it fails then go to MSI/legacy.
  2426. */
  2427. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2428. sizeof(struct msix_entry),
  2429. GFP_KERNEL);
  2430. if (!qdev->msi_x_entry) {
  2431. irq_type = MSI_IRQ;
  2432. goto msi;
  2433. }
  2434. for (i = 0; i < qdev->rx_ring_count; i++)
  2435. qdev->msi_x_entry[i].entry = i;
  2436. if (!pci_enable_msix
  2437. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2438. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2439. qdev->intr_count = qdev->rx_ring_count;
  2440. QPRINTK(qdev, IFUP, INFO,
  2441. "MSI-X Enabled, got %d vectors.\n",
  2442. qdev->intr_count);
  2443. return;
  2444. } else {
  2445. kfree(qdev->msi_x_entry);
  2446. qdev->msi_x_entry = NULL;
  2447. QPRINTK(qdev, IFUP, WARNING,
  2448. "MSI-X Enable failed, trying MSI.\n");
  2449. irq_type = MSI_IRQ;
  2450. }
  2451. }
  2452. msi:
  2453. if (irq_type == MSI_IRQ) {
  2454. if (!pci_enable_msi(qdev->pdev)) {
  2455. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2456. QPRINTK(qdev, IFUP, INFO,
  2457. "Running with MSI interrupts.\n");
  2458. return;
  2459. }
  2460. }
  2461. irq_type = LEG_IRQ;
  2462. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2463. }
  2464. /*
  2465. * Here we build the intr_context structures based on
  2466. * our rx_ring count and intr vector count.
  2467. * The intr_context structure is used to hook each vector
  2468. * to possibly different handlers.
  2469. */
  2470. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2471. {
  2472. int i = 0;
  2473. struct intr_context *intr_context = &qdev->intr_context[0];
  2474. ql_enable_msix(qdev);
  2475. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2476. /* Each rx_ring has it's
  2477. * own intr_context since we have separate
  2478. * vectors for each queue.
  2479. * This only true when MSI-X is enabled.
  2480. */
  2481. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2482. qdev->rx_ring[i].irq = i;
  2483. intr_context->intr = i;
  2484. intr_context->qdev = qdev;
  2485. /*
  2486. * We set up each vectors enable/disable/read bits so
  2487. * there's no bit/mask calculations in the critical path.
  2488. */
  2489. intr_context->intr_en_mask =
  2490. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2491. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2492. | i;
  2493. intr_context->intr_dis_mask =
  2494. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2495. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2496. INTR_EN_IHD | i;
  2497. intr_context->intr_read_mask =
  2498. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2499. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2500. i;
  2501. if (i == 0) {
  2502. /*
  2503. * Default queue handles bcast/mcast plus
  2504. * async events. Needs buffers.
  2505. */
  2506. intr_context->handler = qlge_isr;
  2507. sprintf(intr_context->name, "%s-default-queue",
  2508. qdev->ndev->name);
  2509. } else if (i < qdev->rss_ring_first_cq_id) {
  2510. /*
  2511. * Outbound queue is for outbound completions only.
  2512. */
  2513. intr_context->handler = qlge_msix_tx_isr;
  2514. sprintf(intr_context->name, "%s-tx-%d",
  2515. qdev->ndev->name, i);
  2516. } else {
  2517. /*
  2518. * Inbound queues handle unicast frames only.
  2519. */
  2520. intr_context->handler = qlge_msix_rx_isr;
  2521. sprintf(intr_context->name, "%s-rx-%d",
  2522. qdev->ndev->name, i);
  2523. }
  2524. }
  2525. } else {
  2526. /*
  2527. * All rx_rings use the same intr_context since
  2528. * there is only one vector.
  2529. */
  2530. intr_context->intr = 0;
  2531. intr_context->qdev = qdev;
  2532. /*
  2533. * We set up each vectors enable/disable/read bits so
  2534. * there's no bit/mask calculations in the critical path.
  2535. */
  2536. intr_context->intr_en_mask =
  2537. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2538. intr_context->intr_dis_mask =
  2539. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2540. INTR_EN_TYPE_DISABLE;
  2541. intr_context->intr_read_mask =
  2542. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2543. /*
  2544. * Single interrupt means one handler for all rings.
  2545. */
  2546. intr_context->handler = qlge_isr;
  2547. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2548. for (i = 0; i < qdev->rx_ring_count; i++)
  2549. qdev->rx_ring[i].irq = 0;
  2550. }
  2551. }
  2552. static void ql_free_irq(struct ql_adapter *qdev)
  2553. {
  2554. int i;
  2555. struct intr_context *intr_context = &qdev->intr_context[0];
  2556. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2557. if (intr_context->hooked) {
  2558. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2559. free_irq(qdev->msi_x_entry[i].vector,
  2560. &qdev->rx_ring[i]);
  2561. QPRINTK(qdev, IFDOWN, ERR,
  2562. "freeing msix interrupt %d.\n", i);
  2563. } else {
  2564. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2565. QPRINTK(qdev, IFDOWN, ERR,
  2566. "freeing msi interrupt %d.\n", i);
  2567. }
  2568. }
  2569. }
  2570. ql_disable_msix(qdev);
  2571. }
  2572. static int ql_request_irq(struct ql_adapter *qdev)
  2573. {
  2574. int i;
  2575. int status = 0;
  2576. struct pci_dev *pdev = qdev->pdev;
  2577. struct intr_context *intr_context = &qdev->intr_context[0];
  2578. ql_resolve_queues_to_irqs(qdev);
  2579. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2580. atomic_set(&intr_context->irq_cnt, 0);
  2581. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2582. status = request_irq(qdev->msi_x_entry[i].vector,
  2583. intr_context->handler,
  2584. 0,
  2585. intr_context->name,
  2586. &qdev->rx_ring[i]);
  2587. if (status) {
  2588. QPRINTK(qdev, IFUP, ERR,
  2589. "Failed request for MSIX interrupt %d.\n",
  2590. i);
  2591. goto err_irq;
  2592. } else {
  2593. QPRINTK(qdev, IFUP, INFO,
  2594. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2595. i,
  2596. qdev->rx_ring[i].type ==
  2597. DEFAULT_Q ? "DEFAULT_Q" : "",
  2598. qdev->rx_ring[i].type ==
  2599. TX_Q ? "TX_Q" : "",
  2600. qdev->rx_ring[i].type ==
  2601. RX_Q ? "RX_Q" : "", intr_context->name);
  2602. }
  2603. } else {
  2604. QPRINTK(qdev, IFUP, DEBUG,
  2605. "trying msi or legacy interrupts.\n");
  2606. QPRINTK(qdev, IFUP, DEBUG,
  2607. "%s: irq = %d.\n", __func__, pdev->irq);
  2608. QPRINTK(qdev, IFUP, DEBUG,
  2609. "%s: context->name = %s.\n", __func__,
  2610. intr_context->name);
  2611. QPRINTK(qdev, IFUP, DEBUG,
  2612. "%s: dev_id = 0x%p.\n", __func__,
  2613. &qdev->rx_ring[0]);
  2614. status =
  2615. request_irq(pdev->irq, qlge_isr,
  2616. test_bit(QL_MSI_ENABLED,
  2617. &qdev->
  2618. flags) ? 0 : IRQF_SHARED,
  2619. intr_context->name, &qdev->rx_ring[0]);
  2620. if (status)
  2621. goto err_irq;
  2622. QPRINTK(qdev, IFUP, ERR,
  2623. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2624. i,
  2625. qdev->rx_ring[0].type ==
  2626. DEFAULT_Q ? "DEFAULT_Q" : "",
  2627. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2628. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2629. intr_context->name);
  2630. }
  2631. intr_context->hooked = 1;
  2632. }
  2633. return status;
  2634. err_irq:
  2635. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2636. ql_free_irq(qdev);
  2637. return status;
  2638. }
  2639. static int ql_start_rss(struct ql_adapter *qdev)
  2640. {
  2641. struct ricb *ricb = &qdev->ricb;
  2642. int status = 0;
  2643. int i;
  2644. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2645. memset((void *)ricb, 0, sizeof(ricb));
  2646. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2647. ricb->flags =
  2648. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2649. RSS_RT6);
  2650. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2651. /*
  2652. * Fill out the Indirection Table.
  2653. */
  2654. for (i = 0; i < 256; i++)
  2655. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2656. /*
  2657. * Random values for the IPv6 and IPv4 Hash Keys.
  2658. */
  2659. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2660. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2661. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2662. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2663. if (status) {
  2664. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2665. return status;
  2666. }
  2667. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2668. return status;
  2669. }
  2670. /* Initialize the frame-to-queue routing. */
  2671. static int ql_route_initialize(struct ql_adapter *qdev)
  2672. {
  2673. int status = 0;
  2674. int i;
  2675. /* Clear all the entries in the routing table. */
  2676. for (i = 0; i < 16; i++) {
  2677. status = ql_set_routing_reg(qdev, i, 0, 0);
  2678. if (status) {
  2679. QPRINTK(qdev, IFUP, ERR,
  2680. "Failed to init routing register for CAM packets.\n");
  2681. return status;
  2682. }
  2683. }
  2684. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2685. if (status) {
  2686. QPRINTK(qdev, IFUP, ERR,
  2687. "Failed to init routing register for error packets.\n");
  2688. return status;
  2689. }
  2690. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2691. if (status) {
  2692. QPRINTK(qdev, IFUP, ERR,
  2693. "Failed to init routing register for broadcast packets.\n");
  2694. return status;
  2695. }
  2696. /* If we have more than one inbound queue, then turn on RSS in the
  2697. * routing block.
  2698. */
  2699. if (qdev->rss_ring_count > 1) {
  2700. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2701. RT_IDX_RSS_MATCH, 1);
  2702. if (status) {
  2703. QPRINTK(qdev, IFUP, ERR,
  2704. "Failed to init routing register for MATCH RSS packets.\n");
  2705. return status;
  2706. }
  2707. }
  2708. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2709. RT_IDX_CAM_HIT, 1);
  2710. if (status) {
  2711. QPRINTK(qdev, IFUP, ERR,
  2712. "Failed to init routing register for CAM packets.\n");
  2713. return status;
  2714. }
  2715. return status;
  2716. }
  2717. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2718. {
  2719. u32 value, mask;
  2720. int i;
  2721. int status = 0;
  2722. /*
  2723. * Set up the System register to halt on errors.
  2724. */
  2725. value = SYS_EFE | SYS_FAE;
  2726. mask = value << 16;
  2727. ql_write32(qdev, SYS, mask | value);
  2728. /* Set the default queue, and VLAN behavior. */
  2729. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2730. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2731. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2732. /* Set the MPI interrupt to enabled. */
  2733. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2734. /* Enable the function, set pagesize, enable error checking. */
  2735. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2736. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2737. /* Set/clear header splitting. */
  2738. mask = FSC_VM_PAGESIZE_MASK |
  2739. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2740. ql_write32(qdev, FSC, mask | value);
  2741. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2742. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2743. /* Start up the rx queues. */
  2744. for (i = 0; i < qdev->rx_ring_count; i++) {
  2745. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2746. if (status) {
  2747. QPRINTK(qdev, IFUP, ERR,
  2748. "Failed to start rx ring[%d].\n", i);
  2749. return status;
  2750. }
  2751. }
  2752. /* If there is more than one inbound completion queue
  2753. * then download a RICB to configure RSS.
  2754. */
  2755. if (qdev->rss_ring_count > 1) {
  2756. status = ql_start_rss(qdev);
  2757. if (status) {
  2758. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2759. return status;
  2760. }
  2761. }
  2762. /* Start up the tx queues. */
  2763. for (i = 0; i < qdev->tx_ring_count; i++) {
  2764. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2765. if (status) {
  2766. QPRINTK(qdev, IFUP, ERR,
  2767. "Failed to start tx ring[%d].\n", i);
  2768. return status;
  2769. }
  2770. }
  2771. status = ql_port_initialize(qdev);
  2772. if (status) {
  2773. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2774. return status;
  2775. }
  2776. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2777. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2778. if (status) {
  2779. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2780. return status;
  2781. }
  2782. status = ql_route_initialize(qdev);
  2783. if (status) {
  2784. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2785. return status;
  2786. }
  2787. /* Start NAPI for the RSS queues. */
  2788. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2789. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2790. i);
  2791. napi_enable(&qdev->rx_ring[i].napi);
  2792. }
  2793. return status;
  2794. }
  2795. /* Issue soft reset to chip. */
  2796. static int ql_adapter_reset(struct ql_adapter *qdev)
  2797. {
  2798. u32 value;
  2799. int max_wait_time;
  2800. int status = 0;
  2801. int resetCnt = 0;
  2802. #define MAX_RESET_CNT 1
  2803. issueReset:
  2804. resetCnt++;
  2805. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2806. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2807. /* Wait for reset to complete. */
  2808. max_wait_time = 3;
  2809. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2810. max_wait_time);
  2811. do {
  2812. value = ql_read32(qdev, RST_FO);
  2813. if ((value & RST_FO_FR) == 0)
  2814. break;
  2815. ssleep(1);
  2816. } while ((--max_wait_time));
  2817. if (value & RST_FO_FR) {
  2818. QPRINTK(qdev, IFDOWN, ERR,
  2819. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2820. if (resetCnt < MAX_RESET_CNT)
  2821. goto issueReset;
  2822. }
  2823. if (max_wait_time == 0) {
  2824. status = -ETIMEDOUT;
  2825. QPRINTK(qdev, IFDOWN, ERR,
  2826. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2827. }
  2828. return status;
  2829. }
  2830. static void ql_display_dev_info(struct net_device *ndev)
  2831. {
  2832. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2833. QPRINTK(qdev, PROBE, INFO,
  2834. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2835. "XG Roll = %d, XG Rev = %d.\n",
  2836. qdev->func,
  2837. qdev->chip_rev_id & 0x0000000f,
  2838. qdev->chip_rev_id >> 4 & 0x0000000f,
  2839. qdev->chip_rev_id >> 8 & 0x0000000f,
  2840. qdev->chip_rev_id >> 12 & 0x0000000f);
  2841. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2842. }
  2843. static int ql_adapter_down(struct ql_adapter *qdev)
  2844. {
  2845. struct net_device *ndev = qdev->ndev;
  2846. int i, status = 0;
  2847. struct rx_ring *rx_ring;
  2848. netif_stop_queue(ndev);
  2849. netif_carrier_off(ndev);
  2850. /* Don't kill the reset worker thread if we
  2851. * are in the process of recovery.
  2852. */
  2853. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2854. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2855. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2856. cancel_delayed_work_sync(&qdev->mpi_work);
  2857. /* The default queue at index 0 is always processed in
  2858. * a workqueue.
  2859. */
  2860. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2861. /* The rest of the rx_rings are processed in
  2862. * a workqueue only if it's a single interrupt
  2863. * environment (MSI/Legacy).
  2864. */
  2865. for (i = 1; i < qdev->rx_ring_count; i++) {
  2866. rx_ring = &qdev->rx_ring[i];
  2867. /* Only the RSS rings use NAPI on multi irq
  2868. * environment. Outbound completion processing
  2869. * is done in interrupt context.
  2870. */
  2871. if (i >= qdev->rss_ring_first_cq_id) {
  2872. napi_disable(&rx_ring->napi);
  2873. } else {
  2874. cancel_delayed_work_sync(&rx_ring->rx_work);
  2875. }
  2876. }
  2877. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2878. ql_disable_interrupts(qdev);
  2879. ql_tx_ring_clean(qdev);
  2880. /* Call netif_napi_del() from common point.
  2881. */
  2882. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  2883. netif_napi_del(&qdev->rx_ring[i].napi);
  2884. spin_lock(&qdev->hw_lock);
  2885. status = ql_adapter_reset(qdev);
  2886. if (status)
  2887. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2888. qdev->func);
  2889. spin_unlock(&qdev->hw_lock);
  2890. return status;
  2891. }
  2892. static int ql_adapter_up(struct ql_adapter *qdev)
  2893. {
  2894. int err = 0;
  2895. spin_lock(&qdev->hw_lock);
  2896. err = ql_adapter_initialize(qdev);
  2897. if (err) {
  2898. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2899. spin_unlock(&qdev->hw_lock);
  2900. goto err_init;
  2901. }
  2902. spin_unlock(&qdev->hw_lock);
  2903. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2904. ql_enable_interrupts(qdev);
  2905. ql_enable_all_completion_interrupts(qdev);
  2906. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2907. netif_carrier_on(qdev->ndev);
  2908. netif_start_queue(qdev->ndev);
  2909. }
  2910. return 0;
  2911. err_init:
  2912. ql_adapter_reset(qdev);
  2913. return err;
  2914. }
  2915. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2916. {
  2917. int status;
  2918. status = ql_adapter_down(qdev);
  2919. if (status)
  2920. goto error;
  2921. status = ql_adapter_up(qdev);
  2922. if (status)
  2923. goto error;
  2924. return status;
  2925. error:
  2926. QPRINTK(qdev, IFUP, ALERT,
  2927. "Driver up/down cycle failed, closing device\n");
  2928. rtnl_lock();
  2929. dev_close(qdev->ndev);
  2930. rtnl_unlock();
  2931. return status;
  2932. }
  2933. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2934. {
  2935. ql_free_mem_resources(qdev);
  2936. ql_free_irq(qdev);
  2937. }
  2938. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2939. {
  2940. int status = 0;
  2941. if (ql_alloc_mem_resources(qdev)) {
  2942. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2943. return -ENOMEM;
  2944. }
  2945. status = ql_request_irq(qdev);
  2946. if (status)
  2947. goto err_irq;
  2948. return status;
  2949. err_irq:
  2950. ql_free_mem_resources(qdev);
  2951. return status;
  2952. }
  2953. static int qlge_close(struct net_device *ndev)
  2954. {
  2955. struct ql_adapter *qdev = netdev_priv(ndev);
  2956. /*
  2957. * Wait for device to recover from a reset.
  2958. * (Rarely happens, but possible.)
  2959. */
  2960. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2961. msleep(1);
  2962. ql_adapter_down(qdev);
  2963. ql_release_adapter_resources(qdev);
  2964. return 0;
  2965. }
  2966. static int ql_configure_rings(struct ql_adapter *qdev)
  2967. {
  2968. int i;
  2969. struct rx_ring *rx_ring;
  2970. struct tx_ring *tx_ring;
  2971. int cpu_cnt = num_online_cpus();
  2972. /*
  2973. * For each processor present we allocate one
  2974. * rx_ring for outbound completions, and one
  2975. * rx_ring for inbound completions. Plus there is
  2976. * always the one default queue. For the CPU
  2977. * counts we end up with the following rx_rings:
  2978. * rx_ring count =
  2979. * one default queue +
  2980. * (CPU count * outbound completion rx_ring) +
  2981. * (CPU count * inbound (RSS) completion rx_ring)
  2982. * To keep it simple we limit the total number of
  2983. * queues to < 32, so we truncate CPU to 8.
  2984. * This limitation can be removed when requested.
  2985. */
  2986. if (cpu_cnt > MAX_CPUS)
  2987. cpu_cnt = MAX_CPUS;
  2988. /*
  2989. * rx_ring[0] is always the default queue.
  2990. */
  2991. /* Allocate outbound completion ring for each CPU. */
  2992. qdev->tx_ring_count = cpu_cnt;
  2993. /* Allocate inbound completion (RSS) ring for each CPU. */
  2994. qdev->rss_ring_count = cpu_cnt;
  2995. /* cq_id for the first inbound ring handler. */
  2996. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2997. /*
  2998. * qdev->rx_ring_count:
  2999. * Total number of rx_rings. This includes the one
  3000. * default queue, a number of outbound completion
  3001. * handler rx_rings, and the number of inbound
  3002. * completion handler rx_rings.
  3003. */
  3004. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3005. for (i = 0; i < qdev->tx_ring_count; i++) {
  3006. tx_ring = &qdev->tx_ring[i];
  3007. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3008. tx_ring->qdev = qdev;
  3009. tx_ring->wq_id = i;
  3010. tx_ring->wq_len = qdev->tx_ring_size;
  3011. tx_ring->wq_size =
  3012. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3013. /*
  3014. * The completion queue ID for the tx rings start
  3015. * immediately after the default Q ID, which is zero.
  3016. */
  3017. tx_ring->cq_id = i + 1;
  3018. }
  3019. for (i = 0; i < qdev->rx_ring_count; i++) {
  3020. rx_ring = &qdev->rx_ring[i];
  3021. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3022. rx_ring->qdev = qdev;
  3023. rx_ring->cq_id = i;
  3024. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3025. if (i == 0) { /* Default queue at index 0. */
  3026. /*
  3027. * Default queue handles bcast/mcast plus
  3028. * async events. Needs buffers.
  3029. */
  3030. rx_ring->cq_len = qdev->rx_ring_size;
  3031. rx_ring->cq_size =
  3032. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3033. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3034. rx_ring->lbq_size =
  3035. rx_ring->lbq_len * sizeof(__le64);
  3036. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3037. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3038. rx_ring->sbq_size =
  3039. rx_ring->sbq_len * sizeof(__le64);
  3040. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3041. rx_ring->type = DEFAULT_Q;
  3042. } else if (i < qdev->rss_ring_first_cq_id) {
  3043. /*
  3044. * Outbound queue handles outbound completions only.
  3045. */
  3046. /* outbound cq is same size as tx_ring it services. */
  3047. rx_ring->cq_len = qdev->tx_ring_size;
  3048. rx_ring->cq_size =
  3049. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3050. rx_ring->lbq_len = 0;
  3051. rx_ring->lbq_size = 0;
  3052. rx_ring->lbq_buf_size = 0;
  3053. rx_ring->sbq_len = 0;
  3054. rx_ring->sbq_size = 0;
  3055. rx_ring->sbq_buf_size = 0;
  3056. rx_ring->type = TX_Q;
  3057. } else { /* Inbound completions (RSS) queues */
  3058. /*
  3059. * Inbound queues handle unicast frames only.
  3060. */
  3061. rx_ring->cq_len = qdev->rx_ring_size;
  3062. rx_ring->cq_size =
  3063. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3064. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3065. rx_ring->lbq_size =
  3066. rx_ring->lbq_len * sizeof(__le64);
  3067. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3068. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3069. rx_ring->sbq_size =
  3070. rx_ring->sbq_len * sizeof(__le64);
  3071. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3072. rx_ring->type = RX_Q;
  3073. }
  3074. }
  3075. return 0;
  3076. }
  3077. static int qlge_open(struct net_device *ndev)
  3078. {
  3079. int err = 0;
  3080. struct ql_adapter *qdev = netdev_priv(ndev);
  3081. err = ql_configure_rings(qdev);
  3082. if (err)
  3083. return err;
  3084. err = ql_get_adapter_resources(qdev);
  3085. if (err)
  3086. goto error_up;
  3087. err = ql_adapter_up(qdev);
  3088. if (err)
  3089. goto error_up;
  3090. return err;
  3091. error_up:
  3092. ql_release_adapter_resources(qdev);
  3093. return err;
  3094. }
  3095. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3096. {
  3097. struct ql_adapter *qdev = netdev_priv(ndev);
  3098. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3099. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3100. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3101. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3102. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3103. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3104. return 0;
  3105. } else
  3106. return -EINVAL;
  3107. ndev->mtu = new_mtu;
  3108. return 0;
  3109. }
  3110. static struct net_device_stats *qlge_get_stats(struct net_device
  3111. *ndev)
  3112. {
  3113. struct ql_adapter *qdev = netdev_priv(ndev);
  3114. return &qdev->stats;
  3115. }
  3116. static void qlge_set_multicast_list(struct net_device *ndev)
  3117. {
  3118. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3119. struct dev_mc_list *mc_ptr;
  3120. int i;
  3121. spin_lock(&qdev->hw_lock);
  3122. /*
  3123. * Set or clear promiscuous mode if a
  3124. * transition is taking place.
  3125. */
  3126. if (ndev->flags & IFF_PROMISC) {
  3127. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3128. if (ql_set_routing_reg
  3129. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3130. QPRINTK(qdev, HW, ERR,
  3131. "Failed to set promiscous mode.\n");
  3132. } else {
  3133. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3134. }
  3135. }
  3136. } else {
  3137. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3138. if (ql_set_routing_reg
  3139. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3140. QPRINTK(qdev, HW, ERR,
  3141. "Failed to clear promiscous mode.\n");
  3142. } else {
  3143. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3144. }
  3145. }
  3146. }
  3147. /*
  3148. * Set or clear all multicast mode if a
  3149. * transition is taking place.
  3150. */
  3151. if ((ndev->flags & IFF_ALLMULTI) ||
  3152. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3153. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3154. if (ql_set_routing_reg
  3155. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3156. QPRINTK(qdev, HW, ERR,
  3157. "Failed to set all-multi mode.\n");
  3158. } else {
  3159. set_bit(QL_ALLMULTI, &qdev->flags);
  3160. }
  3161. }
  3162. } else {
  3163. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3164. if (ql_set_routing_reg
  3165. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3166. QPRINTK(qdev, HW, ERR,
  3167. "Failed to clear all-multi mode.\n");
  3168. } else {
  3169. clear_bit(QL_ALLMULTI, &qdev->flags);
  3170. }
  3171. }
  3172. }
  3173. if (ndev->mc_count) {
  3174. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3175. i++, mc_ptr = mc_ptr->next)
  3176. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3177. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3178. QPRINTK(qdev, HW, ERR,
  3179. "Failed to loadmulticast address.\n");
  3180. goto exit;
  3181. }
  3182. if (ql_set_routing_reg
  3183. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3184. QPRINTK(qdev, HW, ERR,
  3185. "Failed to set multicast match mode.\n");
  3186. } else {
  3187. set_bit(QL_ALLMULTI, &qdev->flags);
  3188. }
  3189. }
  3190. exit:
  3191. spin_unlock(&qdev->hw_lock);
  3192. }
  3193. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3194. {
  3195. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3196. struct sockaddr *addr = p;
  3197. int ret = 0;
  3198. if (netif_running(ndev))
  3199. return -EBUSY;
  3200. if (!is_valid_ether_addr(addr->sa_data))
  3201. return -EADDRNOTAVAIL;
  3202. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3203. spin_lock(&qdev->hw_lock);
  3204. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3205. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3206. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3207. ret = -1;
  3208. }
  3209. spin_unlock(&qdev->hw_lock);
  3210. return ret;
  3211. }
  3212. static void qlge_tx_timeout(struct net_device *ndev)
  3213. {
  3214. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3215. ql_queue_asic_error(qdev);
  3216. }
  3217. static void ql_asic_reset_work(struct work_struct *work)
  3218. {
  3219. struct ql_adapter *qdev =
  3220. container_of(work, struct ql_adapter, asic_reset_work.work);
  3221. ql_cycle_adapter(qdev);
  3222. }
  3223. static void ql_get_board_info(struct ql_adapter *qdev)
  3224. {
  3225. qdev->func =
  3226. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3227. if (qdev->func) {
  3228. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3229. qdev->port_link_up = STS_PL1;
  3230. qdev->port_init = STS_PI1;
  3231. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3232. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3233. } else {
  3234. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3235. qdev->port_link_up = STS_PL0;
  3236. qdev->port_init = STS_PI0;
  3237. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3238. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3239. }
  3240. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3241. }
  3242. static void ql_release_all(struct pci_dev *pdev)
  3243. {
  3244. struct net_device *ndev = pci_get_drvdata(pdev);
  3245. struct ql_adapter *qdev = netdev_priv(ndev);
  3246. if (qdev->workqueue) {
  3247. destroy_workqueue(qdev->workqueue);
  3248. qdev->workqueue = NULL;
  3249. }
  3250. if (qdev->q_workqueue) {
  3251. destroy_workqueue(qdev->q_workqueue);
  3252. qdev->q_workqueue = NULL;
  3253. }
  3254. if (qdev->reg_base)
  3255. iounmap(qdev->reg_base);
  3256. if (qdev->doorbell_area)
  3257. iounmap(qdev->doorbell_area);
  3258. pci_release_regions(pdev);
  3259. pci_set_drvdata(pdev, NULL);
  3260. }
  3261. static int __devinit ql_init_device(struct pci_dev *pdev,
  3262. struct net_device *ndev, int cards_found)
  3263. {
  3264. struct ql_adapter *qdev = netdev_priv(ndev);
  3265. int pos, err = 0;
  3266. u16 val16;
  3267. memset((void *)qdev, 0, sizeof(qdev));
  3268. err = pci_enable_device(pdev);
  3269. if (err) {
  3270. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3271. return err;
  3272. }
  3273. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3274. if (pos <= 0) {
  3275. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3276. "aborting.\n");
  3277. goto err_out;
  3278. } else {
  3279. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3280. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3281. val16 |= (PCI_EXP_DEVCTL_CERE |
  3282. PCI_EXP_DEVCTL_NFERE |
  3283. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3284. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3285. }
  3286. err = pci_request_regions(pdev, DRV_NAME);
  3287. if (err) {
  3288. dev_err(&pdev->dev, "PCI region request failed.\n");
  3289. goto err_out;
  3290. }
  3291. pci_set_master(pdev);
  3292. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3293. set_bit(QL_DMA64, &qdev->flags);
  3294. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3295. } else {
  3296. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3297. if (!err)
  3298. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3299. }
  3300. if (err) {
  3301. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3302. goto err_out;
  3303. }
  3304. pci_set_drvdata(pdev, ndev);
  3305. qdev->reg_base =
  3306. ioremap_nocache(pci_resource_start(pdev, 1),
  3307. pci_resource_len(pdev, 1));
  3308. if (!qdev->reg_base) {
  3309. dev_err(&pdev->dev, "Register mapping failed.\n");
  3310. err = -ENOMEM;
  3311. goto err_out;
  3312. }
  3313. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3314. qdev->doorbell_area =
  3315. ioremap_nocache(pci_resource_start(pdev, 3),
  3316. pci_resource_len(pdev, 3));
  3317. if (!qdev->doorbell_area) {
  3318. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3319. err = -ENOMEM;
  3320. goto err_out;
  3321. }
  3322. ql_get_board_info(qdev);
  3323. qdev->ndev = ndev;
  3324. qdev->pdev = pdev;
  3325. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3326. spin_lock_init(&qdev->hw_lock);
  3327. spin_lock_init(&qdev->stats_lock);
  3328. /* make sure the EEPROM is good */
  3329. err = ql_get_flash_params(qdev);
  3330. if (err) {
  3331. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3332. goto err_out;
  3333. }
  3334. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3335. goto err_out;
  3336. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3337. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3338. /* Set up the default ring sizes. */
  3339. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3340. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3341. /* Set up the coalescing parameters. */
  3342. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3343. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3344. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3345. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3346. /*
  3347. * Set up the operating parameters.
  3348. */
  3349. qdev->rx_csum = 1;
  3350. qdev->q_workqueue = create_workqueue(ndev->name);
  3351. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3352. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3353. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3354. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3355. if (!cards_found) {
  3356. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3357. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3358. DRV_NAME, DRV_VERSION);
  3359. }
  3360. return 0;
  3361. err_out:
  3362. ql_release_all(pdev);
  3363. pci_disable_device(pdev);
  3364. return err;
  3365. }
  3366. static const struct net_device_ops qlge_netdev_ops = {
  3367. .ndo_open = qlge_open,
  3368. .ndo_stop = qlge_close,
  3369. .ndo_start_xmit = qlge_send,
  3370. .ndo_change_mtu = qlge_change_mtu,
  3371. .ndo_get_stats = qlge_get_stats,
  3372. .ndo_set_multicast_list = qlge_set_multicast_list,
  3373. .ndo_set_mac_address = qlge_set_mac_address,
  3374. .ndo_validate_addr = eth_validate_addr,
  3375. .ndo_tx_timeout = qlge_tx_timeout,
  3376. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3377. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3378. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3379. };
  3380. static int __devinit qlge_probe(struct pci_dev *pdev,
  3381. const struct pci_device_id *pci_entry)
  3382. {
  3383. struct net_device *ndev = NULL;
  3384. struct ql_adapter *qdev = NULL;
  3385. static int cards_found = 0;
  3386. int err = 0;
  3387. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3388. if (!ndev)
  3389. return -ENOMEM;
  3390. err = ql_init_device(pdev, ndev, cards_found);
  3391. if (err < 0) {
  3392. free_netdev(ndev);
  3393. return err;
  3394. }
  3395. qdev = netdev_priv(ndev);
  3396. SET_NETDEV_DEV(ndev, &pdev->dev);
  3397. ndev->features = (0
  3398. | NETIF_F_IP_CSUM
  3399. | NETIF_F_SG
  3400. | NETIF_F_TSO
  3401. | NETIF_F_TSO6
  3402. | NETIF_F_TSO_ECN
  3403. | NETIF_F_HW_VLAN_TX
  3404. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3405. if (test_bit(QL_DMA64, &qdev->flags))
  3406. ndev->features |= NETIF_F_HIGHDMA;
  3407. /*
  3408. * Set up net_device structure.
  3409. */
  3410. ndev->tx_queue_len = qdev->tx_ring_size;
  3411. ndev->irq = pdev->irq;
  3412. ndev->netdev_ops = &qlge_netdev_ops;
  3413. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3414. ndev->watchdog_timeo = 10 * HZ;
  3415. err = register_netdev(ndev);
  3416. if (err) {
  3417. dev_err(&pdev->dev, "net device registration failed.\n");
  3418. ql_release_all(pdev);
  3419. pci_disable_device(pdev);
  3420. return err;
  3421. }
  3422. netif_carrier_off(ndev);
  3423. netif_stop_queue(ndev);
  3424. ql_display_dev_info(ndev);
  3425. cards_found++;
  3426. return 0;
  3427. }
  3428. static void __devexit qlge_remove(struct pci_dev *pdev)
  3429. {
  3430. struct net_device *ndev = pci_get_drvdata(pdev);
  3431. unregister_netdev(ndev);
  3432. ql_release_all(pdev);
  3433. pci_disable_device(pdev);
  3434. free_netdev(ndev);
  3435. }
  3436. /*
  3437. * This callback is called by the PCI subsystem whenever
  3438. * a PCI bus error is detected.
  3439. */
  3440. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3441. enum pci_channel_state state)
  3442. {
  3443. struct net_device *ndev = pci_get_drvdata(pdev);
  3444. struct ql_adapter *qdev = netdev_priv(ndev);
  3445. if (netif_running(ndev))
  3446. ql_adapter_down(qdev);
  3447. pci_disable_device(pdev);
  3448. /* Request a slot reset. */
  3449. return PCI_ERS_RESULT_NEED_RESET;
  3450. }
  3451. /*
  3452. * This callback is called after the PCI buss has been reset.
  3453. * Basically, this tries to restart the card from scratch.
  3454. * This is a shortened version of the device probe/discovery code,
  3455. * it resembles the first-half of the () routine.
  3456. */
  3457. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3458. {
  3459. struct net_device *ndev = pci_get_drvdata(pdev);
  3460. struct ql_adapter *qdev = netdev_priv(ndev);
  3461. if (pci_enable_device(pdev)) {
  3462. QPRINTK(qdev, IFUP, ERR,
  3463. "Cannot re-enable PCI device after reset.\n");
  3464. return PCI_ERS_RESULT_DISCONNECT;
  3465. }
  3466. pci_set_master(pdev);
  3467. netif_carrier_off(ndev);
  3468. netif_stop_queue(ndev);
  3469. ql_adapter_reset(qdev);
  3470. /* Make sure the EEPROM is good */
  3471. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3472. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3473. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3474. return PCI_ERS_RESULT_DISCONNECT;
  3475. }
  3476. return PCI_ERS_RESULT_RECOVERED;
  3477. }
  3478. static void qlge_io_resume(struct pci_dev *pdev)
  3479. {
  3480. struct net_device *ndev = pci_get_drvdata(pdev);
  3481. struct ql_adapter *qdev = netdev_priv(ndev);
  3482. pci_set_master(pdev);
  3483. if (netif_running(ndev)) {
  3484. if (ql_adapter_up(qdev)) {
  3485. QPRINTK(qdev, IFUP, ERR,
  3486. "Device initialization failed after reset.\n");
  3487. return;
  3488. }
  3489. }
  3490. netif_device_attach(ndev);
  3491. }
  3492. static struct pci_error_handlers qlge_err_handler = {
  3493. .error_detected = qlge_io_error_detected,
  3494. .slot_reset = qlge_io_slot_reset,
  3495. .resume = qlge_io_resume,
  3496. };
  3497. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3498. {
  3499. struct net_device *ndev = pci_get_drvdata(pdev);
  3500. struct ql_adapter *qdev = netdev_priv(ndev);
  3501. int err;
  3502. netif_device_detach(ndev);
  3503. if (netif_running(ndev)) {
  3504. err = ql_adapter_down(qdev);
  3505. if (!err)
  3506. return err;
  3507. }
  3508. err = pci_save_state(pdev);
  3509. if (err)
  3510. return err;
  3511. pci_disable_device(pdev);
  3512. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3513. return 0;
  3514. }
  3515. #ifdef CONFIG_PM
  3516. static int qlge_resume(struct pci_dev *pdev)
  3517. {
  3518. struct net_device *ndev = pci_get_drvdata(pdev);
  3519. struct ql_adapter *qdev = netdev_priv(ndev);
  3520. int err;
  3521. pci_set_power_state(pdev, PCI_D0);
  3522. pci_restore_state(pdev);
  3523. err = pci_enable_device(pdev);
  3524. if (err) {
  3525. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3526. return err;
  3527. }
  3528. pci_set_master(pdev);
  3529. pci_enable_wake(pdev, PCI_D3hot, 0);
  3530. pci_enable_wake(pdev, PCI_D3cold, 0);
  3531. if (netif_running(ndev)) {
  3532. err = ql_adapter_up(qdev);
  3533. if (err)
  3534. return err;
  3535. }
  3536. netif_device_attach(ndev);
  3537. return 0;
  3538. }
  3539. #endif /* CONFIG_PM */
  3540. static void qlge_shutdown(struct pci_dev *pdev)
  3541. {
  3542. qlge_suspend(pdev, PMSG_SUSPEND);
  3543. }
  3544. static struct pci_driver qlge_driver = {
  3545. .name = DRV_NAME,
  3546. .id_table = qlge_pci_tbl,
  3547. .probe = qlge_probe,
  3548. .remove = __devexit_p(qlge_remove),
  3549. #ifdef CONFIG_PM
  3550. .suspend = qlge_suspend,
  3551. .resume = qlge_resume,
  3552. #endif
  3553. .shutdown = qlge_shutdown,
  3554. .err_handler = &qlge_err_handler
  3555. };
  3556. static int __init qlge_init_module(void)
  3557. {
  3558. return pci_register_driver(&qlge_driver);
  3559. }
  3560. static void __exit qlge_exit(void)
  3561. {
  3562. pci_unregister_driver(&qlge_driver);
  3563. }
  3564. module_init(qlge_init_module);
  3565. module_exit(qlge_exit);