pagemap.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. #ifndef _LINUX_PAGEMAP_H
  2. #define _LINUX_PAGEMAP_H
  3. /*
  4. * Copyright 1995 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/fs.h>
  8. #include <linux/list.h>
  9. #include <linux/highmem.h>
  10. #include <linux/compiler.h>
  11. #include <asm/uaccess.h>
  12. #include <linux/gfp.h>
  13. #include <linux/bitops.h>
  14. #include <linux/hardirq.h> /* for in_interrupt() */
  15. /*
  16. * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
  17. * allocation mode flags.
  18. */
  19. #define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
  20. #define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
  21. #define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
  22. static inline void mapping_set_error(struct address_space *mapping, int error)
  23. {
  24. if (unlikely(error)) {
  25. if (error == -ENOSPC)
  26. set_bit(AS_ENOSPC, &mapping->flags);
  27. else
  28. set_bit(AS_EIO, &mapping->flags);
  29. }
  30. }
  31. static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  32. {
  33. return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
  34. }
  35. /*
  36. * This is non-atomic. Only to be used before the mapping is activated.
  37. * Probably needs a barrier...
  38. */
  39. static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
  40. {
  41. m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
  42. (__force unsigned long)mask;
  43. }
  44. /*
  45. * The page cache can done in larger chunks than
  46. * one page, because it allows for more efficient
  47. * throughput (it can then be mapped into user
  48. * space in smaller chunks for same flexibility).
  49. *
  50. * Or rather, it _will_ be done in larger chunks.
  51. */
  52. #define PAGE_CACHE_SHIFT PAGE_SHIFT
  53. #define PAGE_CACHE_SIZE PAGE_SIZE
  54. #define PAGE_CACHE_MASK PAGE_MASK
  55. #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
  56. #define page_cache_get(page) get_page(page)
  57. #define page_cache_release(page) put_page(page)
  58. void release_pages(struct page **pages, int nr, int cold);
  59. /*
  60. * speculatively take a reference to a page.
  61. * If the page is free (_count == 0), then _count is untouched, and 0
  62. * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
  63. *
  64. * This function must be called inside the same rcu_read_lock() section as has
  65. * been used to lookup the page in the pagecache radix-tree (or page table):
  66. * this allows allocators to use a synchronize_rcu() to stabilize _count.
  67. *
  68. * Unless an RCU grace period has passed, the count of all pages coming out
  69. * of the allocator must be considered unstable. page_count may return higher
  70. * than expected, and put_page must be able to do the right thing when the
  71. * page has been finished with, no matter what it is subsequently allocated
  72. * for (because put_page is what is used here to drop an invalid speculative
  73. * reference).
  74. *
  75. * This is the interesting part of the lockless pagecache (and lockless
  76. * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
  77. * has the following pattern:
  78. * 1. find page in radix tree
  79. * 2. conditionally increment refcount
  80. * 3. check the page is still in pagecache (if no, goto 1)
  81. *
  82. * Remove-side that cares about stability of _count (eg. reclaim) has the
  83. * following (with tree_lock held for write):
  84. * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
  85. * B. remove page from pagecache
  86. * C. free the page
  87. *
  88. * There are 2 critical interleavings that matter:
  89. * - 2 runs before A: in this case, A sees elevated refcount and bails out
  90. * - A runs before 2: in this case, 2 sees zero refcount and retries;
  91. * subsequently, B will complete and 1 will find no page, causing the
  92. * lookup to return NULL.
  93. *
  94. * It is possible that between 1 and 2, the page is removed then the exact same
  95. * page is inserted into the same position in pagecache. That's OK: the
  96. * old find_get_page using tree_lock could equally have run before or after
  97. * such a re-insertion, depending on order that locks are granted.
  98. *
  99. * Lookups racing against pagecache insertion isn't a big problem: either 1
  100. * will find the page or it will not. Likewise, the old find_get_page could run
  101. * either before the insertion or afterwards, depending on timing.
  102. */
  103. static inline int page_cache_get_speculative(struct page *page)
  104. {
  105. VM_BUG_ON(in_interrupt());
  106. #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
  107. # ifdef CONFIG_PREEMPT
  108. VM_BUG_ON(!in_atomic());
  109. # endif
  110. /*
  111. * Preempt must be disabled here - we rely on rcu_read_lock doing
  112. * this for us.
  113. *
  114. * Pagecache won't be truncated from interrupt context, so if we have
  115. * found a page in the radix tree here, we have pinned its refcount by
  116. * disabling preempt, and hence no need for the "speculative get" that
  117. * SMP requires.
  118. */
  119. VM_BUG_ON(page_count(page) == 0);
  120. atomic_inc(&page->_count);
  121. #else
  122. if (unlikely(!get_page_unless_zero(page))) {
  123. /*
  124. * Either the page has been freed, or will be freed.
  125. * In either case, retry here and the caller should
  126. * do the right thing (see comments above).
  127. */
  128. return 0;
  129. }
  130. #endif
  131. VM_BUG_ON(PageTail(page));
  132. return 1;
  133. }
  134. /*
  135. * Same as above, but add instead of inc (could just be merged)
  136. */
  137. static inline int page_cache_add_speculative(struct page *page, int count)
  138. {
  139. VM_BUG_ON(in_interrupt());
  140. #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
  141. # ifdef CONFIG_PREEMPT
  142. VM_BUG_ON(!in_atomic());
  143. # endif
  144. VM_BUG_ON(page_count(page) == 0);
  145. atomic_add(count, &page->_count);
  146. #else
  147. if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
  148. return 0;
  149. #endif
  150. VM_BUG_ON(PageCompound(page) && page != compound_head(page));
  151. return 1;
  152. }
  153. static inline int page_freeze_refs(struct page *page, int count)
  154. {
  155. return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
  156. }
  157. static inline void page_unfreeze_refs(struct page *page, int count)
  158. {
  159. VM_BUG_ON(page_count(page) != 0);
  160. VM_BUG_ON(count == 0);
  161. atomic_set(&page->_count, count);
  162. }
  163. #ifdef CONFIG_NUMA
  164. extern struct page *__page_cache_alloc(gfp_t gfp);
  165. #else
  166. static inline struct page *__page_cache_alloc(gfp_t gfp)
  167. {
  168. return alloc_pages(gfp, 0);
  169. }
  170. #endif
  171. static inline struct page *page_cache_alloc(struct address_space *x)
  172. {
  173. return __page_cache_alloc(mapping_gfp_mask(x));
  174. }
  175. static inline struct page *page_cache_alloc_cold(struct address_space *x)
  176. {
  177. return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
  178. }
  179. typedef int filler_t(void *, struct page *);
  180. extern struct page * find_get_page(struct address_space *mapping,
  181. pgoff_t index);
  182. extern struct page * find_lock_page(struct address_space *mapping,
  183. pgoff_t index);
  184. extern struct page * find_or_create_page(struct address_space *mapping,
  185. pgoff_t index, gfp_t gfp_mask);
  186. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  187. unsigned int nr_pages, struct page **pages);
  188. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
  189. unsigned int nr_pages, struct page **pages);
  190. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  191. int tag, unsigned int nr_pages, struct page **pages);
  192. struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
  193. /*
  194. * Returns locked page at given index in given cache, creating it if needed.
  195. */
  196. static inline struct page *grab_cache_page(struct address_space *mapping,
  197. pgoff_t index)
  198. {
  199. return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
  200. }
  201. extern struct page * grab_cache_page_nowait(struct address_space *mapping,
  202. pgoff_t index);
  203. extern struct page * read_cache_page_async(struct address_space *mapping,
  204. pgoff_t index, filler_t *filler,
  205. void *data);
  206. extern struct page * read_cache_page(struct address_space *mapping,
  207. pgoff_t index, filler_t *filler,
  208. void *data);
  209. extern int read_cache_pages(struct address_space *mapping,
  210. struct list_head *pages, filler_t *filler, void *data);
  211. static inline struct page *read_mapping_page_async(
  212. struct address_space *mapping,
  213. pgoff_t index, void *data)
  214. {
  215. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  216. return read_cache_page_async(mapping, index, filler, data);
  217. }
  218. static inline struct page *read_mapping_page(struct address_space *mapping,
  219. pgoff_t index, void *data)
  220. {
  221. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  222. return read_cache_page(mapping, index, filler, data);
  223. }
  224. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  225. pgoff_t index, gfp_t gfp_mask);
  226. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  227. pgoff_t index, gfp_t gfp_mask);
  228. extern void remove_from_page_cache(struct page *page);
  229. extern void __remove_from_page_cache(struct page *page);
  230. /*
  231. * Like add_to_page_cache_locked, but used to add newly allocated pages:
  232. * the page is new, so we can just run SetPageLocked() against it.
  233. */
  234. static inline int add_to_page_cache(struct page *page,
  235. struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
  236. {
  237. int error;
  238. SetPageLocked(page);
  239. error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
  240. if (unlikely(error))
  241. ClearPageLocked(page);
  242. return error;
  243. }
  244. /*
  245. * Return byte-offset into filesystem object for page.
  246. */
  247. static inline loff_t page_offset(struct page *page)
  248. {
  249. return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
  250. }
  251. static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
  252. unsigned long address)
  253. {
  254. pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
  255. pgoff += vma->vm_pgoff;
  256. return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  257. }
  258. extern void __lock_page(struct page *page);
  259. extern int __lock_page_killable(struct page *page);
  260. extern void __lock_page_nosync(struct page *page);
  261. extern void unlock_page(struct page *page);
  262. /*
  263. * lock_page may only be called if we have the page's inode pinned.
  264. */
  265. static inline void lock_page(struct page *page)
  266. {
  267. might_sleep();
  268. if (TestSetPageLocked(page))
  269. __lock_page(page);
  270. }
  271. /*
  272. * lock_page_killable is like lock_page but can be interrupted by fatal
  273. * signals. It returns 0 if it locked the page and -EINTR if it was
  274. * killed while waiting.
  275. */
  276. static inline int lock_page_killable(struct page *page)
  277. {
  278. might_sleep();
  279. if (TestSetPageLocked(page))
  280. return __lock_page_killable(page);
  281. return 0;
  282. }
  283. /*
  284. * lock_page_nosync should only be used if we can't pin the page's inode.
  285. * Doesn't play quite so well with block device plugging.
  286. */
  287. static inline void lock_page_nosync(struct page *page)
  288. {
  289. might_sleep();
  290. if (TestSetPageLocked(page))
  291. __lock_page_nosync(page);
  292. }
  293. /*
  294. * This is exported only for wait_on_page_locked/wait_on_page_writeback.
  295. * Never use this directly!
  296. */
  297. extern void wait_on_page_bit(struct page *page, int bit_nr);
  298. /*
  299. * Wait for a page to be unlocked.
  300. *
  301. * This must be called with the caller "holding" the page,
  302. * ie with increased "page->count" so that the page won't
  303. * go away during the wait..
  304. */
  305. static inline void wait_on_page_locked(struct page *page)
  306. {
  307. if (PageLocked(page))
  308. wait_on_page_bit(page, PG_locked);
  309. }
  310. /*
  311. * Wait for a page to complete writeback
  312. */
  313. static inline void wait_on_page_writeback(struct page *page)
  314. {
  315. if (PageWriteback(page))
  316. wait_on_page_bit(page, PG_writeback);
  317. }
  318. extern void end_page_writeback(struct page *page);
  319. /*
  320. * Fault a userspace page into pagetables. Return non-zero on a fault.
  321. *
  322. * This assumes that two userspace pages are always sufficient. That's
  323. * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
  324. */
  325. static inline int fault_in_pages_writeable(char __user *uaddr, int size)
  326. {
  327. int ret;
  328. if (unlikely(size == 0))
  329. return 0;
  330. /*
  331. * Writing zeroes into userspace here is OK, because we know that if
  332. * the zero gets there, we'll be overwriting it.
  333. */
  334. ret = __put_user(0, uaddr);
  335. if (ret == 0) {
  336. char __user *end = uaddr + size - 1;
  337. /*
  338. * If the page was already mapped, this will get a cache miss
  339. * for sure, so try to avoid doing it.
  340. */
  341. if (((unsigned long)uaddr & PAGE_MASK) !=
  342. ((unsigned long)end & PAGE_MASK))
  343. ret = __put_user(0, end);
  344. }
  345. return ret;
  346. }
  347. static inline int fault_in_pages_readable(const char __user *uaddr, int size)
  348. {
  349. volatile char c;
  350. int ret;
  351. if (unlikely(size == 0))
  352. return 0;
  353. ret = __get_user(c, uaddr);
  354. if (ret == 0) {
  355. const char __user *end = uaddr + size - 1;
  356. if (((unsigned long)uaddr & PAGE_MASK) !=
  357. ((unsigned long)end & PAGE_MASK))
  358. ret = __get_user(c, end);
  359. }
  360. return ret;
  361. }
  362. #endif /* _LINUX_PAGEMAP_H */