mmu.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
  359. }
  360. static bool spte_has_volatile_bits(u64 spte)
  361. {
  362. /*
  363. * Always atomicly update spte if it can be updated
  364. * out of mmu-lock, it can ensure dirty bit is not lost,
  365. * also, it can help us to get a stable is_writable_pte()
  366. * to ensure tlb flush is not missed.
  367. */
  368. if (spte_is_locklessly_modifiable(spte))
  369. return true;
  370. if (!shadow_accessed_mask)
  371. return false;
  372. if (!is_shadow_present_pte(spte))
  373. return false;
  374. if ((spte & shadow_accessed_mask) &&
  375. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  376. return false;
  377. return true;
  378. }
  379. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  380. {
  381. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  382. }
  383. /* Rules for using mmu_spte_set:
  384. * Set the sptep from nonpresent to present.
  385. * Note: the sptep being assigned *must* be either not present
  386. * or in a state where the hardware will not attempt to update
  387. * the spte.
  388. */
  389. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  390. {
  391. WARN_ON(is_shadow_present_pte(*sptep));
  392. __set_spte(sptep, new_spte);
  393. }
  394. /* Rules for using mmu_spte_update:
  395. * Update the state bits, it means the mapped pfn is not changged.
  396. *
  397. * Whenever we overwrite a writable spte with a read-only one we
  398. * should flush remote TLBs. Otherwise rmap_write_protect
  399. * will find a read-only spte, even though the writable spte
  400. * might be cached on a CPU's TLB, the return value indicates this
  401. * case.
  402. */
  403. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  404. {
  405. u64 old_spte = *sptep;
  406. bool ret = false;
  407. WARN_ON(!is_rmap_spte(new_spte));
  408. if (!is_shadow_present_pte(old_spte)) {
  409. mmu_spte_set(sptep, new_spte);
  410. return ret;
  411. }
  412. if (!spte_has_volatile_bits(old_spte))
  413. __update_clear_spte_fast(sptep, new_spte);
  414. else
  415. old_spte = __update_clear_spte_slow(sptep, new_spte);
  416. /*
  417. * For the spte updated out of mmu-lock is safe, since
  418. * we always atomicly update it, see the comments in
  419. * spte_has_volatile_bits().
  420. */
  421. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  422. ret = true;
  423. if (!shadow_accessed_mask)
  424. return ret;
  425. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  426. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  427. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  428. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  429. return ret;
  430. }
  431. /*
  432. * Rules for using mmu_spte_clear_track_bits:
  433. * It sets the sptep from present to nonpresent, and track the
  434. * state bits, it is used to clear the last level sptep.
  435. */
  436. static int mmu_spte_clear_track_bits(u64 *sptep)
  437. {
  438. pfn_t pfn;
  439. u64 old_spte = *sptep;
  440. if (!spte_has_volatile_bits(old_spte))
  441. __update_clear_spte_fast(sptep, 0ull);
  442. else
  443. old_spte = __update_clear_spte_slow(sptep, 0ull);
  444. if (!is_rmap_spte(old_spte))
  445. return 0;
  446. pfn = spte_to_pfn(old_spte);
  447. /*
  448. * KVM does not hold the refcount of the page used by
  449. * kvm mmu, before reclaiming the page, we should
  450. * unmap it from mmu first.
  451. */
  452. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  453. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  454. kvm_set_pfn_accessed(pfn);
  455. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  456. kvm_set_pfn_dirty(pfn);
  457. return 1;
  458. }
  459. /*
  460. * Rules for using mmu_spte_clear_no_track:
  461. * Directly clear spte without caring the state bits of sptep,
  462. * it is used to set the upper level spte.
  463. */
  464. static void mmu_spte_clear_no_track(u64 *sptep)
  465. {
  466. __update_clear_spte_fast(sptep, 0ull);
  467. }
  468. static u64 mmu_spte_get_lockless(u64 *sptep)
  469. {
  470. return __get_spte_lockless(sptep);
  471. }
  472. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  473. {
  474. /*
  475. * Prevent page table teardown by making any free-er wait during
  476. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  477. */
  478. local_irq_disable();
  479. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  480. /*
  481. * Make sure a following spte read is not reordered ahead of the write
  482. * to vcpu->mode.
  483. */
  484. smp_mb();
  485. }
  486. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  487. {
  488. /*
  489. * Make sure the write to vcpu->mode is not reordered in front of
  490. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  491. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  492. */
  493. smp_mb();
  494. vcpu->mode = OUTSIDE_GUEST_MODE;
  495. local_irq_enable();
  496. }
  497. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  498. struct kmem_cache *base_cache, int min)
  499. {
  500. void *obj;
  501. if (cache->nobjs >= min)
  502. return 0;
  503. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  504. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  505. if (!obj)
  506. return -ENOMEM;
  507. cache->objects[cache->nobjs++] = obj;
  508. }
  509. return 0;
  510. }
  511. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  512. {
  513. return cache->nobjs;
  514. }
  515. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  516. struct kmem_cache *cache)
  517. {
  518. while (mc->nobjs)
  519. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  520. }
  521. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  522. int min)
  523. {
  524. void *page;
  525. if (cache->nobjs >= min)
  526. return 0;
  527. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  528. page = (void *)__get_free_page(GFP_KERNEL);
  529. if (!page)
  530. return -ENOMEM;
  531. cache->objects[cache->nobjs++] = page;
  532. }
  533. return 0;
  534. }
  535. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  536. {
  537. while (mc->nobjs)
  538. free_page((unsigned long)mc->objects[--mc->nobjs]);
  539. }
  540. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  541. {
  542. int r;
  543. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  544. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  545. if (r)
  546. goto out;
  547. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  548. if (r)
  549. goto out;
  550. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  551. mmu_page_header_cache, 4);
  552. out:
  553. return r;
  554. }
  555. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  556. {
  557. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  558. pte_list_desc_cache);
  559. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  560. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  561. mmu_page_header_cache);
  562. }
  563. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  564. {
  565. void *p;
  566. BUG_ON(!mc->nobjs);
  567. p = mc->objects[--mc->nobjs];
  568. return p;
  569. }
  570. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  571. {
  572. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  573. }
  574. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  575. {
  576. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  577. }
  578. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  579. {
  580. if (!sp->role.direct)
  581. return sp->gfns[index];
  582. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  583. }
  584. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  585. {
  586. if (sp->role.direct)
  587. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  588. else
  589. sp->gfns[index] = gfn;
  590. }
  591. /*
  592. * Return the pointer to the large page information for a given gfn,
  593. * handling slots that are not large page aligned.
  594. */
  595. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  596. struct kvm_memory_slot *slot,
  597. int level)
  598. {
  599. unsigned long idx;
  600. idx = gfn_to_index(gfn, slot->base_gfn, level);
  601. return &slot->arch.lpage_info[level - 2][idx];
  602. }
  603. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  604. {
  605. struct kvm_memory_slot *slot;
  606. struct kvm_lpage_info *linfo;
  607. int i;
  608. slot = gfn_to_memslot(kvm, gfn);
  609. for (i = PT_DIRECTORY_LEVEL;
  610. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  611. linfo = lpage_info_slot(gfn, slot, i);
  612. linfo->write_count += 1;
  613. }
  614. kvm->arch.indirect_shadow_pages++;
  615. }
  616. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  617. {
  618. struct kvm_memory_slot *slot;
  619. struct kvm_lpage_info *linfo;
  620. int i;
  621. slot = gfn_to_memslot(kvm, gfn);
  622. for (i = PT_DIRECTORY_LEVEL;
  623. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  624. linfo = lpage_info_slot(gfn, slot, i);
  625. linfo->write_count -= 1;
  626. WARN_ON(linfo->write_count < 0);
  627. }
  628. kvm->arch.indirect_shadow_pages--;
  629. }
  630. static int has_wrprotected_page(struct kvm *kvm,
  631. gfn_t gfn,
  632. int level)
  633. {
  634. struct kvm_memory_slot *slot;
  635. struct kvm_lpage_info *linfo;
  636. slot = gfn_to_memslot(kvm, gfn);
  637. if (slot) {
  638. linfo = lpage_info_slot(gfn, slot, level);
  639. return linfo->write_count;
  640. }
  641. return 1;
  642. }
  643. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  644. {
  645. unsigned long page_size;
  646. int i, ret = 0;
  647. page_size = kvm_host_page_size(kvm, gfn);
  648. for (i = PT_PAGE_TABLE_LEVEL;
  649. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  650. if (page_size >= KVM_HPAGE_SIZE(i))
  651. ret = i;
  652. else
  653. break;
  654. }
  655. return ret;
  656. }
  657. static struct kvm_memory_slot *
  658. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  659. bool no_dirty_log)
  660. {
  661. struct kvm_memory_slot *slot;
  662. slot = gfn_to_memslot(vcpu->kvm, gfn);
  663. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  664. (no_dirty_log && slot->dirty_bitmap))
  665. slot = NULL;
  666. return slot;
  667. }
  668. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  669. {
  670. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  671. }
  672. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  673. {
  674. int host_level, level, max_level;
  675. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  676. if (host_level == PT_PAGE_TABLE_LEVEL)
  677. return host_level;
  678. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  679. kvm_x86_ops->get_lpage_level() : host_level;
  680. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  681. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  682. break;
  683. return level - 1;
  684. }
  685. /*
  686. * Pte mapping structures:
  687. *
  688. * If pte_list bit zero is zero, then pte_list point to the spte.
  689. *
  690. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  691. * pte_list_desc containing more mappings.
  692. *
  693. * Returns the number of pte entries before the spte was added or zero if
  694. * the spte was not added.
  695. *
  696. */
  697. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  698. unsigned long *pte_list)
  699. {
  700. struct pte_list_desc *desc;
  701. int i, count = 0;
  702. if (!*pte_list) {
  703. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  704. *pte_list = (unsigned long)spte;
  705. } else if (!(*pte_list & 1)) {
  706. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  707. desc = mmu_alloc_pte_list_desc(vcpu);
  708. desc->sptes[0] = (u64 *)*pte_list;
  709. desc->sptes[1] = spte;
  710. *pte_list = (unsigned long)desc | 1;
  711. ++count;
  712. } else {
  713. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  714. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  715. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  716. desc = desc->more;
  717. count += PTE_LIST_EXT;
  718. }
  719. if (desc->sptes[PTE_LIST_EXT-1]) {
  720. desc->more = mmu_alloc_pte_list_desc(vcpu);
  721. desc = desc->more;
  722. }
  723. for (i = 0; desc->sptes[i]; ++i)
  724. ++count;
  725. desc->sptes[i] = spte;
  726. }
  727. return count;
  728. }
  729. static void
  730. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  731. int i, struct pte_list_desc *prev_desc)
  732. {
  733. int j;
  734. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  735. ;
  736. desc->sptes[i] = desc->sptes[j];
  737. desc->sptes[j] = NULL;
  738. if (j != 0)
  739. return;
  740. if (!prev_desc && !desc->more)
  741. *pte_list = (unsigned long)desc->sptes[0];
  742. else
  743. if (prev_desc)
  744. prev_desc->more = desc->more;
  745. else
  746. *pte_list = (unsigned long)desc->more | 1;
  747. mmu_free_pte_list_desc(desc);
  748. }
  749. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  750. {
  751. struct pte_list_desc *desc;
  752. struct pte_list_desc *prev_desc;
  753. int i;
  754. if (!*pte_list) {
  755. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  756. BUG();
  757. } else if (!(*pte_list & 1)) {
  758. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  759. if ((u64 *)*pte_list != spte) {
  760. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  761. BUG();
  762. }
  763. *pte_list = 0;
  764. } else {
  765. rmap_printk("pte_list_remove: %p many->many\n", spte);
  766. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  767. prev_desc = NULL;
  768. while (desc) {
  769. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  770. if (desc->sptes[i] == spte) {
  771. pte_list_desc_remove_entry(pte_list,
  772. desc, i,
  773. prev_desc);
  774. return;
  775. }
  776. prev_desc = desc;
  777. desc = desc->more;
  778. }
  779. pr_err("pte_list_remove: %p many->many\n", spte);
  780. BUG();
  781. }
  782. }
  783. typedef void (*pte_list_walk_fn) (u64 *spte);
  784. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  785. {
  786. struct pte_list_desc *desc;
  787. int i;
  788. if (!*pte_list)
  789. return;
  790. if (!(*pte_list & 1))
  791. return fn((u64 *)*pte_list);
  792. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  793. while (desc) {
  794. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  795. fn(desc->sptes[i]);
  796. desc = desc->more;
  797. }
  798. }
  799. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  800. struct kvm_memory_slot *slot)
  801. {
  802. unsigned long idx;
  803. if (likely(level == PT_PAGE_TABLE_LEVEL))
  804. return &slot->rmap[gfn - slot->base_gfn];
  805. idx = gfn_to_index(gfn, slot->base_gfn, level);
  806. return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
  807. }
  808. /*
  809. * Take gfn and return the reverse mapping to it.
  810. */
  811. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  812. {
  813. struct kvm_memory_slot *slot;
  814. slot = gfn_to_memslot(kvm, gfn);
  815. return __gfn_to_rmap(gfn, level, slot);
  816. }
  817. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  818. {
  819. struct kvm_mmu_memory_cache *cache;
  820. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  821. return mmu_memory_cache_free_objects(cache);
  822. }
  823. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  824. {
  825. struct kvm_mmu_page *sp;
  826. unsigned long *rmapp;
  827. sp = page_header(__pa(spte));
  828. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  829. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  830. return pte_list_add(vcpu, spte, rmapp);
  831. }
  832. static void rmap_remove(struct kvm *kvm, u64 *spte)
  833. {
  834. struct kvm_mmu_page *sp;
  835. gfn_t gfn;
  836. unsigned long *rmapp;
  837. sp = page_header(__pa(spte));
  838. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  839. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  840. pte_list_remove(spte, rmapp);
  841. }
  842. /*
  843. * Used by the following functions to iterate through the sptes linked by a
  844. * rmap. All fields are private and not assumed to be used outside.
  845. */
  846. struct rmap_iterator {
  847. /* private fields */
  848. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  849. int pos; /* index of the sptep */
  850. };
  851. /*
  852. * Iteration must be started by this function. This should also be used after
  853. * removing/dropping sptes from the rmap link because in such cases the
  854. * information in the itererator may not be valid.
  855. *
  856. * Returns sptep if found, NULL otherwise.
  857. */
  858. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  859. {
  860. if (!rmap)
  861. return NULL;
  862. if (!(rmap & 1)) {
  863. iter->desc = NULL;
  864. return (u64 *)rmap;
  865. }
  866. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  867. iter->pos = 0;
  868. return iter->desc->sptes[iter->pos];
  869. }
  870. /*
  871. * Must be used with a valid iterator: e.g. after rmap_get_first().
  872. *
  873. * Returns sptep if found, NULL otherwise.
  874. */
  875. static u64 *rmap_get_next(struct rmap_iterator *iter)
  876. {
  877. if (iter->desc) {
  878. if (iter->pos < PTE_LIST_EXT - 1) {
  879. u64 *sptep;
  880. ++iter->pos;
  881. sptep = iter->desc->sptes[iter->pos];
  882. if (sptep)
  883. return sptep;
  884. }
  885. iter->desc = iter->desc->more;
  886. if (iter->desc) {
  887. iter->pos = 0;
  888. /* desc->sptes[0] cannot be NULL */
  889. return iter->desc->sptes[iter->pos];
  890. }
  891. }
  892. return NULL;
  893. }
  894. static void drop_spte(struct kvm *kvm, u64 *sptep)
  895. {
  896. if (mmu_spte_clear_track_bits(sptep))
  897. rmap_remove(kvm, sptep);
  898. }
  899. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  900. {
  901. if (is_large_pte(*sptep)) {
  902. WARN_ON(page_header(__pa(sptep))->role.level ==
  903. PT_PAGE_TABLE_LEVEL);
  904. drop_spte(kvm, sptep);
  905. --kvm->stat.lpages;
  906. return true;
  907. }
  908. return false;
  909. }
  910. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  911. {
  912. if (__drop_large_spte(vcpu->kvm, sptep))
  913. kvm_flush_remote_tlbs(vcpu->kvm);
  914. }
  915. /*
  916. * Write-protect on the specified @sptep, @pt_protect indicates whether
  917. * spte writ-protection is caused by protecting shadow page table.
  918. * @flush indicates whether tlb need be flushed.
  919. *
  920. * Note: write protection is difference between drity logging and spte
  921. * protection:
  922. * - for dirty logging, the spte can be set to writable at anytime if
  923. * its dirty bitmap is properly set.
  924. * - for spte protection, the spte can be writable only after unsync-ing
  925. * shadow page.
  926. *
  927. * Return true if the spte is dropped.
  928. */
  929. static bool
  930. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  931. {
  932. u64 spte = *sptep;
  933. if (!is_writable_pte(spte) &&
  934. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  935. return false;
  936. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  937. if (__drop_large_spte(kvm, sptep)) {
  938. *flush |= true;
  939. return true;
  940. }
  941. if (pt_protect)
  942. spte &= ~SPTE_MMU_WRITEABLE;
  943. spte = spte & ~PT_WRITABLE_MASK;
  944. *flush |= mmu_spte_update(sptep, spte);
  945. return false;
  946. }
  947. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  948. int level, bool pt_protect)
  949. {
  950. u64 *sptep;
  951. struct rmap_iterator iter;
  952. bool flush = false;
  953. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  954. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  955. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  956. sptep = rmap_get_first(*rmapp, &iter);
  957. continue;
  958. }
  959. sptep = rmap_get_next(&iter);
  960. }
  961. return flush;
  962. }
  963. /**
  964. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  965. * @kvm: kvm instance
  966. * @slot: slot to protect
  967. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  968. * @mask: indicates which pages we should protect
  969. *
  970. * Used when we do not need to care about huge page mappings: e.g. during dirty
  971. * logging we do not have any such mappings.
  972. */
  973. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  974. struct kvm_memory_slot *slot,
  975. gfn_t gfn_offset, unsigned long mask)
  976. {
  977. unsigned long *rmapp;
  978. while (mask) {
  979. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  980. PT_PAGE_TABLE_LEVEL, slot);
  981. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
  982. /* clear the first set bit */
  983. mask &= mask - 1;
  984. }
  985. }
  986. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  987. {
  988. struct kvm_memory_slot *slot;
  989. unsigned long *rmapp;
  990. int i;
  991. bool write_protected = false;
  992. slot = gfn_to_memslot(kvm, gfn);
  993. for (i = PT_PAGE_TABLE_LEVEL;
  994. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  995. rmapp = __gfn_to_rmap(gfn, i, slot);
  996. write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
  997. }
  998. return write_protected;
  999. }
  1000. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1001. struct kvm_memory_slot *slot, unsigned long data)
  1002. {
  1003. u64 *sptep;
  1004. struct rmap_iterator iter;
  1005. int need_tlb_flush = 0;
  1006. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1007. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1008. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1009. drop_spte(kvm, sptep);
  1010. need_tlb_flush = 1;
  1011. }
  1012. return need_tlb_flush;
  1013. }
  1014. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1015. struct kvm_memory_slot *slot, unsigned long data)
  1016. {
  1017. u64 *sptep;
  1018. struct rmap_iterator iter;
  1019. int need_flush = 0;
  1020. u64 new_spte;
  1021. pte_t *ptep = (pte_t *)data;
  1022. pfn_t new_pfn;
  1023. WARN_ON(pte_huge(*ptep));
  1024. new_pfn = pte_pfn(*ptep);
  1025. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1026. BUG_ON(!is_shadow_present_pte(*sptep));
  1027. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1028. need_flush = 1;
  1029. if (pte_write(*ptep)) {
  1030. drop_spte(kvm, sptep);
  1031. sptep = rmap_get_first(*rmapp, &iter);
  1032. } else {
  1033. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1034. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1035. new_spte &= ~PT_WRITABLE_MASK;
  1036. new_spte &= ~SPTE_HOST_WRITEABLE;
  1037. new_spte &= ~shadow_accessed_mask;
  1038. mmu_spte_clear_track_bits(sptep);
  1039. mmu_spte_set(sptep, new_spte);
  1040. sptep = rmap_get_next(&iter);
  1041. }
  1042. }
  1043. if (need_flush)
  1044. kvm_flush_remote_tlbs(kvm);
  1045. return 0;
  1046. }
  1047. static int kvm_handle_hva_range(struct kvm *kvm,
  1048. unsigned long start,
  1049. unsigned long end,
  1050. unsigned long data,
  1051. int (*handler)(struct kvm *kvm,
  1052. unsigned long *rmapp,
  1053. struct kvm_memory_slot *slot,
  1054. unsigned long data))
  1055. {
  1056. int j;
  1057. int ret = 0;
  1058. struct kvm_memslots *slots;
  1059. struct kvm_memory_slot *memslot;
  1060. slots = kvm_memslots(kvm);
  1061. kvm_for_each_memslot(memslot, slots) {
  1062. unsigned long hva_start, hva_end;
  1063. gfn_t gfn_start, gfn_end;
  1064. hva_start = max(start, memslot->userspace_addr);
  1065. hva_end = min(end, memslot->userspace_addr +
  1066. (memslot->npages << PAGE_SHIFT));
  1067. if (hva_start >= hva_end)
  1068. continue;
  1069. /*
  1070. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1071. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1072. */
  1073. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1074. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1075. for (j = PT_PAGE_TABLE_LEVEL;
  1076. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1077. unsigned long idx, idx_end;
  1078. unsigned long *rmapp;
  1079. /*
  1080. * {idx(page_j) | page_j intersects with
  1081. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1082. */
  1083. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1084. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1085. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1086. for (; idx <= idx_end; ++idx)
  1087. ret |= handler(kvm, rmapp++, memslot, data);
  1088. }
  1089. }
  1090. return ret;
  1091. }
  1092. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1093. unsigned long data,
  1094. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1095. struct kvm_memory_slot *slot,
  1096. unsigned long data))
  1097. {
  1098. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1099. }
  1100. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1101. {
  1102. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1103. }
  1104. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1105. {
  1106. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1107. }
  1108. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1109. {
  1110. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1111. }
  1112. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1113. struct kvm_memory_slot *slot, unsigned long data)
  1114. {
  1115. u64 *sptep;
  1116. struct rmap_iterator uninitialized_var(iter);
  1117. int young = 0;
  1118. /*
  1119. * In case of absence of EPT Access and Dirty Bits supports,
  1120. * emulate the accessed bit for EPT, by checking if this page has
  1121. * an EPT mapping, and clearing it if it does. On the next access,
  1122. * a new EPT mapping will be established.
  1123. * This has some overhead, but not as much as the cost of swapping
  1124. * out actively used pages or breaking up actively used hugepages.
  1125. */
  1126. if (!shadow_accessed_mask) {
  1127. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1128. goto out;
  1129. }
  1130. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1131. sptep = rmap_get_next(&iter)) {
  1132. BUG_ON(!is_shadow_present_pte(*sptep));
  1133. if (*sptep & shadow_accessed_mask) {
  1134. young = 1;
  1135. clear_bit((ffs(shadow_accessed_mask) - 1),
  1136. (unsigned long *)sptep);
  1137. }
  1138. }
  1139. out:
  1140. /* @data has hva passed to kvm_age_hva(). */
  1141. trace_kvm_age_page(data, slot, young);
  1142. return young;
  1143. }
  1144. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1145. struct kvm_memory_slot *slot, unsigned long data)
  1146. {
  1147. u64 *sptep;
  1148. struct rmap_iterator iter;
  1149. int young = 0;
  1150. /*
  1151. * If there's no access bit in the secondary pte set by the
  1152. * hardware it's up to gup-fast/gup to set the access bit in
  1153. * the primary pte or in the page structure.
  1154. */
  1155. if (!shadow_accessed_mask)
  1156. goto out;
  1157. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1158. sptep = rmap_get_next(&iter)) {
  1159. BUG_ON(!is_shadow_present_pte(*sptep));
  1160. if (*sptep & shadow_accessed_mask) {
  1161. young = 1;
  1162. break;
  1163. }
  1164. }
  1165. out:
  1166. return young;
  1167. }
  1168. #define RMAP_RECYCLE_THRESHOLD 1000
  1169. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1170. {
  1171. unsigned long *rmapp;
  1172. struct kvm_mmu_page *sp;
  1173. sp = page_header(__pa(spte));
  1174. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1175. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1176. kvm_flush_remote_tlbs(vcpu->kvm);
  1177. }
  1178. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1179. {
  1180. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1181. }
  1182. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1183. {
  1184. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1185. }
  1186. #ifdef MMU_DEBUG
  1187. static int is_empty_shadow_page(u64 *spt)
  1188. {
  1189. u64 *pos;
  1190. u64 *end;
  1191. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1192. if (is_shadow_present_pte(*pos)) {
  1193. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1194. pos, *pos);
  1195. return 0;
  1196. }
  1197. return 1;
  1198. }
  1199. #endif
  1200. /*
  1201. * This value is the sum of all of the kvm instances's
  1202. * kvm->arch.n_used_mmu_pages values. We need a global,
  1203. * aggregate version in order to make the slab shrinker
  1204. * faster
  1205. */
  1206. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1207. {
  1208. kvm->arch.n_used_mmu_pages += nr;
  1209. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1210. }
  1211. /*
  1212. * Remove the sp from shadow page cache, after call it,
  1213. * we can not find this sp from the cache, and the shadow
  1214. * page table is still valid.
  1215. * It should be under the protection of mmu lock.
  1216. */
  1217. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1218. {
  1219. ASSERT(is_empty_shadow_page(sp->spt));
  1220. hlist_del(&sp->hash_link);
  1221. if (!sp->role.direct)
  1222. free_page((unsigned long)sp->gfns);
  1223. }
  1224. /*
  1225. * Free the shadow page table and the sp, we can do it
  1226. * out of the protection of mmu lock.
  1227. */
  1228. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1229. {
  1230. list_del(&sp->link);
  1231. free_page((unsigned long)sp->spt);
  1232. kmem_cache_free(mmu_page_header_cache, sp);
  1233. }
  1234. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1235. {
  1236. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1237. }
  1238. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1239. struct kvm_mmu_page *sp, u64 *parent_pte)
  1240. {
  1241. if (!parent_pte)
  1242. return;
  1243. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1244. }
  1245. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1246. u64 *parent_pte)
  1247. {
  1248. pte_list_remove(parent_pte, &sp->parent_ptes);
  1249. }
  1250. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1251. u64 *parent_pte)
  1252. {
  1253. mmu_page_remove_parent_pte(sp, parent_pte);
  1254. mmu_spte_clear_no_track(parent_pte);
  1255. }
  1256. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1257. u64 *parent_pte, int direct)
  1258. {
  1259. struct kvm_mmu_page *sp;
  1260. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1261. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1262. if (!direct)
  1263. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1264. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1265. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1266. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1267. sp->parent_ptes = 0;
  1268. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1269. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1270. return sp;
  1271. }
  1272. static void mark_unsync(u64 *spte);
  1273. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1274. {
  1275. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1276. }
  1277. static void mark_unsync(u64 *spte)
  1278. {
  1279. struct kvm_mmu_page *sp;
  1280. unsigned int index;
  1281. sp = page_header(__pa(spte));
  1282. index = spte - sp->spt;
  1283. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1284. return;
  1285. if (sp->unsync_children++)
  1286. return;
  1287. kvm_mmu_mark_parents_unsync(sp);
  1288. }
  1289. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1290. struct kvm_mmu_page *sp)
  1291. {
  1292. return 1;
  1293. }
  1294. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1295. {
  1296. }
  1297. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1298. struct kvm_mmu_page *sp, u64 *spte,
  1299. const void *pte)
  1300. {
  1301. WARN_ON(1);
  1302. }
  1303. #define KVM_PAGE_ARRAY_NR 16
  1304. struct kvm_mmu_pages {
  1305. struct mmu_page_and_offset {
  1306. struct kvm_mmu_page *sp;
  1307. unsigned int idx;
  1308. } page[KVM_PAGE_ARRAY_NR];
  1309. unsigned int nr;
  1310. };
  1311. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1312. int idx)
  1313. {
  1314. int i;
  1315. if (sp->unsync)
  1316. for (i=0; i < pvec->nr; i++)
  1317. if (pvec->page[i].sp == sp)
  1318. return 0;
  1319. pvec->page[pvec->nr].sp = sp;
  1320. pvec->page[pvec->nr].idx = idx;
  1321. pvec->nr++;
  1322. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1323. }
  1324. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1325. struct kvm_mmu_pages *pvec)
  1326. {
  1327. int i, ret, nr_unsync_leaf = 0;
  1328. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1329. struct kvm_mmu_page *child;
  1330. u64 ent = sp->spt[i];
  1331. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1332. goto clear_child_bitmap;
  1333. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1334. if (child->unsync_children) {
  1335. if (mmu_pages_add(pvec, child, i))
  1336. return -ENOSPC;
  1337. ret = __mmu_unsync_walk(child, pvec);
  1338. if (!ret)
  1339. goto clear_child_bitmap;
  1340. else if (ret > 0)
  1341. nr_unsync_leaf += ret;
  1342. else
  1343. return ret;
  1344. } else if (child->unsync) {
  1345. nr_unsync_leaf++;
  1346. if (mmu_pages_add(pvec, child, i))
  1347. return -ENOSPC;
  1348. } else
  1349. goto clear_child_bitmap;
  1350. continue;
  1351. clear_child_bitmap:
  1352. __clear_bit(i, sp->unsync_child_bitmap);
  1353. sp->unsync_children--;
  1354. WARN_ON((int)sp->unsync_children < 0);
  1355. }
  1356. return nr_unsync_leaf;
  1357. }
  1358. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1359. struct kvm_mmu_pages *pvec)
  1360. {
  1361. if (!sp->unsync_children)
  1362. return 0;
  1363. mmu_pages_add(pvec, sp, 0);
  1364. return __mmu_unsync_walk(sp, pvec);
  1365. }
  1366. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1367. {
  1368. WARN_ON(!sp->unsync);
  1369. trace_kvm_mmu_sync_page(sp);
  1370. sp->unsync = 0;
  1371. --kvm->stat.mmu_unsync;
  1372. }
  1373. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1374. struct list_head *invalid_list);
  1375. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1376. struct list_head *invalid_list);
  1377. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1378. hlist_for_each_entry(sp, pos, \
  1379. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1380. if ((sp)->gfn != (gfn)) {} else
  1381. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1382. hlist_for_each_entry(sp, pos, \
  1383. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1384. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1385. (sp)->role.invalid) {} else
  1386. /* @sp->gfn should be write-protected at the call site */
  1387. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1388. struct list_head *invalid_list, bool clear_unsync)
  1389. {
  1390. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1391. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1392. return 1;
  1393. }
  1394. if (clear_unsync)
  1395. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1396. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1397. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1398. return 1;
  1399. }
  1400. kvm_mmu_flush_tlb(vcpu);
  1401. return 0;
  1402. }
  1403. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1404. struct kvm_mmu_page *sp)
  1405. {
  1406. LIST_HEAD(invalid_list);
  1407. int ret;
  1408. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1409. if (ret)
  1410. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1411. return ret;
  1412. }
  1413. #ifdef CONFIG_KVM_MMU_AUDIT
  1414. #include "mmu_audit.c"
  1415. #else
  1416. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1417. static void mmu_audit_disable(void) { }
  1418. #endif
  1419. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1420. struct list_head *invalid_list)
  1421. {
  1422. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1423. }
  1424. /* @gfn should be write-protected at the call site */
  1425. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1426. {
  1427. struct kvm_mmu_page *s;
  1428. struct hlist_node *node;
  1429. LIST_HEAD(invalid_list);
  1430. bool flush = false;
  1431. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1432. if (!s->unsync)
  1433. continue;
  1434. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1435. kvm_unlink_unsync_page(vcpu->kvm, s);
  1436. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1437. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1438. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1439. continue;
  1440. }
  1441. flush = true;
  1442. }
  1443. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1444. if (flush)
  1445. kvm_mmu_flush_tlb(vcpu);
  1446. }
  1447. struct mmu_page_path {
  1448. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1449. unsigned int idx[PT64_ROOT_LEVEL-1];
  1450. };
  1451. #define for_each_sp(pvec, sp, parents, i) \
  1452. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1453. sp = pvec.page[i].sp; \
  1454. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1455. i = mmu_pages_next(&pvec, &parents, i))
  1456. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1457. struct mmu_page_path *parents,
  1458. int i)
  1459. {
  1460. int n;
  1461. for (n = i+1; n < pvec->nr; n++) {
  1462. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1463. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1464. parents->idx[0] = pvec->page[n].idx;
  1465. return n;
  1466. }
  1467. parents->parent[sp->role.level-2] = sp;
  1468. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1469. }
  1470. return n;
  1471. }
  1472. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1473. {
  1474. struct kvm_mmu_page *sp;
  1475. unsigned int level = 0;
  1476. do {
  1477. unsigned int idx = parents->idx[level];
  1478. sp = parents->parent[level];
  1479. if (!sp)
  1480. return;
  1481. --sp->unsync_children;
  1482. WARN_ON((int)sp->unsync_children < 0);
  1483. __clear_bit(idx, sp->unsync_child_bitmap);
  1484. level++;
  1485. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1486. }
  1487. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1488. struct mmu_page_path *parents,
  1489. struct kvm_mmu_pages *pvec)
  1490. {
  1491. parents->parent[parent->role.level-1] = NULL;
  1492. pvec->nr = 0;
  1493. }
  1494. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1495. struct kvm_mmu_page *parent)
  1496. {
  1497. int i;
  1498. struct kvm_mmu_page *sp;
  1499. struct mmu_page_path parents;
  1500. struct kvm_mmu_pages pages;
  1501. LIST_HEAD(invalid_list);
  1502. kvm_mmu_pages_init(parent, &parents, &pages);
  1503. while (mmu_unsync_walk(parent, &pages)) {
  1504. bool protected = false;
  1505. for_each_sp(pages, sp, parents, i)
  1506. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1507. if (protected)
  1508. kvm_flush_remote_tlbs(vcpu->kvm);
  1509. for_each_sp(pages, sp, parents, i) {
  1510. kvm_sync_page(vcpu, sp, &invalid_list);
  1511. mmu_pages_clear_parents(&parents);
  1512. }
  1513. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1514. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1515. kvm_mmu_pages_init(parent, &parents, &pages);
  1516. }
  1517. }
  1518. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1519. {
  1520. int i;
  1521. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1522. sp->spt[i] = 0ull;
  1523. }
  1524. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1525. {
  1526. sp->write_flooding_count = 0;
  1527. }
  1528. static void clear_sp_write_flooding_count(u64 *spte)
  1529. {
  1530. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1531. __clear_sp_write_flooding_count(sp);
  1532. }
  1533. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1534. gfn_t gfn,
  1535. gva_t gaddr,
  1536. unsigned level,
  1537. int direct,
  1538. unsigned access,
  1539. u64 *parent_pte)
  1540. {
  1541. union kvm_mmu_page_role role;
  1542. unsigned quadrant;
  1543. struct kvm_mmu_page *sp;
  1544. struct hlist_node *node;
  1545. bool need_sync = false;
  1546. role = vcpu->arch.mmu.base_role;
  1547. role.level = level;
  1548. role.direct = direct;
  1549. if (role.direct)
  1550. role.cr4_pae = 0;
  1551. role.access = access;
  1552. if (!vcpu->arch.mmu.direct_map
  1553. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1554. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1555. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1556. role.quadrant = quadrant;
  1557. }
  1558. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1559. if (!need_sync && sp->unsync)
  1560. need_sync = true;
  1561. if (sp->role.word != role.word)
  1562. continue;
  1563. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1564. break;
  1565. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1566. if (sp->unsync_children) {
  1567. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1568. kvm_mmu_mark_parents_unsync(sp);
  1569. } else if (sp->unsync)
  1570. kvm_mmu_mark_parents_unsync(sp);
  1571. __clear_sp_write_flooding_count(sp);
  1572. trace_kvm_mmu_get_page(sp, false);
  1573. return sp;
  1574. }
  1575. ++vcpu->kvm->stat.mmu_cache_miss;
  1576. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1577. if (!sp)
  1578. return sp;
  1579. sp->gfn = gfn;
  1580. sp->role = role;
  1581. hlist_add_head(&sp->hash_link,
  1582. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1583. if (!direct) {
  1584. if (rmap_write_protect(vcpu->kvm, gfn))
  1585. kvm_flush_remote_tlbs(vcpu->kvm);
  1586. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1587. kvm_sync_pages(vcpu, gfn);
  1588. account_shadowed(vcpu->kvm, gfn);
  1589. }
  1590. init_shadow_page_table(sp);
  1591. trace_kvm_mmu_get_page(sp, true);
  1592. return sp;
  1593. }
  1594. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1595. struct kvm_vcpu *vcpu, u64 addr)
  1596. {
  1597. iterator->addr = addr;
  1598. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1599. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1600. if (iterator->level == PT64_ROOT_LEVEL &&
  1601. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1602. !vcpu->arch.mmu.direct_map)
  1603. --iterator->level;
  1604. if (iterator->level == PT32E_ROOT_LEVEL) {
  1605. iterator->shadow_addr
  1606. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1607. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1608. --iterator->level;
  1609. if (!iterator->shadow_addr)
  1610. iterator->level = 0;
  1611. }
  1612. }
  1613. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1614. {
  1615. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1616. return false;
  1617. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1618. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1619. return true;
  1620. }
  1621. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1622. u64 spte)
  1623. {
  1624. if (is_last_spte(spte, iterator->level)) {
  1625. iterator->level = 0;
  1626. return;
  1627. }
  1628. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1629. --iterator->level;
  1630. }
  1631. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1632. {
  1633. return __shadow_walk_next(iterator, *iterator->sptep);
  1634. }
  1635. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1636. {
  1637. u64 spte;
  1638. spte = __pa(sp->spt)
  1639. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1640. | PT_WRITABLE_MASK | PT_USER_MASK;
  1641. mmu_spte_set(sptep, spte);
  1642. }
  1643. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1644. unsigned direct_access)
  1645. {
  1646. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1647. struct kvm_mmu_page *child;
  1648. /*
  1649. * For the direct sp, if the guest pte's dirty bit
  1650. * changed form clean to dirty, it will corrupt the
  1651. * sp's access: allow writable in the read-only sp,
  1652. * so we should update the spte at this point to get
  1653. * a new sp with the correct access.
  1654. */
  1655. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1656. if (child->role.access == direct_access)
  1657. return;
  1658. drop_parent_pte(child, sptep);
  1659. kvm_flush_remote_tlbs(vcpu->kvm);
  1660. }
  1661. }
  1662. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1663. u64 *spte)
  1664. {
  1665. u64 pte;
  1666. struct kvm_mmu_page *child;
  1667. pte = *spte;
  1668. if (is_shadow_present_pte(pte)) {
  1669. if (is_last_spte(pte, sp->role.level)) {
  1670. drop_spte(kvm, spte);
  1671. if (is_large_pte(pte))
  1672. --kvm->stat.lpages;
  1673. } else {
  1674. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1675. drop_parent_pte(child, spte);
  1676. }
  1677. return true;
  1678. }
  1679. if (is_mmio_spte(pte))
  1680. mmu_spte_clear_no_track(spte);
  1681. return false;
  1682. }
  1683. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1684. struct kvm_mmu_page *sp)
  1685. {
  1686. unsigned i;
  1687. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1688. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1689. }
  1690. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1691. {
  1692. mmu_page_remove_parent_pte(sp, parent_pte);
  1693. }
  1694. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1695. {
  1696. u64 *sptep;
  1697. struct rmap_iterator iter;
  1698. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1699. drop_parent_pte(sp, sptep);
  1700. }
  1701. static int mmu_zap_unsync_children(struct kvm *kvm,
  1702. struct kvm_mmu_page *parent,
  1703. struct list_head *invalid_list)
  1704. {
  1705. int i, zapped = 0;
  1706. struct mmu_page_path parents;
  1707. struct kvm_mmu_pages pages;
  1708. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1709. return 0;
  1710. kvm_mmu_pages_init(parent, &parents, &pages);
  1711. while (mmu_unsync_walk(parent, &pages)) {
  1712. struct kvm_mmu_page *sp;
  1713. for_each_sp(pages, sp, parents, i) {
  1714. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1715. mmu_pages_clear_parents(&parents);
  1716. zapped++;
  1717. }
  1718. kvm_mmu_pages_init(parent, &parents, &pages);
  1719. }
  1720. return zapped;
  1721. }
  1722. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1723. struct list_head *invalid_list)
  1724. {
  1725. int ret;
  1726. trace_kvm_mmu_prepare_zap_page(sp);
  1727. ++kvm->stat.mmu_shadow_zapped;
  1728. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1729. kvm_mmu_page_unlink_children(kvm, sp);
  1730. kvm_mmu_unlink_parents(kvm, sp);
  1731. if (!sp->role.invalid && !sp->role.direct)
  1732. unaccount_shadowed(kvm, sp->gfn);
  1733. if (sp->unsync)
  1734. kvm_unlink_unsync_page(kvm, sp);
  1735. if (!sp->root_count) {
  1736. /* Count self */
  1737. ret++;
  1738. list_move(&sp->link, invalid_list);
  1739. kvm_mod_used_mmu_pages(kvm, -1);
  1740. } else {
  1741. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1742. kvm_reload_remote_mmus(kvm);
  1743. }
  1744. sp->role.invalid = 1;
  1745. return ret;
  1746. }
  1747. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1748. struct list_head *invalid_list)
  1749. {
  1750. struct kvm_mmu_page *sp;
  1751. if (list_empty(invalid_list))
  1752. return;
  1753. /*
  1754. * wmb: make sure everyone sees our modifications to the page tables
  1755. * rmb: make sure we see changes to vcpu->mode
  1756. */
  1757. smp_mb();
  1758. /*
  1759. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1760. * page table walks.
  1761. */
  1762. kvm_flush_remote_tlbs(kvm);
  1763. do {
  1764. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1765. WARN_ON(!sp->role.invalid || sp->root_count);
  1766. kvm_mmu_isolate_page(sp);
  1767. kvm_mmu_free_page(sp);
  1768. } while (!list_empty(invalid_list));
  1769. }
  1770. /*
  1771. * Changing the number of mmu pages allocated to the vm
  1772. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1773. */
  1774. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1775. {
  1776. LIST_HEAD(invalid_list);
  1777. /*
  1778. * If we set the number of mmu pages to be smaller be than the
  1779. * number of actived pages , we must to free some mmu pages before we
  1780. * change the value
  1781. */
  1782. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1783. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1784. !list_empty(&kvm->arch.active_mmu_pages)) {
  1785. struct kvm_mmu_page *page;
  1786. page = container_of(kvm->arch.active_mmu_pages.prev,
  1787. struct kvm_mmu_page, link);
  1788. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1789. }
  1790. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1791. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1792. }
  1793. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1794. }
  1795. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1796. {
  1797. struct kvm_mmu_page *sp;
  1798. struct hlist_node *node;
  1799. LIST_HEAD(invalid_list);
  1800. int r;
  1801. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1802. r = 0;
  1803. spin_lock(&kvm->mmu_lock);
  1804. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1805. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1806. sp->role.word);
  1807. r = 1;
  1808. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1809. }
  1810. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1811. spin_unlock(&kvm->mmu_lock);
  1812. return r;
  1813. }
  1814. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1815. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1816. {
  1817. int slot = memslot_id(kvm, gfn);
  1818. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1819. __set_bit(slot, sp->slot_bitmap);
  1820. }
  1821. /*
  1822. * The function is based on mtrr_type_lookup() in
  1823. * arch/x86/kernel/cpu/mtrr/generic.c
  1824. */
  1825. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1826. u64 start, u64 end)
  1827. {
  1828. int i;
  1829. u64 base, mask;
  1830. u8 prev_match, curr_match;
  1831. int num_var_ranges = KVM_NR_VAR_MTRR;
  1832. if (!mtrr_state->enabled)
  1833. return 0xFF;
  1834. /* Make end inclusive end, instead of exclusive */
  1835. end--;
  1836. /* Look in fixed ranges. Just return the type as per start */
  1837. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1838. int idx;
  1839. if (start < 0x80000) {
  1840. idx = 0;
  1841. idx += (start >> 16);
  1842. return mtrr_state->fixed_ranges[idx];
  1843. } else if (start < 0xC0000) {
  1844. idx = 1 * 8;
  1845. idx += ((start - 0x80000) >> 14);
  1846. return mtrr_state->fixed_ranges[idx];
  1847. } else if (start < 0x1000000) {
  1848. idx = 3 * 8;
  1849. idx += ((start - 0xC0000) >> 12);
  1850. return mtrr_state->fixed_ranges[idx];
  1851. }
  1852. }
  1853. /*
  1854. * Look in variable ranges
  1855. * Look of multiple ranges matching this address and pick type
  1856. * as per MTRR precedence
  1857. */
  1858. if (!(mtrr_state->enabled & 2))
  1859. return mtrr_state->def_type;
  1860. prev_match = 0xFF;
  1861. for (i = 0; i < num_var_ranges; ++i) {
  1862. unsigned short start_state, end_state;
  1863. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1864. continue;
  1865. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1866. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1867. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1868. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1869. start_state = ((start & mask) == (base & mask));
  1870. end_state = ((end & mask) == (base & mask));
  1871. if (start_state != end_state)
  1872. return 0xFE;
  1873. if ((start & mask) != (base & mask))
  1874. continue;
  1875. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1876. if (prev_match == 0xFF) {
  1877. prev_match = curr_match;
  1878. continue;
  1879. }
  1880. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1881. curr_match == MTRR_TYPE_UNCACHABLE)
  1882. return MTRR_TYPE_UNCACHABLE;
  1883. if ((prev_match == MTRR_TYPE_WRBACK &&
  1884. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1885. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1886. curr_match == MTRR_TYPE_WRBACK)) {
  1887. prev_match = MTRR_TYPE_WRTHROUGH;
  1888. curr_match = MTRR_TYPE_WRTHROUGH;
  1889. }
  1890. if (prev_match != curr_match)
  1891. return MTRR_TYPE_UNCACHABLE;
  1892. }
  1893. if (prev_match != 0xFF)
  1894. return prev_match;
  1895. return mtrr_state->def_type;
  1896. }
  1897. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1898. {
  1899. u8 mtrr;
  1900. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1901. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1902. if (mtrr == 0xfe || mtrr == 0xff)
  1903. mtrr = MTRR_TYPE_WRBACK;
  1904. return mtrr;
  1905. }
  1906. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1907. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1908. {
  1909. trace_kvm_mmu_unsync_page(sp);
  1910. ++vcpu->kvm->stat.mmu_unsync;
  1911. sp->unsync = 1;
  1912. kvm_mmu_mark_parents_unsync(sp);
  1913. }
  1914. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1915. {
  1916. struct kvm_mmu_page *s;
  1917. struct hlist_node *node;
  1918. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1919. if (s->unsync)
  1920. continue;
  1921. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1922. __kvm_unsync_page(vcpu, s);
  1923. }
  1924. }
  1925. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1926. bool can_unsync)
  1927. {
  1928. struct kvm_mmu_page *s;
  1929. struct hlist_node *node;
  1930. bool need_unsync = false;
  1931. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1932. if (!can_unsync)
  1933. return 1;
  1934. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1935. return 1;
  1936. if (!need_unsync && !s->unsync) {
  1937. need_unsync = true;
  1938. }
  1939. }
  1940. if (need_unsync)
  1941. kvm_unsync_pages(vcpu, gfn);
  1942. return 0;
  1943. }
  1944. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1945. unsigned pte_access, int user_fault,
  1946. int write_fault, int level,
  1947. gfn_t gfn, pfn_t pfn, bool speculative,
  1948. bool can_unsync, bool host_writable)
  1949. {
  1950. u64 spte;
  1951. int ret = 0;
  1952. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1953. return 0;
  1954. spte = PT_PRESENT_MASK;
  1955. if (!speculative)
  1956. spte |= shadow_accessed_mask;
  1957. if (pte_access & ACC_EXEC_MASK)
  1958. spte |= shadow_x_mask;
  1959. else
  1960. spte |= shadow_nx_mask;
  1961. if (pte_access & ACC_USER_MASK)
  1962. spte |= shadow_user_mask;
  1963. if (level > PT_PAGE_TABLE_LEVEL)
  1964. spte |= PT_PAGE_SIZE_MASK;
  1965. if (tdp_enabled)
  1966. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1967. kvm_is_mmio_pfn(pfn));
  1968. if (host_writable)
  1969. spte |= SPTE_HOST_WRITEABLE;
  1970. else
  1971. pte_access &= ~ACC_WRITE_MASK;
  1972. spte |= (u64)pfn << PAGE_SHIFT;
  1973. if ((pte_access & ACC_WRITE_MASK)
  1974. || (!vcpu->arch.mmu.direct_map && write_fault
  1975. && !is_write_protection(vcpu) && !user_fault)) {
  1976. if (level > PT_PAGE_TABLE_LEVEL &&
  1977. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1978. ret = 1;
  1979. drop_spte(vcpu->kvm, sptep);
  1980. goto done;
  1981. }
  1982. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1983. if (!vcpu->arch.mmu.direct_map
  1984. && !(pte_access & ACC_WRITE_MASK)) {
  1985. spte &= ~PT_USER_MASK;
  1986. /*
  1987. * If we converted a user page to a kernel page,
  1988. * so that the kernel can write to it when cr0.wp=0,
  1989. * then we should prevent the kernel from executing it
  1990. * if SMEP is enabled.
  1991. */
  1992. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1993. spte |= PT64_NX_MASK;
  1994. }
  1995. /*
  1996. * Optimization: for pte sync, if spte was writable the hash
  1997. * lookup is unnecessary (and expensive). Write protection
  1998. * is responsibility of mmu_get_page / kvm_sync_page.
  1999. * Same reasoning can be applied to dirty page accounting.
  2000. */
  2001. if (!can_unsync && is_writable_pte(*sptep))
  2002. goto set_pte;
  2003. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2004. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2005. __func__, gfn);
  2006. ret = 1;
  2007. pte_access &= ~ACC_WRITE_MASK;
  2008. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2009. }
  2010. }
  2011. if (pte_access & ACC_WRITE_MASK)
  2012. mark_page_dirty(vcpu->kvm, gfn);
  2013. set_pte:
  2014. if (mmu_spte_update(sptep, spte))
  2015. kvm_flush_remote_tlbs(vcpu->kvm);
  2016. done:
  2017. return ret;
  2018. }
  2019. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2020. unsigned pt_access, unsigned pte_access,
  2021. int user_fault, int write_fault,
  2022. int *emulate, int level, gfn_t gfn,
  2023. pfn_t pfn, bool speculative,
  2024. bool host_writable)
  2025. {
  2026. int was_rmapped = 0;
  2027. int rmap_count;
  2028. pgprintk("%s: spte %llx access %x write_fault %d"
  2029. " user_fault %d gfn %llx\n",
  2030. __func__, *sptep, pt_access,
  2031. write_fault, user_fault, gfn);
  2032. if (is_rmap_spte(*sptep)) {
  2033. /*
  2034. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2035. * the parent of the now unreachable PTE.
  2036. */
  2037. if (level > PT_PAGE_TABLE_LEVEL &&
  2038. !is_large_pte(*sptep)) {
  2039. struct kvm_mmu_page *child;
  2040. u64 pte = *sptep;
  2041. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2042. drop_parent_pte(child, sptep);
  2043. kvm_flush_remote_tlbs(vcpu->kvm);
  2044. } else if (pfn != spte_to_pfn(*sptep)) {
  2045. pgprintk("hfn old %llx new %llx\n",
  2046. spte_to_pfn(*sptep), pfn);
  2047. drop_spte(vcpu->kvm, sptep);
  2048. kvm_flush_remote_tlbs(vcpu->kvm);
  2049. } else
  2050. was_rmapped = 1;
  2051. }
  2052. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  2053. level, gfn, pfn, speculative, true,
  2054. host_writable)) {
  2055. if (write_fault)
  2056. *emulate = 1;
  2057. kvm_mmu_flush_tlb(vcpu);
  2058. }
  2059. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2060. *emulate = 1;
  2061. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2062. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2063. is_large_pte(*sptep)? "2MB" : "4kB",
  2064. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2065. *sptep, sptep);
  2066. if (!was_rmapped && is_large_pte(*sptep))
  2067. ++vcpu->kvm->stat.lpages;
  2068. if (is_shadow_present_pte(*sptep)) {
  2069. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2070. if (!was_rmapped) {
  2071. rmap_count = rmap_add(vcpu, sptep, gfn);
  2072. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2073. rmap_recycle(vcpu, sptep, gfn);
  2074. }
  2075. }
  2076. kvm_release_pfn_clean(pfn);
  2077. }
  2078. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2079. {
  2080. mmu_free_roots(vcpu);
  2081. }
  2082. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2083. bool no_dirty_log)
  2084. {
  2085. struct kvm_memory_slot *slot;
  2086. unsigned long hva;
  2087. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2088. if (!slot)
  2089. return get_fault_pfn();
  2090. hva = gfn_to_hva_memslot(slot, gfn);
  2091. return hva_to_pfn_atomic(hva);
  2092. }
  2093. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2094. struct kvm_mmu_page *sp,
  2095. u64 *start, u64 *end)
  2096. {
  2097. struct page *pages[PTE_PREFETCH_NUM];
  2098. unsigned access = sp->role.access;
  2099. int i, ret;
  2100. gfn_t gfn;
  2101. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2102. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2103. return -1;
  2104. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2105. if (ret <= 0)
  2106. return -1;
  2107. for (i = 0; i < ret; i++, gfn++, start++)
  2108. mmu_set_spte(vcpu, start, ACC_ALL,
  2109. access, 0, 0, NULL,
  2110. sp->role.level, gfn,
  2111. page_to_pfn(pages[i]), true, true);
  2112. return 0;
  2113. }
  2114. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2115. struct kvm_mmu_page *sp, u64 *sptep)
  2116. {
  2117. u64 *spte, *start = NULL;
  2118. int i;
  2119. WARN_ON(!sp->role.direct);
  2120. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2121. spte = sp->spt + i;
  2122. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2123. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2124. if (!start)
  2125. continue;
  2126. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2127. break;
  2128. start = NULL;
  2129. } else if (!start)
  2130. start = spte;
  2131. }
  2132. }
  2133. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2134. {
  2135. struct kvm_mmu_page *sp;
  2136. /*
  2137. * Since it's no accessed bit on EPT, it's no way to
  2138. * distinguish between actually accessed translations
  2139. * and prefetched, so disable pte prefetch if EPT is
  2140. * enabled.
  2141. */
  2142. if (!shadow_accessed_mask)
  2143. return;
  2144. sp = page_header(__pa(sptep));
  2145. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2146. return;
  2147. __direct_pte_prefetch(vcpu, sp, sptep);
  2148. }
  2149. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2150. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2151. bool prefault)
  2152. {
  2153. struct kvm_shadow_walk_iterator iterator;
  2154. struct kvm_mmu_page *sp;
  2155. int emulate = 0;
  2156. gfn_t pseudo_gfn;
  2157. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2158. if (iterator.level == level) {
  2159. unsigned pte_access = ACC_ALL;
  2160. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2161. 0, write, &emulate,
  2162. level, gfn, pfn, prefault, map_writable);
  2163. direct_pte_prefetch(vcpu, iterator.sptep);
  2164. ++vcpu->stat.pf_fixed;
  2165. break;
  2166. }
  2167. if (!is_shadow_present_pte(*iterator.sptep)) {
  2168. u64 base_addr = iterator.addr;
  2169. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2170. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2171. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2172. iterator.level - 1,
  2173. 1, ACC_ALL, iterator.sptep);
  2174. if (!sp) {
  2175. pgprintk("nonpaging_map: ENOMEM\n");
  2176. kvm_release_pfn_clean(pfn);
  2177. return -ENOMEM;
  2178. }
  2179. mmu_spte_set(iterator.sptep,
  2180. __pa(sp->spt)
  2181. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2182. | shadow_user_mask | shadow_x_mask
  2183. | shadow_accessed_mask);
  2184. }
  2185. }
  2186. return emulate;
  2187. }
  2188. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2189. {
  2190. siginfo_t info;
  2191. info.si_signo = SIGBUS;
  2192. info.si_errno = 0;
  2193. info.si_code = BUS_MCEERR_AR;
  2194. info.si_addr = (void __user *)address;
  2195. info.si_addr_lsb = PAGE_SHIFT;
  2196. send_sig_info(SIGBUS, &info, tsk);
  2197. }
  2198. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2199. {
  2200. kvm_release_pfn_clean(pfn);
  2201. if (is_hwpoison_pfn(pfn)) {
  2202. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2203. return 0;
  2204. }
  2205. return -EFAULT;
  2206. }
  2207. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2208. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2209. {
  2210. pfn_t pfn = *pfnp;
  2211. gfn_t gfn = *gfnp;
  2212. int level = *levelp;
  2213. /*
  2214. * Check if it's a transparent hugepage. If this would be an
  2215. * hugetlbfs page, level wouldn't be set to
  2216. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2217. * here.
  2218. */
  2219. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2220. level == PT_PAGE_TABLE_LEVEL &&
  2221. PageTransCompound(pfn_to_page(pfn)) &&
  2222. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2223. unsigned long mask;
  2224. /*
  2225. * mmu_notifier_retry was successful and we hold the
  2226. * mmu_lock here, so the pmd can't become splitting
  2227. * from under us, and in turn
  2228. * __split_huge_page_refcount() can't run from under
  2229. * us and we can safely transfer the refcount from
  2230. * PG_tail to PG_head as we switch the pfn to tail to
  2231. * head.
  2232. */
  2233. *levelp = level = PT_DIRECTORY_LEVEL;
  2234. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2235. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2236. if (pfn & mask) {
  2237. gfn &= ~mask;
  2238. *gfnp = gfn;
  2239. kvm_release_pfn_clean(pfn);
  2240. pfn &= ~mask;
  2241. kvm_get_pfn(pfn);
  2242. *pfnp = pfn;
  2243. }
  2244. }
  2245. }
  2246. static bool mmu_invalid_pfn(pfn_t pfn)
  2247. {
  2248. return unlikely(is_invalid_pfn(pfn));
  2249. }
  2250. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2251. pfn_t pfn, unsigned access, int *ret_val)
  2252. {
  2253. bool ret = true;
  2254. /* The pfn is invalid, report the error! */
  2255. if (unlikely(is_invalid_pfn(pfn))) {
  2256. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2257. goto exit;
  2258. }
  2259. if (unlikely(is_noslot_pfn(pfn)))
  2260. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2261. ret = false;
  2262. exit:
  2263. return ret;
  2264. }
  2265. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2266. {
  2267. /*
  2268. * #PF can be fast only if the shadow page table is present and it
  2269. * is caused by write-protect, that means we just need change the
  2270. * W bit of the spte which can be done out of mmu-lock.
  2271. */
  2272. if (!(error_code & PFERR_PRESENT_MASK) ||
  2273. !(error_code & PFERR_WRITE_MASK))
  2274. return false;
  2275. return true;
  2276. }
  2277. static bool
  2278. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2279. {
  2280. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2281. gfn_t gfn;
  2282. WARN_ON(!sp->role.direct);
  2283. /*
  2284. * The gfn of direct spte is stable since it is calculated
  2285. * by sp->gfn.
  2286. */
  2287. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2288. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2289. mark_page_dirty(vcpu->kvm, gfn);
  2290. return true;
  2291. }
  2292. /*
  2293. * Return value:
  2294. * - true: let the vcpu to access on the same address again.
  2295. * - false: let the real page fault path to fix it.
  2296. */
  2297. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2298. u32 error_code)
  2299. {
  2300. struct kvm_shadow_walk_iterator iterator;
  2301. bool ret = false;
  2302. u64 spte = 0ull;
  2303. if (!page_fault_can_be_fast(vcpu, error_code))
  2304. return false;
  2305. walk_shadow_page_lockless_begin(vcpu);
  2306. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2307. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2308. break;
  2309. /*
  2310. * If the mapping has been changed, let the vcpu fault on the
  2311. * same address again.
  2312. */
  2313. if (!is_rmap_spte(spte)) {
  2314. ret = true;
  2315. goto exit;
  2316. }
  2317. if (!is_last_spte(spte, level))
  2318. goto exit;
  2319. /*
  2320. * Check if it is a spurious fault caused by TLB lazily flushed.
  2321. *
  2322. * Need not check the access of upper level table entries since
  2323. * they are always ACC_ALL.
  2324. */
  2325. if (is_writable_pte(spte)) {
  2326. ret = true;
  2327. goto exit;
  2328. }
  2329. /*
  2330. * Currently, to simplify the code, only the spte write-protected
  2331. * by dirty-log can be fast fixed.
  2332. */
  2333. if (!spte_is_locklessly_modifiable(spte))
  2334. goto exit;
  2335. /*
  2336. * Currently, fast page fault only works for direct mapping since
  2337. * the gfn is not stable for indirect shadow page.
  2338. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2339. */
  2340. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2341. exit:
  2342. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2343. spte, ret);
  2344. walk_shadow_page_lockless_end(vcpu);
  2345. return ret;
  2346. }
  2347. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2348. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2349. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2350. gfn_t gfn, bool prefault)
  2351. {
  2352. int r;
  2353. int level;
  2354. int force_pt_level;
  2355. pfn_t pfn;
  2356. unsigned long mmu_seq;
  2357. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2358. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2359. if (likely(!force_pt_level)) {
  2360. level = mapping_level(vcpu, gfn);
  2361. /*
  2362. * This path builds a PAE pagetable - so we can map
  2363. * 2mb pages at maximum. Therefore check if the level
  2364. * is larger than that.
  2365. */
  2366. if (level > PT_DIRECTORY_LEVEL)
  2367. level = PT_DIRECTORY_LEVEL;
  2368. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2369. } else
  2370. level = PT_PAGE_TABLE_LEVEL;
  2371. if (fast_page_fault(vcpu, v, level, error_code))
  2372. return 0;
  2373. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2374. smp_rmb();
  2375. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2376. return 0;
  2377. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2378. return r;
  2379. spin_lock(&vcpu->kvm->mmu_lock);
  2380. if (mmu_notifier_retry(vcpu, mmu_seq))
  2381. goto out_unlock;
  2382. kvm_mmu_free_some_pages(vcpu);
  2383. if (likely(!force_pt_level))
  2384. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2385. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2386. prefault);
  2387. spin_unlock(&vcpu->kvm->mmu_lock);
  2388. return r;
  2389. out_unlock:
  2390. spin_unlock(&vcpu->kvm->mmu_lock);
  2391. kvm_release_pfn_clean(pfn);
  2392. return 0;
  2393. }
  2394. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2395. {
  2396. int i;
  2397. struct kvm_mmu_page *sp;
  2398. LIST_HEAD(invalid_list);
  2399. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2400. return;
  2401. spin_lock(&vcpu->kvm->mmu_lock);
  2402. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2403. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2404. vcpu->arch.mmu.direct_map)) {
  2405. hpa_t root = vcpu->arch.mmu.root_hpa;
  2406. sp = page_header(root);
  2407. --sp->root_count;
  2408. if (!sp->root_count && sp->role.invalid) {
  2409. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2410. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2411. }
  2412. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2413. spin_unlock(&vcpu->kvm->mmu_lock);
  2414. return;
  2415. }
  2416. for (i = 0; i < 4; ++i) {
  2417. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2418. if (root) {
  2419. root &= PT64_BASE_ADDR_MASK;
  2420. sp = page_header(root);
  2421. --sp->root_count;
  2422. if (!sp->root_count && sp->role.invalid)
  2423. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2424. &invalid_list);
  2425. }
  2426. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2427. }
  2428. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2429. spin_unlock(&vcpu->kvm->mmu_lock);
  2430. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2431. }
  2432. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2433. {
  2434. int ret = 0;
  2435. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2436. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2437. ret = 1;
  2438. }
  2439. return ret;
  2440. }
  2441. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2442. {
  2443. struct kvm_mmu_page *sp;
  2444. unsigned i;
  2445. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2446. spin_lock(&vcpu->kvm->mmu_lock);
  2447. kvm_mmu_free_some_pages(vcpu);
  2448. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2449. 1, ACC_ALL, NULL);
  2450. ++sp->root_count;
  2451. spin_unlock(&vcpu->kvm->mmu_lock);
  2452. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2453. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2454. for (i = 0; i < 4; ++i) {
  2455. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2456. ASSERT(!VALID_PAGE(root));
  2457. spin_lock(&vcpu->kvm->mmu_lock);
  2458. kvm_mmu_free_some_pages(vcpu);
  2459. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2460. i << 30,
  2461. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2462. NULL);
  2463. root = __pa(sp->spt);
  2464. ++sp->root_count;
  2465. spin_unlock(&vcpu->kvm->mmu_lock);
  2466. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2467. }
  2468. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2469. } else
  2470. BUG();
  2471. return 0;
  2472. }
  2473. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2474. {
  2475. struct kvm_mmu_page *sp;
  2476. u64 pdptr, pm_mask;
  2477. gfn_t root_gfn;
  2478. int i;
  2479. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2480. if (mmu_check_root(vcpu, root_gfn))
  2481. return 1;
  2482. /*
  2483. * Do we shadow a long mode page table? If so we need to
  2484. * write-protect the guests page table root.
  2485. */
  2486. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2487. hpa_t root = vcpu->arch.mmu.root_hpa;
  2488. ASSERT(!VALID_PAGE(root));
  2489. spin_lock(&vcpu->kvm->mmu_lock);
  2490. kvm_mmu_free_some_pages(vcpu);
  2491. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2492. 0, ACC_ALL, NULL);
  2493. root = __pa(sp->spt);
  2494. ++sp->root_count;
  2495. spin_unlock(&vcpu->kvm->mmu_lock);
  2496. vcpu->arch.mmu.root_hpa = root;
  2497. return 0;
  2498. }
  2499. /*
  2500. * We shadow a 32 bit page table. This may be a legacy 2-level
  2501. * or a PAE 3-level page table. In either case we need to be aware that
  2502. * the shadow page table may be a PAE or a long mode page table.
  2503. */
  2504. pm_mask = PT_PRESENT_MASK;
  2505. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2506. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2507. for (i = 0; i < 4; ++i) {
  2508. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2509. ASSERT(!VALID_PAGE(root));
  2510. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2511. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2512. if (!is_present_gpte(pdptr)) {
  2513. vcpu->arch.mmu.pae_root[i] = 0;
  2514. continue;
  2515. }
  2516. root_gfn = pdptr >> PAGE_SHIFT;
  2517. if (mmu_check_root(vcpu, root_gfn))
  2518. return 1;
  2519. }
  2520. spin_lock(&vcpu->kvm->mmu_lock);
  2521. kvm_mmu_free_some_pages(vcpu);
  2522. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2523. PT32_ROOT_LEVEL, 0,
  2524. ACC_ALL, NULL);
  2525. root = __pa(sp->spt);
  2526. ++sp->root_count;
  2527. spin_unlock(&vcpu->kvm->mmu_lock);
  2528. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2529. }
  2530. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2531. /*
  2532. * If we shadow a 32 bit page table with a long mode page
  2533. * table we enter this path.
  2534. */
  2535. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2536. if (vcpu->arch.mmu.lm_root == NULL) {
  2537. /*
  2538. * The additional page necessary for this is only
  2539. * allocated on demand.
  2540. */
  2541. u64 *lm_root;
  2542. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2543. if (lm_root == NULL)
  2544. return 1;
  2545. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2546. vcpu->arch.mmu.lm_root = lm_root;
  2547. }
  2548. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2549. }
  2550. return 0;
  2551. }
  2552. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2553. {
  2554. if (vcpu->arch.mmu.direct_map)
  2555. return mmu_alloc_direct_roots(vcpu);
  2556. else
  2557. return mmu_alloc_shadow_roots(vcpu);
  2558. }
  2559. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2560. {
  2561. int i;
  2562. struct kvm_mmu_page *sp;
  2563. if (vcpu->arch.mmu.direct_map)
  2564. return;
  2565. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2566. return;
  2567. vcpu_clear_mmio_info(vcpu, ~0ul);
  2568. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2569. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2570. hpa_t root = vcpu->arch.mmu.root_hpa;
  2571. sp = page_header(root);
  2572. mmu_sync_children(vcpu, sp);
  2573. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2574. return;
  2575. }
  2576. for (i = 0; i < 4; ++i) {
  2577. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2578. if (root && VALID_PAGE(root)) {
  2579. root &= PT64_BASE_ADDR_MASK;
  2580. sp = page_header(root);
  2581. mmu_sync_children(vcpu, sp);
  2582. }
  2583. }
  2584. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2585. }
  2586. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2587. {
  2588. spin_lock(&vcpu->kvm->mmu_lock);
  2589. mmu_sync_roots(vcpu);
  2590. spin_unlock(&vcpu->kvm->mmu_lock);
  2591. }
  2592. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2593. u32 access, struct x86_exception *exception)
  2594. {
  2595. if (exception)
  2596. exception->error_code = 0;
  2597. return vaddr;
  2598. }
  2599. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2600. u32 access,
  2601. struct x86_exception *exception)
  2602. {
  2603. if (exception)
  2604. exception->error_code = 0;
  2605. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2606. }
  2607. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2608. {
  2609. if (direct)
  2610. return vcpu_match_mmio_gpa(vcpu, addr);
  2611. return vcpu_match_mmio_gva(vcpu, addr);
  2612. }
  2613. /*
  2614. * On direct hosts, the last spte is only allows two states
  2615. * for mmio page fault:
  2616. * - It is the mmio spte
  2617. * - It is zapped or it is being zapped.
  2618. *
  2619. * This function completely checks the spte when the last spte
  2620. * is not the mmio spte.
  2621. */
  2622. static bool check_direct_spte_mmio_pf(u64 spte)
  2623. {
  2624. return __check_direct_spte_mmio_pf(spte);
  2625. }
  2626. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2627. {
  2628. struct kvm_shadow_walk_iterator iterator;
  2629. u64 spte = 0ull;
  2630. walk_shadow_page_lockless_begin(vcpu);
  2631. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2632. if (!is_shadow_present_pte(spte))
  2633. break;
  2634. walk_shadow_page_lockless_end(vcpu);
  2635. return spte;
  2636. }
  2637. /*
  2638. * If it is a real mmio page fault, return 1 and emulat the instruction
  2639. * directly, return 0 to let CPU fault again on the address, -1 is
  2640. * returned if bug is detected.
  2641. */
  2642. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2643. {
  2644. u64 spte;
  2645. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2646. return 1;
  2647. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2648. if (is_mmio_spte(spte)) {
  2649. gfn_t gfn = get_mmio_spte_gfn(spte);
  2650. unsigned access = get_mmio_spte_access(spte);
  2651. if (direct)
  2652. addr = 0;
  2653. trace_handle_mmio_page_fault(addr, gfn, access);
  2654. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2655. return 1;
  2656. }
  2657. /*
  2658. * It's ok if the gva is remapped by other cpus on shadow guest,
  2659. * it's a BUG if the gfn is not a mmio page.
  2660. */
  2661. if (direct && !check_direct_spte_mmio_pf(spte))
  2662. return -1;
  2663. /*
  2664. * If the page table is zapped by other cpus, let CPU fault again on
  2665. * the address.
  2666. */
  2667. return 0;
  2668. }
  2669. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2670. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2671. u32 error_code, bool direct)
  2672. {
  2673. int ret;
  2674. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2675. WARN_ON(ret < 0);
  2676. return ret;
  2677. }
  2678. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2679. u32 error_code, bool prefault)
  2680. {
  2681. gfn_t gfn;
  2682. int r;
  2683. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2684. if (unlikely(error_code & PFERR_RSVD_MASK))
  2685. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2686. r = mmu_topup_memory_caches(vcpu);
  2687. if (r)
  2688. return r;
  2689. ASSERT(vcpu);
  2690. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2691. gfn = gva >> PAGE_SHIFT;
  2692. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2693. error_code, gfn, prefault);
  2694. }
  2695. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2696. {
  2697. struct kvm_arch_async_pf arch;
  2698. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2699. arch.gfn = gfn;
  2700. arch.direct_map = vcpu->arch.mmu.direct_map;
  2701. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2702. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2703. }
  2704. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2705. {
  2706. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2707. kvm_event_needs_reinjection(vcpu)))
  2708. return false;
  2709. return kvm_x86_ops->interrupt_allowed(vcpu);
  2710. }
  2711. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2712. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2713. {
  2714. bool async;
  2715. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2716. if (!async)
  2717. return false; /* *pfn has correct page already */
  2718. kvm_release_pfn_clean(*pfn);
  2719. if (!prefault && can_do_async_pf(vcpu)) {
  2720. trace_kvm_try_async_get_page(gva, gfn);
  2721. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2722. trace_kvm_async_pf_doublefault(gva, gfn);
  2723. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2724. return true;
  2725. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2726. return true;
  2727. }
  2728. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2729. return false;
  2730. }
  2731. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2732. bool prefault)
  2733. {
  2734. pfn_t pfn;
  2735. int r;
  2736. int level;
  2737. int force_pt_level;
  2738. gfn_t gfn = gpa >> PAGE_SHIFT;
  2739. unsigned long mmu_seq;
  2740. int write = error_code & PFERR_WRITE_MASK;
  2741. bool map_writable;
  2742. ASSERT(vcpu);
  2743. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2744. if (unlikely(error_code & PFERR_RSVD_MASK))
  2745. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2746. r = mmu_topup_memory_caches(vcpu);
  2747. if (r)
  2748. return r;
  2749. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2750. if (likely(!force_pt_level)) {
  2751. level = mapping_level(vcpu, gfn);
  2752. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2753. } else
  2754. level = PT_PAGE_TABLE_LEVEL;
  2755. if (fast_page_fault(vcpu, gpa, level, error_code))
  2756. return 0;
  2757. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2758. smp_rmb();
  2759. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2760. return 0;
  2761. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2762. return r;
  2763. spin_lock(&vcpu->kvm->mmu_lock);
  2764. if (mmu_notifier_retry(vcpu, mmu_seq))
  2765. goto out_unlock;
  2766. kvm_mmu_free_some_pages(vcpu);
  2767. if (likely(!force_pt_level))
  2768. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2769. r = __direct_map(vcpu, gpa, write, map_writable,
  2770. level, gfn, pfn, prefault);
  2771. spin_unlock(&vcpu->kvm->mmu_lock);
  2772. return r;
  2773. out_unlock:
  2774. spin_unlock(&vcpu->kvm->mmu_lock);
  2775. kvm_release_pfn_clean(pfn);
  2776. return 0;
  2777. }
  2778. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2779. {
  2780. mmu_free_roots(vcpu);
  2781. }
  2782. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2783. struct kvm_mmu *context)
  2784. {
  2785. context->new_cr3 = nonpaging_new_cr3;
  2786. context->page_fault = nonpaging_page_fault;
  2787. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2788. context->free = nonpaging_free;
  2789. context->sync_page = nonpaging_sync_page;
  2790. context->invlpg = nonpaging_invlpg;
  2791. context->update_pte = nonpaging_update_pte;
  2792. context->root_level = 0;
  2793. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2794. context->root_hpa = INVALID_PAGE;
  2795. context->direct_map = true;
  2796. context->nx = false;
  2797. return 0;
  2798. }
  2799. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2800. {
  2801. ++vcpu->stat.tlb_flush;
  2802. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2803. }
  2804. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2805. {
  2806. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2807. mmu_free_roots(vcpu);
  2808. }
  2809. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2810. {
  2811. return kvm_read_cr3(vcpu);
  2812. }
  2813. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2814. struct x86_exception *fault)
  2815. {
  2816. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2817. }
  2818. static void paging_free(struct kvm_vcpu *vcpu)
  2819. {
  2820. nonpaging_free(vcpu);
  2821. }
  2822. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2823. {
  2824. int bit7;
  2825. bit7 = (gpte >> 7) & 1;
  2826. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2827. }
  2828. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2829. int *nr_present)
  2830. {
  2831. if (unlikely(is_mmio_spte(*sptep))) {
  2832. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2833. mmu_spte_clear_no_track(sptep);
  2834. return true;
  2835. }
  2836. (*nr_present)++;
  2837. mark_mmio_spte(sptep, gfn, access);
  2838. return true;
  2839. }
  2840. return false;
  2841. }
  2842. #define PTTYPE 64
  2843. #include "paging_tmpl.h"
  2844. #undef PTTYPE
  2845. #define PTTYPE 32
  2846. #include "paging_tmpl.h"
  2847. #undef PTTYPE
  2848. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2849. struct kvm_mmu *context)
  2850. {
  2851. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2852. u64 exb_bit_rsvd = 0;
  2853. if (!context->nx)
  2854. exb_bit_rsvd = rsvd_bits(63, 63);
  2855. switch (context->root_level) {
  2856. case PT32_ROOT_LEVEL:
  2857. /* no rsvd bits for 2 level 4K page table entries */
  2858. context->rsvd_bits_mask[0][1] = 0;
  2859. context->rsvd_bits_mask[0][0] = 0;
  2860. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2861. if (!is_pse(vcpu)) {
  2862. context->rsvd_bits_mask[1][1] = 0;
  2863. break;
  2864. }
  2865. if (is_cpuid_PSE36())
  2866. /* 36bits PSE 4MB page */
  2867. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2868. else
  2869. /* 32 bits PSE 4MB page */
  2870. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2871. break;
  2872. case PT32E_ROOT_LEVEL:
  2873. context->rsvd_bits_mask[0][2] =
  2874. rsvd_bits(maxphyaddr, 63) |
  2875. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2876. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2877. rsvd_bits(maxphyaddr, 62); /* PDE */
  2878. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2879. rsvd_bits(maxphyaddr, 62); /* PTE */
  2880. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2881. rsvd_bits(maxphyaddr, 62) |
  2882. rsvd_bits(13, 20); /* large page */
  2883. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2884. break;
  2885. case PT64_ROOT_LEVEL:
  2886. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2887. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2888. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2889. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2890. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2891. rsvd_bits(maxphyaddr, 51);
  2892. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2893. rsvd_bits(maxphyaddr, 51);
  2894. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2895. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2896. rsvd_bits(maxphyaddr, 51) |
  2897. rsvd_bits(13, 29);
  2898. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2899. rsvd_bits(maxphyaddr, 51) |
  2900. rsvd_bits(13, 20); /* large page */
  2901. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2902. break;
  2903. }
  2904. }
  2905. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2906. struct kvm_mmu *context,
  2907. int level)
  2908. {
  2909. context->nx = is_nx(vcpu);
  2910. context->root_level = level;
  2911. reset_rsvds_bits_mask(vcpu, context);
  2912. ASSERT(is_pae(vcpu));
  2913. context->new_cr3 = paging_new_cr3;
  2914. context->page_fault = paging64_page_fault;
  2915. context->gva_to_gpa = paging64_gva_to_gpa;
  2916. context->sync_page = paging64_sync_page;
  2917. context->invlpg = paging64_invlpg;
  2918. context->update_pte = paging64_update_pte;
  2919. context->free = paging_free;
  2920. context->shadow_root_level = level;
  2921. context->root_hpa = INVALID_PAGE;
  2922. context->direct_map = false;
  2923. return 0;
  2924. }
  2925. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2926. struct kvm_mmu *context)
  2927. {
  2928. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2929. }
  2930. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2931. struct kvm_mmu *context)
  2932. {
  2933. context->nx = false;
  2934. context->root_level = PT32_ROOT_LEVEL;
  2935. reset_rsvds_bits_mask(vcpu, context);
  2936. context->new_cr3 = paging_new_cr3;
  2937. context->page_fault = paging32_page_fault;
  2938. context->gva_to_gpa = paging32_gva_to_gpa;
  2939. context->free = paging_free;
  2940. context->sync_page = paging32_sync_page;
  2941. context->invlpg = paging32_invlpg;
  2942. context->update_pte = paging32_update_pte;
  2943. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2944. context->root_hpa = INVALID_PAGE;
  2945. context->direct_map = false;
  2946. return 0;
  2947. }
  2948. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2949. struct kvm_mmu *context)
  2950. {
  2951. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2952. }
  2953. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2954. {
  2955. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2956. context->base_role.word = 0;
  2957. context->new_cr3 = nonpaging_new_cr3;
  2958. context->page_fault = tdp_page_fault;
  2959. context->free = nonpaging_free;
  2960. context->sync_page = nonpaging_sync_page;
  2961. context->invlpg = nonpaging_invlpg;
  2962. context->update_pte = nonpaging_update_pte;
  2963. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2964. context->root_hpa = INVALID_PAGE;
  2965. context->direct_map = true;
  2966. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2967. context->get_cr3 = get_cr3;
  2968. context->get_pdptr = kvm_pdptr_read;
  2969. context->inject_page_fault = kvm_inject_page_fault;
  2970. if (!is_paging(vcpu)) {
  2971. context->nx = false;
  2972. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2973. context->root_level = 0;
  2974. } else if (is_long_mode(vcpu)) {
  2975. context->nx = is_nx(vcpu);
  2976. context->root_level = PT64_ROOT_LEVEL;
  2977. reset_rsvds_bits_mask(vcpu, context);
  2978. context->gva_to_gpa = paging64_gva_to_gpa;
  2979. } else if (is_pae(vcpu)) {
  2980. context->nx = is_nx(vcpu);
  2981. context->root_level = PT32E_ROOT_LEVEL;
  2982. reset_rsvds_bits_mask(vcpu, context);
  2983. context->gva_to_gpa = paging64_gva_to_gpa;
  2984. } else {
  2985. context->nx = false;
  2986. context->root_level = PT32_ROOT_LEVEL;
  2987. reset_rsvds_bits_mask(vcpu, context);
  2988. context->gva_to_gpa = paging32_gva_to_gpa;
  2989. }
  2990. return 0;
  2991. }
  2992. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2993. {
  2994. int r;
  2995. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2996. ASSERT(vcpu);
  2997. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2998. if (!is_paging(vcpu))
  2999. r = nonpaging_init_context(vcpu, context);
  3000. else if (is_long_mode(vcpu))
  3001. r = paging64_init_context(vcpu, context);
  3002. else if (is_pae(vcpu))
  3003. r = paging32E_init_context(vcpu, context);
  3004. else
  3005. r = paging32_init_context(vcpu, context);
  3006. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3007. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3008. vcpu->arch.mmu.base_role.smep_andnot_wp
  3009. = smep && !is_write_protection(vcpu);
  3010. return r;
  3011. }
  3012. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3013. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3014. {
  3015. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3016. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3017. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3018. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3019. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3020. return r;
  3021. }
  3022. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3023. {
  3024. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3025. g_context->get_cr3 = get_cr3;
  3026. g_context->get_pdptr = kvm_pdptr_read;
  3027. g_context->inject_page_fault = kvm_inject_page_fault;
  3028. /*
  3029. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3030. * translation of l2_gpa to l1_gpa addresses is done using the
  3031. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3032. * functions between mmu and nested_mmu are swapped.
  3033. */
  3034. if (!is_paging(vcpu)) {
  3035. g_context->nx = false;
  3036. g_context->root_level = 0;
  3037. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3038. } else if (is_long_mode(vcpu)) {
  3039. g_context->nx = is_nx(vcpu);
  3040. g_context->root_level = PT64_ROOT_LEVEL;
  3041. reset_rsvds_bits_mask(vcpu, g_context);
  3042. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3043. } else if (is_pae(vcpu)) {
  3044. g_context->nx = is_nx(vcpu);
  3045. g_context->root_level = PT32E_ROOT_LEVEL;
  3046. reset_rsvds_bits_mask(vcpu, g_context);
  3047. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3048. } else {
  3049. g_context->nx = false;
  3050. g_context->root_level = PT32_ROOT_LEVEL;
  3051. reset_rsvds_bits_mask(vcpu, g_context);
  3052. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3053. }
  3054. return 0;
  3055. }
  3056. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3057. {
  3058. if (mmu_is_nested(vcpu))
  3059. return init_kvm_nested_mmu(vcpu);
  3060. else if (tdp_enabled)
  3061. return init_kvm_tdp_mmu(vcpu);
  3062. else
  3063. return init_kvm_softmmu(vcpu);
  3064. }
  3065. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3066. {
  3067. ASSERT(vcpu);
  3068. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3069. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3070. vcpu->arch.mmu.free(vcpu);
  3071. }
  3072. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3073. {
  3074. destroy_kvm_mmu(vcpu);
  3075. return init_kvm_mmu(vcpu);
  3076. }
  3077. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3078. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3079. {
  3080. int r;
  3081. r = mmu_topup_memory_caches(vcpu);
  3082. if (r)
  3083. goto out;
  3084. r = mmu_alloc_roots(vcpu);
  3085. spin_lock(&vcpu->kvm->mmu_lock);
  3086. mmu_sync_roots(vcpu);
  3087. spin_unlock(&vcpu->kvm->mmu_lock);
  3088. if (r)
  3089. goto out;
  3090. /* set_cr3() should ensure TLB has been flushed */
  3091. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3092. out:
  3093. return r;
  3094. }
  3095. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3096. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3097. {
  3098. mmu_free_roots(vcpu);
  3099. }
  3100. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3101. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3102. struct kvm_mmu_page *sp, u64 *spte,
  3103. const void *new)
  3104. {
  3105. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3106. ++vcpu->kvm->stat.mmu_pde_zapped;
  3107. return;
  3108. }
  3109. ++vcpu->kvm->stat.mmu_pte_updated;
  3110. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3111. }
  3112. static bool need_remote_flush(u64 old, u64 new)
  3113. {
  3114. if (!is_shadow_present_pte(old))
  3115. return false;
  3116. if (!is_shadow_present_pte(new))
  3117. return true;
  3118. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3119. return true;
  3120. old ^= PT64_NX_MASK;
  3121. new ^= PT64_NX_MASK;
  3122. return (old & ~new & PT64_PERM_MASK) != 0;
  3123. }
  3124. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3125. bool remote_flush, bool local_flush)
  3126. {
  3127. if (zap_page)
  3128. return;
  3129. if (remote_flush)
  3130. kvm_flush_remote_tlbs(vcpu->kvm);
  3131. else if (local_flush)
  3132. kvm_mmu_flush_tlb(vcpu);
  3133. }
  3134. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3135. const u8 *new, int *bytes)
  3136. {
  3137. u64 gentry;
  3138. int r;
  3139. /*
  3140. * Assume that the pte write on a page table of the same type
  3141. * as the current vcpu paging mode since we update the sptes only
  3142. * when they have the same mode.
  3143. */
  3144. if (is_pae(vcpu) && *bytes == 4) {
  3145. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3146. *gpa &= ~(gpa_t)7;
  3147. *bytes = 8;
  3148. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  3149. if (r)
  3150. gentry = 0;
  3151. new = (const u8 *)&gentry;
  3152. }
  3153. switch (*bytes) {
  3154. case 4:
  3155. gentry = *(const u32 *)new;
  3156. break;
  3157. case 8:
  3158. gentry = *(const u64 *)new;
  3159. break;
  3160. default:
  3161. gentry = 0;
  3162. break;
  3163. }
  3164. return gentry;
  3165. }
  3166. /*
  3167. * If we're seeing too many writes to a page, it may no longer be a page table,
  3168. * or we may be forking, in which case it is better to unmap the page.
  3169. */
  3170. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3171. {
  3172. /*
  3173. * Skip write-flooding detected for the sp whose level is 1, because
  3174. * it can become unsync, then the guest page is not write-protected.
  3175. */
  3176. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3177. return false;
  3178. return ++sp->write_flooding_count >= 3;
  3179. }
  3180. /*
  3181. * Misaligned accesses are too much trouble to fix up; also, they usually
  3182. * indicate a page is not used as a page table.
  3183. */
  3184. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3185. int bytes)
  3186. {
  3187. unsigned offset, pte_size, misaligned;
  3188. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3189. gpa, bytes, sp->role.word);
  3190. offset = offset_in_page(gpa);
  3191. pte_size = sp->role.cr4_pae ? 8 : 4;
  3192. /*
  3193. * Sometimes, the OS only writes the last one bytes to update status
  3194. * bits, for example, in linux, andb instruction is used in clear_bit().
  3195. */
  3196. if (!(offset & (pte_size - 1)) && bytes == 1)
  3197. return false;
  3198. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3199. misaligned |= bytes < 4;
  3200. return misaligned;
  3201. }
  3202. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3203. {
  3204. unsigned page_offset, quadrant;
  3205. u64 *spte;
  3206. int level;
  3207. page_offset = offset_in_page(gpa);
  3208. level = sp->role.level;
  3209. *nspte = 1;
  3210. if (!sp->role.cr4_pae) {
  3211. page_offset <<= 1; /* 32->64 */
  3212. /*
  3213. * A 32-bit pde maps 4MB while the shadow pdes map
  3214. * only 2MB. So we need to double the offset again
  3215. * and zap two pdes instead of one.
  3216. */
  3217. if (level == PT32_ROOT_LEVEL) {
  3218. page_offset &= ~7; /* kill rounding error */
  3219. page_offset <<= 1;
  3220. *nspte = 2;
  3221. }
  3222. quadrant = page_offset >> PAGE_SHIFT;
  3223. page_offset &= ~PAGE_MASK;
  3224. if (quadrant != sp->role.quadrant)
  3225. return NULL;
  3226. }
  3227. spte = &sp->spt[page_offset / sizeof(*spte)];
  3228. return spte;
  3229. }
  3230. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3231. const u8 *new, int bytes)
  3232. {
  3233. gfn_t gfn = gpa >> PAGE_SHIFT;
  3234. union kvm_mmu_page_role mask = { .word = 0 };
  3235. struct kvm_mmu_page *sp;
  3236. struct hlist_node *node;
  3237. LIST_HEAD(invalid_list);
  3238. u64 entry, gentry, *spte;
  3239. int npte;
  3240. bool remote_flush, local_flush, zap_page;
  3241. /*
  3242. * If we don't have indirect shadow pages, it means no page is
  3243. * write-protected, so we can exit simply.
  3244. */
  3245. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3246. return;
  3247. zap_page = remote_flush = local_flush = false;
  3248. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3249. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3250. /*
  3251. * No need to care whether allocation memory is successful
  3252. * or not since pte prefetch is skiped if it does not have
  3253. * enough objects in the cache.
  3254. */
  3255. mmu_topup_memory_caches(vcpu);
  3256. spin_lock(&vcpu->kvm->mmu_lock);
  3257. ++vcpu->kvm->stat.mmu_pte_write;
  3258. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3259. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3260. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3261. if (detect_write_misaligned(sp, gpa, bytes) ||
  3262. detect_write_flooding(sp)) {
  3263. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3264. &invalid_list);
  3265. ++vcpu->kvm->stat.mmu_flooded;
  3266. continue;
  3267. }
  3268. spte = get_written_sptes(sp, gpa, &npte);
  3269. if (!spte)
  3270. continue;
  3271. local_flush = true;
  3272. while (npte--) {
  3273. entry = *spte;
  3274. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3275. if (gentry &&
  3276. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3277. & mask.word) && rmap_can_add(vcpu))
  3278. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3279. if (!remote_flush && need_remote_flush(entry, *spte))
  3280. remote_flush = true;
  3281. ++spte;
  3282. }
  3283. }
  3284. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3285. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3286. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3287. spin_unlock(&vcpu->kvm->mmu_lock);
  3288. }
  3289. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3290. {
  3291. gpa_t gpa;
  3292. int r;
  3293. if (vcpu->arch.mmu.direct_map)
  3294. return 0;
  3295. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3296. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3297. return r;
  3298. }
  3299. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3300. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3301. {
  3302. LIST_HEAD(invalid_list);
  3303. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3304. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3305. struct kvm_mmu_page *sp;
  3306. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3307. struct kvm_mmu_page, link);
  3308. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3309. ++vcpu->kvm->stat.mmu_recycled;
  3310. }
  3311. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3312. }
  3313. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3314. {
  3315. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3316. return vcpu_match_mmio_gpa(vcpu, addr);
  3317. return vcpu_match_mmio_gva(vcpu, addr);
  3318. }
  3319. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3320. void *insn, int insn_len)
  3321. {
  3322. int r, emulation_type = EMULTYPE_RETRY;
  3323. enum emulation_result er;
  3324. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3325. if (r < 0)
  3326. goto out;
  3327. if (!r) {
  3328. r = 1;
  3329. goto out;
  3330. }
  3331. if (is_mmio_page_fault(vcpu, cr2))
  3332. emulation_type = 0;
  3333. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3334. switch (er) {
  3335. case EMULATE_DONE:
  3336. return 1;
  3337. case EMULATE_DO_MMIO:
  3338. ++vcpu->stat.mmio_exits;
  3339. /* fall through */
  3340. case EMULATE_FAIL:
  3341. return 0;
  3342. default:
  3343. BUG();
  3344. }
  3345. out:
  3346. return r;
  3347. }
  3348. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3349. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3350. {
  3351. vcpu->arch.mmu.invlpg(vcpu, gva);
  3352. kvm_mmu_flush_tlb(vcpu);
  3353. ++vcpu->stat.invlpg;
  3354. }
  3355. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3356. void kvm_enable_tdp(void)
  3357. {
  3358. tdp_enabled = true;
  3359. }
  3360. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3361. void kvm_disable_tdp(void)
  3362. {
  3363. tdp_enabled = false;
  3364. }
  3365. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3366. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3367. {
  3368. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3369. if (vcpu->arch.mmu.lm_root != NULL)
  3370. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3371. }
  3372. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3373. {
  3374. struct page *page;
  3375. int i;
  3376. ASSERT(vcpu);
  3377. /*
  3378. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3379. * Therefore we need to allocate shadow page tables in the first
  3380. * 4GB of memory, which happens to fit the DMA32 zone.
  3381. */
  3382. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3383. if (!page)
  3384. return -ENOMEM;
  3385. vcpu->arch.mmu.pae_root = page_address(page);
  3386. for (i = 0; i < 4; ++i)
  3387. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3388. return 0;
  3389. }
  3390. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3391. {
  3392. ASSERT(vcpu);
  3393. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3394. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3395. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3396. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3397. return alloc_mmu_pages(vcpu);
  3398. }
  3399. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3400. {
  3401. ASSERT(vcpu);
  3402. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3403. return init_kvm_mmu(vcpu);
  3404. }
  3405. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3406. {
  3407. struct kvm_mmu_page *sp;
  3408. bool flush = false;
  3409. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3410. int i;
  3411. u64 *pt;
  3412. if (!test_bit(slot, sp->slot_bitmap))
  3413. continue;
  3414. pt = sp->spt;
  3415. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3416. if (!is_shadow_present_pte(pt[i]) ||
  3417. !is_last_spte(pt[i], sp->role.level))
  3418. continue;
  3419. spte_write_protect(kvm, &pt[i], &flush, false);
  3420. }
  3421. }
  3422. kvm_flush_remote_tlbs(kvm);
  3423. }
  3424. void kvm_mmu_zap_all(struct kvm *kvm)
  3425. {
  3426. struct kvm_mmu_page *sp, *node;
  3427. LIST_HEAD(invalid_list);
  3428. spin_lock(&kvm->mmu_lock);
  3429. restart:
  3430. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3431. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3432. goto restart;
  3433. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3434. spin_unlock(&kvm->mmu_lock);
  3435. }
  3436. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3437. struct list_head *invalid_list)
  3438. {
  3439. struct kvm_mmu_page *page;
  3440. if (list_empty(&kvm->arch.active_mmu_pages))
  3441. return;
  3442. page = container_of(kvm->arch.active_mmu_pages.prev,
  3443. struct kvm_mmu_page, link);
  3444. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3445. }
  3446. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3447. {
  3448. struct kvm *kvm;
  3449. int nr_to_scan = sc->nr_to_scan;
  3450. if (nr_to_scan == 0)
  3451. goto out;
  3452. raw_spin_lock(&kvm_lock);
  3453. list_for_each_entry(kvm, &vm_list, vm_list) {
  3454. int idx;
  3455. LIST_HEAD(invalid_list);
  3456. /*
  3457. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3458. * here. We may skip a VM instance errorneosly, but we do not
  3459. * want to shrink a VM that only started to populate its MMU
  3460. * anyway.
  3461. */
  3462. if (kvm->arch.n_used_mmu_pages > 0) {
  3463. if (!nr_to_scan--)
  3464. break;
  3465. continue;
  3466. }
  3467. idx = srcu_read_lock(&kvm->srcu);
  3468. spin_lock(&kvm->mmu_lock);
  3469. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3470. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3471. spin_unlock(&kvm->mmu_lock);
  3472. srcu_read_unlock(&kvm->srcu, idx);
  3473. list_move_tail(&kvm->vm_list, &vm_list);
  3474. break;
  3475. }
  3476. raw_spin_unlock(&kvm_lock);
  3477. out:
  3478. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3479. }
  3480. static struct shrinker mmu_shrinker = {
  3481. .shrink = mmu_shrink,
  3482. .seeks = DEFAULT_SEEKS * 10,
  3483. };
  3484. static void mmu_destroy_caches(void)
  3485. {
  3486. if (pte_list_desc_cache)
  3487. kmem_cache_destroy(pte_list_desc_cache);
  3488. if (mmu_page_header_cache)
  3489. kmem_cache_destroy(mmu_page_header_cache);
  3490. }
  3491. int kvm_mmu_module_init(void)
  3492. {
  3493. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3494. sizeof(struct pte_list_desc),
  3495. 0, 0, NULL);
  3496. if (!pte_list_desc_cache)
  3497. goto nomem;
  3498. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3499. sizeof(struct kvm_mmu_page),
  3500. 0, 0, NULL);
  3501. if (!mmu_page_header_cache)
  3502. goto nomem;
  3503. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3504. goto nomem;
  3505. register_shrinker(&mmu_shrinker);
  3506. return 0;
  3507. nomem:
  3508. mmu_destroy_caches();
  3509. return -ENOMEM;
  3510. }
  3511. /*
  3512. * Caculate mmu pages needed for kvm.
  3513. */
  3514. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3515. {
  3516. unsigned int nr_mmu_pages;
  3517. unsigned int nr_pages = 0;
  3518. struct kvm_memslots *slots;
  3519. struct kvm_memory_slot *memslot;
  3520. slots = kvm_memslots(kvm);
  3521. kvm_for_each_memslot(memslot, slots)
  3522. nr_pages += memslot->npages;
  3523. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3524. nr_mmu_pages = max(nr_mmu_pages,
  3525. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3526. return nr_mmu_pages;
  3527. }
  3528. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3529. {
  3530. struct kvm_shadow_walk_iterator iterator;
  3531. u64 spte;
  3532. int nr_sptes = 0;
  3533. walk_shadow_page_lockless_begin(vcpu);
  3534. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3535. sptes[iterator.level-1] = spte;
  3536. nr_sptes++;
  3537. if (!is_shadow_present_pte(spte))
  3538. break;
  3539. }
  3540. walk_shadow_page_lockless_end(vcpu);
  3541. return nr_sptes;
  3542. }
  3543. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3544. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3545. {
  3546. ASSERT(vcpu);
  3547. destroy_kvm_mmu(vcpu);
  3548. free_mmu_pages(vcpu);
  3549. mmu_free_memory_caches(vcpu);
  3550. }
  3551. void kvm_mmu_module_exit(void)
  3552. {
  3553. mmu_destroy_caches();
  3554. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3555. unregister_shrinker(&mmu_shrinker);
  3556. mmu_audit_disable();
  3557. }