page_alloc.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/fault-inject.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/div64.h>
  45. #include "internal.h"
  46. /*
  47. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  48. * initializer cleaner
  49. */
  50. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  51. EXPORT_SYMBOL(node_online_map);
  52. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  53. EXPORT_SYMBOL(node_possible_map);
  54. unsigned long totalram_pages __read_mostly;
  55. unsigned long totalreserve_pages __read_mostly;
  56. long nr_swap_pages;
  57. int percpu_pagelist_fraction;
  58. static void __free_pages_ok(struct page *page, unsigned int order);
  59. /*
  60. * results with 256, 32 in the lowmem_reserve sysctl:
  61. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  62. * 1G machine -> (16M dma, 784M normal, 224M high)
  63. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  64. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  65. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  66. *
  67. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  68. * don't need any ZONE_NORMAL reservation
  69. */
  70. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  71. 256,
  72. #ifdef CONFIG_ZONE_DMA32
  73. 256,
  74. #endif
  75. #ifdef CONFIG_HIGHMEM
  76. 32
  77. #endif
  78. };
  79. EXPORT_SYMBOL(totalram_pages);
  80. static char * const zone_names[MAX_NR_ZONES] = {
  81. "DMA",
  82. #ifdef CONFIG_ZONE_DMA32
  83. "DMA32",
  84. #endif
  85. "Normal",
  86. #ifdef CONFIG_HIGHMEM
  87. "HighMem"
  88. #endif
  89. };
  90. int min_free_kbytes = 1024;
  91. unsigned long __meminitdata nr_kernel_pages;
  92. unsigned long __meminitdata nr_all_pages;
  93. static unsigned long __initdata dma_reserve;
  94. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  95. /*
  96. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  97. * ranges of memory (RAM) that may be registered with add_active_range().
  98. * Ranges passed to add_active_range() will be merged if possible
  99. * so the number of times add_active_range() can be called is
  100. * related to the number of nodes and the number of holes
  101. */
  102. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  103. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  104. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  105. #else
  106. #if MAX_NUMNODES >= 32
  107. /* If there can be many nodes, allow up to 50 holes per node */
  108. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  109. #else
  110. /* By default, allow up to 256 distinct regions */
  111. #define MAX_ACTIVE_REGIONS 256
  112. #endif
  113. #endif
  114. struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
  115. int __initdata nr_nodemap_entries;
  116. unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  117. unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  118. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  119. unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
  120. unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
  121. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  122. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  123. #ifdef CONFIG_DEBUG_VM
  124. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  125. {
  126. int ret = 0;
  127. unsigned seq;
  128. unsigned long pfn = page_to_pfn(page);
  129. do {
  130. seq = zone_span_seqbegin(zone);
  131. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  132. ret = 1;
  133. else if (pfn < zone->zone_start_pfn)
  134. ret = 1;
  135. } while (zone_span_seqretry(zone, seq));
  136. return ret;
  137. }
  138. static int page_is_consistent(struct zone *zone, struct page *page)
  139. {
  140. #ifdef CONFIG_HOLES_IN_ZONE
  141. if (!pfn_valid(page_to_pfn(page)))
  142. return 0;
  143. #endif
  144. if (zone != page_zone(page))
  145. return 0;
  146. return 1;
  147. }
  148. /*
  149. * Temporary debugging check for pages not lying within a given zone.
  150. */
  151. static int bad_range(struct zone *zone, struct page *page)
  152. {
  153. if (page_outside_zone_boundaries(zone, page))
  154. return 1;
  155. if (!page_is_consistent(zone, page))
  156. return 1;
  157. return 0;
  158. }
  159. #else
  160. static inline int bad_range(struct zone *zone, struct page *page)
  161. {
  162. return 0;
  163. }
  164. #endif
  165. static void bad_page(struct page *page)
  166. {
  167. printk(KERN_EMERG "Bad page state in process '%s'\n"
  168. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  169. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  170. KERN_EMERG "Backtrace:\n",
  171. current->comm, page, (int)(2*sizeof(unsigned long)),
  172. (unsigned long)page->flags, page->mapping,
  173. page_mapcount(page), page_count(page));
  174. dump_stack();
  175. page->flags &= ~(1 << PG_lru |
  176. 1 << PG_private |
  177. 1 << PG_locked |
  178. 1 << PG_active |
  179. 1 << PG_dirty |
  180. 1 << PG_reclaim |
  181. 1 << PG_slab |
  182. 1 << PG_swapcache |
  183. 1 << PG_writeback |
  184. 1 << PG_buddy );
  185. set_page_count(page, 0);
  186. reset_page_mapcount(page);
  187. page->mapping = NULL;
  188. add_taint(TAINT_BAD_PAGE);
  189. }
  190. /*
  191. * Higher-order pages are called "compound pages". They are structured thusly:
  192. *
  193. * The first PAGE_SIZE page is called the "head page".
  194. *
  195. * The remaining PAGE_SIZE pages are called "tail pages".
  196. *
  197. * All pages have PG_compound set. All pages have their ->private pointing at
  198. * the head page (even the head page has this).
  199. *
  200. * The first tail page's ->lru.next holds the address of the compound page's
  201. * put_page() function. Its ->lru.prev holds the order of allocation.
  202. * This usage means that zero-order pages may not be compound.
  203. */
  204. static void free_compound_page(struct page *page)
  205. {
  206. __free_pages_ok(page, (unsigned long)page[1].lru.prev);
  207. }
  208. static void prep_compound_page(struct page *page, unsigned long order)
  209. {
  210. int i;
  211. int nr_pages = 1 << order;
  212. set_compound_page_dtor(page, free_compound_page);
  213. page[1].lru.prev = (void *)order;
  214. for (i = 0; i < nr_pages; i++) {
  215. struct page *p = page + i;
  216. __SetPageCompound(p);
  217. set_page_private(p, (unsigned long)page);
  218. }
  219. }
  220. static void destroy_compound_page(struct page *page, unsigned long order)
  221. {
  222. int i;
  223. int nr_pages = 1 << order;
  224. if (unlikely((unsigned long)page[1].lru.prev != order))
  225. bad_page(page);
  226. for (i = 0; i < nr_pages; i++) {
  227. struct page *p = page + i;
  228. if (unlikely(!PageCompound(p) |
  229. (page_private(p) != (unsigned long)page)))
  230. bad_page(page);
  231. __ClearPageCompound(p);
  232. }
  233. }
  234. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  235. {
  236. int i;
  237. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  238. /*
  239. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  240. * and __GFP_HIGHMEM from hard or soft interrupt context.
  241. */
  242. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  243. for (i = 0; i < (1 << order); i++)
  244. clear_highpage(page + i);
  245. }
  246. /*
  247. * function for dealing with page's order in buddy system.
  248. * zone->lock is already acquired when we use these.
  249. * So, we don't need atomic page->flags operations here.
  250. */
  251. static inline unsigned long page_order(struct page *page)
  252. {
  253. return page_private(page);
  254. }
  255. static inline void set_page_order(struct page *page, int order)
  256. {
  257. set_page_private(page, order);
  258. __SetPageBuddy(page);
  259. }
  260. static inline void rmv_page_order(struct page *page)
  261. {
  262. __ClearPageBuddy(page);
  263. set_page_private(page, 0);
  264. }
  265. /*
  266. * Locate the struct page for both the matching buddy in our
  267. * pair (buddy1) and the combined O(n+1) page they form (page).
  268. *
  269. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  270. * the following equation:
  271. * B2 = B1 ^ (1 << O)
  272. * For example, if the starting buddy (buddy2) is #8 its order
  273. * 1 buddy is #10:
  274. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  275. *
  276. * 2) Any buddy B will have an order O+1 parent P which
  277. * satisfies the following equation:
  278. * P = B & ~(1 << O)
  279. *
  280. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  281. */
  282. static inline struct page *
  283. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  284. {
  285. unsigned long buddy_idx = page_idx ^ (1 << order);
  286. return page + (buddy_idx - page_idx);
  287. }
  288. static inline unsigned long
  289. __find_combined_index(unsigned long page_idx, unsigned int order)
  290. {
  291. return (page_idx & ~(1 << order));
  292. }
  293. /*
  294. * This function checks whether a page is free && is the buddy
  295. * we can do coalesce a page and its buddy if
  296. * (a) the buddy is not in a hole &&
  297. * (b) the buddy is in the buddy system &&
  298. * (c) a page and its buddy have the same order &&
  299. * (d) a page and its buddy are in the same zone.
  300. *
  301. * For recording whether a page is in the buddy system, we use PG_buddy.
  302. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  303. *
  304. * For recording page's order, we use page_private(page).
  305. */
  306. static inline int page_is_buddy(struct page *page, struct page *buddy,
  307. int order)
  308. {
  309. #ifdef CONFIG_HOLES_IN_ZONE
  310. if (!pfn_valid(page_to_pfn(buddy)))
  311. return 0;
  312. #endif
  313. if (page_zone_id(page) != page_zone_id(buddy))
  314. return 0;
  315. if (PageBuddy(buddy) && page_order(buddy) == order) {
  316. BUG_ON(page_count(buddy) != 0);
  317. return 1;
  318. }
  319. return 0;
  320. }
  321. /*
  322. * Freeing function for a buddy system allocator.
  323. *
  324. * The concept of a buddy system is to maintain direct-mapped table
  325. * (containing bit values) for memory blocks of various "orders".
  326. * The bottom level table contains the map for the smallest allocatable
  327. * units of memory (here, pages), and each level above it describes
  328. * pairs of units from the levels below, hence, "buddies".
  329. * At a high level, all that happens here is marking the table entry
  330. * at the bottom level available, and propagating the changes upward
  331. * as necessary, plus some accounting needed to play nicely with other
  332. * parts of the VM system.
  333. * At each level, we keep a list of pages, which are heads of continuous
  334. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  335. * order is recorded in page_private(page) field.
  336. * So when we are allocating or freeing one, we can derive the state of the
  337. * other. That is, if we allocate a small block, and both were
  338. * free, the remainder of the region must be split into blocks.
  339. * If a block is freed, and its buddy is also free, then this
  340. * triggers coalescing into a block of larger size.
  341. *
  342. * -- wli
  343. */
  344. static inline void __free_one_page(struct page *page,
  345. struct zone *zone, unsigned int order)
  346. {
  347. unsigned long page_idx;
  348. int order_size = 1 << order;
  349. if (unlikely(PageCompound(page)))
  350. destroy_compound_page(page, order);
  351. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  352. VM_BUG_ON(page_idx & (order_size - 1));
  353. VM_BUG_ON(bad_range(zone, page));
  354. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  355. while (order < MAX_ORDER-1) {
  356. unsigned long combined_idx;
  357. struct free_area *area;
  358. struct page *buddy;
  359. buddy = __page_find_buddy(page, page_idx, order);
  360. if (!page_is_buddy(page, buddy, order))
  361. break; /* Move the buddy up one level. */
  362. list_del(&buddy->lru);
  363. area = zone->free_area + order;
  364. area->nr_free--;
  365. rmv_page_order(buddy);
  366. combined_idx = __find_combined_index(page_idx, order);
  367. page = page + (combined_idx - page_idx);
  368. page_idx = combined_idx;
  369. order++;
  370. }
  371. set_page_order(page, order);
  372. list_add(&page->lru, &zone->free_area[order].free_list);
  373. zone->free_area[order].nr_free++;
  374. }
  375. static inline int free_pages_check(struct page *page)
  376. {
  377. if (unlikely(page_mapcount(page) |
  378. (page->mapping != NULL) |
  379. (page_count(page) != 0) |
  380. (page->flags & (
  381. 1 << PG_lru |
  382. 1 << PG_private |
  383. 1 << PG_locked |
  384. 1 << PG_active |
  385. 1 << PG_reclaim |
  386. 1 << PG_slab |
  387. 1 << PG_swapcache |
  388. 1 << PG_writeback |
  389. 1 << PG_reserved |
  390. 1 << PG_buddy ))))
  391. bad_page(page);
  392. if (PageDirty(page))
  393. __ClearPageDirty(page);
  394. /*
  395. * For now, we report if PG_reserved was found set, but do not
  396. * clear it, and do not free the page. But we shall soon need
  397. * to do more, for when the ZERO_PAGE count wraps negative.
  398. */
  399. return PageReserved(page);
  400. }
  401. /*
  402. * Frees a list of pages.
  403. * Assumes all pages on list are in same zone, and of same order.
  404. * count is the number of pages to free.
  405. *
  406. * If the zone was previously in an "all pages pinned" state then look to
  407. * see if this freeing clears that state.
  408. *
  409. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  410. * pinned" detection logic.
  411. */
  412. static void free_pages_bulk(struct zone *zone, int count,
  413. struct list_head *list, int order)
  414. {
  415. spin_lock(&zone->lock);
  416. zone->all_unreclaimable = 0;
  417. zone->pages_scanned = 0;
  418. while (count--) {
  419. struct page *page;
  420. VM_BUG_ON(list_empty(list));
  421. page = list_entry(list->prev, struct page, lru);
  422. /* have to delete it as __free_one_page list manipulates */
  423. list_del(&page->lru);
  424. __free_one_page(page, zone, order);
  425. }
  426. spin_unlock(&zone->lock);
  427. }
  428. static void free_one_page(struct zone *zone, struct page *page, int order)
  429. {
  430. spin_lock(&zone->lock);
  431. zone->all_unreclaimable = 0;
  432. zone->pages_scanned = 0;
  433. __free_one_page(page, zone, order);
  434. spin_unlock(&zone->lock);
  435. }
  436. static void __free_pages_ok(struct page *page, unsigned int order)
  437. {
  438. unsigned long flags;
  439. int i;
  440. int reserved = 0;
  441. for (i = 0 ; i < (1 << order) ; ++i)
  442. reserved += free_pages_check(page + i);
  443. if (reserved)
  444. return;
  445. if (!PageHighMem(page))
  446. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  447. arch_free_page(page, order);
  448. kernel_map_pages(page, 1 << order, 0);
  449. local_irq_save(flags);
  450. __count_vm_events(PGFREE, 1 << order);
  451. free_one_page(page_zone(page), page, order);
  452. local_irq_restore(flags);
  453. }
  454. /*
  455. * permit the bootmem allocator to evade page validation on high-order frees
  456. */
  457. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  458. {
  459. if (order == 0) {
  460. __ClearPageReserved(page);
  461. set_page_count(page, 0);
  462. set_page_refcounted(page);
  463. __free_page(page);
  464. } else {
  465. int loop;
  466. prefetchw(page);
  467. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  468. struct page *p = &page[loop];
  469. if (loop + 1 < BITS_PER_LONG)
  470. prefetchw(p + 1);
  471. __ClearPageReserved(p);
  472. set_page_count(p, 0);
  473. }
  474. set_page_refcounted(page);
  475. __free_pages(page, order);
  476. }
  477. }
  478. /*
  479. * The order of subdivision here is critical for the IO subsystem.
  480. * Please do not alter this order without good reasons and regression
  481. * testing. Specifically, as large blocks of memory are subdivided,
  482. * the order in which smaller blocks are delivered depends on the order
  483. * they're subdivided in this function. This is the primary factor
  484. * influencing the order in which pages are delivered to the IO
  485. * subsystem according to empirical testing, and this is also justified
  486. * by considering the behavior of a buddy system containing a single
  487. * large block of memory acted on by a series of small allocations.
  488. * This behavior is a critical factor in sglist merging's success.
  489. *
  490. * -- wli
  491. */
  492. static inline void expand(struct zone *zone, struct page *page,
  493. int low, int high, struct free_area *area)
  494. {
  495. unsigned long size = 1 << high;
  496. while (high > low) {
  497. area--;
  498. high--;
  499. size >>= 1;
  500. VM_BUG_ON(bad_range(zone, &page[size]));
  501. list_add(&page[size].lru, &area->free_list);
  502. area->nr_free++;
  503. set_page_order(&page[size], high);
  504. }
  505. }
  506. /*
  507. * This page is about to be returned from the page allocator
  508. */
  509. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  510. {
  511. if (unlikely(page_mapcount(page) |
  512. (page->mapping != NULL) |
  513. (page_count(page) != 0) |
  514. (page->flags & (
  515. 1 << PG_lru |
  516. 1 << PG_private |
  517. 1 << PG_locked |
  518. 1 << PG_active |
  519. 1 << PG_dirty |
  520. 1 << PG_reclaim |
  521. 1 << PG_slab |
  522. 1 << PG_swapcache |
  523. 1 << PG_writeback |
  524. 1 << PG_reserved |
  525. 1 << PG_buddy ))))
  526. bad_page(page);
  527. /*
  528. * For now, we report if PG_reserved was found set, but do not
  529. * clear it, and do not allocate the page: as a safety net.
  530. */
  531. if (PageReserved(page))
  532. return 1;
  533. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  534. 1 << PG_referenced | 1 << PG_arch_1 |
  535. 1 << PG_checked | 1 << PG_mappedtodisk);
  536. set_page_private(page, 0);
  537. set_page_refcounted(page);
  538. arch_alloc_page(page, order);
  539. kernel_map_pages(page, 1 << order, 1);
  540. if (gfp_flags & __GFP_ZERO)
  541. prep_zero_page(page, order, gfp_flags);
  542. if (order && (gfp_flags & __GFP_COMP))
  543. prep_compound_page(page, order);
  544. return 0;
  545. }
  546. /*
  547. * Do the hard work of removing an element from the buddy allocator.
  548. * Call me with the zone->lock already held.
  549. */
  550. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  551. {
  552. struct free_area * area;
  553. unsigned int current_order;
  554. struct page *page;
  555. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  556. area = zone->free_area + current_order;
  557. if (list_empty(&area->free_list))
  558. continue;
  559. page = list_entry(area->free_list.next, struct page, lru);
  560. list_del(&page->lru);
  561. rmv_page_order(page);
  562. area->nr_free--;
  563. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  564. expand(zone, page, order, current_order, area);
  565. return page;
  566. }
  567. return NULL;
  568. }
  569. /*
  570. * Obtain a specified number of elements from the buddy allocator, all under
  571. * a single hold of the lock, for efficiency. Add them to the supplied list.
  572. * Returns the number of new pages which were placed at *list.
  573. */
  574. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  575. unsigned long count, struct list_head *list)
  576. {
  577. int i;
  578. spin_lock(&zone->lock);
  579. for (i = 0; i < count; ++i) {
  580. struct page *page = __rmqueue(zone, order);
  581. if (unlikely(page == NULL))
  582. break;
  583. list_add_tail(&page->lru, list);
  584. }
  585. spin_unlock(&zone->lock);
  586. return i;
  587. }
  588. #ifdef CONFIG_NUMA
  589. /*
  590. * Called from the slab reaper to drain pagesets on a particular node that
  591. * belongs to the currently executing processor.
  592. * Note that this function must be called with the thread pinned to
  593. * a single processor.
  594. */
  595. void drain_node_pages(int nodeid)
  596. {
  597. int i;
  598. enum zone_type z;
  599. unsigned long flags;
  600. for (z = 0; z < MAX_NR_ZONES; z++) {
  601. struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
  602. struct per_cpu_pageset *pset;
  603. if (!populated_zone(zone))
  604. continue;
  605. pset = zone_pcp(zone, smp_processor_id());
  606. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  607. struct per_cpu_pages *pcp;
  608. pcp = &pset->pcp[i];
  609. if (pcp->count) {
  610. int to_drain;
  611. local_irq_save(flags);
  612. if (pcp->count >= pcp->batch)
  613. to_drain = pcp->batch;
  614. else
  615. to_drain = pcp->count;
  616. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  617. pcp->count -= to_drain;
  618. local_irq_restore(flags);
  619. }
  620. }
  621. }
  622. }
  623. #endif
  624. static void __drain_pages(unsigned int cpu)
  625. {
  626. unsigned long flags;
  627. struct zone *zone;
  628. int i;
  629. for_each_zone(zone) {
  630. struct per_cpu_pageset *pset;
  631. if (!populated_zone(zone))
  632. continue;
  633. pset = zone_pcp(zone, cpu);
  634. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  635. struct per_cpu_pages *pcp;
  636. pcp = &pset->pcp[i];
  637. local_irq_save(flags);
  638. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  639. pcp->count = 0;
  640. local_irq_restore(flags);
  641. }
  642. }
  643. }
  644. #ifdef CONFIG_PM
  645. void mark_free_pages(struct zone *zone)
  646. {
  647. unsigned long pfn, max_zone_pfn;
  648. unsigned long flags;
  649. int order;
  650. struct list_head *curr;
  651. if (!zone->spanned_pages)
  652. return;
  653. spin_lock_irqsave(&zone->lock, flags);
  654. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  655. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  656. if (pfn_valid(pfn)) {
  657. struct page *page = pfn_to_page(pfn);
  658. if (!PageNosave(page))
  659. ClearPageNosaveFree(page);
  660. }
  661. for (order = MAX_ORDER - 1; order >= 0; --order)
  662. list_for_each(curr, &zone->free_area[order].free_list) {
  663. unsigned long i;
  664. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  665. for (i = 0; i < (1UL << order); i++)
  666. SetPageNosaveFree(pfn_to_page(pfn + i));
  667. }
  668. spin_unlock_irqrestore(&zone->lock, flags);
  669. }
  670. /*
  671. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  672. */
  673. void drain_local_pages(void)
  674. {
  675. unsigned long flags;
  676. local_irq_save(flags);
  677. __drain_pages(smp_processor_id());
  678. local_irq_restore(flags);
  679. }
  680. #endif /* CONFIG_PM */
  681. /*
  682. * Free a 0-order page
  683. */
  684. static void fastcall free_hot_cold_page(struct page *page, int cold)
  685. {
  686. struct zone *zone = page_zone(page);
  687. struct per_cpu_pages *pcp;
  688. unsigned long flags;
  689. if (PageAnon(page))
  690. page->mapping = NULL;
  691. if (free_pages_check(page))
  692. return;
  693. if (!PageHighMem(page))
  694. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  695. arch_free_page(page, 0);
  696. kernel_map_pages(page, 1, 0);
  697. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  698. local_irq_save(flags);
  699. __count_vm_event(PGFREE);
  700. list_add(&page->lru, &pcp->list);
  701. pcp->count++;
  702. if (pcp->count >= pcp->high) {
  703. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  704. pcp->count -= pcp->batch;
  705. }
  706. local_irq_restore(flags);
  707. put_cpu();
  708. }
  709. void fastcall free_hot_page(struct page *page)
  710. {
  711. free_hot_cold_page(page, 0);
  712. }
  713. void fastcall free_cold_page(struct page *page)
  714. {
  715. free_hot_cold_page(page, 1);
  716. }
  717. /*
  718. * split_page takes a non-compound higher-order page, and splits it into
  719. * n (1<<order) sub-pages: page[0..n]
  720. * Each sub-page must be freed individually.
  721. *
  722. * Note: this is probably too low level an operation for use in drivers.
  723. * Please consult with lkml before using this in your driver.
  724. */
  725. void split_page(struct page *page, unsigned int order)
  726. {
  727. int i;
  728. VM_BUG_ON(PageCompound(page));
  729. VM_BUG_ON(!page_count(page));
  730. for (i = 1; i < (1 << order); i++)
  731. set_page_refcounted(page + i);
  732. }
  733. /*
  734. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  735. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  736. * or two.
  737. */
  738. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  739. struct zone *zone, int order, gfp_t gfp_flags)
  740. {
  741. unsigned long flags;
  742. struct page *page;
  743. int cold = !!(gfp_flags & __GFP_COLD);
  744. int cpu;
  745. again:
  746. cpu = get_cpu();
  747. if (likely(order == 0)) {
  748. struct per_cpu_pages *pcp;
  749. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  750. local_irq_save(flags);
  751. if (!pcp->count) {
  752. pcp->count = rmqueue_bulk(zone, 0,
  753. pcp->batch, &pcp->list);
  754. if (unlikely(!pcp->count))
  755. goto failed;
  756. }
  757. page = list_entry(pcp->list.next, struct page, lru);
  758. list_del(&page->lru);
  759. pcp->count--;
  760. } else {
  761. spin_lock_irqsave(&zone->lock, flags);
  762. page = __rmqueue(zone, order);
  763. spin_unlock(&zone->lock);
  764. if (!page)
  765. goto failed;
  766. }
  767. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  768. zone_statistics(zonelist, zone);
  769. local_irq_restore(flags);
  770. put_cpu();
  771. VM_BUG_ON(bad_range(zone, page));
  772. if (prep_new_page(page, order, gfp_flags))
  773. goto again;
  774. return page;
  775. failed:
  776. local_irq_restore(flags);
  777. put_cpu();
  778. return NULL;
  779. }
  780. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  781. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  782. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  783. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  784. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  785. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  786. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  787. #ifdef CONFIG_FAIL_PAGE_ALLOC
  788. static struct fail_page_alloc_attr {
  789. struct fault_attr attr;
  790. u32 ignore_gfp_highmem;
  791. u32 ignore_gfp_wait;
  792. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  793. struct dentry *ignore_gfp_highmem_file;
  794. struct dentry *ignore_gfp_wait_file;
  795. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  796. } fail_page_alloc = {
  797. .attr = FAULT_ATTR_INITIALIZER,
  798. .ignore_gfp_wait = 1,
  799. .ignore_gfp_highmem = 1,
  800. };
  801. static int __init setup_fail_page_alloc(char *str)
  802. {
  803. return setup_fault_attr(&fail_page_alloc.attr, str);
  804. }
  805. __setup("fail_page_alloc=", setup_fail_page_alloc);
  806. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  807. {
  808. if (gfp_mask & __GFP_NOFAIL)
  809. return 0;
  810. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  811. return 0;
  812. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  813. return 0;
  814. return should_fail(&fail_page_alloc.attr, 1 << order);
  815. }
  816. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  817. static int __init fail_page_alloc_debugfs(void)
  818. {
  819. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  820. struct dentry *dir;
  821. int err;
  822. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  823. "fail_page_alloc");
  824. if (err)
  825. return err;
  826. dir = fail_page_alloc.attr.dentries.dir;
  827. fail_page_alloc.ignore_gfp_wait_file =
  828. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  829. &fail_page_alloc.ignore_gfp_wait);
  830. fail_page_alloc.ignore_gfp_highmem_file =
  831. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  832. &fail_page_alloc.ignore_gfp_highmem);
  833. if (!fail_page_alloc.ignore_gfp_wait_file ||
  834. !fail_page_alloc.ignore_gfp_highmem_file) {
  835. err = -ENOMEM;
  836. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  837. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  838. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  839. }
  840. return err;
  841. }
  842. late_initcall(fail_page_alloc_debugfs);
  843. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  844. #else /* CONFIG_FAIL_PAGE_ALLOC */
  845. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  846. {
  847. return 0;
  848. }
  849. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  850. /*
  851. * Return 1 if free pages are above 'mark'. This takes into account the order
  852. * of the allocation.
  853. */
  854. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  855. int classzone_idx, int alloc_flags)
  856. {
  857. /* free_pages my go negative - that's OK */
  858. long min = mark;
  859. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  860. int o;
  861. if (alloc_flags & ALLOC_HIGH)
  862. min -= min / 2;
  863. if (alloc_flags & ALLOC_HARDER)
  864. min -= min / 4;
  865. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  866. return 0;
  867. for (o = 0; o < order; o++) {
  868. /* At the next order, this order's pages become unavailable */
  869. free_pages -= z->free_area[o].nr_free << o;
  870. /* Require fewer higher order pages to be free */
  871. min >>= 1;
  872. if (free_pages <= min)
  873. return 0;
  874. }
  875. return 1;
  876. }
  877. #ifdef CONFIG_NUMA
  878. /*
  879. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  880. * skip over zones that are not allowed by the cpuset, or that have
  881. * been recently (in last second) found to be nearly full. See further
  882. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  883. * that have to skip over alot of full or unallowed zones.
  884. *
  885. * If the zonelist cache is present in the passed in zonelist, then
  886. * returns a pointer to the allowed node mask (either the current
  887. * tasks mems_allowed, or node_online_map.)
  888. *
  889. * If the zonelist cache is not available for this zonelist, does
  890. * nothing and returns NULL.
  891. *
  892. * If the fullzones BITMAP in the zonelist cache is stale (more than
  893. * a second since last zap'd) then we zap it out (clear its bits.)
  894. *
  895. * We hold off even calling zlc_setup, until after we've checked the
  896. * first zone in the zonelist, on the theory that most allocations will
  897. * be satisfied from that first zone, so best to examine that zone as
  898. * quickly as we can.
  899. */
  900. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  901. {
  902. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  903. nodemask_t *allowednodes; /* zonelist_cache approximation */
  904. zlc = zonelist->zlcache_ptr;
  905. if (!zlc)
  906. return NULL;
  907. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  908. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  909. zlc->last_full_zap = jiffies;
  910. }
  911. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  912. &cpuset_current_mems_allowed :
  913. &node_online_map;
  914. return allowednodes;
  915. }
  916. /*
  917. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  918. * if it is worth looking at further for free memory:
  919. * 1) Check that the zone isn't thought to be full (doesn't have its
  920. * bit set in the zonelist_cache fullzones BITMAP).
  921. * 2) Check that the zones node (obtained from the zonelist_cache
  922. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  923. * Return true (non-zero) if zone is worth looking at further, or
  924. * else return false (zero) if it is not.
  925. *
  926. * This check -ignores- the distinction between various watermarks,
  927. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  928. * found to be full for any variation of these watermarks, it will
  929. * be considered full for up to one second by all requests, unless
  930. * we are so low on memory on all allowed nodes that we are forced
  931. * into the second scan of the zonelist.
  932. *
  933. * In the second scan we ignore this zonelist cache and exactly
  934. * apply the watermarks to all zones, even it is slower to do so.
  935. * We are low on memory in the second scan, and should leave no stone
  936. * unturned looking for a free page.
  937. */
  938. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  939. nodemask_t *allowednodes)
  940. {
  941. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  942. int i; /* index of *z in zonelist zones */
  943. int n; /* node that zone *z is on */
  944. zlc = zonelist->zlcache_ptr;
  945. if (!zlc)
  946. return 1;
  947. i = z - zonelist->zones;
  948. n = zlc->z_to_n[i];
  949. /* This zone is worth trying if it is allowed but not full */
  950. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  951. }
  952. /*
  953. * Given 'z' scanning a zonelist, set the corresponding bit in
  954. * zlc->fullzones, so that subsequent attempts to allocate a page
  955. * from that zone don't waste time re-examining it.
  956. */
  957. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  958. {
  959. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  960. int i; /* index of *z in zonelist zones */
  961. zlc = zonelist->zlcache_ptr;
  962. if (!zlc)
  963. return;
  964. i = z - zonelist->zones;
  965. set_bit(i, zlc->fullzones);
  966. }
  967. #else /* CONFIG_NUMA */
  968. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  969. {
  970. return NULL;
  971. }
  972. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  973. nodemask_t *allowednodes)
  974. {
  975. return 1;
  976. }
  977. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  978. {
  979. }
  980. #endif /* CONFIG_NUMA */
  981. /*
  982. * get_page_from_freelist goes through the zonelist trying to allocate
  983. * a page.
  984. */
  985. static struct page *
  986. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  987. struct zonelist *zonelist, int alloc_flags)
  988. {
  989. struct zone **z;
  990. struct page *page = NULL;
  991. int classzone_idx = zone_idx(zonelist->zones[0]);
  992. struct zone *zone;
  993. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  994. int zlc_active = 0; /* set if using zonelist_cache */
  995. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  996. zonelist_scan:
  997. /*
  998. * Scan zonelist, looking for a zone with enough free.
  999. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1000. */
  1001. z = zonelist->zones;
  1002. do {
  1003. if (NUMA_BUILD && zlc_active &&
  1004. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1005. continue;
  1006. zone = *z;
  1007. if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
  1008. zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  1009. break;
  1010. if ((alloc_flags & ALLOC_CPUSET) &&
  1011. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1012. goto try_next_zone;
  1013. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1014. unsigned long mark;
  1015. if (alloc_flags & ALLOC_WMARK_MIN)
  1016. mark = zone->pages_min;
  1017. else if (alloc_flags & ALLOC_WMARK_LOW)
  1018. mark = zone->pages_low;
  1019. else
  1020. mark = zone->pages_high;
  1021. if (!zone_watermark_ok(zone, order, mark,
  1022. classzone_idx, alloc_flags)) {
  1023. if (!zone_reclaim_mode ||
  1024. !zone_reclaim(zone, gfp_mask, order))
  1025. goto this_zone_full;
  1026. }
  1027. }
  1028. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1029. if (page)
  1030. break;
  1031. this_zone_full:
  1032. if (NUMA_BUILD)
  1033. zlc_mark_zone_full(zonelist, z);
  1034. try_next_zone:
  1035. if (NUMA_BUILD && !did_zlc_setup) {
  1036. /* we do zlc_setup after the first zone is tried */
  1037. allowednodes = zlc_setup(zonelist, alloc_flags);
  1038. zlc_active = 1;
  1039. did_zlc_setup = 1;
  1040. }
  1041. } while (*(++z) != NULL);
  1042. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1043. /* Disable zlc cache for second zonelist scan */
  1044. zlc_active = 0;
  1045. goto zonelist_scan;
  1046. }
  1047. return page;
  1048. }
  1049. /*
  1050. * This is the 'heart' of the zoned buddy allocator.
  1051. */
  1052. struct page * fastcall
  1053. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1054. struct zonelist *zonelist)
  1055. {
  1056. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1057. struct zone **z;
  1058. struct page *page;
  1059. struct reclaim_state reclaim_state;
  1060. struct task_struct *p = current;
  1061. int do_retry;
  1062. int alloc_flags;
  1063. int did_some_progress;
  1064. might_sleep_if(wait);
  1065. if (should_fail_alloc_page(gfp_mask, order))
  1066. return NULL;
  1067. restart:
  1068. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1069. if (unlikely(*z == NULL)) {
  1070. /* Should this ever happen?? */
  1071. return NULL;
  1072. }
  1073. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1074. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1075. if (page)
  1076. goto got_pg;
  1077. /*
  1078. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1079. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1080. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1081. * using a larger set of nodes after it has established that the
  1082. * allowed per node queues are empty and that nodes are
  1083. * over allocated.
  1084. */
  1085. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1086. goto nopage;
  1087. for (z = zonelist->zones; *z; z++)
  1088. wakeup_kswapd(*z, order);
  1089. /*
  1090. * OK, we're below the kswapd watermark and have kicked background
  1091. * reclaim. Now things get more complex, so set up alloc_flags according
  1092. * to how we want to proceed.
  1093. *
  1094. * The caller may dip into page reserves a bit more if the caller
  1095. * cannot run direct reclaim, or if the caller has realtime scheduling
  1096. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1097. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1098. */
  1099. alloc_flags = ALLOC_WMARK_MIN;
  1100. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1101. alloc_flags |= ALLOC_HARDER;
  1102. if (gfp_mask & __GFP_HIGH)
  1103. alloc_flags |= ALLOC_HIGH;
  1104. if (wait)
  1105. alloc_flags |= ALLOC_CPUSET;
  1106. /*
  1107. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1108. * coming from realtime tasks go deeper into reserves.
  1109. *
  1110. * This is the last chance, in general, before the goto nopage.
  1111. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1112. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1113. */
  1114. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1115. if (page)
  1116. goto got_pg;
  1117. /* This allocation should allow future memory freeing. */
  1118. rebalance:
  1119. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1120. && !in_interrupt()) {
  1121. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1122. nofail_alloc:
  1123. /* go through the zonelist yet again, ignoring mins */
  1124. page = get_page_from_freelist(gfp_mask, order,
  1125. zonelist, ALLOC_NO_WATERMARKS);
  1126. if (page)
  1127. goto got_pg;
  1128. if (gfp_mask & __GFP_NOFAIL) {
  1129. congestion_wait(WRITE, HZ/50);
  1130. goto nofail_alloc;
  1131. }
  1132. }
  1133. goto nopage;
  1134. }
  1135. /* Atomic allocations - we can't balance anything */
  1136. if (!wait)
  1137. goto nopage;
  1138. cond_resched();
  1139. /* We now go into synchronous reclaim */
  1140. cpuset_memory_pressure_bump();
  1141. p->flags |= PF_MEMALLOC;
  1142. reclaim_state.reclaimed_slab = 0;
  1143. p->reclaim_state = &reclaim_state;
  1144. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  1145. p->reclaim_state = NULL;
  1146. p->flags &= ~PF_MEMALLOC;
  1147. cond_resched();
  1148. if (likely(did_some_progress)) {
  1149. page = get_page_from_freelist(gfp_mask, order,
  1150. zonelist, alloc_flags);
  1151. if (page)
  1152. goto got_pg;
  1153. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1154. /*
  1155. * Go through the zonelist yet one more time, keep
  1156. * very high watermark here, this is only to catch
  1157. * a parallel oom killing, we must fail if we're still
  1158. * under heavy pressure.
  1159. */
  1160. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1161. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1162. if (page)
  1163. goto got_pg;
  1164. out_of_memory(zonelist, gfp_mask, order);
  1165. goto restart;
  1166. }
  1167. /*
  1168. * Don't let big-order allocations loop unless the caller explicitly
  1169. * requests that. Wait for some write requests to complete then retry.
  1170. *
  1171. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1172. * <= 3, but that may not be true in other implementations.
  1173. */
  1174. do_retry = 0;
  1175. if (!(gfp_mask & __GFP_NORETRY)) {
  1176. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  1177. do_retry = 1;
  1178. if (gfp_mask & __GFP_NOFAIL)
  1179. do_retry = 1;
  1180. }
  1181. if (do_retry) {
  1182. congestion_wait(WRITE, HZ/50);
  1183. goto rebalance;
  1184. }
  1185. nopage:
  1186. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1187. printk(KERN_WARNING "%s: page allocation failure."
  1188. " order:%d, mode:0x%x\n",
  1189. p->comm, order, gfp_mask);
  1190. dump_stack();
  1191. show_mem();
  1192. }
  1193. got_pg:
  1194. return page;
  1195. }
  1196. EXPORT_SYMBOL(__alloc_pages);
  1197. /*
  1198. * Common helper functions.
  1199. */
  1200. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1201. {
  1202. struct page * page;
  1203. page = alloc_pages(gfp_mask, order);
  1204. if (!page)
  1205. return 0;
  1206. return (unsigned long) page_address(page);
  1207. }
  1208. EXPORT_SYMBOL(__get_free_pages);
  1209. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1210. {
  1211. struct page * page;
  1212. /*
  1213. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1214. * a highmem page
  1215. */
  1216. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1217. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1218. if (page)
  1219. return (unsigned long) page_address(page);
  1220. return 0;
  1221. }
  1222. EXPORT_SYMBOL(get_zeroed_page);
  1223. void __pagevec_free(struct pagevec *pvec)
  1224. {
  1225. int i = pagevec_count(pvec);
  1226. while (--i >= 0)
  1227. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1228. }
  1229. fastcall void __free_pages(struct page *page, unsigned int order)
  1230. {
  1231. if (put_page_testzero(page)) {
  1232. if (order == 0)
  1233. free_hot_page(page);
  1234. else
  1235. __free_pages_ok(page, order);
  1236. }
  1237. }
  1238. EXPORT_SYMBOL(__free_pages);
  1239. fastcall void free_pages(unsigned long addr, unsigned int order)
  1240. {
  1241. if (addr != 0) {
  1242. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1243. __free_pages(virt_to_page((void *)addr), order);
  1244. }
  1245. }
  1246. EXPORT_SYMBOL(free_pages);
  1247. static unsigned int nr_free_zone_pages(int offset)
  1248. {
  1249. /* Just pick one node, since fallback list is circular */
  1250. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1251. unsigned int sum = 0;
  1252. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1253. struct zone **zonep = zonelist->zones;
  1254. struct zone *zone;
  1255. for (zone = *zonep++; zone; zone = *zonep++) {
  1256. unsigned long size = zone->present_pages;
  1257. unsigned long high = zone->pages_high;
  1258. if (size > high)
  1259. sum += size - high;
  1260. }
  1261. return sum;
  1262. }
  1263. /*
  1264. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1265. */
  1266. unsigned int nr_free_buffer_pages(void)
  1267. {
  1268. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1269. }
  1270. /*
  1271. * Amount of free RAM allocatable within all zones
  1272. */
  1273. unsigned int nr_free_pagecache_pages(void)
  1274. {
  1275. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1276. }
  1277. static inline void show_node(struct zone *zone)
  1278. {
  1279. if (NUMA_BUILD)
  1280. printk("Node %d ", zone_to_nid(zone));
  1281. }
  1282. void si_meminfo(struct sysinfo *val)
  1283. {
  1284. val->totalram = totalram_pages;
  1285. val->sharedram = 0;
  1286. val->freeram = global_page_state(NR_FREE_PAGES);
  1287. val->bufferram = nr_blockdev_pages();
  1288. val->totalhigh = totalhigh_pages;
  1289. val->freehigh = nr_free_highpages();
  1290. val->mem_unit = PAGE_SIZE;
  1291. }
  1292. EXPORT_SYMBOL(si_meminfo);
  1293. #ifdef CONFIG_NUMA
  1294. void si_meminfo_node(struct sysinfo *val, int nid)
  1295. {
  1296. pg_data_t *pgdat = NODE_DATA(nid);
  1297. val->totalram = pgdat->node_present_pages;
  1298. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1299. #ifdef CONFIG_HIGHMEM
  1300. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1301. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1302. NR_FREE_PAGES);
  1303. #else
  1304. val->totalhigh = 0;
  1305. val->freehigh = 0;
  1306. #endif
  1307. val->mem_unit = PAGE_SIZE;
  1308. }
  1309. #endif
  1310. #define K(x) ((x) << (PAGE_SHIFT-10))
  1311. /*
  1312. * Show free area list (used inside shift_scroll-lock stuff)
  1313. * We also calculate the percentage fragmentation. We do this by counting the
  1314. * memory on each free list with the exception of the first item on the list.
  1315. */
  1316. void show_free_areas(void)
  1317. {
  1318. int cpu;
  1319. struct zone *zone;
  1320. for_each_zone(zone) {
  1321. if (!populated_zone(zone))
  1322. continue;
  1323. show_node(zone);
  1324. printk("%s per-cpu:\n", zone->name);
  1325. for_each_online_cpu(cpu) {
  1326. struct per_cpu_pageset *pageset;
  1327. pageset = zone_pcp(zone, cpu);
  1328. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1329. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1330. cpu, pageset->pcp[0].high,
  1331. pageset->pcp[0].batch, pageset->pcp[0].count,
  1332. pageset->pcp[1].high, pageset->pcp[1].batch,
  1333. pageset->pcp[1].count);
  1334. }
  1335. }
  1336. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1337. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1338. global_page_state(NR_ACTIVE),
  1339. global_page_state(NR_INACTIVE),
  1340. global_page_state(NR_FILE_DIRTY),
  1341. global_page_state(NR_WRITEBACK),
  1342. global_page_state(NR_UNSTABLE_NFS),
  1343. global_page_state(NR_FREE_PAGES),
  1344. global_page_state(NR_SLAB_RECLAIMABLE) +
  1345. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1346. global_page_state(NR_FILE_MAPPED),
  1347. global_page_state(NR_PAGETABLE),
  1348. global_page_state(NR_BOUNCE));
  1349. for_each_zone(zone) {
  1350. int i;
  1351. if (!populated_zone(zone))
  1352. continue;
  1353. show_node(zone);
  1354. printk("%s"
  1355. " free:%lukB"
  1356. " min:%lukB"
  1357. " low:%lukB"
  1358. " high:%lukB"
  1359. " active:%lukB"
  1360. " inactive:%lukB"
  1361. " present:%lukB"
  1362. " pages_scanned:%lu"
  1363. " all_unreclaimable? %s"
  1364. "\n",
  1365. zone->name,
  1366. K(zone_page_state(zone, NR_FREE_PAGES)),
  1367. K(zone->pages_min),
  1368. K(zone->pages_low),
  1369. K(zone->pages_high),
  1370. K(zone_page_state(zone, NR_ACTIVE)),
  1371. K(zone_page_state(zone, NR_INACTIVE)),
  1372. K(zone->present_pages),
  1373. zone->pages_scanned,
  1374. (zone->all_unreclaimable ? "yes" : "no")
  1375. );
  1376. printk("lowmem_reserve[]:");
  1377. for (i = 0; i < MAX_NR_ZONES; i++)
  1378. printk(" %lu", zone->lowmem_reserve[i]);
  1379. printk("\n");
  1380. }
  1381. for_each_zone(zone) {
  1382. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1383. if (!populated_zone(zone))
  1384. continue;
  1385. show_node(zone);
  1386. printk("%s: ", zone->name);
  1387. spin_lock_irqsave(&zone->lock, flags);
  1388. for (order = 0; order < MAX_ORDER; order++) {
  1389. nr[order] = zone->free_area[order].nr_free;
  1390. total += nr[order] << order;
  1391. }
  1392. spin_unlock_irqrestore(&zone->lock, flags);
  1393. for (order = 0; order < MAX_ORDER; order++)
  1394. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1395. printk("= %lukB\n", K(total));
  1396. }
  1397. show_swap_cache_info();
  1398. }
  1399. /*
  1400. * Builds allocation fallback zone lists.
  1401. *
  1402. * Add all populated zones of a node to the zonelist.
  1403. */
  1404. static int __meminit build_zonelists_node(pg_data_t *pgdat,
  1405. struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
  1406. {
  1407. struct zone *zone;
  1408. BUG_ON(zone_type >= MAX_NR_ZONES);
  1409. zone_type++;
  1410. do {
  1411. zone_type--;
  1412. zone = pgdat->node_zones + zone_type;
  1413. if (populated_zone(zone)) {
  1414. zonelist->zones[nr_zones++] = zone;
  1415. check_highest_zone(zone_type);
  1416. }
  1417. } while (zone_type);
  1418. return nr_zones;
  1419. }
  1420. #ifdef CONFIG_NUMA
  1421. #define MAX_NODE_LOAD (num_online_nodes())
  1422. static int __meminitdata node_load[MAX_NUMNODES];
  1423. /**
  1424. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1425. * @node: node whose fallback list we're appending
  1426. * @used_node_mask: nodemask_t of already used nodes
  1427. *
  1428. * We use a number of factors to determine which is the next node that should
  1429. * appear on a given node's fallback list. The node should not have appeared
  1430. * already in @node's fallback list, and it should be the next closest node
  1431. * according to the distance array (which contains arbitrary distance values
  1432. * from each node to each node in the system), and should also prefer nodes
  1433. * with no CPUs, since presumably they'll have very little allocation pressure
  1434. * on them otherwise.
  1435. * It returns -1 if no node is found.
  1436. */
  1437. static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
  1438. {
  1439. int n, val;
  1440. int min_val = INT_MAX;
  1441. int best_node = -1;
  1442. /* Use the local node if we haven't already */
  1443. if (!node_isset(node, *used_node_mask)) {
  1444. node_set(node, *used_node_mask);
  1445. return node;
  1446. }
  1447. for_each_online_node(n) {
  1448. cpumask_t tmp;
  1449. /* Don't want a node to appear more than once */
  1450. if (node_isset(n, *used_node_mask))
  1451. continue;
  1452. /* Use the distance array to find the distance */
  1453. val = node_distance(node, n);
  1454. /* Penalize nodes under us ("prefer the next node") */
  1455. val += (n < node);
  1456. /* Give preference to headless and unused nodes */
  1457. tmp = node_to_cpumask(n);
  1458. if (!cpus_empty(tmp))
  1459. val += PENALTY_FOR_NODE_WITH_CPUS;
  1460. /* Slight preference for less loaded node */
  1461. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1462. val += node_load[n];
  1463. if (val < min_val) {
  1464. min_val = val;
  1465. best_node = n;
  1466. }
  1467. }
  1468. if (best_node >= 0)
  1469. node_set(best_node, *used_node_mask);
  1470. return best_node;
  1471. }
  1472. static void __meminit build_zonelists(pg_data_t *pgdat)
  1473. {
  1474. int j, node, local_node;
  1475. enum zone_type i;
  1476. int prev_node, load;
  1477. struct zonelist *zonelist;
  1478. nodemask_t used_mask;
  1479. /* initialize zonelists */
  1480. for (i = 0; i < MAX_NR_ZONES; i++) {
  1481. zonelist = pgdat->node_zonelists + i;
  1482. zonelist->zones[0] = NULL;
  1483. }
  1484. /* NUMA-aware ordering of nodes */
  1485. local_node = pgdat->node_id;
  1486. load = num_online_nodes();
  1487. prev_node = local_node;
  1488. nodes_clear(used_mask);
  1489. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1490. int distance = node_distance(local_node, node);
  1491. /*
  1492. * If another node is sufficiently far away then it is better
  1493. * to reclaim pages in a zone before going off node.
  1494. */
  1495. if (distance > RECLAIM_DISTANCE)
  1496. zone_reclaim_mode = 1;
  1497. /*
  1498. * We don't want to pressure a particular node.
  1499. * So adding penalty to the first node in same
  1500. * distance group to make it round-robin.
  1501. */
  1502. if (distance != node_distance(local_node, prev_node))
  1503. node_load[node] += load;
  1504. prev_node = node;
  1505. load--;
  1506. for (i = 0; i < MAX_NR_ZONES; i++) {
  1507. zonelist = pgdat->node_zonelists + i;
  1508. for (j = 0; zonelist->zones[j] != NULL; j++);
  1509. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1510. zonelist->zones[j] = NULL;
  1511. }
  1512. }
  1513. }
  1514. /* Construct the zonelist performance cache - see further mmzone.h */
  1515. static void __meminit build_zonelist_cache(pg_data_t *pgdat)
  1516. {
  1517. int i;
  1518. for (i = 0; i < MAX_NR_ZONES; i++) {
  1519. struct zonelist *zonelist;
  1520. struct zonelist_cache *zlc;
  1521. struct zone **z;
  1522. zonelist = pgdat->node_zonelists + i;
  1523. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1524. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1525. for (z = zonelist->zones; *z; z++)
  1526. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1527. }
  1528. }
  1529. #else /* CONFIG_NUMA */
  1530. static void __meminit build_zonelists(pg_data_t *pgdat)
  1531. {
  1532. int node, local_node;
  1533. enum zone_type i,j;
  1534. local_node = pgdat->node_id;
  1535. for (i = 0; i < MAX_NR_ZONES; i++) {
  1536. struct zonelist *zonelist;
  1537. zonelist = pgdat->node_zonelists + i;
  1538. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1539. /*
  1540. * Now we build the zonelist so that it contains the zones
  1541. * of all the other nodes.
  1542. * We don't want to pressure a particular node, so when
  1543. * building the zones for node N, we make sure that the
  1544. * zones coming right after the local ones are those from
  1545. * node N+1 (modulo N)
  1546. */
  1547. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1548. if (!node_online(node))
  1549. continue;
  1550. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1551. }
  1552. for (node = 0; node < local_node; node++) {
  1553. if (!node_online(node))
  1554. continue;
  1555. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1556. }
  1557. zonelist->zones[j] = NULL;
  1558. }
  1559. }
  1560. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1561. static void __meminit build_zonelist_cache(pg_data_t *pgdat)
  1562. {
  1563. int i;
  1564. for (i = 0; i < MAX_NR_ZONES; i++)
  1565. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1566. }
  1567. #endif /* CONFIG_NUMA */
  1568. /* return values int ....just for stop_machine_run() */
  1569. static int __meminit __build_all_zonelists(void *dummy)
  1570. {
  1571. int nid;
  1572. for_each_online_node(nid) {
  1573. build_zonelists(NODE_DATA(nid));
  1574. build_zonelist_cache(NODE_DATA(nid));
  1575. }
  1576. return 0;
  1577. }
  1578. void __meminit build_all_zonelists(void)
  1579. {
  1580. if (system_state == SYSTEM_BOOTING) {
  1581. __build_all_zonelists(NULL);
  1582. cpuset_init_current_mems_allowed();
  1583. } else {
  1584. /* we have to stop all cpus to guaranntee there is no user
  1585. of zonelist */
  1586. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1587. /* cpuset refresh routine should be here */
  1588. }
  1589. vm_total_pages = nr_free_pagecache_pages();
  1590. printk("Built %i zonelists. Total pages: %ld\n",
  1591. num_online_nodes(), vm_total_pages);
  1592. }
  1593. /*
  1594. * Helper functions to size the waitqueue hash table.
  1595. * Essentially these want to choose hash table sizes sufficiently
  1596. * large so that collisions trying to wait on pages are rare.
  1597. * But in fact, the number of active page waitqueues on typical
  1598. * systems is ridiculously low, less than 200. So this is even
  1599. * conservative, even though it seems large.
  1600. *
  1601. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1602. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1603. */
  1604. #define PAGES_PER_WAITQUEUE 256
  1605. #ifndef CONFIG_MEMORY_HOTPLUG
  1606. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1607. {
  1608. unsigned long size = 1;
  1609. pages /= PAGES_PER_WAITQUEUE;
  1610. while (size < pages)
  1611. size <<= 1;
  1612. /*
  1613. * Once we have dozens or even hundreds of threads sleeping
  1614. * on IO we've got bigger problems than wait queue collision.
  1615. * Limit the size of the wait table to a reasonable size.
  1616. */
  1617. size = min(size, 4096UL);
  1618. return max(size, 4UL);
  1619. }
  1620. #else
  1621. /*
  1622. * A zone's size might be changed by hot-add, so it is not possible to determine
  1623. * a suitable size for its wait_table. So we use the maximum size now.
  1624. *
  1625. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1626. *
  1627. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1628. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1629. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1630. *
  1631. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1632. * or more by the traditional way. (See above). It equals:
  1633. *
  1634. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1635. * ia64(16K page size) : = ( 8G + 4M)byte.
  1636. * powerpc (64K page size) : = (32G +16M)byte.
  1637. */
  1638. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1639. {
  1640. return 4096UL;
  1641. }
  1642. #endif
  1643. /*
  1644. * This is an integer logarithm so that shifts can be used later
  1645. * to extract the more random high bits from the multiplicative
  1646. * hash function before the remainder is taken.
  1647. */
  1648. static inline unsigned long wait_table_bits(unsigned long size)
  1649. {
  1650. return ffz(~size);
  1651. }
  1652. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1653. /*
  1654. * Initially all pages are reserved - free ones are freed
  1655. * up by free_all_bootmem() once the early boot process is
  1656. * done. Non-atomic initialization, single-pass.
  1657. */
  1658. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1659. unsigned long start_pfn, enum memmap_context context)
  1660. {
  1661. struct page *page;
  1662. unsigned long end_pfn = start_pfn + size;
  1663. unsigned long pfn;
  1664. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1665. /*
  1666. * There can be holes in boot-time mem_map[]s
  1667. * handed to this function. They do not
  1668. * exist on hotplugged memory.
  1669. */
  1670. if (context == MEMMAP_EARLY) {
  1671. if (!early_pfn_valid(pfn))
  1672. continue;
  1673. if (!early_pfn_in_nid(pfn, nid))
  1674. continue;
  1675. }
  1676. page = pfn_to_page(pfn);
  1677. set_page_links(page, zone, nid, pfn);
  1678. init_page_count(page);
  1679. reset_page_mapcount(page);
  1680. SetPageReserved(page);
  1681. INIT_LIST_HEAD(&page->lru);
  1682. #ifdef WANT_PAGE_VIRTUAL
  1683. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1684. if (!is_highmem_idx(zone))
  1685. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1686. #endif
  1687. }
  1688. }
  1689. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1690. unsigned long size)
  1691. {
  1692. int order;
  1693. for (order = 0; order < MAX_ORDER ; order++) {
  1694. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1695. zone->free_area[order].nr_free = 0;
  1696. }
  1697. }
  1698. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1699. #define memmap_init(size, nid, zone, start_pfn) \
  1700. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  1701. #endif
  1702. static int __cpuinit zone_batchsize(struct zone *zone)
  1703. {
  1704. int batch;
  1705. /*
  1706. * The per-cpu-pages pools are set to around 1000th of the
  1707. * size of the zone. But no more than 1/2 of a meg.
  1708. *
  1709. * OK, so we don't know how big the cache is. So guess.
  1710. */
  1711. batch = zone->present_pages / 1024;
  1712. if (batch * PAGE_SIZE > 512 * 1024)
  1713. batch = (512 * 1024) / PAGE_SIZE;
  1714. batch /= 4; /* We effectively *= 4 below */
  1715. if (batch < 1)
  1716. batch = 1;
  1717. /*
  1718. * Clamp the batch to a 2^n - 1 value. Having a power
  1719. * of 2 value was found to be more likely to have
  1720. * suboptimal cache aliasing properties in some cases.
  1721. *
  1722. * For example if 2 tasks are alternately allocating
  1723. * batches of pages, one task can end up with a lot
  1724. * of pages of one half of the possible page colors
  1725. * and the other with pages of the other colors.
  1726. */
  1727. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1728. return batch;
  1729. }
  1730. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1731. {
  1732. struct per_cpu_pages *pcp;
  1733. memset(p, 0, sizeof(*p));
  1734. pcp = &p->pcp[0]; /* hot */
  1735. pcp->count = 0;
  1736. pcp->high = 6 * batch;
  1737. pcp->batch = max(1UL, 1 * batch);
  1738. INIT_LIST_HEAD(&pcp->list);
  1739. pcp = &p->pcp[1]; /* cold*/
  1740. pcp->count = 0;
  1741. pcp->high = 2 * batch;
  1742. pcp->batch = max(1UL, batch/2);
  1743. INIT_LIST_HEAD(&pcp->list);
  1744. }
  1745. /*
  1746. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1747. * to the value high for the pageset p.
  1748. */
  1749. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1750. unsigned long high)
  1751. {
  1752. struct per_cpu_pages *pcp;
  1753. pcp = &p->pcp[0]; /* hot list */
  1754. pcp->high = high;
  1755. pcp->batch = max(1UL, high/4);
  1756. if ((high/4) > (PAGE_SHIFT * 8))
  1757. pcp->batch = PAGE_SHIFT * 8;
  1758. }
  1759. #ifdef CONFIG_NUMA
  1760. /*
  1761. * Boot pageset table. One per cpu which is going to be used for all
  1762. * zones and all nodes. The parameters will be set in such a way
  1763. * that an item put on a list will immediately be handed over to
  1764. * the buddy list. This is safe since pageset manipulation is done
  1765. * with interrupts disabled.
  1766. *
  1767. * Some NUMA counter updates may also be caught by the boot pagesets.
  1768. *
  1769. * The boot_pagesets must be kept even after bootup is complete for
  1770. * unused processors and/or zones. They do play a role for bootstrapping
  1771. * hotplugged processors.
  1772. *
  1773. * zoneinfo_show() and maybe other functions do
  1774. * not check if the processor is online before following the pageset pointer.
  1775. * Other parts of the kernel may not check if the zone is available.
  1776. */
  1777. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  1778. /*
  1779. * Dynamically allocate memory for the
  1780. * per cpu pageset array in struct zone.
  1781. */
  1782. static int __cpuinit process_zones(int cpu)
  1783. {
  1784. struct zone *zone, *dzone;
  1785. for_each_zone(zone) {
  1786. if (!populated_zone(zone))
  1787. continue;
  1788. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1789. GFP_KERNEL, cpu_to_node(cpu));
  1790. if (!zone_pcp(zone, cpu))
  1791. goto bad;
  1792. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1793. if (percpu_pagelist_fraction)
  1794. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1795. (zone->present_pages / percpu_pagelist_fraction));
  1796. }
  1797. return 0;
  1798. bad:
  1799. for_each_zone(dzone) {
  1800. if (dzone == zone)
  1801. break;
  1802. kfree(zone_pcp(dzone, cpu));
  1803. zone_pcp(dzone, cpu) = NULL;
  1804. }
  1805. return -ENOMEM;
  1806. }
  1807. static inline void free_zone_pagesets(int cpu)
  1808. {
  1809. struct zone *zone;
  1810. for_each_zone(zone) {
  1811. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1812. /* Free per_cpu_pageset if it is slab allocated */
  1813. if (pset != &boot_pageset[cpu])
  1814. kfree(pset);
  1815. zone_pcp(zone, cpu) = NULL;
  1816. }
  1817. }
  1818. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  1819. unsigned long action,
  1820. void *hcpu)
  1821. {
  1822. int cpu = (long)hcpu;
  1823. int ret = NOTIFY_OK;
  1824. switch (action) {
  1825. case CPU_UP_PREPARE:
  1826. if (process_zones(cpu))
  1827. ret = NOTIFY_BAD;
  1828. break;
  1829. case CPU_UP_CANCELED:
  1830. case CPU_DEAD:
  1831. free_zone_pagesets(cpu);
  1832. break;
  1833. default:
  1834. break;
  1835. }
  1836. return ret;
  1837. }
  1838. static struct notifier_block __cpuinitdata pageset_notifier =
  1839. { &pageset_cpuup_callback, NULL, 0 };
  1840. void __init setup_per_cpu_pageset(void)
  1841. {
  1842. int err;
  1843. /* Initialize per_cpu_pageset for cpu 0.
  1844. * A cpuup callback will do this for every cpu
  1845. * as it comes online
  1846. */
  1847. err = process_zones(smp_processor_id());
  1848. BUG_ON(err);
  1849. register_cpu_notifier(&pageset_notifier);
  1850. }
  1851. #endif
  1852. static __meminit
  1853. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1854. {
  1855. int i;
  1856. struct pglist_data *pgdat = zone->zone_pgdat;
  1857. size_t alloc_size;
  1858. /*
  1859. * The per-page waitqueue mechanism uses hashed waitqueues
  1860. * per zone.
  1861. */
  1862. zone->wait_table_hash_nr_entries =
  1863. wait_table_hash_nr_entries(zone_size_pages);
  1864. zone->wait_table_bits =
  1865. wait_table_bits(zone->wait_table_hash_nr_entries);
  1866. alloc_size = zone->wait_table_hash_nr_entries
  1867. * sizeof(wait_queue_head_t);
  1868. if (system_state == SYSTEM_BOOTING) {
  1869. zone->wait_table = (wait_queue_head_t *)
  1870. alloc_bootmem_node(pgdat, alloc_size);
  1871. } else {
  1872. /*
  1873. * This case means that a zone whose size was 0 gets new memory
  1874. * via memory hot-add.
  1875. * But it may be the case that a new node was hot-added. In
  1876. * this case vmalloc() will not be able to use this new node's
  1877. * memory - this wait_table must be initialized to use this new
  1878. * node itself as well.
  1879. * To use this new node's memory, further consideration will be
  1880. * necessary.
  1881. */
  1882. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  1883. }
  1884. if (!zone->wait_table)
  1885. return -ENOMEM;
  1886. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  1887. init_waitqueue_head(zone->wait_table + i);
  1888. return 0;
  1889. }
  1890. static __meminit void zone_pcp_init(struct zone *zone)
  1891. {
  1892. int cpu;
  1893. unsigned long batch = zone_batchsize(zone);
  1894. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1895. #ifdef CONFIG_NUMA
  1896. /* Early boot. Slab allocator not functional yet */
  1897. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1898. setup_pageset(&boot_pageset[cpu],0);
  1899. #else
  1900. setup_pageset(zone_pcp(zone,cpu), batch);
  1901. #endif
  1902. }
  1903. if (zone->present_pages)
  1904. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1905. zone->name, zone->present_pages, batch);
  1906. }
  1907. __meminit int init_currently_empty_zone(struct zone *zone,
  1908. unsigned long zone_start_pfn,
  1909. unsigned long size,
  1910. enum memmap_context context)
  1911. {
  1912. struct pglist_data *pgdat = zone->zone_pgdat;
  1913. int ret;
  1914. ret = zone_wait_table_init(zone, size);
  1915. if (ret)
  1916. return ret;
  1917. pgdat->nr_zones = zone_idx(zone) + 1;
  1918. zone->zone_start_pfn = zone_start_pfn;
  1919. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1920. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1921. return 0;
  1922. }
  1923. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1924. /*
  1925. * Basic iterator support. Return the first range of PFNs for a node
  1926. * Note: nid == MAX_NUMNODES returns first region regardless of node
  1927. */
  1928. static int __init first_active_region_index_in_nid(int nid)
  1929. {
  1930. int i;
  1931. for (i = 0; i < nr_nodemap_entries; i++)
  1932. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  1933. return i;
  1934. return -1;
  1935. }
  1936. /*
  1937. * Basic iterator support. Return the next active range of PFNs for a node
  1938. * Note: nid == MAX_NUMNODES returns next region regardles of node
  1939. */
  1940. static int __init next_active_region_index_in_nid(int index, int nid)
  1941. {
  1942. for (index = index + 1; index < nr_nodemap_entries; index++)
  1943. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  1944. return index;
  1945. return -1;
  1946. }
  1947. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1948. /*
  1949. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  1950. * Architectures may implement their own version but if add_active_range()
  1951. * was used and there are no special requirements, this is a convenient
  1952. * alternative
  1953. */
  1954. int __init early_pfn_to_nid(unsigned long pfn)
  1955. {
  1956. int i;
  1957. for (i = 0; i < nr_nodemap_entries; i++) {
  1958. unsigned long start_pfn = early_node_map[i].start_pfn;
  1959. unsigned long end_pfn = early_node_map[i].end_pfn;
  1960. if (start_pfn <= pfn && pfn < end_pfn)
  1961. return early_node_map[i].nid;
  1962. }
  1963. return 0;
  1964. }
  1965. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1966. /* Basic iterator support to walk early_node_map[] */
  1967. #define for_each_active_range_index_in_nid(i, nid) \
  1968. for (i = first_active_region_index_in_nid(nid); i != -1; \
  1969. i = next_active_region_index_in_nid(i, nid))
  1970. /**
  1971. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  1972. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  1973. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  1974. *
  1975. * If an architecture guarantees that all ranges registered with
  1976. * add_active_ranges() contain no holes and may be freed, this
  1977. * this function may be used instead of calling free_bootmem() manually.
  1978. */
  1979. void __init free_bootmem_with_active_regions(int nid,
  1980. unsigned long max_low_pfn)
  1981. {
  1982. int i;
  1983. for_each_active_range_index_in_nid(i, nid) {
  1984. unsigned long size_pages = 0;
  1985. unsigned long end_pfn = early_node_map[i].end_pfn;
  1986. if (early_node_map[i].start_pfn >= max_low_pfn)
  1987. continue;
  1988. if (end_pfn > max_low_pfn)
  1989. end_pfn = max_low_pfn;
  1990. size_pages = end_pfn - early_node_map[i].start_pfn;
  1991. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  1992. PFN_PHYS(early_node_map[i].start_pfn),
  1993. size_pages << PAGE_SHIFT);
  1994. }
  1995. }
  1996. /**
  1997. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  1998. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  1999. *
  2000. * If an architecture guarantees that all ranges registered with
  2001. * add_active_ranges() contain no holes and may be freed, this
  2002. * function may be used instead of calling memory_present() manually.
  2003. */
  2004. void __init sparse_memory_present_with_active_regions(int nid)
  2005. {
  2006. int i;
  2007. for_each_active_range_index_in_nid(i, nid)
  2008. memory_present(early_node_map[i].nid,
  2009. early_node_map[i].start_pfn,
  2010. early_node_map[i].end_pfn);
  2011. }
  2012. /**
  2013. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2014. * @nid: The nid of the node to push the boundary for
  2015. * @start_pfn: The start pfn of the node
  2016. * @end_pfn: The end pfn of the node
  2017. *
  2018. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2019. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2020. * be hotplugged even though no physical memory exists. This function allows
  2021. * an arch to push out the node boundaries so mem_map is allocated that can
  2022. * be used later.
  2023. */
  2024. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2025. void __init push_node_boundaries(unsigned int nid,
  2026. unsigned long start_pfn, unsigned long end_pfn)
  2027. {
  2028. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2029. nid, start_pfn, end_pfn);
  2030. /* Initialise the boundary for this node if necessary */
  2031. if (node_boundary_end_pfn[nid] == 0)
  2032. node_boundary_start_pfn[nid] = -1UL;
  2033. /* Update the boundaries */
  2034. if (node_boundary_start_pfn[nid] > start_pfn)
  2035. node_boundary_start_pfn[nid] = start_pfn;
  2036. if (node_boundary_end_pfn[nid] < end_pfn)
  2037. node_boundary_end_pfn[nid] = end_pfn;
  2038. }
  2039. /* If necessary, push the node boundary out for reserve hotadd */
  2040. static void __init account_node_boundary(unsigned int nid,
  2041. unsigned long *start_pfn, unsigned long *end_pfn)
  2042. {
  2043. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2044. nid, *start_pfn, *end_pfn);
  2045. /* Return if boundary information has not been provided */
  2046. if (node_boundary_end_pfn[nid] == 0)
  2047. return;
  2048. /* Check the boundaries and update if necessary */
  2049. if (node_boundary_start_pfn[nid] < *start_pfn)
  2050. *start_pfn = node_boundary_start_pfn[nid];
  2051. if (node_boundary_end_pfn[nid] > *end_pfn)
  2052. *end_pfn = node_boundary_end_pfn[nid];
  2053. }
  2054. #else
  2055. void __init push_node_boundaries(unsigned int nid,
  2056. unsigned long start_pfn, unsigned long end_pfn) {}
  2057. static void __init account_node_boundary(unsigned int nid,
  2058. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2059. #endif
  2060. /**
  2061. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2062. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2063. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2064. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2065. *
  2066. * It returns the start and end page frame of a node based on information
  2067. * provided by an arch calling add_active_range(). If called for a node
  2068. * with no available memory, a warning is printed and the start and end
  2069. * PFNs will be 0.
  2070. */
  2071. void __init get_pfn_range_for_nid(unsigned int nid,
  2072. unsigned long *start_pfn, unsigned long *end_pfn)
  2073. {
  2074. int i;
  2075. *start_pfn = -1UL;
  2076. *end_pfn = 0;
  2077. for_each_active_range_index_in_nid(i, nid) {
  2078. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2079. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2080. }
  2081. if (*start_pfn == -1UL) {
  2082. printk(KERN_WARNING "Node %u active with no memory\n", nid);
  2083. *start_pfn = 0;
  2084. }
  2085. /* Push the node boundaries out if requested */
  2086. account_node_boundary(nid, start_pfn, end_pfn);
  2087. }
  2088. /*
  2089. * Return the number of pages a zone spans in a node, including holes
  2090. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2091. */
  2092. unsigned long __init zone_spanned_pages_in_node(int nid,
  2093. unsigned long zone_type,
  2094. unsigned long *ignored)
  2095. {
  2096. unsigned long node_start_pfn, node_end_pfn;
  2097. unsigned long zone_start_pfn, zone_end_pfn;
  2098. /* Get the start and end of the node and zone */
  2099. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2100. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2101. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2102. /* Check that this node has pages within the zone's required range */
  2103. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2104. return 0;
  2105. /* Move the zone boundaries inside the node if necessary */
  2106. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2107. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2108. /* Return the spanned pages */
  2109. return zone_end_pfn - zone_start_pfn;
  2110. }
  2111. /*
  2112. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2113. * then all holes in the requested range will be accounted for.
  2114. */
  2115. unsigned long __init __absent_pages_in_range(int nid,
  2116. unsigned long range_start_pfn,
  2117. unsigned long range_end_pfn)
  2118. {
  2119. int i = 0;
  2120. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2121. unsigned long start_pfn;
  2122. /* Find the end_pfn of the first active range of pfns in the node */
  2123. i = first_active_region_index_in_nid(nid);
  2124. if (i == -1)
  2125. return 0;
  2126. /* Account for ranges before physical memory on this node */
  2127. if (early_node_map[i].start_pfn > range_start_pfn)
  2128. hole_pages = early_node_map[i].start_pfn - range_start_pfn;
  2129. prev_end_pfn = early_node_map[i].start_pfn;
  2130. /* Find all holes for the zone within the node */
  2131. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2132. /* No need to continue if prev_end_pfn is outside the zone */
  2133. if (prev_end_pfn >= range_end_pfn)
  2134. break;
  2135. /* Make sure the end of the zone is not within the hole */
  2136. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2137. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2138. /* Update the hole size cound and move on */
  2139. if (start_pfn > range_start_pfn) {
  2140. BUG_ON(prev_end_pfn > start_pfn);
  2141. hole_pages += start_pfn - prev_end_pfn;
  2142. }
  2143. prev_end_pfn = early_node_map[i].end_pfn;
  2144. }
  2145. /* Account for ranges past physical memory on this node */
  2146. if (range_end_pfn > prev_end_pfn)
  2147. hole_pages += range_end_pfn -
  2148. max(range_start_pfn, prev_end_pfn);
  2149. return hole_pages;
  2150. }
  2151. /**
  2152. * absent_pages_in_range - Return number of page frames in holes within a range
  2153. * @start_pfn: The start PFN to start searching for holes
  2154. * @end_pfn: The end PFN to stop searching for holes
  2155. *
  2156. * It returns the number of pages frames in memory holes within a range.
  2157. */
  2158. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2159. unsigned long end_pfn)
  2160. {
  2161. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2162. }
  2163. /* Return the number of page frames in holes in a zone on a node */
  2164. unsigned long __init zone_absent_pages_in_node(int nid,
  2165. unsigned long zone_type,
  2166. unsigned long *ignored)
  2167. {
  2168. unsigned long node_start_pfn, node_end_pfn;
  2169. unsigned long zone_start_pfn, zone_end_pfn;
  2170. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2171. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2172. node_start_pfn);
  2173. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2174. node_end_pfn);
  2175. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2176. }
  2177. #else
  2178. static inline unsigned long zone_spanned_pages_in_node(int nid,
  2179. unsigned long zone_type,
  2180. unsigned long *zones_size)
  2181. {
  2182. return zones_size[zone_type];
  2183. }
  2184. static inline unsigned long zone_absent_pages_in_node(int nid,
  2185. unsigned long zone_type,
  2186. unsigned long *zholes_size)
  2187. {
  2188. if (!zholes_size)
  2189. return 0;
  2190. return zholes_size[zone_type];
  2191. }
  2192. #endif
  2193. static void __init calculate_node_totalpages(struct pglist_data *pgdat,
  2194. unsigned long *zones_size, unsigned long *zholes_size)
  2195. {
  2196. unsigned long realtotalpages, totalpages = 0;
  2197. enum zone_type i;
  2198. for (i = 0; i < MAX_NR_ZONES; i++)
  2199. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2200. zones_size);
  2201. pgdat->node_spanned_pages = totalpages;
  2202. realtotalpages = totalpages;
  2203. for (i = 0; i < MAX_NR_ZONES; i++)
  2204. realtotalpages -=
  2205. zone_absent_pages_in_node(pgdat->node_id, i,
  2206. zholes_size);
  2207. pgdat->node_present_pages = realtotalpages;
  2208. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2209. realtotalpages);
  2210. }
  2211. /*
  2212. * Set up the zone data structures:
  2213. * - mark all pages reserved
  2214. * - mark all memory queues empty
  2215. * - clear the memory bitmaps
  2216. */
  2217. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2218. unsigned long *zones_size, unsigned long *zholes_size)
  2219. {
  2220. enum zone_type j;
  2221. int nid = pgdat->node_id;
  2222. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2223. int ret;
  2224. pgdat_resize_init(pgdat);
  2225. pgdat->nr_zones = 0;
  2226. init_waitqueue_head(&pgdat->kswapd_wait);
  2227. pgdat->kswapd_max_order = 0;
  2228. for (j = 0; j < MAX_NR_ZONES; j++) {
  2229. struct zone *zone = pgdat->node_zones + j;
  2230. unsigned long size, realsize, memmap_pages;
  2231. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2232. realsize = size - zone_absent_pages_in_node(nid, j,
  2233. zholes_size);
  2234. /*
  2235. * Adjust realsize so that it accounts for how much memory
  2236. * is used by this zone for memmap. This affects the watermark
  2237. * and per-cpu initialisations
  2238. */
  2239. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2240. if (realsize >= memmap_pages) {
  2241. realsize -= memmap_pages;
  2242. printk(KERN_DEBUG
  2243. " %s zone: %lu pages used for memmap\n",
  2244. zone_names[j], memmap_pages);
  2245. } else
  2246. printk(KERN_WARNING
  2247. " %s zone: %lu pages exceeds realsize %lu\n",
  2248. zone_names[j], memmap_pages, realsize);
  2249. /* Account for reserved DMA pages */
  2250. if (j == ZONE_DMA && realsize > dma_reserve) {
  2251. realsize -= dma_reserve;
  2252. printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
  2253. dma_reserve);
  2254. }
  2255. if (!is_highmem_idx(j))
  2256. nr_kernel_pages += realsize;
  2257. nr_all_pages += realsize;
  2258. zone->spanned_pages = size;
  2259. zone->present_pages = realsize;
  2260. #ifdef CONFIG_NUMA
  2261. zone->node = nid;
  2262. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2263. / 100;
  2264. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2265. #endif
  2266. zone->name = zone_names[j];
  2267. spin_lock_init(&zone->lock);
  2268. spin_lock_init(&zone->lru_lock);
  2269. zone_seqlock_init(zone);
  2270. zone->zone_pgdat = pgdat;
  2271. zone->prev_priority = DEF_PRIORITY;
  2272. zone_pcp_init(zone);
  2273. INIT_LIST_HEAD(&zone->active_list);
  2274. INIT_LIST_HEAD(&zone->inactive_list);
  2275. zone->nr_scan_active = 0;
  2276. zone->nr_scan_inactive = 0;
  2277. zap_zone_vm_stats(zone);
  2278. atomic_set(&zone->reclaim_in_progress, 0);
  2279. if (!size)
  2280. continue;
  2281. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2282. size, MEMMAP_EARLY);
  2283. BUG_ON(ret);
  2284. zone_start_pfn += size;
  2285. }
  2286. }
  2287. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  2288. {
  2289. /* Skip empty nodes */
  2290. if (!pgdat->node_spanned_pages)
  2291. return;
  2292. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2293. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2294. if (!pgdat->node_mem_map) {
  2295. unsigned long size, start, end;
  2296. struct page *map;
  2297. /*
  2298. * The zone's endpoints aren't required to be MAX_ORDER
  2299. * aligned but the node_mem_map endpoints must be in order
  2300. * for the buddy allocator to function correctly.
  2301. */
  2302. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2303. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2304. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2305. size = (end - start) * sizeof(struct page);
  2306. map = alloc_remap(pgdat->node_id, size);
  2307. if (!map)
  2308. map = alloc_bootmem_node(pgdat, size);
  2309. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2310. }
  2311. #ifdef CONFIG_FLATMEM
  2312. /*
  2313. * With no DISCONTIG, the global mem_map is just set as node 0's
  2314. */
  2315. if (pgdat == NODE_DATA(0)) {
  2316. mem_map = NODE_DATA(0)->node_mem_map;
  2317. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2318. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2319. mem_map -= pgdat->node_start_pfn;
  2320. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2321. }
  2322. #endif
  2323. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2324. }
  2325. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2326. unsigned long *zones_size, unsigned long node_start_pfn,
  2327. unsigned long *zholes_size)
  2328. {
  2329. pgdat->node_id = nid;
  2330. pgdat->node_start_pfn = node_start_pfn;
  2331. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2332. alloc_node_mem_map(pgdat);
  2333. free_area_init_core(pgdat, zones_size, zholes_size);
  2334. }
  2335. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2336. /**
  2337. * add_active_range - Register a range of PFNs backed by physical memory
  2338. * @nid: The node ID the range resides on
  2339. * @start_pfn: The start PFN of the available physical memory
  2340. * @end_pfn: The end PFN of the available physical memory
  2341. *
  2342. * These ranges are stored in an early_node_map[] and later used by
  2343. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2344. * range spans a memory hole, it is up to the architecture to ensure
  2345. * the memory is not freed by the bootmem allocator. If possible
  2346. * the range being registered will be merged with existing ranges.
  2347. */
  2348. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2349. unsigned long end_pfn)
  2350. {
  2351. int i;
  2352. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2353. "%d entries of %d used\n",
  2354. nid, start_pfn, end_pfn,
  2355. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2356. /* Merge with existing active regions if possible */
  2357. for (i = 0; i < nr_nodemap_entries; i++) {
  2358. if (early_node_map[i].nid != nid)
  2359. continue;
  2360. /* Skip if an existing region covers this new one */
  2361. if (start_pfn >= early_node_map[i].start_pfn &&
  2362. end_pfn <= early_node_map[i].end_pfn)
  2363. return;
  2364. /* Merge forward if suitable */
  2365. if (start_pfn <= early_node_map[i].end_pfn &&
  2366. end_pfn > early_node_map[i].end_pfn) {
  2367. early_node_map[i].end_pfn = end_pfn;
  2368. return;
  2369. }
  2370. /* Merge backward if suitable */
  2371. if (start_pfn < early_node_map[i].end_pfn &&
  2372. end_pfn >= early_node_map[i].start_pfn) {
  2373. early_node_map[i].start_pfn = start_pfn;
  2374. return;
  2375. }
  2376. }
  2377. /* Check that early_node_map is large enough */
  2378. if (i >= MAX_ACTIVE_REGIONS) {
  2379. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2380. MAX_ACTIVE_REGIONS);
  2381. return;
  2382. }
  2383. early_node_map[i].nid = nid;
  2384. early_node_map[i].start_pfn = start_pfn;
  2385. early_node_map[i].end_pfn = end_pfn;
  2386. nr_nodemap_entries = i + 1;
  2387. }
  2388. /**
  2389. * shrink_active_range - Shrink an existing registered range of PFNs
  2390. * @nid: The node id the range is on that should be shrunk
  2391. * @old_end_pfn: The old end PFN of the range
  2392. * @new_end_pfn: The new PFN of the range
  2393. *
  2394. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2395. * The map is kept at the end physical page range that has already been
  2396. * registered with add_active_range(). This function allows an arch to shrink
  2397. * an existing registered range.
  2398. */
  2399. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2400. unsigned long new_end_pfn)
  2401. {
  2402. int i;
  2403. /* Find the old active region end and shrink */
  2404. for_each_active_range_index_in_nid(i, nid)
  2405. if (early_node_map[i].end_pfn == old_end_pfn) {
  2406. early_node_map[i].end_pfn = new_end_pfn;
  2407. break;
  2408. }
  2409. }
  2410. /**
  2411. * remove_all_active_ranges - Remove all currently registered regions
  2412. *
  2413. * During discovery, it may be found that a table like SRAT is invalid
  2414. * and an alternative discovery method must be used. This function removes
  2415. * all currently registered regions.
  2416. */
  2417. void __init remove_all_active_ranges(void)
  2418. {
  2419. memset(early_node_map, 0, sizeof(early_node_map));
  2420. nr_nodemap_entries = 0;
  2421. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2422. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2423. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2424. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2425. }
  2426. /* Compare two active node_active_regions */
  2427. static int __init cmp_node_active_region(const void *a, const void *b)
  2428. {
  2429. struct node_active_region *arange = (struct node_active_region *)a;
  2430. struct node_active_region *brange = (struct node_active_region *)b;
  2431. /* Done this way to avoid overflows */
  2432. if (arange->start_pfn > brange->start_pfn)
  2433. return 1;
  2434. if (arange->start_pfn < brange->start_pfn)
  2435. return -1;
  2436. return 0;
  2437. }
  2438. /* sort the node_map by start_pfn */
  2439. static void __init sort_node_map(void)
  2440. {
  2441. sort(early_node_map, (size_t)nr_nodemap_entries,
  2442. sizeof(struct node_active_region),
  2443. cmp_node_active_region, NULL);
  2444. }
  2445. /* Find the lowest pfn for a node */
  2446. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2447. {
  2448. int i;
  2449. unsigned long min_pfn = ULONG_MAX;
  2450. /* Assuming a sorted map, the first range found has the starting pfn */
  2451. for_each_active_range_index_in_nid(i, nid)
  2452. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  2453. if (min_pfn == ULONG_MAX) {
  2454. printk(KERN_WARNING
  2455. "Could not find start_pfn for node %lu\n", nid);
  2456. return 0;
  2457. }
  2458. return min_pfn;
  2459. }
  2460. /**
  2461. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2462. *
  2463. * It returns the minimum PFN based on information provided via
  2464. * add_active_range().
  2465. */
  2466. unsigned long __init find_min_pfn_with_active_regions(void)
  2467. {
  2468. return find_min_pfn_for_node(MAX_NUMNODES);
  2469. }
  2470. /**
  2471. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2472. *
  2473. * It returns the maximum PFN based on information provided via
  2474. * add_active_range().
  2475. */
  2476. unsigned long __init find_max_pfn_with_active_regions(void)
  2477. {
  2478. int i;
  2479. unsigned long max_pfn = 0;
  2480. for (i = 0; i < nr_nodemap_entries; i++)
  2481. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2482. return max_pfn;
  2483. }
  2484. /**
  2485. * free_area_init_nodes - Initialise all pg_data_t and zone data
  2486. * @max_zone_pfn: an array of max PFNs for each zone
  2487. *
  2488. * This will call free_area_init_node() for each active node in the system.
  2489. * Using the page ranges provided by add_active_range(), the size of each
  2490. * zone in each node and their holes is calculated. If the maximum PFN
  2491. * between two adjacent zones match, it is assumed that the zone is empty.
  2492. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  2493. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  2494. * starts where the previous one ended. For example, ZONE_DMA32 starts
  2495. * at arch_max_dma_pfn.
  2496. */
  2497. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  2498. {
  2499. unsigned long nid;
  2500. enum zone_type i;
  2501. /* Sort early_node_map as initialisation assumes it is sorted */
  2502. sort_node_map();
  2503. /* Record where the zone boundaries are */
  2504. memset(arch_zone_lowest_possible_pfn, 0,
  2505. sizeof(arch_zone_lowest_possible_pfn));
  2506. memset(arch_zone_highest_possible_pfn, 0,
  2507. sizeof(arch_zone_highest_possible_pfn));
  2508. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  2509. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  2510. for (i = 1; i < MAX_NR_ZONES; i++) {
  2511. arch_zone_lowest_possible_pfn[i] =
  2512. arch_zone_highest_possible_pfn[i-1];
  2513. arch_zone_highest_possible_pfn[i] =
  2514. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  2515. }
  2516. /* Print out the zone ranges */
  2517. printk("Zone PFN ranges:\n");
  2518. for (i = 0; i < MAX_NR_ZONES; i++)
  2519. printk(" %-8s %8lu -> %8lu\n",
  2520. zone_names[i],
  2521. arch_zone_lowest_possible_pfn[i],
  2522. arch_zone_highest_possible_pfn[i]);
  2523. /* Print out the early_node_map[] */
  2524. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  2525. for (i = 0; i < nr_nodemap_entries; i++)
  2526. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  2527. early_node_map[i].start_pfn,
  2528. early_node_map[i].end_pfn);
  2529. /* Initialise every node */
  2530. for_each_online_node(nid) {
  2531. pg_data_t *pgdat = NODE_DATA(nid);
  2532. free_area_init_node(nid, pgdat, NULL,
  2533. find_min_pfn_for_node(nid), NULL);
  2534. }
  2535. }
  2536. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2537. /**
  2538. * set_dma_reserve - set the specified number of pages reserved in the first zone
  2539. * @new_dma_reserve: The number of pages to mark reserved
  2540. *
  2541. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  2542. * In the DMA zone, a significant percentage may be consumed by kernel image
  2543. * and other unfreeable allocations which can skew the watermarks badly. This
  2544. * function may optionally be used to account for unfreeable pages in the
  2545. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  2546. * smaller per-cpu batchsize.
  2547. */
  2548. void __init set_dma_reserve(unsigned long new_dma_reserve)
  2549. {
  2550. dma_reserve = new_dma_reserve;
  2551. }
  2552. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2553. static bootmem_data_t contig_bootmem_data;
  2554. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  2555. EXPORT_SYMBOL(contig_page_data);
  2556. #endif
  2557. void __init free_area_init(unsigned long *zones_size)
  2558. {
  2559. free_area_init_node(0, NODE_DATA(0), zones_size,
  2560. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  2561. }
  2562. static int page_alloc_cpu_notify(struct notifier_block *self,
  2563. unsigned long action, void *hcpu)
  2564. {
  2565. int cpu = (unsigned long)hcpu;
  2566. if (action == CPU_DEAD) {
  2567. local_irq_disable();
  2568. __drain_pages(cpu);
  2569. vm_events_fold_cpu(cpu);
  2570. local_irq_enable();
  2571. refresh_cpu_vm_stats(cpu);
  2572. }
  2573. return NOTIFY_OK;
  2574. }
  2575. void __init page_alloc_init(void)
  2576. {
  2577. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2578. }
  2579. /*
  2580. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  2581. * or min_free_kbytes changes.
  2582. */
  2583. static void calculate_totalreserve_pages(void)
  2584. {
  2585. struct pglist_data *pgdat;
  2586. unsigned long reserve_pages = 0;
  2587. enum zone_type i, j;
  2588. for_each_online_pgdat(pgdat) {
  2589. for (i = 0; i < MAX_NR_ZONES; i++) {
  2590. struct zone *zone = pgdat->node_zones + i;
  2591. unsigned long max = 0;
  2592. /* Find valid and maximum lowmem_reserve in the zone */
  2593. for (j = i; j < MAX_NR_ZONES; j++) {
  2594. if (zone->lowmem_reserve[j] > max)
  2595. max = zone->lowmem_reserve[j];
  2596. }
  2597. /* we treat pages_high as reserved pages. */
  2598. max += zone->pages_high;
  2599. if (max > zone->present_pages)
  2600. max = zone->present_pages;
  2601. reserve_pages += max;
  2602. }
  2603. }
  2604. totalreserve_pages = reserve_pages;
  2605. }
  2606. /*
  2607. * setup_per_zone_lowmem_reserve - called whenever
  2608. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2609. * has a correct pages reserved value, so an adequate number of
  2610. * pages are left in the zone after a successful __alloc_pages().
  2611. */
  2612. static void setup_per_zone_lowmem_reserve(void)
  2613. {
  2614. struct pglist_data *pgdat;
  2615. enum zone_type j, idx;
  2616. for_each_online_pgdat(pgdat) {
  2617. for (j = 0; j < MAX_NR_ZONES; j++) {
  2618. struct zone *zone = pgdat->node_zones + j;
  2619. unsigned long present_pages = zone->present_pages;
  2620. zone->lowmem_reserve[j] = 0;
  2621. idx = j;
  2622. while (idx) {
  2623. struct zone *lower_zone;
  2624. idx--;
  2625. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2626. sysctl_lowmem_reserve_ratio[idx] = 1;
  2627. lower_zone = pgdat->node_zones + idx;
  2628. lower_zone->lowmem_reserve[j] = present_pages /
  2629. sysctl_lowmem_reserve_ratio[idx];
  2630. present_pages += lower_zone->present_pages;
  2631. }
  2632. }
  2633. }
  2634. /* update totalreserve_pages */
  2635. calculate_totalreserve_pages();
  2636. }
  2637. /**
  2638. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  2639. *
  2640. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  2641. * with respect to min_free_kbytes.
  2642. */
  2643. void setup_per_zone_pages_min(void)
  2644. {
  2645. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2646. unsigned long lowmem_pages = 0;
  2647. struct zone *zone;
  2648. unsigned long flags;
  2649. /* Calculate total number of !ZONE_HIGHMEM pages */
  2650. for_each_zone(zone) {
  2651. if (!is_highmem(zone))
  2652. lowmem_pages += zone->present_pages;
  2653. }
  2654. for_each_zone(zone) {
  2655. u64 tmp;
  2656. spin_lock_irqsave(&zone->lru_lock, flags);
  2657. tmp = (u64)pages_min * zone->present_pages;
  2658. do_div(tmp, lowmem_pages);
  2659. if (is_highmem(zone)) {
  2660. /*
  2661. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2662. * need highmem pages, so cap pages_min to a small
  2663. * value here.
  2664. *
  2665. * The (pages_high-pages_low) and (pages_low-pages_min)
  2666. * deltas controls asynch page reclaim, and so should
  2667. * not be capped for highmem.
  2668. */
  2669. int min_pages;
  2670. min_pages = zone->present_pages / 1024;
  2671. if (min_pages < SWAP_CLUSTER_MAX)
  2672. min_pages = SWAP_CLUSTER_MAX;
  2673. if (min_pages > 128)
  2674. min_pages = 128;
  2675. zone->pages_min = min_pages;
  2676. } else {
  2677. /*
  2678. * If it's a lowmem zone, reserve a number of pages
  2679. * proportionate to the zone's size.
  2680. */
  2681. zone->pages_min = tmp;
  2682. }
  2683. zone->pages_low = zone->pages_min + (tmp >> 2);
  2684. zone->pages_high = zone->pages_min + (tmp >> 1);
  2685. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2686. }
  2687. /* update totalreserve_pages */
  2688. calculate_totalreserve_pages();
  2689. }
  2690. /*
  2691. * Initialise min_free_kbytes.
  2692. *
  2693. * For small machines we want it small (128k min). For large machines
  2694. * we want it large (64MB max). But it is not linear, because network
  2695. * bandwidth does not increase linearly with machine size. We use
  2696. *
  2697. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2698. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2699. *
  2700. * which yields
  2701. *
  2702. * 16MB: 512k
  2703. * 32MB: 724k
  2704. * 64MB: 1024k
  2705. * 128MB: 1448k
  2706. * 256MB: 2048k
  2707. * 512MB: 2896k
  2708. * 1024MB: 4096k
  2709. * 2048MB: 5792k
  2710. * 4096MB: 8192k
  2711. * 8192MB: 11584k
  2712. * 16384MB: 16384k
  2713. */
  2714. static int __init init_per_zone_pages_min(void)
  2715. {
  2716. unsigned long lowmem_kbytes;
  2717. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2718. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2719. if (min_free_kbytes < 128)
  2720. min_free_kbytes = 128;
  2721. if (min_free_kbytes > 65536)
  2722. min_free_kbytes = 65536;
  2723. setup_per_zone_pages_min();
  2724. setup_per_zone_lowmem_reserve();
  2725. return 0;
  2726. }
  2727. module_init(init_per_zone_pages_min)
  2728. /*
  2729. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2730. * that we can call two helper functions whenever min_free_kbytes
  2731. * changes.
  2732. */
  2733. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2734. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2735. {
  2736. proc_dointvec(table, write, file, buffer, length, ppos);
  2737. setup_per_zone_pages_min();
  2738. return 0;
  2739. }
  2740. #ifdef CONFIG_NUMA
  2741. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  2742. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2743. {
  2744. struct zone *zone;
  2745. int rc;
  2746. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2747. if (rc)
  2748. return rc;
  2749. for_each_zone(zone)
  2750. zone->min_unmapped_pages = (zone->present_pages *
  2751. sysctl_min_unmapped_ratio) / 100;
  2752. return 0;
  2753. }
  2754. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  2755. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2756. {
  2757. struct zone *zone;
  2758. int rc;
  2759. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2760. if (rc)
  2761. return rc;
  2762. for_each_zone(zone)
  2763. zone->min_slab_pages = (zone->present_pages *
  2764. sysctl_min_slab_ratio) / 100;
  2765. return 0;
  2766. }
  2767. #endif
  2768. /*
  2769. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2770. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2771. * whenever sysctl_lowmem_reserve_ratio changes.
  2772. *
  2773. * The reserve ratio obviously has absolutely no relation with the
  2774. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2775. * if in function of the boot time zone sizes.
  2776. */
  2777. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2778. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2779. {
  2780. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2781. setup_per_zone_lowmem_reserve();
  2782. return 0;
  2783. }
  2784. /*
  2785. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2786. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2787. * can have before it gets flushed back to buddy allocator.
  2788. */
  2789. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2790. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2791. {
  2792. struct zone *zone;
  2793. unsigned int cpu;
  2794. int ret;
  2795. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2796. if (!write || (ret == -EINVAL))
  2797. return ret;
  2798. for_each_zone(zone) {
  2799. for_each_online_cpu(cpu) {
  2800. unsigned long high;
  2801. high = zone->present_pages / percpu_pagelist_fraction;
  2802. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2803. }
  2804. }
  2805. return 0;
  2806. }
  2807. int hashdist = HASHDIST_DEFAULT;
  2808. #ifdef CONFIG_NUMA
  2809. static int __init set_hashdist(char *str)
  2810. {
  2811. if (!str)
  2812. return 0;
  2813. hashdist = simple_strtoul(str, &str, 0);
  2814. return 1;
  2815. }
  2816. __setup("hashdist=", set_hashdist);
  2817. #endif
  2818. /*
  2819. * allocate a large system hash table from bootmem
  2820. * - it is assumed that the hash table must contain an exact power-of-2
  2821. * quantity of entries
  2822. * - limit is the number of hash buckets, not the total allocation size
  2823. */
  2824. void *__init alloc_large_system_hash(const char *tablename,
  2825. unsigned long bucketsize,
  2826. unsigned long numentries,
  2827. int scale,
  2828. int flags,
  2829. unsigned int *_hash_shift,
  2830. unsigned int *_hash_mask,
  2831. unsigned long limit)
  2832. {
  2833. unsigned long long max = limit;
  2834. unsigned long log2qty, size;
  2835. void *table = NULL;
  2836. /* allow the kernel cmdline to have a say */
  2837. if (!numentries) {
  2838. /* round applicable memory size up to nearest megabyte */
  2839. numentries = nr_kernel_pages;
  2840. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2841. numentries >>= 20 - PAGE_SHIFT;
  2842. numentries <<= 20 - PAGE_SHIFT;
  2843. /* limit to 1 bucket per 2^scale bytes of low memory */
  2844. if (scale > PAGE_SHIFT)
  2845. numentries >>= (scale - PAGE_SHIFT);
  2846. else
  2847. numentries <<= (PAGE_SHIFT - scale);
  2848. /* Make sure we've got at least a 0-order allocation.. */
  2849. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  2850. numentries = PAGE_SIZE / bucketsize;
  2851. }
  2852. numentries = roundup_pow_of_two(numentries);
  2853. /* limit allocation size to 1/16 total memory by default */
  2854. if (max == 0) {
  2855. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2856. do_div(max, bucketsize);
  2857. }
  2858. if (numentries > max)
  2859. numentries = max;
  2860. log2qty = ilog2(numentries);
  2861. do {
  2862. size = bucketsize << log2qty;
  2863. if (flags & HASH_EARLY)
  2864. table = alloc_bootmem(size);
  2865. else if (hashdist)
  2866. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2867. else {
  2868. unsigned long order;
  2869. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2870. ;
  2871. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2872. }
  2873. } while (!table && size > PAGE_SIZE && --log2qty);
  2874. if (!table)
  2875. panic("Failed to allocate %s hash table\n", tablename);
  2876. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2877. tablename,
  2878. (1U << log2qty),
  2879. ilog2(size) - PAGE_SHIFT,
  2880. size);
  2881. if (_hash_shift)
  2882. *_hash_shift = log2qty;
  2883. if (_hash_mask)
  2884. *_hash_mask = (1 << log2qty) - 1;
  2885. return table;
  2886. }
  2887. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  2888. struct page *pfn_to_page(unsigned long pfn)
  2889. {
  2890. return __pfn_to_page(pfn);
  2891. }
  2892. unsigned long page_to_pfn(struct page *page)
  2893. {
  2894. return __page_to_pfn(page);
  2895. }
  2896. EXPORT_SYMBOL(pfn_to_page);
  2897. EXPORT_SYMBOL(page_to_pfn);
  2898. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  2899. #if MAX_NUMNODES > 1
  2900. /*
  2901. * Find the highest possible node id.
  2902. */
  2903. int highest_possible_node_id(void)
  2904. {
  2905. unsigned int node;
  2906. unsigned int highest = 0;
  2907. for_each_node_mask(node, node_possible_map)
  2908. highest = node;
  2909. return highest;
  2910. }
  2911. EXPORT_SYMBOL(highest_possible_node_id);
  2912. #endif