i915_gem.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "intel_drv.h"
  32. #include <linux/swap.h>
  33. #include <linux/pci.h>
  34. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  35. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  38. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  39. int write);
  40. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  41. uint64_t offset,
  42. uint64_t size);
  43. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  44. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  45. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  46. unsigned alignment);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int ret;
  99. u32 handle;
  100. args->size = roundup(args->size, PAGE_SIZE);
  101. /* Allocate the new object */
  102. obj = drm_gem_object_alloc(dev, args->size);
  103. if (obj == NULL)
  104. return -ENOMEM;
  105. ret = drm_gem_handle_create(file_priv, obj, &handle);
  106. mutex_lock(&dev->struct_mutex);
  107. drm_gem_object_handle_unreference(obj);
  108. mutex_unlock(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. args->handle = handle;
  112. return 0;
  113. }
  114. static inline int
  115. fast_shmem_read(struct page **pages,
  116. loff_t page_base, int page_offset,
  117. char __user *data,
  118. int length)
  119. {
  120. char __iomem *vaddr;
  121. int unwritten;
  122. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  123. if (vaddr == NULL)
  124. return -ENOMEM;
  125. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  126. kunmap_atomic(vaddr, KM_USER0);
  127. if (unwritten)
  128. return -EFAULT;
  129. return 0;
  130. }
  131. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  132. {
  133. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  134. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  135. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  136. obj_priv->tiling_mode != I915_TILING_NONE;
  137. }
  138. static inline int
  139. slow_shmem_copy(struct page *dst_page,
  140. int dst_offset,
  141. struct page *src_page,
  142. int src_offset,
  143. int length)
  144. {
  145. char *dst_vaddr, *src_vaddr;
  146. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  147. if (dst_vaddr == NULL)
  148. return -ENOMEM;
  149. src_vaddr = kmap_atomic(src_page, KM_USER1);
  150. if (src_vaddr == NULL) {
  151. kunmap_atomic(dst_vaddr, KM_USER0);
  152. return -ENOMEM;
  153. }
  154. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  155. kunmap_atomic(src_vaddr, KM_USER1);
  156. kunmap_atomic(dst_vaddr, KM_USER0);
  157. return 0;
  158. }
  159. static inline int
  160. slow_shmem_bit17_copy(struct page *gpu_page,
  161. int gpu_offset,
  162. struct page *cpu_page,
  163. int cpu_offset,
  164. int length,
  165. int is_read)
  166. {
  167. char *gpu_vaddr, *cpu_vaddr;
  168. /* Use the unswizzled path if this page isn't affected. */
  169. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  170. if (is_read)
  171. return slow_shmem_copy(cpu_page, cpu_offset,
  172. gpu_page, gpu_offset, length);
  173. else
  174. return slow_shmem_copy(gpu_page, gpu_offset,
  175. cpu_page, cpu_offset, length);
  176. }
  177. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  178. if (gpu_vaddr == NULL)
  179. return -ENOMEM;
  180. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  181. if (cpu_vaddr == NULL) {
  182. kunmap_atomic(gpu_vaddr, KM_USER0);
  183. return -ENOMEM;
  184. }
  185. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  186. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  187. */
  188. while (length > 0) {
  189. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  190. int this_length = min(cacheline_end - gpu_offset, length);
  191. int swizzled_gpu_offset = gpu_offset ^ 64;
  192. if (is_read) {
  193. memcpy(cpu_vaddr + cpu_offset,
  194. gpu_vaddr + swizzled_gpu_offset,
  195. this_length);
  196. } else {
  197. memcpy(gpu_vaddr + swizzled_gpu_offset,
  198. cpu_vaddr + cpu_offset,
  199. this_length);
  200. }
  201. cpu_offset += this_length;
  202. gpu_offset += this_length;
  203. length -= this_length;
  204. }
  205. kunmap_atomic(cpu_vaddr, KM_USER1);
  206. kunmap_atomic(gpu_vaddr, KM_USER0);
  207. return 0;
  208. }
  209. /**
  210. * This is the fast shmem pread path, which attempts to copy_from_user directly
  211. * from the backing pages of the object to the user's address space. On a
  212. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  213. */
  214. static int
  215. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  216. struct drm_i915_gem_pread *args,
  217. struct drm_file *file_priv)
  218. {
  219. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  220. ssize_t remain;
  221. loff_t offset, page_base;
  222. char __user *user_data;
  223. int page_offset, page_length;
  224. int ret;
  225. user_data = (char __user *) (uintptr_t) args->data_ptr;
  226. remain = args->size;
  227. mutex_lock(&dev->struct_mutex);
  228. ret = i915_gem_object_get_pages(obj);
  229. if (ret != 0)
  230. goto fail_unlock;
  231. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  232. args->size);
  233. if (ret != 0)
  234. goto fail_put_pages;
  235. obj_priv = obj->driver_private;
  236. offset = args->offset;
  237. while (remain > 0) {
  238. /* Operation in this page
  239. *
  240. * page_base = page offset within aperture
  241. * page_offset = offset within page
  242. * page_length = bytes to copy for this page
  243. */
  244. page_base = (offset & ~(PAGE_SIZE-1));
  245. page_offset = offset & (PAGE_SIZE-1);
  246. page_length = remain;
  247. if ((page_offset + remain) > PAGE_SIZE)
  248. page_length = PAGE_SIZE - page_offset;
  249. ret = fast_shmem_read(obj_priv->pages,
  250. page_base, page_offset,
  251. user_data, page_length);
  252. if (ret)
  253. goto fail_put_pages;
  254. remain -= page_length;
  255. user_data += page_length;
  256. offset += page_length;
  257. }
  258. fail_put_pages:
  259. i915_gem_object_put_pages(obj);
  260. fail_unlock:
  261. mutex_unlock(&dev->struct_mutex);
  262. return ret;
  263. }
  264. /**
  265. * This is the fallback shmem pread path, which allocates temporary storage
  266. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  267. * can copy out of the object's backing pages while holding the struct mutex
  268. * and not take page faults.
  269. */
  270. static int
  271. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  272. struct drm_i915_gem_pread *args,
  273. struct drm_file *file_priv)
  274. {
  275. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  276. struct mm_struct *mm = current->mm;
  277. struct page **user_pages;
  278. ssize_t remain;
  279. loff_t offset, pinned_pages, i;
  280. loff_t first_data_page, last_data_page, num_pages;
  281. int shmem_page_index, shmem_page_offset;
  282. int data_page_index, data_page_offset;
  283. int page_length;
  284. int ret;
  285. uint64_t data_ptr = args->data_ptr;
  286. int do_bit17_swizzling;
  287. remain = args->size;
  288. /* Pin the user pages containing the data. We can't fault while
  289. * holding the struct mutex, yet we want to hold it while
  290. * dereferencing the user data.
  291. */
  292. first_data_page = data_ptr / PAGE_SIZE;
  293. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  294. num_pages = last_data_page - first_data_page + 1;
  295. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  296. if (user_pages == NULL)
  297. return -ENOMEM;
  298. down_read(&mm->mmap_sem);
  299. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  300. num_pages, 1, 0, user_pages, NULL);
  301. up_read(&mm->mmap_sem);
  302. if (pinned_pages < num_pages) {
  303. ret = -EFAULT;
  304. goto fail_put_user_pages;
  305. }
  306. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  307. mutex_lock(&dev->struct_mutex);
  308. ret = i915_gem_object_get_pages(obj);
  309. if (ret != 0)
  310. goto fail_unlock;
  311. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  312. args->size);
  313. if (ret != 0)
  314. goto fail_put_pages;
  315. obj_priv = obj->driver_private;
  316. offset = args->offset;
  317. while (remain > 0) {
  318. /* Operation in this page
  319. *
  320. * shmem_page_index = page number within shmem file
  321. * shmem_page_offset = offset within page in shmem file
  322. * data_page_index = page number in get_user_pages return
  323. * data_page_offset = offset with data_page_index page.
  324. * page_length = bytes to copy for this page
  325. */
  326. shmem_page_index = offset / PAGE_SIZE;
  327. shmem_page_offset = offset & ~PAGE_MASK;
  328. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  329. data_page_offset = data_ptr & ~PAGE_MASK;
  330. page_length = remain;
  331. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  332. page_length = PAGE_SIZE - shmem_page_offset;
  333. if ((data_page_offset + page_length) > PAGE_SIZE)
  334. page_length = PAGE_SIZE - data_page_offset;
  335. if (do_bit17_swizzling) {
  336. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  337. shmem_page_offset,
  338. user_pages[data_page_index],
  339. data_page_offset,
  340. page_length,
  341. 1);
  342. } else {
  343. ret = slow_shmem_copy(user_pages[data_page_index],
  344. data_page_offset,
  345. obj_priv->pages[shmem_page_index],
  346. shmem_page_offset,
  347. page_length);
  348. }
  349. if (ret)
  350. goto fail_put_pages;
  351. remain -= page_length;
  352. data_ptr += page_length;
  353. offset += page_length;
  354. }
  355. fail_put_pages:
  356. i915_gem_object_put_pages(obj);
  357. fail_unlock:
  358. mutex_unlock(&dev->struct_mutex);
  359. fail_put_user_pages:
  360. for (i = 0; i < pinned_pages; i++) {
  361. SetPageDirty(user_pages[i]);
  362. page_cache_release(user_pages[i]);
  363. }
  364. drm_free_large(user_pages);
  365. return ret;
  366. }
  367. /**
  368. * Reads data from the object referenced by handle.
  369. *
  370. * On error, the contents of *data are undefined.
  371. */
  372. int
  373. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  374. struct drm_file *file_priv)
  375. {
  376. struct drm_i915_gem_pread *args = data;
  377. struct drm_gem_object *obj;
  378. struct drm_i915_gem_object *obj_priv;
  379. int ret;
  380. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  381. if (obj == NULL)
  382. return -EBADF;
  383. obj_priv = obj->driver_private;
  384. /* Bounds check source.
  385. *
  386. * XXX: This could use review for overflow issues...
  387. */
  388. if (args->offset > obj->size || args->size > obj->size ||
  389. args->offset + args->size > obj->size) {
  390. drm_gem_object_unreference(obj);
  391. return -EINVAL;
  392. }
  393. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  394. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  395. } else {
  396. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  397. if (ret != 0)
  398. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  399. file_priv);
  400. }
  401. drm_gem_object_unreference(obj);
  402. return ret;
  403. }
  404. /* This is the fast write path which cannot handle
  405. * page faults in the source data
  406. */
  407. static inline int
  408. fast_user_write(struct io_mapping *mapping,
  409. loff_t page_base, int page_offset,
  410. char __user *user_data,
  411. int length)
  412. {
  413. char *vaddr_atomic;
  414. unsigned long unwritten;
  415. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  416. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  417. user_data, length);
  418. io_mapping_unmap_atomic(vaddr_atomic);
  419. if (unwritten)
  420. return -EFAULT;
  421. return 0;
  422. }
  423. /* Here's the write path which can sleep for
  424. * page faults
  425. */
  426. static inline int
  427. slow_kernel_write(struct io_mapping *mapping,
  428. loff_t gtt_base, int gtt_offset,
  429. struct page *user_page, int user_offset,
  430. int length)
  431. {
  432. char *src_vaddr, *dst_vaddr;
  433. unsigned long unwritten;
  434. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  435. src_vaddr = kmap_atomic(user_page, KM_USER1);
  436. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  437. src_vaddr + user_offset,
  438. length);
  439. kunmap_atomic(src_vaddr, KM_USER1);
  440. io_mapping_unmap_atomic(dst_vaddr);
  441. if (unwritten)
  442. return -EFAULT;
  443. return 0;
  444. }
  445. static inline int
  446. fast_shmem_write(struct page **pages,
  447. loff_t page_base, int page_offset,
  448. char __user *data,
  449. int length)
  450. {
  451. char __iomem *vaddr;
  452. unsigned long unwritten;
  453. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  454. if (vaddr == NULL)
  455. return -ENOMEM;
  456. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  457. kunmap_atomic(vaddr, KM_USER0);
  458. if (unwritten)
  459. return -EFAULT;
  460. return 0;
  461. }
  462. /**
  463. * This is the fast pwrite path, where we copy the data directly from the
  464. * user into the GTT, uncached.
  465. */
  466. static int
  467. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  468. struct drm_i915_gem_pwrite *args,
  469. struct drm_file *file_priv)
  470. {
  471. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  472. drm_i915_private_t *dev_priv = dev->dev_private;
  473. ssize_t remain;
  474. loff_t offset, page_base;
  475. char __user *user_data;
  476. int page_offset, page_length;
  477. int ret;
  478. user_data = (char __user *) (uintptr_t) args->data_ptr;
  479. remain = args->size;
  480. if (!access_ok(VERIFY_READ, user_data, remain))
  481. return -EFAULT;
  482. mutex_lock(&dev->struct_mutex);
  483. ret = i915_gem_object_pin(obj, 0);
  484. if (ret) {
  485. mutex_unlock(&dev->struct_mutex);
  486. return ret;
  487. }
  488. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  489. if (ret)
  490. goto fail;
  491. obj_priv = obj->driver_private;
  492. offset = obj_priv->gtt_offset + args->offset;
  493. while (remain > 0) {
  494. /* Operation in this page
  495. *
  496. * page_base = page offset within aperture
  497. * page_offset = offset within page
  498. * page_length = bytes to copy for this page
  499. */
  500. page_base = (offset & ~(PAGE_SIZE-1));
  501. page_offset = offset & (PAGE_SIZE-1);
  502. page_length = remain;
  503. if ((page_offset + remain) > PAGE_SIZE)
  504. page_length = PAGE_SIZE - page_offset;
  505. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  506. page_offset, user_data, page_length);
  507. /* If we get a fault while copying data, then (presumably) our
  508. * source page isn't available. Return the error and we'll
  509. * retry in the slow path.
  510. */
  511. if (ret)
  512. goto fail;
  513. remain -= page_length;
  514. user_data += page_length;
  515. offset += page_length;
  516. }
  517. fail:
  518. i915_gem_object_unpin(obj);
  519. mutex_unlock(&dev->struct_mutex);
  520. return ret;
  521. }
  522. /**
  523. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  524. * the memory and maps it using kmap_atomic for copying.
  525. *
  526. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  527. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  528. */
  529. static int
  530. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  531. struct drm_i915_gem_pwrite *args,
  532. struct drm_file *file_priv)
  533. {
  534. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  535. drm_i915_private_t *dev_priv = dev->dev_private;
  536. ssize_t remain;
  537. loff_t gtt_page_base, offset;
  538. loff_t first_data_page, last_data_page, num_pages;
  539. loff_t pinned_pages, i;
  540. struct page **user_pages;
  541. struct mm_struct *mm = current->mm;
  542. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  543. int ret;
  544. uint64_t data_ptr = args->data_ptr;
  545. remain = args->size;
  546. /* Pin the user pages containing the data. We can't fault while
  547. * holding the struct mutex, and all of the pwrite implementations
  548. * want to hold it while dereferencing the user data.
  549. */
  550. first_data_page = data_ptr / PAGE_SIZE;
  551. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  552. num_pages = last_data_page - first_data_page + 1;
  553. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  554. if (user_pages == NULL)
  555. return -ENOMEM;
  556. down_read(&mm->mmap_sem);
  557. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  558. num_pages, 0, 0, user_pages, NULL);
  559. up_read(&mm->mmap_sem);
  560. if (pinned_pages < num_pages) {
  561. ret = -EFAULT;
  562. goto out_unpin_pages;
  563. }
  564. mutex_lock(&dev->struct_mutex);
  565. ret = i915_gem_object_pin(obj, 0);
  566. if (ret)
  567. goto out_unlock;
  568. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  569. if (ret)
  570. goto out_unpin_object;
  571. obj_priv = obj->driver_private;
  572. offset = obj_priv->gtt_offset + args->offset;
  573. while (remain > 0) {
  574. /* Operation in this page
  575. *
  576. * gtt_page_base = page offset within aperture
  577. * gtt_page_offset = offset within page in aperture
  578. * data_page_index = page number in get_user_pages return
  579. * data_page_offset = offset with data_page_index page.
  580. * page_length = bytes to copy for this page
  581. */
  582. gtt_page_base = offset & PAGE_MASK;
  583. gtt_page_offset = offset & ~PAGE_MASK;
  584. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  585. data_page_offset = data_ptr & ~PAGE_MASK;
  586. page_length = remain;
  587. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - gtt_page_offset;
  589. if ((data_page_offset + page_length) > PAGE_SIZE)
  590. page_length = PAGE_SIZE - data_page_offset;
  591. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  592. gtt_page_base, gtt_page_offset,
  593. user_pages[data_page_index],
  594. data_page_offset,
  595. page_length);
  596. /* If we get a fault while copying data, then (presumably) our
  597. * source page isn't available. Return the error and we'll
  598. * retry in the slow path.
  599. */
  600. if (ret)
  601. goto out_unpin_object;
  602. remain -= page_length;
  603. offset += page_length;
  604. data_ptr += page_length;
  605. }
  606. out_unpin_object:
  607. i915_gem_object_unpin(obj);
  608. out_unlock:
  609. mutex_unlock(&dev->struct_mutex);
  610. out_unpin_pages:
  611. for (i = 0; i < pinned_pages; i++)
  612. page_cache_release(user_pages[i]);
  613. drm_free_large(user_pages);
  614. return ret;
  615. }
  616. /**
  617. * This is the fast shmem pwrite path, which attempts to directly
  618. * copy_from_user into the kmapped pages backing the object.
  619. */
  620. static int
  621. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  622. struct drm_i915_gem_pwrite *args,
  623. struct drm_file *file_priv)
  624. {
  625. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  626. ssize_t remain;
  627. loff_t offset, page_base;
  628. char __user *user_data;
  629. int page_offset, page_length;
  630. int ret;
  631. user_data = (char __user *) (uintptr_t) args->data_ptr;
  632. remain = args->size;
  633. mutex_lock(&dev->struct_mutex);
  634. ret = i915_gem_object_get_pages(obj);
  635. if (ret != 0)
  636. goto fail_unlock;
  637. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  638. if (ret != 0)
  639. goto fail_put_pages;
  640. obj_priv = obj->driver_private;
  641. offset = args->offset;
  642. obj_priv->dirty = 1;
  643. while (remain > 0) {
  644. /* Operation in this page
  645. *
  646. * page_base = page offset within aperture
  647. * page_offset = offset within page
  648. * page_length = bytes to copy for this page
  649. */
  650. page_base = (offset & ~(PAGE_SIZE-1));
  651. page_offset = offset & (PAGE_SIZE-1);
  652. page_length = remain;
  653. if ((page_offset + remain) > PAGE_SIZE)
  654. page_length = PAGE_SIZE - page_offset;
  655. ret = fast_shmem_write(obj_priv->pages,
  656. page_base, page_offset,
  657. user_data, page_length);
  658. if (ret)
  659. goto fail_put_pages;
  660. remain -= page_length;
  661. user_data += page_length;
  662. offset += page_length;
  663. }
  664. fail_put_pages:
  665. i915_gem_object_put_pages(obj);
  666. fail_unlock:
  667. mutex_unlock(&dev->struct_mutex);
  668. return ret;
  669. }
  670. /**
  671. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  672. * the memory and maps it using kmap_atomic for copying.
  673. *
  674. * This avoids taking mmap_sem for faulting on the user's address while the
  675. * struct_mutex is held.
  676. */
  677. static int
  678. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  679. struct drm_i915_gem_pwrite *args,
  680. struct drm_file *file_priv)
  681. {
  682. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  683. struct mm_struct *mm = current->mm;
  684. struct page **user_pages;
  685. ssize_t remain;
  686. loff_t offset, pinned_pages, i;
  687. loff_t first_data_page, last_data_page, num_pages;
  688. int shmem_page_index, shmem_page_offset;
  689. int data_page_index, data_page_offset;
  690. int page_length;
  691. int ret;
  692. uint64_t data_ptr = args->data_ptr;
  693. int do_bit17_swizzling;
  694. remain = args->size;
  695. /* Pin the user pages containing the data. We can't fault while
  696. * holding the struct mutex, and all of the pwrite implementations
  697. * want to hold it while dereferencing the user data.
  698. */
  699. first_data_page = data_ptr / PAGE_SIZE;
  700. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  701. num_pages = last_data_page - first_data_page + 1;
  702. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  703. if (user_pages == NULL)
  704. return -ENOMEM;
  705. down_read(&mm->mmap_sem);
  706. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  707. num_pages, 0, 0, user_pages, NULL);
  708. up_read(&mm->mmap_sem);
  709. if (pinned_pages < num_pages) {
  710. ret = -EFAULT;
  711. goto fail_put_user_pages;
  712. }
  713. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  714. mutex_lock(&dev->struct_mutex);
  715. ret = i915_gem_object_get_pages(obj);
  716. if (ret != 0)
  717. goto fail_unlock;
  718. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  719. if (ret != 0)
  720. goto fail_put_pages;
  721. obj_priv = obj->driver_private;
  722. offset = args->offset;
  723. obj_priv->dirty = 1;
  724. while (remain > 0) {
  725. /* Operation in this page
  726. *
  727. * shmem_page_index = page number within shmem file
  728. * shmem_page_offset = offset within page in shmem file
  729. * data_page_index = page number in get_user_pages return
  730. * data_page_offset = offset with data_page_index page.
  731. * page_length = bytes to copy for this page
  732. */
  733. shmem_page_index = offset / PAGE_SIZE;
  734. shmem_page_offset = offset & ~PAGE_MASK;
  735. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  736. data_page_offset = data_ptr & ~PAGE_MASK;
  737. page_length = remain;
  738. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  739. page_length = PAGE_SIZE - shmem_page_offset;
  740. if ((data_page_offset + page_length) > PAGE_SIZE)
  741. page_length = PAGE_SIZE - data_page_offset;
  742. if (do_bit17_swizzling) {
  743. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  744. shmem_page_offset,
  745. user_pages[data_page_index],
  746. data_page_offset,
  747. page_length,
  748. 0);
  749. } else {
  750. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  751. shmem_page_offset,
  752. user_pages[data_page_index],
  753. data_page_offset,
  754. page_length);
  755. }
  756. if (ret)
  757. goto fail_put_pages;
  758. remain -= page_length;
  759. data_ptr += page_length;
  760. offset += page_length;
  761. }
  762. fail_put_pages:
  763. i915_gem_object_put_pages(obj);
  764. fail_unlock:
  765. mutex_unlock(&dev->struct_mutex);
  766. fail_put_user_pages:
  767. for (i = 0; i < pinned_pages; i++)
  768. page_cache_release(user_pages[i]);
  769. drm_free_large(user_pages);
  770. return ret;
  771. }
  772. /**
  773. * Writes data to the object referenced by handle.
  774. *
  775. * On error, the contents of the buffer that were to be modified are undefined.
  776. */
  777. int
  778. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  779. struct drm_file *file_priv)
  780. {
  781. struct drm_i915_gem_pwrite *args = data;
  782. struct drm_gem_object *obj;
  783. struct drm_i915_gem_object *obj_priv;
  784. int ret = 0;
  785. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  786. if (obj == NULL)
  787. return -EBADF;
  788. obj_priv = obj->driver_private;
  789. /* Bounds check destination.
  790. *
  791. * XXX: This could use review for overflow issues...
  792. */
  793. if (args->offset > obj->size || args->size > obj->size ||
  794. args->offset + args->size > obj->size) {
  795. drm_gem_object_unreference(obj);
  796. return -EINVAL;
  797. }
  798. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  799. * it would end up going through the fenced access, and we'll get
  800. * different detiling behavior between reading and writing.
  801. * pread/pwrite currently are reading and writing from the CPU
  802. * perspective, requiring manual detiling by the client.
  803. */
  804. if (obj_priv->phys_obj)
  805. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  806. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  807. dev->gtt_total != 0) {
  808. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  809. if (ret == -EFAULT) {
  810. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  811. file_priv);
  812. }
  813. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  814. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  815. } else {
  816. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  817. if (ret == -EFAULT) {
  818. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  819. file_priv);
  820. }
  821. }
  822. #if WATCH_PWRITE
  823. if (ret)
  824. DRM_INFO("pwrite failed %d\n", ret);
  825. #endif
  826. drm_gem_object_unreference(obj);
  827. return ret;
  828. }
  829. /**
  830. * Called when user space prepares to use an object with the CPU, either
  831. * through the mmap ioctl's mapping or a GTT mapping.
  832. */
  833. int
  834. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  835. struct drm_file *file_priv)
  836. {
  837. struct drm_i915_private *dev_priv = dev->dev_private;
  838. struct drm_i915_gem_set_domain *args = data;
  839. struct drm_gem_object *obj;
  840. struct drm_i915_gem_object *obj_priv;
  841. uint32_t read_domains = args->read_domains;
  842. uint32_t write_domain = args->write_domain;
  843. int ret;
  844. if (!(dev->driver->driver_features & DRIVER_GEM))
  845. return -ENODEV;
  846. /* Only handle setting domains to types used by the CPU. */
  847. if (write_domain & I915_GEM_GPU_DOMAINS)
  848. return -EINVAL;
  849. if (read_domains & I915_GEM_GPU_DOMAINS)
  850. return -EINVAL;
  851. /* Having something in the write domain implies it's in the read
  852. * domain, and only that read domain. Enforce that in the request.
  853. */
  854. if (write_domain != 0 && read_domains != write_domain)
  855. return -EINVAL;
  856. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  857. if (obj == NULL)
  858. return -EBADF;
  859. obj_priv = obj->driver_private;
  860. mutex_lock(&dev->struct_mutex);
  861. intel_mark_busy(dev, obj);
  862. #if WATCH_BUF
  863. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  864. obj, obj->size, read_domains, write_domain);
  865. #endif
  866. if (read_domains & I915_GEM_DOMAIN_GTT) {
  867. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  868. /* Update the LRU on the fence for the CPU access that's
  869. * about to occur.
  870. */
  871. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  872. list_move_tail(&obj_priv->fence_list,
  873. &dev_priv->mm.fence_list);
  874. }
  875. /* Silently promote "you're not bound, there was nothing to do"
  876. * to success, since the client was just asking us to
  877. * make sure everything was done.
  878. */
  879. if (ret == -EINVAL)
  880. ret = 0;
  881. } else {
  882. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  883. }
  884. drm_gem_object_unreference(obj);
  885. mutex_unlock(&dev->struct_mutex);
  886. return ret;
  887. }
  888. /**
  889. * Called when user space has done writes to this buffer
  890. */
  891. int
  892. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  893. struct drm_file *file_priv)
  894. {
  895. struct drm_i915_gem_sw_finish *args = data;
  896. struct drm_gem_object *obj;
  897. struct drm_i915_gem_object *obj_priv;
  898. int ret = 0;
  899. if (!(dev->driver->driver_features & DRIVER_GEM))
  900. return -ENODEV;
  901. mutex_lock(&dev->struct_mutex);
  902. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  903. if (obj == NULL) {
  904. mutex_unlock(&dev->struct_mutex);
  905. return -EBADF;
  906. }
  907. #if WATCH_BUF
  908. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  909. __func__, args->handle, obj, obj->size);
  910. #endif
  911. obj_priv = obj->driver_private;
  912. /* Pinned buffers may be scanout, so flush the cache */
  913. if (obj_priv->pin_count)
  914. i915_gem_object_flush_cpu_write_domain(obj);
  915. drm_gem_object_unreference(obj);
  916. mutex_unlock(&dev->struct_mutex);
  917. return ret;
  918. }
  919. /**
  920. * Maps the contents of an object, returning the address it is mapped
  921. * into.
  922. *
  923. * While the mapping holds a reference on the contents of the object, it doesn't
  924. * imply a ref on the object itself.
  925. */
  926. int
  927. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  928. struct drm_file *file_priv)
  929. {
  930. struct drm_i915_gem_mmap *args = data;
  931. struct drm_gem_object *obj;
  932. loff_t offset;
  933. unsigned long addr;
  934. if (!(dev->driver->driver_features & DRIVER_GEM))
  935. return -ENODEV;
  936. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  937. if (obj == NULL)
  938. return -EBADF;
  939. offset = args->offset;
  940. down_write(&current->mm->mmap_sem);
  941. addr = do_mmap(obj->filp, 0, args->size,
  942. PROT_READ | PROT_WRITE, MAP_SHARED,
  943. args->offset);
  944. up_write(&current->mm->mmap_sem);
  945. mutex_lock(&dev->struct_mutex);
  946. drm_gem_object_unreference(obj);
  947. mutex_unlock(&dev->struct_mutex);
  948. if (IS_ERR((void *)addr))
  949. return addr;
  950. args->addr_ptr = (uint64_t) addr;
  951. return 0;
  952. }
  953. /**
  954. * i915_gem_fault - fault a page into the GTT
  955. * vma: VMA in question
  956. * vmf: fault info
  957. *
  958. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  959. * from userspace. The fault handler takes care of binding the object to
  960. * the GTT (if needed), allocating and programming a fence register (again,
  961. * only if needed based on whether the old reg is still valid or the object
  962. * is tiled) and inserting a new PTE into the faulting process.
  963. *
  964. * Note that the faulting process may involve evicting existing objects
  965. * from the GTT and/or fence registers to make room. So performance may
  966. * suffer if the GTT working set is large or there are few fence registers
  967. * left.
  968. */
  969. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  970. {
  971. struct drm_gem_object *obj = vma->vm_private_data;
  972. struct drm_device *dev = obj->dev;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  975. pgoff_t page_offset;
  976. unsigned long pfn;
  977. int ret = 0;
  978. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  979. /* We don't use vmf->pgoff since that has the fake offset */
  980. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  981. PAGE_SHIFT;
  982. /* Now bind it into the GTT if needed */
  983. mutex_lock(&dev->struct_mutex);
  984. if (!obj_priv->gtt_space) {
  985. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  986. if (ret) {
  987. mutex_unlock(&dev->struct_mutex);
  988. return VM_FAULT_SIGBUS;
  989. }
  990. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  991. if (ret) {
  992. mutex_unlock(&dev->struct_mutex);
  993. return VM_FAULT_SIGBUS;
  994. }
  995. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  996. }
  997. /* Need a new fence register? */
  998. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  999. ret = i915_gem_object_get_fence_reg(obj);
  1000. if (ret) {
  1001. mutex_unlock(&dev->struct_mutex);
  1002. return VM_FAULT_SIGBUS;
  1003. }
  1004. }
  1005. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1006. page_offset;
  1007. /* Finally, remap it using the new GTT offset */
  1008. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1009. mutex_unlock(&dev->struct_mutex);
  1010. switch (ret) {
  1011. case -ENOMEM:
  1012. case -EAGAIN:
  1013. return VM_FAULT_OOM;
  1014. case -EFAULT:
  1015. case -EINVAL:
  1016. return VM_FAULT_SIGBUS;
  1017. default:
  1018. return VM_FAULT_NOPAGE;
  1019. }
  1020. }
  1021. /**
  1022. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1023. * @obj: obj in question
  1024. *
  1025. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1026. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1027. * up the object based on the offset and sets up the various memory mapping
  1028. * structures.
  1029. *
  1030. * This routine allocates and attaches a fake offset for @obj.
  1031. */
  1032. static int
  1033. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1034. {
  1035. struct drm_device *dev = obj->dev;
  1036. struct drm_gem_mm *mm = dev->mm_private;
  1037. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1038. struct drm_map_list *list;
  1039. struct drm_local_map *map;
  1040. int ret = 0;
  1041. /* Set the object up for mmap'ing */
  1042. list = &obj->map_list;
  1043. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1044. if (!list->map)
  1045. return -ENOMEM;
  1046. map = list->map;
  1047. map->type = _DRM_GEM;
  1048. map->size = obj->size;
  1049. map->handle = obj;
  1050. /* Get a DRM GEM mmap offset allocated... */
  1051. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1052. obj->size / PAGE_SIZE, 0, 0);
  1053. if (!list->file_offset_node) {
  1054. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1055. ret = -ENOMEM;
  1056. goto out_free_list;
  1057. }
  1058. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1059. obj->size / PAGE_SIZE, 0);
  1060. if (!list->file_offset_node) {
  1061. ret = -ENOMEM;
  1062. goto out_free_list;
  1063. }
  1064. list->hash.key = list->file_offset_node->start;
  1065. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1066. DRM_ERROR("failed to add to map hash\n");
  1067. goto out_free_mm;
  1068. }
  1069. /* By now we should be all set, any drm_mmap request on the offset
  1070. * below will get to our mmap & fault handler */
  1071. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1072. return 0;
  1073. out_free_mm:
  1074. drm_mm_put_block(list->file_offset_node);
  1075. out_free_list:
  1076. kfree(list->map);
  1077. return ret;
  1078. }
  1079. /**
  1080. * i915_gem_release_mmap - remove physical page mappings
  1081. * @obj: obj in question
  1082. *
  1083. * Preserve the reservation of the mmaping with the DRM core code, but
  1084. * relinquish ownership of the pages back to the system.
  1085. *
  1086. * It is vital that we remove the page mapping if we have mapped a tiled
  1087. * object through the GTT and then lose the fence register due to
  1088. * resource pressure. Similarly if the object has been moved out of the
  1089. * aperture, than pages mapped into userspace must be revoked. Removing the
  1090. * mapping will then trigger a page fault on the next user access, allowing
  1091. * fixup by i915_gem_fault().
  1092. */
  1093. void
  1094. i915_gem_release_mmap(struct drm_gem_object *obj)
  1095. {
  1096. struct drm_device *dev = obj->dev;
  1097. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1098. if (dev->dev_mapping)
  1099. unmap_mapping_range(dev->dev_mapping,
  1100. obj_priv->mmap_offset, obj->size, 1);
  1101. }
  1102. static void
  1103. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1104. {
  1105. struct drm_device *dev = obj->dev;
  1106. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1107. struct drm_gem_mm *mm = dev->mm_private;
  1108. struct drm_map_list *list;
  1109. list = &obj->map_list;
  1110. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1111. if (list->file_offset_node) {
  1112. drm_mm_put_block(list->file_offset_node);
  1113. list->file_offset_node = NULL;
  1114. }
  1115. if (list->map) {
  1116. kfree(list->map);
  1117. list->map = NULL;
  1118. }
  1119. obj_priv->mmap_offset = 0;
  1120. }
  1121. /**
  1122. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1123. * @obj: object to check
  1124. *
  1125. * Return the required GTT alignment for an object, taking into account
  1126. * potential fence register mapping if needed.
  1127. */
  1128. static uint32_t
  1129. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1130. {
  1131. struct drm_device *dev = obj->dev;
  1132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1133. int start, i;
  1134. /*
  1135. * Minimum alignment is 4k (GTT page size), but might be greater
  1136. * if a fence register is needed for the object.
  1137. */
  1138. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1139. return 4096;
  1140. /*
  1141. * Previous chips need to be aligned to the size of the smallest
  1142. * fence register that can contain the object.
  1143. */
  1144. if (IS_I9XX(dev))
  1145. start = 1024*1024;
  1146. else
  1147. start = 512*1024;
  1148. for (i = start; i < obj->size; i <<= 1)
  1149. ;
  1150. return i;
  1151. }
  1152. /**
  1153. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1154. * @dev: DRM device
  1155. * @data: GTT mapping ioctl data
  1156. * @file_priv: GEM object info
  1157. *
  1158. * Simply returns the fake offset to userspace so it can mmap it.
  1159. * The mmap call will end up in drm_gem_mmap(), which will set things
  1160. * up so we can get faults in the handler above.
  1161. *
  1162. * The fault handler will take care of binding the object into the GTT
  1163. * (since it may have been evicted to make room for something), allocating
  1164. * a fence register, and mapping the appropriate aperture address into
  1165. * userspace.
  1166. */
  1167. int
  1168. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1169. struct drm_file *file_priv)
  1170. {
  1171. struct drm_i915_gem_mmap_gtt *args = data;
  1172. struct drm_i915_private *dev_priv = dev->dev_private;
  1173. struct drm_gem_object *obj;
  1174. struct drm_i915_gem_object *obj_priv;
  1175. int ret;
  1176. if (!(dev->driver->driver_features & DRIVER_GEM))
  1177. return -ENODEV;
  1178. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1179. if (obj == NULL)
  1180. return -EBADF;
  1181. mutex_lock(&dev->struct_mutex);
  1182. obj_priv = obj->driver_private;
  1183. if (!obj_priv->mmap_offset) {
  1184. ret = i915_gem_create_mmap_offset(obj);
  1185. if (ret) {
  1186. drm_gem_object_unreference(obj);
  1187. mutex_unlock(&dev->struct_mutex);
  1188. return ret;
  1189. }
  1190. }
  1191. args->offset = obj_priv->mmap_offset;
  1192. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1193. /* Make sure the alignment is correct for fence regs etc */
  1194. if (obj_priv->agp_mem &&
  1195. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1196. drm_gem_object_unreference(obj);
  1197. mutex_unlock(&dev->struct_mutex);
  1198. return -EINVAL;
  1199. }
  1200. /*
  1201. * Pull it into the GTT so that we have a page list (makes the
  1202. * initial fault faster and any subsequent flushing possible).
  1203. */
  1204. if (!obj_priv->agp_mem) {
  1205. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1206. if (ret) {
  1207. drm_gem_object_unreference(obj);
  1208. mutex_unlock(&dev->struct_mutex);
  1209. return ret;
  1210. }
  1211. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1212. }
  1213. drm_gem_object_unreference(obj);
  1214. mutex_unlock(&dev->struct_mutex);
  1215. return 0;
  1216. }
  1217. void
  1218. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1219. {
  1220. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1221. int page_count = obj->size / PAGE_SIZE;
  1222. int i;
  1223. BUG_ON(obj_priv->pages_refcount == 0);
  1224. if (--obj_priv->pages_refcount != 0)
  1225. return;
  1226. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1227. i915_gem_object_save_bit_17_swizzle(obj);
  1228. for (i = 0; i < page_count; i++)
  1229. if (obj_priv->pages[i] != NULL) {
  1230. if (obj_priv->dirty)
  1231. set_page_dirty(obj_priv->pages[i]);
  1232. mark_page_accessed(obj_priv->pages[i]);
  1233. page_cache_release(obj_priv->pages[i]);
  1234. }
  1235. obj_priv->dirty = 0;
  1236. drm_free_large(obj_priv->pages);
  1237. obj_priv->pages = NULL;
  1238. }
  1239. static void
  1240. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1241. {
  1242. struct drm_device *dev = obj->dev;
  1243. drm_i915_private_t *dev_priv = dev->dev_private;
  1244. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1245. /* Add a reference if we're newly entering the active list. */
  1246. if (!obj_priv->active) {
  1247. drm_gem_object_reference(obj);
  1248. obj_priv->active = 1;
  1249. }
  1250. /* Move from whatever list we were on to the tail of execution. */
  1251. spin_lock(&dev_priv->mm.active_list_lock);
  1252. list_move_tail(&obj_priv->list,
  1253. &dev_priv->mm.active_list);
  1254. spin_unlock(&dev_priv->mm.active_list_lock);
  1255. obj_priv->last_rendering_seqno = seqno;
  1256. }
  1257. static void
  1258. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1259. {
  1260. struct drm_device *dev = obj->dev;
  1261. drm_i915_private_t *dev_priv = dev->dev_private;
  1262. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1263. BUG_ON(!obj_priv->active);
  1264. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1265. obj_priv->last_rendering_seqno = 0;
  1266. }
  1267. static void
  1268. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1269. {
  1270. struct drm_device *dev = obj->dev;
  1271. drm_i915_private_t *dev_priv = dev->dev_private;
  1272. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1273. i915_verify_inactive(dev, __FILE__, __LINE__);
  1274. if (obj_priv->pin_count != 0)
  1275. list_del_init(&obj_priv->list);
  1276. else
  1277. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1278. obj_priv->last_rendering_seqno = 0;
  1279. if (obj_priv->active) {
  1280. obj_priv->active = 0;
  1281. drm_gem_object_unreference(obj);
  1282. }
  1283. i915_verify_inactive(dev, __FILE__, __LINE__);
  1284. }
  1285. /**
  1286. * Creates a new sequence number, emitting a write of it to the status page
  1287. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1288. *
  1289. * Must be called with struct_lock held.
  1290. *
  1291. * Returned sequence numbers are nonzero on success.
  1292. */
  1293. static uint32_t
  1294. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1295. uint32_t flush_domains)
  1296. {
  1297. drm_i915_private_t *dev_priv = dev->dev_private;
  1298. struct drm_i915_file_private *i915_file_priv = NULL;
  1299. struct drm_i915_gem_request *request;
  1300. uint32_t seqno;
  1301. int was_empty;
  1302. RING_LOCALS;
  1303. if (file_priv != NULL)
  1304. i915_file_priv = file_priv->driver_priv;
  1305. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1306. if (request == NULL)
  1307. return 0;
  1308. /* Grab the seqno we're going to make this request be, and bump the
  1309. * next (skipping 0 so it can be the reserved no-seqno value).
  1310. */
  1311. seqno = dev_priv->mm.next_gem_seqno;
  1312. dev_priv->mm.next_gem_seqno++;
  1313. if (dev_priv->mm.next_gem_seqno == 0)
  1314. dev_priv->mm.next_gem_seqno++;
  1315. BEGIN_LP_RING(4);
  1316. OUT_RING(MI_STORE_DWORD_INDEX);
  1317. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1318. OUT_RING(seqno);
  1319. OUT_RING(MI_USER_INTERRUPT);
  1320. ADVANCE_LP_RING();
  1321. DRM_DEBUG("%d\n", seqno);
  1322. request->seqno = seqno;
  1323. request->emitted_jiffies = jiffies;
  1324. was_empty = list_empty(&dev_priv->mm.request_list);
  1325. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1326. if (i915_file_priv) {
  1327. list_add_tail(&request->client_list,
  1328. &i915_file_priv->mm.request_list);
  1329. } else {
  1330. INIT_LIST_HEAD(&request->client_list);
  1331. }
  1332. /* Associate any objects on the flushing list matching the write
  1333. * domain we're flushing with our flush.
  1334. */
  1335. if (flush_domains != 0) {
  1336. struct drm_i915_gem_object *obj_priv, *next;
  1337. list_for_each_entry_safe(obj_priv, next,
  1338. &dev_priv->mm.flushing_list, list) {
  1339. struct drm_gem_object *obj = obj_priv->obj;
  1340. if ((obj->write_domain & flush_domains) ==
  1341. obj->write_domain) {
  1342. obj->write_domain = 0;
  1343. i915_gem_object_move_to_active(obj, seqno);
  1344. }
  1345. }
  1346. }
  1347. if (was_empty && !dev_priv->mm.suspended)
  1348. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1349. return seqno;
  1350. }
  1351. /**
  1352. * Command execution barrier
  1353. *
  1354. * Ensures that all commands in the ring are finished
  1355. * before signalling the CPU
  1356. */
  1357. static uint32_t
  1358. i915_retire_commands(struct drm_device *dev)
  1359. {
  1360. drm_i915_private_t *dev_priv = dev->dev_private;
  1361. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1362. uint32_t flush_domains = 0;
  1363. RING_LOCALS;
  1364. /* The sampler always gets flushed on i965 (sigh) */
  1365. if (IS_I965G(dev))
  1366. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1367. BEGIN_LP_RING(2);
  1368. OUT_RING(cmd);
  1369. OUT_RING(0); /* noop */
  1370. ADVANCE_LP_RING();
  1371. return flush_domains;
  1372. }
  1373. /**
  1374. * Moves buffers associated only with the given active seqno from the active
  1375. * to inactive list, potentially freeing them.
  1376. */
  1377. static void
  1378. i915_gem_retire_request(struct drm_device *dev,
  1379. struct drm_i915_gem_request *request)
  1380. {
  1381. drm_i915_private_t *dev_priv = dev->dev_private;
  1382. /* Move any buffers on the active list that are no longer referenced
  1383. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1384. */
  1385. spin_lock(&dev_priv->mm.active_list_lock);
  1386. while (!list_empty(&dev_priv->mm.active_list)) {
  1387. struct drm_gem_object *obj;
  1388. struct drm_i915_gem_object *obj_priv;
  1389. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1390. struct drm_i915_gem_object,
  1391. list);
  1392. obj = obj_priv->obj;
  1393. /* If the seqno being retired doesn't match the oldest in the
  1394. * list, then the oldest in the list must still be newer than
  1395. * this seqno.
  1396. */
  1397. if (obj_priv->last_rendering_seqno != request->seqno)
  1398. goto out;
  1399. #if WATCH_LRU
  1400. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1401. __func__, request->seqno, obj);
  1402. #endif
  1403. if (obj->write_domain != 0)
  1404. i915_gem_object_move_to_flushing(obj);
  1405. else {
  1406. /* Take a reference on the object so it won't be
  1407. * freed while the spinlock is held. The list
  1408. * protection for this spinlock is safe when breaking
  1409. * the lock like this since the next thing we do
  1410. * is just get the head of the list again.
  1411. */
  1412. drm_gem_object_reference(obj);
  1413. i915_gem_object_move_to_inactive(obj);
  1414. spin_unlock(&dev_priv->mm.active_list_lock);
  1415. drm_gem_object_unreference(obj);
  1416. spin_lock(&dev_priv->mm.active_list_lock);
  1417. }
  1418. }
  1419. out:
  1420. spin_unlock(&dev_priv->mm.active_list_lock);
  1421. }
  1422. /**
  1423. * Returns true if seq1 is later than seq2.
  1424. */
  1425. static int
  1426. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1427. {
  1428. return (int32_t)(seq1 - seq2) >= 0;
  1429. }
  1430. uint32_t
  1431. i915_get_gem_seqno(struct drm_device *dev)
  1432. {
  1433. drm_i915_private_t *dev_priv = dev->dev_private;
  1434. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1435. }
  1436. /**
  1437. * This function clears the request list as sequence numbers are passed.
  1438. */
  1439. void
  1440. i915_gem_retire_requests(struct drm_device *dev)
  1441. {
  1442. drm_i915_private_t *dev_priv = dev->dev_private;
  1443. uint32_t seqno;
  1444. if (!dev_priv->hw_status_page)
  1445. return;
  1446. seqno = i915_get_gem_seqno(dev);
  1447. while (!list_empty(&dev_priv->mm.request_list)) {
  1448. struct drm_i915_gem_request *request;
  1449. uint32_t retiring_seqno;
  1450. request = list_first_entry(&dev_priv->mm.request_list,
  1451. struct drm_i915_gem_request,
  1452. list);
  1453. retiring_seqno = request->seqno;
  1454. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1455. dev_priv->mm.wedged) {
  1456. i915_gem_retire_request(dev, request);
  1457. list_del(&request->list);
  1458. list_del(&request->client_list);
  1459. kfree(request);
  1460. } else
  1461. break;
  1462. }
  1463. }
  1464. void
  1465. i915_gem_retire_work_handler(struct work_struct *work)
  1466. {
  1467. drm_i915_private_t *dev_priv;
  1468. struct drm_device *dev;
  1469. dev_priv = container_of(work, drm_i915_private_t,
  1470. mm.retire_work.work);
  1471. dev = dev_priv->dev;
  1472. mutex_lock(&dev->struct_mutex);
  1473. i915_gem_retire_requests(dev);
  1474. if (!dev_priv->mm.suspended &&
  1475. !list_empty(&dev_priv->mm.request_list))
  1476. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1477. mutex_unlock(&dev->struct_mutex);
  1478. }
  1479. /**
  1480. * Waits for a sequence number to be signaled, and cleans up the
  1481. * request and object lists appropriately for that event.
  1482. */
  1483. static int
  1484. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1485. {
  1486. drm_i915_private_t *dev_priv = dev->dev_private;
  1487. u32 ier;
  1488. int ret = 0;
  1489. BUG_ON(seqno == 0);
  1490. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1491. if (IS_IGDNG(dev))
  1492. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1493. else
  1494. ier = I915_READ(IER);
  1495. if (!ier) {
  1496. DRM_ERROR("something (likely vbetool) disabled "
  1497. "interrupts, re-enabling\n");
  1498. i915_driver_irq_preinstall(dev);
  1499. i915_driver_irq_postinstall(dev);
  1500. }
  1501. dev_priv->mm.waiting_gem_seqno = seqno;
  1502. i915_user_irq_get(dev);
  1503. ret = wait_event_interruptible(dev_priv->irq_queue,
  1504. i915_seqno_passed(i915_get_gem_seqno(dev),
  1505. seqno) ||
  1506. dev_priv->mm.wedged);
  1507. i915_user_irq_put(dev);
  1508. dev_priv->mm.waiting_gem_seqno = 0;
  1509. }
  1510. if (dev_priv->mm.wedged)
  1511. ret = -EIO;
  1512. if (ret && ret != -ERESTARTSYS)
  1513. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1514. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1515. /* Directly dispatch request retiring. While we have the work queue
  1516. * to handle this, the waiter on a request often wants an associated
  1517. * buffer to have made it to the inactive list, and we would need
  1518. * a separate wait queue to handle that.
  1519. */
  1520. if (ret == 0)
  1521. i915_gem_retire_requests(dev);
  1522. return ret;
  1523. }
  1524. static void
  1525. i915_gem_flush(struct drm_device *dev,
  1526. uint32_t invalidate_domains,
  1527. uint32_t flush_domains)
  1528. {
  1529. drm_i915_private_t *dev_priv = dev->dev_private;
  1530. uint32_t cmd;
  1531. RING_LOCALS;
  1532. #if WATCH_EXEC
  1533. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1534. invalidate_domains, flush_domains);
  1535. #endif
  1536. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1537. drm_agp_chipset_flush(dev);
  1538. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1539. /*
  1540. * read/write caches:
  1541. *
  1542. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1543. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1544. * also flushed at 2d versus 3d pipeline switches.
  1545. *
  1546. * read-only caches:
  1547. *
  1548. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1549. * MI_READ_FLUSH is set, and is always flushed on 965.
  1550. *
  1551. * I915_GEM_DOMAIN_COMMAND may not exist?
  1552. *
  1553. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1554. * invalidated when MI_EXE_FLUSH is set.
  1555. *
  1556. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1557. * invalidated with every MI_FLUSH.
  1558. *
  1559. * TLBs:
  1560. *
  1561. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1562. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1563. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1564. * are flushed at any MI_FLUSH.
  1565. */
  1566. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1567. if ((invalidate_domains|flush_domains) &
  1568. I915_GEM_DOMAIN_RENDER)
  1569. cmd &= ~MI_NO_WRITE_FLUSH;
  1570. if (!IS_I965G(dev)) {
  1571. /*
  1572. * On the 965, the sampler cache always gets flushed
  1573. * and this bit is reserved.
  1574. */
  1575. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1576. cmd |= MI_READ_FLUSH;
  1577. }
  1578. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1579. cmd |= MI_EXE_FLUSH;
  1580. #if WATCH_EXEC
  1581. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1582. #endif
  1583. BEGIN_LP_RING(2);
  1584. OUT_RING(cmd);
  1585. OUT_RING(0); /* noop */
  1586. ADVANCE_LP_RING();
  1587. }
  1588. }
  1589. /**
  1590. * Ensures that all rendering to the object has completed and the object is
  1591. * safe to unbind from the GTT or access from the CPU.
  1592. */
  1593. static int
  1594. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1595. {
  1596. struct drm_device *dev = obj->dev;
  1597. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1598. int ret;
  1599. /* This function only exists to support waiting for existing rendering,
  1600. * not for emitting required flushes.
  1601. */
  1602. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1603. /* If there is rendering queued on the buffer being evicted, wait for
  1604. * it.
  1605. */
  1606. if (obj_priv->active) {
  1607. #if WATCH_BUF
  1608. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1609. __func__, obj, obj_priv->last_rendering_seqno);
  1610. #endif
  1611. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1612. if (ret != 0)
  1613. return ret;
  1614. }
  1615. return 0;
  1616. }
  1617. /**
  1618. * Unbinds an object from the GTT aperture.
  1619. */
  1620. int
  1621. i915_gem_object_unbind(struct drm_gem_object *obj)
  1622. {
  1623. struct drm_device *dev = obj->dev;
  1624. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1625. int ret = 0;
  1626. #if WATCH_BUF
  1627. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1628. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1629. #endif
  1630. if (obj_priv->gtt_space == NULL)
  1631. return 0;
  1632. if (obj_priv->pin_count != 0) {
  1633. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1634. return -EINVAL;
  1635. }
  1636. /* Move the object to the CPU domain to ensure that
  1637. * any possible CPU writes while it's not in the GTT
  1638. * are flushed when we go to remap it. This will
  1639. * also ensure that all pending GPU writes are finished
  1640. * before we unbind.
  1641. */
  1642. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1643. if (ret) {
  1644. if (ret != -ERESTARTSYS)
  1645. DRM_ERROR("set_domain failed: %d\n", ret);
  1646. return ret;
  1647. }
  1648. if (obj_priv->agp_mem != NULL) {
  1649. drm_unbind_agp(obj_priv->agp_mem);
  1650. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1651. obj_priv->agp_mem = NULL;
  1652. }
  1653. BUG_ON(obj_priv->active);
  1654. /* blow away mappings if mapped through GTT */
  1655. i915_gem_release_mmap(obj);
  1656. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1657. i915_gem_clear_fence_reg(obj);
  1658. i915_gem_object_put_pages(obj);
  1659. if (obj_priv->gtt_space) {
  1660. atomic_dec(&dev->gtt_count);
  1661. atomic_sub(obj->size, &dev->gtt_memory);
  1662. drm_mm_put_block(obj_priv->gtt_space);
  1663. obj_priv->gtt_space = NULL;
  1664. }
  1665. /* Remove ourselves from the LRU list if present. */
  1666. if (!list_empty(&obj_priv->list))
  1667. list_del_init(&obj_priv->list);
  1668. return 0;
  1669. }
  1670. static int
  1671. i915_gem_evict_something(struct drm_device *dev)
  1672. {
  1673. drm_i915_private_t *dev_priv = dev->dev_private;
  1674. struct drm_gem_object *obj;
  1675. struct drm_i915_gem_object *obj_priv;
  1676. int ret = 0;
  1677. for (;;) {
  1678. /* If there's an inactive buffer available now, grab it
  1679. * and be done.
  1680. */
  1681. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1682. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1683. struct drm_i915_gem_object,
  1684. list);
  1685. obj = obj_priv->obj;
  1686. BUG_ON(obj_priv->pin_count != 0);
  1687. #if WATCH_LRU
  1688. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1689. #endif
  1690. BUG_ON(obj_priv->active);
  1691. /* Wait on the rendering and unbind the buffer. */
  1692. ret = i915_gem_object_unbind(obj);
  1693. break;
  1694. }
  1695. /* If we didn't get anything, but the ring is still processing
  1696. * things, wait for one of those things to finish and hopefully
  1697. * leave us a buffer to evict.
  1698. */
  1699. if (!list_empty(&dev_priv->mm.request_list)) {
  1700. struct drm_i915_gem_request *request;
  1701. request = list_first_entry(&dev_priv->mm.request_list,
  1702. struct drm_i915_gem_request,
  1703. list);
  1704. ret = i915_wait_request(dev, request->seqno);
  1705. if (ret)
  1706. break;
  1707. /* if waiting caused an object to become inactive,
  1708. * then loop around and wait for it. Otherwise, we
  1709. * assume that waiting freed and unbound something,
  1710. * so there should now be some space in the GTT
  1711. */
  1712. if (!list_empty(&dev_priv->mm.inactive_list))
  1713. continue;
  1714. break;
  1715. }
  1716. /* If we didn't have anything on the request list but there
  1717. * are buffers awaiting a flush, emit one and try again.
  1718. * When we wait on it, those buffers waiting for that flush
  1719. * will get moved to inactive.
  1720. */
  1721. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1722. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1723. struct drm_i915_gem_object,
  1724. list);
  1725. obj = obj_priv->obj;
  1726. i915_gem_flush(dev,
  1727. obj->write_domain,
  1728. obj->write_domain);
  1729. i915_add_request(dev, NULL, obj->write_domain);
  1730. obj = NULL;
  1731. continue;
  1732. }
  1733. DRM_ERROR("inactive empty %d request empty %d "
  1734. "flushing empty %d\n",
  1735. list_empty(&dev_priv->mm.inactive_list),
  1736. list_empty(&dev_priv->mm.request_list),
  1737. list_empty(&dev_priv->mm.flushing_list));
  1738. /* If we didn't do any of the above, there's nothing to be done
  1739. * and we just can't fit it in.
  1740. */
  1741. return -ENOSPC;
  1742. }
  1743. return ret;
  1744. }
  1745. static int
  1746. i915_gem_evict_everything(struct drm_device *dev)
  1747. {
  1748. int ret;
  1749. for (;;) {
  1750. ret = i915_gem_evict_something(dev);
  1751. if (ret != 0)
  1752. break;
  1753. }
  1754. if (ret == -ENOSPC)
  1755. return 0;
  1756. return ret;
  1757. }
  1758. int
  1759. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1760. {
  1761. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1762. int page_count, i;
  1763. struct address_space *mapping;
  1764. struct inode *inode;
  1765. struct page *page;
  1766. int ret;
  1767. if (obj_priv->pages_refcount++ != 0)
  1768. return 0;
  1769. /* Get the list of pages out of our struct file. They'll be pinned
  1770. * at this point until we release them.
  1771. */
  1772. page_count = obj->size / PAGE_SIZE;
  1773. BUG_ON(obj_priv->pages != NULL);
  1774. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1775. if (obj_priv->pages == NULL) {
  1776. DRM_ERROR("Faled to allocate page list\n");
  1777. obj_priv->pages_refcount--;
  1778. return -ENOMEM;
  1779. }
  1780. inode = obj->filp->f_path.dentry->d_inode;
  1781. mapping = inode->i_mapping;
  1782. for (i = 0; i < page_count; i++) {
  1783. page = read_mapping_page(mapping, i, NULL);
  1784. if (IS_ERR(page)) {
  1785. ret = PTR_ERR(page);
  1786. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1787. i915_gem_object_put_pages(obj);
  1788. return ret;
  1789. }
  1790. obj_priv->pages[i] = page;
  1791. }
  1792. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1793. i915_gem_object_do_bit_17_swizzle(obj);
  1794. return 0;
  1795. }
  1796. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1797. {
  1798. struct drm_gem_object *obj = reg->obj;
  1799. struct drm_device *dev = obj->dev;
  1800. drm_i915_private_t *dev_priv = dev->dev_private;
  1801. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1802. int regnum = obj_priv->fence_reg;
  1803. uint64_t val;
  1804. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1805. 0xfffff000) << 32;
  1806. val |= obj_priv->gtt_offset & 0xfffff000;
  1807. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1808. if (obj_priv->tiling_mode == I915_TILING_Y)
  1809. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1810. val |= I965_FENCE_REG_VALID;
  1811. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1812. }
  1813. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1814. {
  1815. struct drm_gem_object *obj = reg->obj;
  1816. struct drm_device *dev = obj->dev;
  1817. drm_i915_private_t *dev_priv = dev->dev_private;
  1818. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1819. int regnum = obj_priv->fence_reg;
  1820. int tile_width;
  1821. uint32_t fence_reg, val;
  1822. uint32_t pitch_val;
  1823. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1824. (obj_priv->gtt_offset & (obj->size - 1))) {
  1825. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1826. __func__, obj_priv->gtt_offset, obj->size);
  1827. return;
  1828. }
  1829. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1830. HAS_128_BYTE_Y_TILING(dev))
  1831. tile_width = 128;
  1832. else
  1833. tile_width = 512;
  1834. /* Note: pitch better be a power of two tile widths */
  1835. pitch_val = obj_priv->stride / tile_width;
  1836. pitch_val = ffs(pitch_val) - 1;
  1837. val = obj_priv->gtt_offset;
  1838. if (obj_priv->tiling_mode == I915_TILING_Y)
  1839. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1840. val |= I915_FENCE_SIZE_BITS(obj->size);
  1841. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1842. val |= I830_FENCE_REG_VALID;
  1843. if (regnum < 8)
  1844. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1845. else
  1846. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1847. I915_WRITE(fence_reg, val);
  1848. }
  1849. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1850. {
  1851. struct drm_gem_object *obj = reg->obj;
  1852. struct drm_device *dev = obj->dev;
  1853. drm_i915_private_t *dev_priv = dev->dev_private;
  1854. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1855. int regnum = obj_priv->fence_reg;
  1856. uint32_t val;
  1857. uint32_t pitch_val;
  1858. uint32_t fence_size_bits;
  1859. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1860. (obj_priv->gtt_offset & (obj->size - 1))) {
  1861. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1862. __func__, obj_priv->gtt_offset);
  1863. return;
  1864. }
  1865. pitch_val = obj_priv->stride / 128;
  1866. pitch_val = ffs(pitch_val) - 1;
  1867. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1868. val = obj_priv->gtt_offset;
  1869. if (obj_priv->tiling_mode == I915_TILING_Y)
  1870. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1871. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1872. WARN_ON(fence_size_bits & ~0x00000f00);
  1873. val |= fence_size_bits;
  1874. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1875. val |= I830_FENCE_REG_VALID;
  1876. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1877. }
  1878. /**
  1879. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1880. * @obj: object to map through a fence reg
  1881. *
  1882. * When mapping objects through the GTT, userspace wants to be able to write
  1883. * to them without having to worry about swizzling if the object is tiled.
  1884. *
  1885. * This function walks the fence regs looking for a free one for @obj,
  1886. * stealing one if it can't find any.
  1887. *
  1888. * It then sets up the reg based on the object's properties: address, pitch
  1889. * and tiling format.
  1890. */
  1891. int
  1892. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1893. {
  1894. struct drm_device *dev = obj->dev;
  1895. struct drm_i915_private *dev_priv = dev->dev_private;
  1896. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1897. struct drm_i915_fence_reg *reg = NULL;
  1898. struct drm_i915_gem_object *old_obj_priv = NULL;
  1899. int i, ret, avail;
  1900. /* Just update our place in the LRU if our fence is getting used. */
  1901. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1902. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1903. return 0;
  1904. }
  1905. switch (obj_priv->tiling_mode) {
  1906. case I915_TILING_NONE:
  1907. WARN(1, "allocating a fence for non-tiled object?\n");
  1908. break;
  1909. case I915_TILING_X:
  1910. if (!obj_priv->stride)
  1911. return -EINVAL;
  1912. WARN((obj_priv->stride & (512 - 1)),
  1913. "object 0x%08x is X tiled but has non-512B pitch\n",
  1914. obj_priv->gtt_offset);
  1915. break;
  1916. case I915_TILING_Y:
  1917. if (!obj_priv->stride)
  1918. return -EINVAL;
  1919. WARN((obj_priv->stride & (128 - 1)),
  1920. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1921. obj_priv->gtt_offset);
  1922. break;
  1923. }
  1924. /* First try to find a free reg */
  1925. avail = 0;
  1926. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1927. reg = &dev_priv->fence_regs[i];
  1928. if (!reg->obj)
  1929. break;
  1930. old_obj_priv = reg->obj->driver_private;
  1931. if (!old_obj_priv->pin_count)
  1932. avail++;
  1933. }
  1934. /* None available, try to steal one or wait for a user to finish */
  1935. if (i == dev_priv->num_fence_regs) {
  1936. struct drm_gem_object *old_obj = NULL;
  1937. if (avail == 0)
  1938. return -ENOSPC;
  1939. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  1940. fence_list) {
  1941. old_obj = old_obj_priv->obj;
  1942. if (old_obj_priv->pin_count)
  1943. continue;
  1944. /* Take a reference, as otherwise the wait_rendering
  1945. * below may cause the object to get freed out from
  1946. * under us.
  1947. */
  1948. drm_gem_object_reference(old_obj);
  1949. /* i915 uses fences for GPU access to tiled buffers */
  1950. if (IS_I965G(dev) || !old_obj_priv->active)
  1951. break;
  1952. /* This brings the object to the head of the LRU if it
  1953. * had been written to. The only way this should
  1954. * result in us waiting longer than the expected
  1955. * optimal amount of time is if there was a
  1956. * fence-using buffer later that was read-only.
  1957. */
  1958. i915_gem_object_flush_gpu_write_domain(old_obj);
  1959. ret = i915_gem_object_wait_rendering(old_obj);
  1960. if (ret != 0) {
  1961. drm_gem_object_unreference(old_obj);
  1962. return ret;
  1963. }
  1964. break;
  1965. }
  1966. /*
  1967. * Zap this virtual mapping so we can set up a fence again
  1968. * for this object next time we need it.
  1969. */
  1970. i915_gem_release_mmap(old_obj);
  1971. i = old_obj_priv->fence_reg;
  1972. reg = &dev_priv->fence_regs[i];
  1973. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1974. list_del_init(&old_obj_priv->fence_list);
  1975. drm_gem_object_unreference(old_obj);
  1976. }
  1977. obj_priv->fence_reg = i;
  1978. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1979. reg->obj = obj;
  1980. if (IS_I965G(dev))
  1981. i965_write_fence_reg(reg);
  1982. else if (IS_I9XX(dev))
  1983. i915_write_fence_reg(reg);
  1984. else
  1985. i830_write_fence_reg(reg);
  1986. return 0;
  1987. }
  1988. /**
  1989. * i915_gem_clear_fence_reg - clear out fence register info
  1990. * @obj: object to clear
  1991. *
  1992. * Zeroes out the fence register itself and clears out the associated
  1993. * data structures in dev_priv and obj_priv.
  1994. */
  1995. static void
  1996. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1997. {
  1998. struct drm_device *dev = obj->dev;
  1999. drm_i915_private_t *dev_priv = dev->dev_private;
  2000. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2001. if (IS_I965G(dev))
  2002. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2003. else {
  2004. uint32_t fence_reg;
  2005. if (obj_priv->fence_reg < 8)
  2006. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2007. else
  2008. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2009. 8) * 4;
  2010. I915_WRITE(fence_reg, 0);
  2011. }
  2012. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2013. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2014. list_del_init(&obj_priv->fence_list);
  2015. }
  2016. /**
  2017. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2018. * to the buffer to finish, and then resets the fence register.
  2019. * @obj: tiled object holding a fence register.
  2020. *
  2021. * Zeroes out the fence register itself and clears out the associated
  2022. * data structures in dev_priv and obj_priv.
  2023. */
  2024. int
  2025. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2026. {
  2027. struct drm_device *dev = obj->dev;
  2028. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2029. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2030. return 0;
  2031. /* On the i915, GPU access to tiled buffers is via a fence,
  2032. * therefore we must wait for any outstanding access to complete
  2033. * before clearing the fence.
  2034. */
  2035. if (!IS_I965G(dev)) {
  2036. int ret;
  2037. i915_gem_object_flush_gpu_write_domain(obj);
  2038. i915_gem_object_flush_gtt_write_domain(obj);
  2039. ret = i915_gem_object_wait_rendering(obj);
  2040. if (ret != 0)
  2041. return ret;
  2042. }
  2043. i915_gem_clear_fence_reg (obj);
  2044. return 0;
  2045. }
  2046. /**
  2047. * Finds free space in the GTT aperture and binds the object there.
  2048. */
  2049. static int
  2050. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2051. {
  2052. struct drm_device *dev = obj->dev;
  2053. drm_i915_private_t *dev_priv = dev->dev_private;
  2054. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2055. struct drm_mm_node *free_space;
  2056. int page_count, ret;
  2057. if (dev_priv->mm.suspended)
  2058. return -EBUSY;
  2059. if (alignment == 0)
  2060. alignment = i915_gem_get_gtt_alignment(obj);
  2061. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2062. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2063. return -EINVAL;
  2064. }
  2065. search_free:
  2066. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2067. obj->size, alignment, 0);
  2068. if (free_space != NULL) {
  2069. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2070. alignment);
  2071. if (obj_priv->gtt_space != NULL) {
  2072. obj_priv->gtt_space->private = obj;
  2073. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2074. }
  2075. }
  2076. if (obj_priv->gtt_space == NULL) {
  2077. bool lists_empty;
  2078. /* If the gtt is empty and we're still having trouble
  2079. * fitting our object in, we're out of memory.
  2080. */
  2081. #if WATCH_LRU
  2082. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2083. #endif
  2084. spin_lock(&dev_priv->mm.active_list_lock);
  2085. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2086. list_empty(&dev_priv->mm.flushing_list) &&
  2087. list_empty(&dev_priv->mm.active_list));
  2088. spin_unlock(&dev_priv->mm.active_list_lock);
  2089. if (lists_empty) {
  2090. DRM_ERROR("GTT full, but LRU list empty\n");
  2091. return -ENOSPC;
  2092. }
  2093. ret = i915_gem_evict_something(dev);
  2094. if (ret != 0) {
  2095. if (ret != -ERESTARTSYS)
  2096. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2097. return ret;
  2098. }
  2099. goto search_free;
  2100. }
  2101. #if WATCH_BUF
  2102. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2103. obj->size, obj_priv->gtt_offset);
  2104. #endif
  2105. ret = i915_gem_object_get_pages(obj);
  2106. if (ret) {
  2107. drm_mm_put_block(obj_priv->gtt_space);
  2108. obj_priv->gtt_space = NULL;
  2109. return ret;
  2110. }
  2111. page_count = obj->size / PAGE_SIZE;
  2112. /* Create an AGP memory structure pointing at our pages, and bind it
  2113. * into the GTT.
  2114. */
  2115. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2116. obj_priv->pages,
  2117. page_count,
  2118. obj_priv->gtt_offset,
  2119. obj_priv->agp_type);
  2120. if (obj_priv->agp_mem == NULL) {
  2121. i915_gem_object_put_pages(obj);
  2122. drm_mm_put_block(obj_priv->gtt_space);
  2123. obj_priv->gtt_space = NULL;
  2124. return -ENOMEM;
  2125. }
  2126. atomic_inc(&dev->gtt_count);
  2127. atomic_add(obj->size, &dev->gtt_memory);
  2128. /* Assert that the object is not currently in any GPU domain. As it
  2129. * wasn't in the GTT, there shouldn't be any way it could have been in
  2130. * a GPU cache
  2131. */
  2132. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2133. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2134. return 0;
  2135. }
  2136. void
  2137. i915_gem_clflush_object(struct drm_gem_object *obj)
  2138. {
  2139. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2140. /* If we don't have a page list set up, then we're not pinned
  2141. * to GPU, and we can ignore the cache flush because it'll happen
  2142. * again at bind time.
  2143. */
  2144. if (obj_priv->pages == NULL)
  2145. return;
  2146. /* XXX: The 865 in particular appears to be weird in how it handles
  2147. * cache flushing. We haven't figured it out, but the
  2148. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2149. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2150. */
  2151. if (IS_I865G(obj->dev)) {
  2152. wbinvd();
  2153. return;
  2154. }
  2155. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2156. }
  2157. /** Flushes any GPU write domain for the object if it's dirty. */
  2158. static void
  2159. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2160. {
  2161. struct drm_device *dev = obj->dev;
  2162. uint32_t seqno;
  2163. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2164. return;
  2165. /* Queue the GPU write cache flushing we need. */
  2166. i915_gem_flush(dev, 0, obj->write_domain);
  2167. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2168. obj->write_domain = 0;
  2169. i915_gem_object_move_to_active(obj, seqno);
  2170. }
  2171. /** Flushes the GTT write domain for the object if it's dirty. */
  2172. static void
  2173. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2174. {
  2175. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2176. return;
  2177. /* No actual flushing is required for the GTT write domain. Writes
  2178. * to it immediately go to main memory as far as we know, so there's
  2179. * no chipset flush. It also doesn't land in render cache.
  2180. */
  2181. obj->write_domain = 0;
  2182. }
  2183. /** Flushes the CPU write domain for the object if it's dirty. */
  2184. static void
  2185. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2186. {
  2187. struct drm_device *dev = obj->dev;
  2188. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2189. return;
  2190. i915_gem_clflush_object(obj);
  2191. drm_agp_chipset_flush(dev);
  2192. obj->write_domain = 0;
  2193. }
  2194. /**
  2195. * Moves a single object to the GTT read, and possibly write domain.
  2196. *
  2197. * This function returns when the move is complete, including waiting on
  2198. * flushes to occur.
  2199. */
  2200. int
  2201. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2202. {
  2203. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2204. int ret;
  2205. /* Not valid to be called on unbound objects. */
  2206. if (obj_priv->gtt_space == NULL)
  2207. return -EINVAL;
  2208. i915_gem_object_flush_gpu_write_domain(obj);
  2209. /* Wait on any GPU rendering and flushing to occur. */
  2210. ret = i915_gem_object_wait_rendering(obj);
  2211. if (ret != 0)
  2212. return ret;
  2213. /* If we're writing through the GTT domain, then CPU and GPU caches
  2214. * will need to be invalidated at next use.
  2215. */
  2216. if (write)
  2217. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2218. i915_gem_object_flush_cpu_write_domain(obj);
  2219. /* It should now be out of any other write domains, and we can update
  2220. * the domain values for our changes.
  2221. */
  2222. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2223. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2224. if (write) {
  2225. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2226. obj_priv->dirty = 1;
  2227. }
  2228. return 0;
  2229. }
  2230. /**
  2231. * Moves a single object to the CPU read, and possibly write domain.
  2232. *
  2233. * This function returns when the move is complete, including waiting on
  2234. * flushes to occur.
  2235. */
  2236. static int
  2237. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2238. {
  2239. int ret;
  2240. i915_gem_object_flush_gpu_write_domain(obj);
  2241. /* Wait on any GPU rendering and flushing to occur. */
  2242. ret = i915_gem_object_wait_rendering(obj);
  2243. if (ret != 0)
  2244. return ret;
  2245. i915_gem_object_flush_gtt_write_domain(obj);
  2246. /* If we have a partially-valid cache of the object in the CPU,
  2247. * finish invalidating it and free the per-page flags.
  2248. */
  2249. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2250. /* Flush the CPU cache if it's still invalid. */
  2251. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2252. i915_gem_clflush_object(obj);
  2253. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2254. }
  2255. /* It should now be out of any other write domains, and we can update
  2256. * the domain values for our changes.
  2257. */
  2258. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2259. /* If we're writing through the CPU, then the GPU read domains will
  2260. * need to be invalidated at next use.
  2261. */
  2262. if (write) {
  2263. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2264. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2265. }
  2266. return 0;
  2267. }
  2268. /*
  2269. * Set the next domain for the specified object. This
  2270. * may not actually perform the necessary flushing/invaliding though,
  2271. * as that may want to be batched with other set_domain operations
  2272. *
  2273. * This is (we hope) the only really tricky part of gem. The goal
  2274. * is fairly simple -- track which caches hold bits of the object
  2275. * and make sure they remain coherent. A few concrete examples may
  2276. * help to explain how it works. For shorthand, we use the notation
  2277. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2278. * a pair of read and write domain masks.
  2279. *
  2280. * Case 1: the batch buffer
  2281. *
  2282. * 1. Allocated
  2283. * 2. Written by CPU
  2284. * 3. Mapped to GTT
  2285. * 4. Read by GPU
  2286. * 5. Unmapped from GTT
  2287. * 6. Freed
  2288. *
  2289. * Let's take these a step at a time
  2290. *
  2291. * 1. Allocated
  2292. * Pages allocated from the kernel may still have
  2293. * cache contents, so we set them to (CPU, CPU) always.
  2294. * 2. Written by CPU (using pwrite)
  2295. * The pwrite function calls set_domain (CPU, CPU) and
  2296. * this function does nothing (as nothing changes)
  2297. * 3. Mapped by GTT
  2298. * This function asserts that the object is not
  2299. * currently in any GPU-based read or write domains
  2300. * 4. Read by GPU
  2301. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2302. * As write_domain is zero, this function adds in the
  2303. * current read domains (CPU+COMMAND, 0).
  2304. * flush_domains is set to CPU.
  2305. * invalidate_domains is set to COMMAND
  2306. * clflush is run to get data out of the CPU caches
  2307. * then i915_dev_set_domain calls i915_gem_flush to
  2308. * emit an MI_FLUSH and drm_agp_chipset_flush
  2309. * 5. Unmapped from GTT
  2310. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2311. * flush_domains and invalidate_domains end up both zero
  2312. * so no flushing/invalidating happens
  2313. * 6. Freed
  2314. * yay, done
  2315. *
  2316. * Case 2: The shared render buffer
  2317. *
  2318. * 1. Allocated
  2319. * 2. Mapped to GTT
  2320. * 3. Read/written by GPU
  2321. * 4. set_domain to (CPU,CPU)
  2322. * 5. Read/written by CPU
  2323. * 6. Read/written by GPU
  2324. *
  2325. * 1. Allocated
  2326. * Same as last example, (CPU, CPU)
  2327. * 2. Mapped to GTT
  2328. * Nothing changes (assertions find that it is not in the GPU)
  2329. * 3. Read/written by GPU
  2330. * execbuffer calls set_domain (RENDER, RENDER)
  2331. * flush_domains gets CPU
  2332. * invalidate_domains gets GPU
  2333. * clflush (obj)
  2334. * MI_FLUSH and drm_agp_chipset_flush
  2335. * 4. set_domain (CPU, CPU)
  2336. * flush_domains gets GPU
  2337. * invalidate_domains gets CPU
  2338. * wait_rendering (obj) to make sure all drawing is complete.
  2339. * This will include an MI_FLUSH to get the data from GPU
  2340. * to memory
  2341. * clflush (obj) to invalidate the CPU cache
  2342. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2343. * 5. Read/written by CPU
  2344. * cache lines are loaded and dirtied
  2345. * 6. Read written by GPU
  2346. * Same as last GPU access
  2347. *
  2348. * Case 3: The constant buffer
  2349. *
  2350. * 1. Allocated
  2351. * 2. Written by CPU
  2352. * 3. Read by GPU
  2353. * 4. Updated (written) by CPU again
  2354. * 5. Read by GPU
  2355. *
  2356. * 1. Allocated
  2357. * (CPU, CPU)
  2358. * 2. Written by CPU
  2359. * (CPU, CPU)
  2360. * 3. Read by GPU
  2361. * (CPU+RENDER, 0)
  2362. * flush_domains = CPU
  2363. * invalidate_domains = RENDER
  2364. * clflush (obj)
  2365. * MI_FLUSH
  2366. * drm_agp_chipset_flush
  2367. * 4. Updated (written) by CPU again
  2368. * (CPU, CPU)
  2369. * flush_domains = 0 (no previous write domain)
  2370. * invalidate_domains = 0 (no new read domains)
  2371. * 5. Read by GPU
  2372. * (CPU+RENDER, 0)
  2373. * flush_domains = CPU
  2374. * invalidate_domains = RENDER
  2375. * clflush (obj)
  2376. * MI_FLUSH
  2377. * drm_agp_chipset_flush
  2378. */
  2379. static void
  2380. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2381. {
  2382. struct drm_device *dev = obj->dev;
  2383. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2384. uint32_t invalidate_domains = 0;
  2385. uint32_t flush_domains = 0;
  2386. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2387. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2388. intel_mark_busy(dev, obj);
  2389. #if WATCH_BUF
  2390. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2391. __func__, obj,
  2392. obj->read_domains, obj->pending_read_domains,
  2393. obj->write_domain, obj->pending_write_domain);
  2394. #endif
  2395. /*
  2396. * If the object isn't moving to a new write domain,
  2397. * let the object stay in multiple read domains
  2398. */
  2399. if (obj->pending_write_domain == 0)
  2400. obj->pending_read_domains |= obj->read_domains;
  2401. else
  2402. obj_priv->dirty = 1;
  2403. /*
  2404. * Flush the current write domain if
  2405. * the new read domains don't match. Invalidate
  2406. * any read domains which differ from the old
  2407. * write domain
  2408. */
  2409. if (obj->write_domain &&
  2410. obj->write_domain != obj->pending_read_domains) {
  2411. flush_domains |= obj->write_domain;
  2412. invalidate_domains |=
  2413. obj->pending_read_domains & ~obj->write_domain;
  2414. }
  2415. /*
  2416. * Invalidate any read caches which may have
  2417. * stale data. That is, any new read domains.
  2418. */
  2419. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2420. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2421. #if WATCH_BUF
  2422. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2423. __func__, flush_domains, invalidate_domains);
  2424. #endif
  2425. i915_gem_clflush_object(obj);
  2426. }
  2427. /* The actual obj->write_domain will be updated with
  2428. * pending_write_domain after we emit the accumulated flush for all
  2429. * of our domain changes in execbuffers (which clears objects'
  2430. * write_domains). So if we have a current write domain that we
  2431. * aren't changing, set pending_write_domain to that.
  2432. */
  2433. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2434. obj->pending_write_domain = obj->write_domain;
  2435. obj->read_domains = obj->pending_read_domains;
  2436. dev->invalidate_domains |= invalidate_domains;
  2437. dev->flush_domains |= flush_domains;
  2438. #if WATCH_BUF
  2439. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2440. __func__,
  2441. obj->read_domains, obj->write_domain,
  2442. dev->invalidate_domains, dev->flush_domains);
  2443. #endif
  2444. }
  2445. /**
  2446. * Moves the object from a partially CPU read to a full one.
  2447. *
  2448. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2449. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2450. */
  2451. static void
  2452. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2453. {
  2454. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2455. if (!obj_priv->page_cpu_valid)
  2456. return;
  2457. /* If we're partially in the CPU read domain, finish moving it in.
  2458. */
  2459. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2460. int i;
  2461. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2462. if (obj_priv->page_cpu_valid[i])
  2463. continue;
  2464. drm_clflush_pages(obj_priv->pages + i, 1);
  2465. }
  2466. }
  2467. /* Free the page_cpu_valid mappings which are now stale, whether
  2468. * or not we've got I915_GEM_DOMAIN_CPU.
  2469. */
  2470. kfree(obj_priv->page_cpu_valid);
  2471. obj_priv->page_cpu_valid = NULL;
  2472. }
  2473. /**
  2474. * Set the CPU read domain on a range of the object.
  2475. *
  2476. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2477. * not entirely valid. The page_cpu_valid member of the object flags which
  2478. * pages have been flushed, and will be respected by
  2479. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2480. * of the whole object.
  2481. *
  2482. * This function returns when the move is complete, including waiting on
  2483. * flushes to occur.
  2484. */
  2485. static int
  2486. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2487. uint64_t offset, uint64_t size)
  2488. {
  2489. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2490. int i, ret;
  2491. if (offset == 0 && size == obj->size)
  2492. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2493. i915_gem_object_flush_gpu_write_domain(obj);
  2494. /* Wait on any GPU rendering and flushing to occur. */
  2495. ret = i915_gem_object_wait_rendering(obj);
  2496. if (ret != 0)
  2497. return ret;
  2498. i915_gem_object_flush_gtt_write_domain(obj);
  2499. /* If we're already fully in the CPU read domain, we're done. */
  2500. if (obj_priv->page_cpu_valid == NULL &&
  2501. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2502. return 0;
  2503. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2504. * newly adding I915_GEM_DOMAIN_CPU
  2505. */
  2506. if (obj_priv->page_cpu_valid == NULL) {
  2507. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2508. GFP_KERNEL);
  2509. if (obj_priv->page_cpu_valid == NULL)
  2510. return -ENOMEM;
  2511. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2512. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2513. /* Flush the cache on any pages that are still invalid from the CPU's
  2514. * perspective.
  2515. */
  2516. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2517. i++) {
  2518. if (obj_priv->page_cpu_valid[i])
  2519. continue;
  2520. drm_clflush_pages(obj_priv->pages + i, 1);
  2521. obj_priv->page_cpu_valid[i] = 1;
  2522. }
  2523. /* It should now be out of any other write domains, and we can update
  2524. * the domain values for our changes.
  2525. */
  2526. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2527. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2528. return 0;
  2529. }
  2530. /**
  2531. * Pin an object to the GTT and evaluate the relocations landing in it.
  2532. */
  2533. static int
  2534. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2535. struct drm_file *file_priv,
  2536. struct drm_i915_gem_exec_object *entry,
  2537. struct drm_i915_gem_relocation_entry *relocs)
  2538. {
  2539. struct drm_device *dev = obj->dev;
  2540. drm_i915_private_t *dev_priv = dev->dev_private;
  2541. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2542. int i, ret;
  2543. void __iomem *reloc_page;
  2544. /* Choose the GTT offset for our buffer and put it there. */
  2545. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2546. if (ret)
  2547. return ret;
  2548. entry->offset = obj_priv->gtt_offset;
  2549. /* Apply the relocations, using the GTT aperture to avoid cache
  2550. * flushing requirements.
  2551. */
  2552. for (i = 0; i < entry->relocation_count; i++) {
  2553. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2554. struct drm_gem_object *target_obj;
  2555. struct drm_i915_gem_object *target_obj_priv;
  2556. uint32_t reloc_val, reloc_offset;
  2557. uint32_t __iomem *reloc_entry;
  2558. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2559. reloc->target_handle);
  2560. if (target_obj == NULL) {
  2561. i915_gem_object_unpin(obj);
  2562. return -EBADF;
  2563. }
  2564. target_obj_priv = target_obj->driver_private;
  2565. /* The target buffer should have appeared before us in the
  2566. * exec_object list, so it should have a GTT space bound by now.
  2567. */
  2568. if (target_obj_priv->gtt_space == NULL) {
  2569. DRM_ERROR("No GTT space found for object %d\n",
  2570. reloc->target_handle);
  2571. drm_gem_object_unreference(target_obj);
  2572. i915_gem_object_unpin(obj);
  2573. return -EINVAL;
  2574. }
  2575. if (reloc->offset > obj->size - 4) {
  2576. DRM_ERROR("Relocation beyond object bounds: "
  2577. "obj %p target %d offset %d size %d.\n",
  2578. obj, reloc->target_handle,
  2579. (int) reloc->offset, (int) obj->size);
  2580. drm_gem_object_unreference(target_obj);
  2581. i915_gem_object_unpin(obj);
  2582. return -EINVAL;
  2583. }
  2584. if (reloc->offset & 3) {
  2585. DRM_ERROR("Relocation not 4-byte aligned: "
  2586. "obj %p target %d offset %d.\n",
  2587. obj, reloc->target_handle,
  2588. (int) reloc->offset);
  2589. drm_gem_object_unreference(target_obj);
  2590. i915_gem_object_unpin(obj);
  2591. return -EINVAL;
  2592. }
  2593. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2594. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2595. DRM_ERROR("reloc with read/write CPU domains: "
  2596. "obj %p target %d offset %d "
  2597. "read %08x write %08x",
  2598. obj, reloc->target_handle,
  2599. (int) reloc->offset,
  2600. reloc->read_domains,
  2601. reloc->write_domain);
  2602. drm_gem_object_unreference(target_obj);
  2603. i915_gem_object_unpin(obj);
  2604. return -EINVAL;
  2605. }
  2606. if (reloc->write_domain && target_obj->pending_write_domain &&
  2607. reloc->write_domain != target_obj->pending_write_domain) {
  2608. DRM_ERROR("Write domain conflict: "
  2609. "obj %p target %d offset %d "
  2610. "new %08x old %08x\n",
  2611. obj, reloc->target_handle,
  2612. (int) reloc->offset,
  2613. reloc->write_domain,
  2614. target_obj->pending_write_domain);
  2615. drm_gem_object_unreference(target_obj);
  2616. i915_gem_object_unpin(obj);
  2617. return -EINVAL;
  2618. }
  2619. #if WATCH_RELOC
  2620. DRM_INFO("%s: obj %p offset %08x target %d "
  2621. "read %08x write %08x gtt %08x "
  2622. "presumed %08x delta %08x\n",
  2623. __func__,
  2624. obj,
  2625. (int) reloc->offset,
  2626. (int) reloc->target_handle,
  2627. (int) reloc->read_domains,
  2628. (int) reloc->write_domain,
  2629. (int) target_obj_priv->gtt_offset,
  2630. (int) reloc->presumed_offset,
  2631. reloc->delta);
  2632. #endif
  2633. target_obj->pending_read_domains |= reloc->read_domains;
  2634. target_obj->pending_write_domain |= reloc->write_domain;
  2635. /* If the relocation already has the right value in it, no
  2636. * more work needs to be done.
  2637. */
  2638. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2639. drm_gem_object_unreference(target_obj);
  2640. continue;
  2641. }
  2642. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2643. if (ret != 0) {
  2644. drm_gem_object_unreference(target_obj);
  2645. i915_gem_object_unpin(obj);
  2646. return -EINVAL;
  2647. }
  2648. /* Map the page containing the relocation we're going to
  2649. * perform.
  2650. */
  2651. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2652. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2653. (reloc_offset &
  2654. ~(PAGE_SIZE - 1)));
  2655. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2656. (reloc_offset & (PAGE_SIZE - 1)));
  2657. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2658. #if WATCH_BUF
  2659. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2660. obj, (unsigned int) reloc->offset,
  2661. readl(reloc_entry), reloc_val);
  2662. #endif
  2663. writel(reloc_val, reloc_entry);
  2664. io_mapping_unmap_atomic(reloc_page);
  2665. /* The updated presumed offset for this entry will be
  2666. * copied back out to the user.
  2667. */
  2668. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2669. drm_gem_object_unreference(target_obj);
  2670. }
  2671. #if WATCH_BUF
  2672. if (0)
  2673. i915_gem_dump_object(obj, 128, __func__, ~0);
  2674. #endif
  2675. return 0;
  2676. }
  2677. /** Dispatch a batchbuffer to the ring
  2678. */
  2679. static int
  2680. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2681. struct drm_i915_gem_execbuffer *exec,
  2682. struct drm_clip_rect *cliprects,
  2683. uint64_t exec_offset)
  2684. {
  2685. drm_i915_private_t *dev_priv = dev->dev_private;
  2686. int nbox = exec->num_cliprects;
  2687. int i = 0, count;
  2688. uint32_t exec_start, exec_len;
  2689. RING_LOCALS;
  2690. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2691. exec_len = (uint32_t) exec->batch_len;
  2692. count = nbox ? nbox : 1;
  2693. for (i = 0; i < count; i++) {
  2694. if (i < nbox) {
  2695. int ret = i915_emit_box(dev, cliprects, i,
  2696. exec->DR1, exec->DR4);
  2697. if (ret)
  2698. return ret;
  2699. }
  2700. if (IS_I830(dev) || IS_845G(dev)) {
  2701. BEGIN_LP_RING(4);
  2702. OUT_RING(MI_BATCH_BUFFER);
  2703. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2704. OUT_RING(exec_start + exec_len - 4);
  2705. OUT_RING(0);
  2706. ADVANCE_LP_RING();
  2707. } else {
  2708. BEGIN_LP_RING(2);
  2709. if (IS_I965G(dev)) {
  2710. OUT_RING(MI_BATCH_BUFFER_START |
  2711. (2 << 6) |
  2712. MI_BATCH_NON_SECURE_I965);
  2713. OUT_RING(exec_start);
  2714. } else {
  2715. OUT_RING(MI_BATCH_BUFFER_START |
  2716. (2 << 6));
  2717. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2718. }
  2719. ADVANCE_LP_RING();
  2720. }
  2721. }
  2722. /* XXX breadcrumb */
  2723. return 0;
  2724. }
  2725. /* Throttle our rendering by waiting until the ring has completed our requests
  2726. * emitted over 20 msec ago.
  2727. *
  2728. * Note that if we were to use the current jiffies each time around the loop,
  2729. * we wouldn't escape the function with any frames outstanding if the time to
  2730. * render a frame was over 20ms.
  2731. *
  2732. * This should get us reasonable parallelism between CPU and GPU but also
  2733. * relatively low latency when blocking on a particular request to finish.
  2734. */
  2735. static int
  2736. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2737. {
  2738. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2739. int ret = 0;
  2740. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2741. mutex_lock(&dev->struct_mutex);
  2742. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2743. struct drm_i915_gem_request *request;
  2744. request = list_first_entry(&i915_file_priv->mm.request_list,
  2745. struct drm_i915_gem_request,
  2746. client_list);
  2747. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2748. break;
  2749. ret = i915_wait_request(dev, request->seqno);
  2750. if (ret != 0)
  2751. break;
  2752. }
  2753. mutex_unlock(&dev->struct_mutex);
  2754. return ret;
  2755. }
  2756. static int
  2757. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2758. uint32_t buffer_count,
  2759. struct drm_i915_gem_relocation_entry **relocs)
  2760. {
  2761. uint32_t reloc_count = 0, reloc_index = 0, i;
  2762. int ret;
  2763. *relocs = NULL;
  2764. for (i = 0; i < buffer_count; i++) {
  2765. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2766. return -EINVAL;
  2767. reloc_count += exec_list[i].relocation_count;
  2768. }
  2769. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2770. if (*relocs == NULL)
  2771. return -ENOMEM;
  2772. for (i = 0; i < buffer_count; i++) {
  2773. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2774. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2775. ret = copy_from_user(&(*relocs)[reloc_index],
  2776. user_relocs,
  2777. exec_list[i].relocation_count *
  2778. sizeof(**relocs));
  2779. if (ret != 0) {
  2780. drm_free_large(*relocs);
  2781. *relocs = NULL;
  2782. return -EFAULT;
  2783. }
  2784. reloc_index += exec_list[i].relocation_count;
  2785. }
  2786. return 0;
  2787. }
  2788. static int
  2789. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2790. uint32_t buffer_count,
  2791. struct drm_i915_gem_relocation_entry *relocs)
  2792. {
  2793. uint32_t reloc_count = 0, i;
  2794. int ret = 0;
  2795. for (i = 0; i < buffer_count; i++) {
  2796. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2797. int unwritten;
  2798. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2799. unwritten = copy_to_user(user_relocs,
  2800. &relocs[reloc_count],
  2801. exec_list[i].relocation_count *
  2802. sizeof(*relocs));
  2803. if (unwritten) {
  2804. ret = -EFAULT;
  2805. goto err;
  2806. }
  2807. reloc_count += exec_list[i].relocation_count;
  2808. }
  2809. err:
  2810. drm_free_large(relocs);
  2811. return ret;
  2812. }
  2813. static int
  2814. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2815. uint64_t exec_offset)
  2816. {
  2817. uint32_t exec_start, exec_len;
  2818. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2819. exec_len = (uint32_t) exec->batch_len;
  2820. if ((exec_start | exec_len) & 0x7)
  2821. return -EINVAL;
  2822. if (!exec_start)
  2823. return -EINVAL;
  2824. return 0;
  2825. }
  2826. int
  2827. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2828. struct drm_file *file_priv)
  2829. {
  2830. drm_i915_private_t *dev_priv = dev->dev_private;
  2831. struct drm_i915_gem_execbuffer *args = data;
  2832. struct drm_i915_gem_exec_object *exec_list = NULL;
  2833. struct drm_gem_object **object_list = NULL;
  2834. struct drm_gem_object *batch_obj;
  2835. struct drm_i915_gem_object *obj_priv;
  2836. struct drm_clip_rect *cliprects = NULL;
  2837. struct drm_i915_gem_relocation_entry *relocs;
  2838. int ret, ret2, i, pinned = 0;
  2839. uint64_t exec_offset;
  2840. uint32_t seqno, flush_domains, reloc_index;
  2841. int pin_tries;
  2842. #if WATCH_EXEC
  2843. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2844. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2845. #endif
  2846. if (args->buffer_count < 1) {
  2847. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2848. return -EINVAL;
  2849. }
  2850. /* Copy in the exec list from userland */
  2851. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2852. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2853. if (exec_list == NULL || object_list == NULL) {
  2854. DRM_ERROR("Failed to allocate exec or object list "
  2855. "for %d buffers\n",
  2856. args->buffer_count);
  2857. ret = -ENOMEM;
  2858. goto pre_mutex_err;
  2859. }
  2860. ret = copy_from_user(exec_list,
  2861. (struct drm_i915_relocation_entry __user *)
  2862. (uintptr_t) args->buffers_ptr,
  2863. sizeof(*exec_list) * args->buffer_count);
  2864. if (ret != 0) {
  2865. DRM_ERROR("copy %d exec entries failed %d\n",
  2866. args->buffer_count, ret);
  2867. goto pre_mutex_err;
  2868. }
  2869. if (args->num_cliprects != 0) {
  2870. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  2871. GFP_KERNEL);
  2872. if (cliprects == NULL)
  2873. goto pre_mutex_err;
  2874. ret = copy_from_user(cliprects,
  2875. (struct drm_clip_rect __user *)
  2876. (uintptr_t) args->cliprects_ptr,
  2877. sizeof(*cliprects) * args->num_cliprects);
  2878. if (ret != 0) {
  2879. DRM_ERROR("copy %d cliprects failed: %d\n",
  2880. args->num_cliprects, ret);
  2881. goto pre_mutex_err;
  2882. }
  2883. }
  2884. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2885. &relocs);
  2886. if (ret != 0)
  2887. goto pre_mutex_err;
  2888. mutex_lock(&dev->struct_mutex);
  2889. i915_verify_inactive(dev, __FILE__, __LINE__);
  2890. if (dev_priv->mm.wedged) {
  2891. DRM_ERROR("Execbuf while wedged\n");
  2892. mutex_unlock(&dev->struct_mutex);
  2893. ret = -EIO;
  2894. goto pre_mutex_err;
  2895. }
  2896. if (dev_priv->mm.suspended) {
  2897. DRM_ERROR("Execbuf while VT-switched.\n");
  2898. mutex_unlock(&dev->struct_mutex);
  2899. ret = -EBUSY;
  2900. goto pre_mutex_err;
  2901. }
  2902. /* Look up object handles */
  2903. for (i = 0; i < args->buffer_count; i++) {
  2904. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2905. exec_list[i].handle);
  2906. if (object_list[i] == NULL) {
  2907. DRM_ERROR("Invalid object handle %d at index %d\n",
  2908. exec_list[i].handle, i);
  2909. ret = -EBADF;
  2910. goto err;
  2911. }
  2912. obj_priv = object_list[i]->driver_private;
  2913. if (obj_priv->in_execbuffer) {
  2914. DRM_ERROR("Object %p appears more than once in object list\n",
  2915. object_list[i]);
  2916. ret = -EBADF;
  2917. goto err;
  2918. }
  2919. obj_priv->in_execbuffer = true;
  2920. }
  2921. /* Pin and relocate */
  2922. for (pin_tries = 0; ; pin_tries++) {
  2923. ret = 0;
  2924. reloc_index = 0;
  2925. for (i = 0; i < args->buffer_count; i++) {
  2926. object_list[i]->pending_read_domains = 0;
  2927. object_list[i]->pending_write_domain = 0;
  2928. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2929. file_priv,
  2930. &exec_list[i],
  2931. &relocs[reloc_index]);
  2932. if (ret)
  2933. break;
  2934. pinned = i + 1;
  2935. reloc_index += exec_list[i].relocation_count;
  2936. }
  2937. /* success */
  2938. if (ret == 0)
  2939. break;
  2940. /* error other than GTT full, or we've already tried again */
  2941. if (ret != -ENOSPC || pin_tries >= 1) {
  2942. if (ret != -ERESTARTSYS)
  2943. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2944. goto err;
  2945. }
  2946. /* unpin all of our buffers */
  2947. for (i = 0; i < pinned; i++)
  2948. i915_gem_object_unpin(object_list[i]);
  2949. pinned = 0;
  2950. /* evict everyone we can from the aperture */
  2951. ret = i915_gem_evict_everything(dev);
  2952. if (ret)
  2953. goto err;
  2954. }
  2955. /* Set the pending read domains for the batch buffer to COMMAND */
  2956. batch_obj = object_list[args->buffer_count-1];
  2957. if (batch_obj->pending_write_domain) {
  2958. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2959. ret = -EINVAL;
  2960. goto err;
  2961. }
  2962. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2963. /* Sanity check the batch buffer, prior to moving objects */
  2964. exec_offset = exec_list[args->buffer_count - 1].offset;
  2965. ret = i915_gem_check_execbuffer (args, exec_offset);
  2966. if (ret != 0) {
  2967. DRM_ERROR("execbuf with invalid offset/length\n");
  2968. goto err;
  2969. }
  2970. i915_verify_inactive(dev, __FILE__, __LINE__);
  2971. /* Zero the global flush/invalidate flags. These
  2972. * will be modified as new domains are computed
  2973. * for each object
  2974. */
  2975. dev->invalidate_domains = 0;
  2976. dev->flush_domains = 0;
  2977. for (i = 0; i < args->buffer_count; i++) {
  2978. struct drm_gem_object *obj = object_list[i];
  2979. /* Compute new gpu domains and update invalidate/flush */
  2980. i915_gem_object_set_to_gpu_domain(obj);
  2981. }
  2982. i915_verify_inactive(dev, __FILE__, __LINE__);
  2983. if (dev->invalidate_domains | dev->flush_domains) {
  2984. #if WATCH_EXEC
  2985. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2986. __func__,
  2987. dev->invalidate_domains,
  2988. dev->flush_domains);
  2989. #endif
  2990. i915_gem_flush(dev,
  2991. dev->invalidate_domains,
  2992. dev->flush_domains);
  2993. if (dev->flush_domains)
  2994. (void)i915_add_request(dev, file_priv,
  2995. dev->flush_domains);
  2996. }
  2997. for (i = 0; i < args->buffer_count; i++) {
  2998. struct drm_gem_object *obj = object_list[i];
  2999. obj->write_domain = obj->pending_write_domain;
  3000. }
  3001. i915_verify_inactive(dev, __FILE__, __LINE__);
  3002. #if WATCH_COHERENCY
  3003. for (i = 0; i < args->buffer_count; i++) {
  3004. i915_gem_object_check_coherency(object_list[i],
  3005. exec_list[i].handle);
  3006. }
  3007. #endif
  3008. #if WATCH_EXEC
  3009. i915_gem_dump_object(batch_obj,
  3010. args->batch_len,
  3011. __func__,
  3012. ~0);
  3013. #endif
  3014. /* Exec the batchbuffer */
  3015. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3016. if (ret) {
  3017. DRM_ERROR("dispatch failed %d\n", ret);
  3018. goto err;
  3019. }
  3020. /*
  3021. * Ensure that the commands in the batch buffer are
  3022. * finished before the interrupt fires
  3023. */
  3024. flush_domains = i915_retire_commands(dev);
  3025. i915_verify_inactive(dev, __FILE__, __LINE__);
  3026. /*
  3027. * Get a seqno representing the execution of the current buffer,
  3028. * which we can wait on. We would like to mitigate these interrupts,
  3029. * likely by only creating seqnos occasionally (so that we have
  3030. * *some* interrupts representing completion of buffers that we can
  3031. * wait on when trying to clear up gtt space).
  3032. */
  3033. seqno = i915_add_request(dev, file_priv, flush_domains);
  3034. BUG_ON(seqno == 0);
  3035. for (i = 0; i < args->buffer_count; i++) {
  3036. struct drm_gem_object *obj = object_list[i];
  3037. i915_gem_object_move_to_active(obj, seqno);
  3038. #if WATCH_LRU
  3039. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3040. #endif
  3041. }
  3042. #if WATCH_LRU
  3043. i915_dump_lru(dev, __func__);
  3044. #endif
  3045. i915_verify_inactive(dev, __FILE__, __LINE__);
  3046. err:
  3047. for (i = 0; i < pinned; i++)
  3048. i915_gem_object_unpin(object_list[i]);
  3049. for (i = 0; i < args->buffer_count; i++) {
  3050. if (object_list[i]) {
  3051. obj_priv = object_list[i]->driver_private;
  3052. obj_priv->in_execbuffer = false;
  3053. }
  3054. drm_gem_object_unreference(object_list[i]);
  3055. }
  3056. mutex_unlock(&dev->struct_mutex);
  3057. if (!ret) {
  3058. /* Copy the new buffer offsets back to the user's exec list. */
  3059. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3060. (uintptr_t) args->buffers_ptr,
  3061. exec_list,
  3062. sizeof(*exec_list) * args->buffer_count);
  3063. if (ret) {
  3064. ret = -EFAULT;
  3065. DRM_ERROR("failed to copy %d exec entries "
  3066. "back to user (%d)\n",
  3067. args->buffer_count, ret);
  3068. }
  3069. }
  3070. /* Copy the updated relocations out regardless of current error
  3071. * state. Failure to update the relocs would mean that the next
  3072. * time userland calls execbuf, it would do so with presumed offset
  3073. * state that didn't match the actual object state.
  3074. */
  3075. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3076. relocs);
  3077. if (ret2 != 0) {
  3078. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3079. if (ret == 0)
  3080. ret = ret2;
  3081. }
  3082. pre_mutex_err:
  3083. drm_free_large(object_list);
  3084. drm_free_large(exec_list);
  3085. kfree(cliprects);
  3086. return ret;
  3087. }
  3088. int
  3089. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3090. {
  3091. struct drm_device *dev = obj->dev;
  3092. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3093. int ret;
  3094. i915_verify_inactive(dev, __FILE__, __LINE__);
  3095. if (obj_priv->gtt_space == NULL) {
  3096. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3097. if (ret != 0) {
  3098. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3099. DRM_ERROR("Failure to bind: %d\n", ret);
  3100. return ret;
  3101. }
  3102. }
  3103. /*
  3104. * Pre-965 chips need a fence register set up in order to
  3105. * properly handle tiled surfaces.
  3106. */
  3107. if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
  3108. ret = i915_gem_object_get_fence_reg(obj);
  3109. if (ret != 0) {
  3110. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3111. DRM_ERROR("Failure to install fence: %d\n",
  3112. ret);
  3113. return ret;
  3114. }
  3115. }
  3116. obj_priv->pin_count++;
  3117. /* If the object is not active and not pending a flush,
  3118. * remove it from the inactive list
  3119. */
  3120. if (obj_priv->pin_count == 1) {
  3121. atomic_inc(&dev->pin_count);
  3122. atomic_add(obj->size, &dev->pin_memory);
  3123. if (!obj_priv->active &&
  3124. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3125. !list_empty(&obj_priv->list))
  3126. list_del_init(&obj_priv->list);
  3127. }
  3128. i915_verify_inactive(dev, __FILE__, __LINE__);
  3129. return 0;
  3130. }
  3131. void
  3132. i915_gem_object_unpin(struct drm_gem_object *obj)
  3133. {
  3134. struct drm_device *dev = obj->dev;
  3135. drm_i915_private_t *dev_priv = dev->dev_private;
  3136. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3137. i915_verify_inactive(dev, __FILE__, __LINE__);
  3138. obj_priv->pin_count--;
  3139. BUG_ON(obj_priv->pin_count < 0);
  3140. BUG_ON(obj_priv->gtt_space == NULL);
  3141. /* If the object is no longer pinned, and is
  3142. * neither active nor being flushed, then stick it on
  3143. * the inactive list
  3144. */
  3145. if (obj_priv->pin_count == 0) {
  3146. if (!obj_priv->active &&
  3147. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3148. list_move_tail(&obj_priv->list,
  3149. &dev_priv->mm.inactive_list);
  3150. atomic_dec(&dev->pin_count);
  3151. atomic_sub(obj->size, &dev->pin_memory);
  3152. }
  3153. i915_verify_inactive(dev, __FILE__, __LINE__);
  3154. }
  3155. int
  3156. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3157. struct drm_file *file_priv)
  3158. {
  3159. struct drm_i915_gem_pin *args = data;
  3160. struct drm_gem_object *obj;
  3161. struct drm_i915_gem_object *obj_priv;
  3162. int ret;
  3163. mutex_lock(&dev->struct_mutex);
  3164. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3165. if (obj == NULL) {
  3166. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3167. args->handle);
  3168. mutex_unlock(&dev->struct_mutex);
  3169. return -EBADF;
  3170. }
  3171. obj_priv = obj->driver_private;
  3172. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3173. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3174. args->handle);
  3175. drm_gem_object_unreference(obj);
  3176. mutex_unlock(&dev->struct_mutex);
  3177. return -EINVAL;
  3178. }
  3179. obj_priv->user_pin_count++;
  3180. obj_priv->pin_filp = file_priv;
  3181. if (obj_priv->user_pin_count == 1) {
  3182. ret = i915_gem_object_pin(obj, args->alignment);
  3183. if (ret != 0) {
  3184. drm_gem_object_unreference(obj);
  3185. mutex_unlock(&dev->struct_mutex);
  3186. return ret;
  3187. }
  3188. }
  3189. /* XXX - flush the CPU caches for pinned objects
  3190. * as the X server doesn't manage domains yet
  3191. */
  3192. i915_gem_object_flush_cpu_write_domain(obj);
  3193. args->offset = obj_priv->gtt_offset;
  3194. drm_gem_object_unreference(obj);
  3195. mutex_unlock(&dev->struct_mutex);
  3196. return 0;
  3197. }
  3198. int
  3199. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3200. struct drm_file *file_priv)
  3201. {
  3202. struct drm_i915_gem_pin *args = data;
  3203. struct drm_gem_object *obj;
  3204. struct drm_i915_gem_object *obj_priv;
  3205. mutex_lock(&dev->struct_mutex);
  3206. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3207. if (obj == NULL) {
  3208. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3209. args->handle);
  3210. mutex_unlock(&dev->struct_mutex);
  3211. return -EBADF;
  3212. }
  3213. obj_priv = obj->driver_private;
  3214. if (obj_priv->pin_filp != file_priv) {
  3215. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3216. args->handle);
  3217. drm_gem_object_unreference(obj);
  3218. mutex_unlock(&dev->struct_mutex);
  3219. return -EINVAL;
  3220. }
  3221. obj_priv->user_pin_count--;
  3222. if (obj_priv->user_pin_count == 0) {
  3223. obj_priv->pin_filp = NULL;
  3224. i915_gem_object_unpin(obj);
  3225. }
  3226. drm_gem_object_unreference(obj);
  3227. mutex_unlock(&dev->struct_mutex);
  3228. return 0;
  3229. }
  3230. int
  3231. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3232. struct drm_file *file_priv)
  3233. {
  3234. struct drm_i915_gem_busy *args = data;
  3235. struct drm_gem_object *obj;
  3236. struct drm_i915_gem_object *obj_priv;
  3237. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3238. if (obj == NULL) {
  3239. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3240. args->handle);
  3241. return -EBADF;
  3242. }
  3243. mutex_lock(&dev->struct_mutex);
  3244. /* Update the active list for the hardware's current position.
  3245. * Otherwise this only updates on a delayed timer or when irqs are
  3246. * actually unmasked, and our working set ends up being larger than
  3247. * required.
  3248. */
  3249. i915_gem_retire_requests(dev);
  3250. obj_priv = obj->driver_private;
  3251. /* Don't count being on the flushing list against the object being
  3252. * done. Otherwise, a buffer left on the flushing list but not getting
  3253. * flushed (because nobody's flushing that domain) won't ever return
  3254. * unbusy and get reused by libdrm's bo cache. The other expected
  3255. * consumer of this interface, OpenGL's occlusion queries, also specs
  3256. * that the objects get unbusy "eventually" without any interference.
  3257. */
  3258. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3259. drm_gem_object_unreference(obj);
  3260. mutex_unlock(&dev->struct_mutex);
  3261. return 0;
  3262. }
  3263. int
  3264. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3265. struct drm_file *file_priv)
  3266. {
  3267. return i915_gem_ring_throttle(dev, file_priv);
  3268. }
  3269. int i915_gem_init_object(struct drm_gem_object *obj)
  3270. {
  3271. struct drm_i915_gem_object *obj_priv;
  3272. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3273. if (obj_priv == NULL)
  3274. return -ENOMEM;
  3275. /*
  3276. * We've just allocated pages from the kernel,
  3277. * so they've just been written by the CPU with
  3278. * zeros. They'll need to be clflushed before we
  3279. * use them with the GPU.
  3280. */
  3281. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3282. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3283. obj_priv->agp_type = AGP_USER_MEMORY;
  3284. obj->driver_private = obj_priv;
  3285. obj_priv->obj = obj;
  3286. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3287. INIT_LIST_HEAD(&obj_priv->list);
  3288. INIT_LIST_HEAD(&obj_priv->fence_list);
  3289. return 0;
  3290. }
  3291. void i915_gem_free_object(struct drm_gem_object *obj)
  3292. {
  3293. struct drm_device *dev = obj->dev;
  3294. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3295. while (obj_priv->pin_count > 0)
  3296. i915_gem_object_unpin(obj);
  3297. if (obj_priv->phys_obj)
  3298. i915_gem_detach_phys_object(dev, obj);
  3299. i915_gem_object_unbind(obj);
  3300. i915_gem_free_mmap_offset(obj);
  3301. kfree(obj_priv->page_cpu_valid);
  3302. kfree(obj_priv->bit_17);
  3303. kfree(obj->driver_private);
  3304. }
  3305. /** Unbinds all objects that are on the given buffer list. */
  3306. static int
  3307. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3308. {
  3309. struct drm_gem_object *obj;
  3310. struct drm_i915_gem_object *obj_priv;
  3311. int ret;
  3312. while (!list_empty(head)) {
  3313. obj_priv = list_first_entry(head,
  3314. struct drm_i915_gem_object,
  3315. list);
  3316. obj = obj_priv->obj;
  3317. if (obj_priv->pin_count != 0) {
  3318. DRM_ERROR("Pinned object in unbind list\n");
  3319. mutex_unlock(&dev->struct_mutex);
  3320. return -EINVAL;
  3321. }
  3322. ret = i915_gem_object_unbind(obj);
  3323. if (ret != 0) {
  3324. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3325. ret);
  3326. mutex_unlock(&dev->struct_mutex);
  3327. return ret;
  3328. }
  3329. }
  3330. return 0;
  3331. }
  3332. int
  3333. i915_gem_idle(struct drm_device *dev)
  3334. {
  3335. drm_i915_private_t *dev_priv = dev->dev_private;
  3336. uint32_t seqno, cur_seqno, last_seqno;
  3337. int stuck, ret;
  3338. mutex_lock(&dev->struct_mutex);
  3339. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3340. mutex_unlock(&dev->struct_mutex);
  3341. return 0;
  3342. }
  3343. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3344. * We need to replace this with a semaphore, or something.
  3345. */
  3346. dev_priv->mm.suspended = 1;
  3347. /* Cancel the retire work handler, wait for it to finish if running
  3348. */
  3349. mutex_unlock(&dev->struct_mutex);
  3350. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3351. mutex_lock(&dev->struct_mutex);
  3352. i915_kernel_lost_context(dev);
  3353. /* Flush the GPU along with all non-CPU write domains
  3354. */
  3355. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3356. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3357. if (seqno == 0) {
  3358. mutex_unlock(&dev->struct_mutex);
  3359. return -ENOMEM;
  3360. }
  3361. dev_priv->mm.waiting_gem_seqno = seqno;
  3362. last_seqno = 0;
  3363. stuck = 0;
  3364. for (;;) {
  3365. cur_seqno = i915_get_gem_seqno(dev);
  3366. if (i915_seqno_passed(cur_seqno, seqno))
  3367. break;
  3368. if (last_seqno == cur_seqno) {
  3369. if (stuck++ > 100) {
  3370. DRM_ERROR("hardware wedged\n");
  3371. dev_priv->mm.wedged = 1;
  3372. DRM_WAKEUP(&dev_priv->irq_queue);
  3373. break;
  3374. }
  3375. }
  3376. msleep(10);
  3377. last_seqno = cur_seqno;
  3378. }
  3379. dev_priv->mm.waiting_gem_seqno = 0;
  3380. i915_gem_retire_requests(dev);
  3381. spin_lock(&dev_priv->mm.active_list_lock);
  3382. if (!dev_priv->mm.wedged) {
  3383. /* Active and flushing should now be empty as we've
  3384. * waited for a sequence higher than any pending execbuffer
  3385. */
  3386. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3387. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3388. /* Request should now be empty as we've also waited
  3389. * for the last request in the list
  3390. */
  3391. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3392. }
  3393. /* Empty the active and flushing lists to inactive. If there's
  3394. * anything left at this point, it means that we're wedged and
  3395. * nothing good's going to happen by leaving them there. So strip
  3396. * the GPU domains and just stuff them onto inactive.
  3397. */
  3398. while (!list_empty(&dev_priv->mm.active_list)) {
  3399. struct drm_i915_gem_object *obj_priv;
  3400. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3401. struct drm_i915_gem_object,
  3402. list);
  3403. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3404. i915_gem_object_move_to_inactive(obj_priv->obj);
  3405. }
  3406. spin_unlock(&dev_priv->mm.active_list_lock);
  3407. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3408. struct drm_i915_gem_object *obj_priv;
  3409. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3410. struct drm_i915_gem_object,
  3411. list);
  3412. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3413. i915_gem_object_move_to_inactive(obj_priv->obj);
  3414. }
  3415. /* Move all inactive buffers out of the GTT. */
  3416. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3417. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3418. if (ret) {
  3419. mutex_unlock(&dev->struct_mutex);
  3420. return ret;
  3421. }
  3422. i915_gem_cleanup_ringbuffer(dev);
  3423. mutex_unlock(&dev->struct_mutex);
  3424. return 0;
  3425. }
  3426. static int
  3427. i915_gem_init_hws(struct drm_device *dev)
  3428. {
  3429. drm_i915_private_t *dev_priv = dev->dev_private;
  3430. struct drm_gem_object *obj;
  3431. struct drm_i915_gem_object *obj_priv;
  3432. int ret;
  3433. /* If we need a physical address for the status page, it's already
  3434. * initialized at driver load time.
  3435. */
  3436. if (!I915_NEED_GFX_HWS(dev))
  3437. return 0;
  3438. obj = drm_gem_object_alloc(dev, 4096);
  3439. if (obj == NULL) {
  3440. DRM_ERROR("Failed to allocate status page\n");
  3441. return -ENOMEM;
  3442. }
  3443. obj_priv = obj->driver_private;
  3444. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3445. ret = i915_gem_object_pin(obj, 4096);
  3446. if (ret != 0) {
  3447. drm_gem_object_unreference(obj);
  3448. return ret;
  3449. }
  3450. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3451. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3452. if (dev_priv->hw_status_page == NULL) {
  3453. DRM_ERROR("Failed to map status page.\n");
  3454. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3455. i915_gem_object_unpin(obj);
  3456. drm_gem_object_unreference(obj);
  3457. return -EINVAL;
  3458. }
  3459. dev_priv->hws_obj = obj;
  3460. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3461. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3462. I915_READ(HWS_PGA); /* posting read */
  3463. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3464. return 0;
  3465. }
  3466. static void
  3467. i915_gem_cleanup_hws(struct drm_device *dev)
  3468. {
  3469. drm_i915_private_t *dev_priv = dev->dev_private;
  3470. struct drm_gem_object *obj;
  3471. struct drm_i915_gem_object *obj_priv;
  3472. if (dev_priv->hws_obj == NULL)
  3473. return;
  3474. obj = dev_priv->hws_obj;
  3475. obj_priv = obj->driver_private;
  3476. kunmap(obj_priv->pages[0]);
  3477. i915_gem_object_unpin(obj);
  3478. drm_gem_object_unreference(obj);
  3479. dev_priv->hws_obj = NULL;
  3480. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3481. dev_priv->hw_status_page = NULL;
  3482. /* Write high address into HWS_PGA when disabling. */
  3483. I915_WRITE(HWS_PGA, 0x1ffff000);
  3484. }
  3485. int
  3486. i915_gem_init_ringbuffer(struct drm_device *dev)
  3487. {
  3488. drm_i915_private_t *dev_priv = dev->dev_private;
  3489. struct drm_gem_object *obj;
  3490. struct drm_i915_gem_object *obj_priv;
  3491. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3492. int ret;
  3493. u32 head;
  3494. ret = i915_gem_init_hws(dev);
  3495. if (ret != 0)
  3496. return ret;
  3497. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3498. if (obj == NULL) {
  3499. DRM_ERROR("Failed to allocate ringbuffer\n");
  3500. i915_gem_cleanup_hws(dev);
  3501. return -ENOMEM;
  3502. }
  3503. obj_priv = obj->driver_private;
  3504. ret = i915_gem_object_pin(obj, 4096);
  3505. if (ret != 0) {
  3506. drm_gem_object_unreference(obj);
  3507. i915_gem_cleanup_hws(dev);
  3508. return ret;
  3509. }
  3510. /* Set up the kernel mapping for the ring. */
  3511. ring->Size = obj->size;
  3512. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3513. ring->map.size = obj->size;
  3514. ring->map.type = 0;
  3515. ring->map.flags = 0;
  3516. ring->map.mtrr = 0;
  3517. drm_core_ioremap_wc(&ring->map, dev);
  3518. if (ring->map.handle == NULL) {
  3519. DRM_ERROR("Failed to map ringbuffer.\n");
  3520. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3521. i915_gem_object_unpin(obj);
  3522. drm_gem_object_unreference(obj);
  3523. i915_gem_cleanup_hws(dev);
  3524. return -EINVAL;
  3525. }
  3526. ring->ring_obj = obj;
  3527. ring->virtual_start = ring->map.handle;
  3528. /* Stop the ring if it's running. */
  3529. I915_WRITE(PRB0_CTL, 0);
  3530. I915_WRITE(PRB0_TAIL, 0);
  3531. I915_WRITE(PRB0_HEAD, 0);
  3532. /* Initialize the ring. */
  3533. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3534. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3535. /* G45 ring initialization fails to reset head to zero */
  3536. if (head != 0) {
  3537. DRM_ERROR("Ring head not reset to zero "
  3538. "ctl %08x head %08x tail %08x start %08x\n",
  3539. I915_READ(PRB0_CTL),
  3540. I915_READ(PRB0_HEAD),
  3541. I915_READ(PRB0_TAIL),
  3542. I915_READ(PRB0_START));
  3543. I915_WRITE(PRB0_HEAD, 0);
  3544. DRM_ERROR("Ring head forced to zero "
  3545. "ctl %08x head %08x tail %08x start %08x\n",
  3546. I915_READ(PRB0_CTL),
  3547. I915_READ(PRB0_HEAD),
  3548. I915_READ(PRB0_TAIL),
  3549. I915_READ(PRB0_START));
  3550. }
  3551. I915_WRITE(PRB0_CTL,
  3552. ((obj->size - 4096) & RING_NR_PAGES) |
  3553. RING_NO_REPORT |
  3554. RING_VALID);
  3555. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3556. /* If the head is still not zero, the ring is dead */
  3557. if (head != 0) {
  3558. DRM_ERROR("Ring initialization failed "
  3559. "ctl %08x head %08x tail %08x start %08x\n",
  3560. I915_READ(PRB0_CTL),
  3561. I915_READ(PRB0_HEAD),
  3562. I915_READ(PRB0_TAIL),
  3563. I915_READ(PRB0_START));
  3564. return -EIO;
  3565. }
  3566. /* Update our cache of the ring state */
  3567. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3568. i915_kernel_lost_context(dev);
  3569. else {
  3570. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3571. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3572. ring->space = ring->head - (ring->tail + 8);
  3573. if (ring->space < 0)
  3574. ring->space += ring->Size;
  3575. }
  3576. return 0;
  3577. }
  3578. void
  3579. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3580. {
  3581. drm_i915_private_t *dev_priv = dev->dev_private;
  3582. if (dev_priv->ring.ring_obj == NULL)
  3583. return;
  3584. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3585. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3586. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3587. dev_priv->ring.ring_obj = NULL;
  3588. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3589. i915_gem_cleanup_hws(dev);
  3590. }
  3591. int
  3592. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3593. struct drm_file *file_priv)
  3594. {
  3595. drm_i915_private_t *dev_priv = dev->dev_private;
  3596. int ret;
  3597. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3598. return 0;
  3599. if (dev_priv->mm.wedged) {
  3600. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3601. dev_priv->mm.wedged = 0;
  3602. }
  3603. mutex_lock(&dev->struct_mutex);
  3604. dev_priv->mm.suspended = 0;
  3605. ret = i915_gem_init_ringbuffer(dev);
  3606. if (ret != 0) {
  3607. mutex_unlock(&dev->struct_mutex);
  3608. return ret;
  3609. }
  3610. spin_lock(&dev_priv->mm.active_list_lock);
  3611. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3612. spin_unlock(&dev_priv->mm.active_list_lock);
  3613. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3614. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3615. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3616. mutex_unlock(&dev->struct_mutex);
  3617. drm_irq_install(dev);
  3618. return 0;
  3619. }
  3620. int
  3621. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3622. struct drm_file *file_priv)
  3623. {
  3624. int ret;
  3625. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3626. return 0;
  3627. ret = i915_gem_idle(dev);
  3628. drm_irq_uninstall(dev);
  3629. return ret;
  3630. }
  3631. void
  3632. i915_gem_lastclose(struct drm_device *dev)
  3633. {
  3634. int ret;
  3635. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3636. return;
  3637. ret = i915_gem_idle(dev);
  3638. if (ret)
  3639. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3640. }
  3641. void
  3642. i915_gem_load(struct drm_device *dev)
  3643. {
  3644. int i;
  3645. drm_i915_private_t *dev_priv = dev->dev_private;
  3646. spin_lock_init(&dev_priv->mm.active_list_lock);
  3647. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3648. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3649. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3650. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3651. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3652. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3653. i915_gem_retire_work_handler);
  3654. dev_priv->mm.next_gem_seqno = 1;
  3655. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3656. dev_priv->fence_reg_start = 3;
  3657. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3658. dev_priv->num_fence_regs = 16;
  3659. else
  3660. dev_priv->num_fence_regs = 8;
  3661. /* Initialize fence registers to zero */
  3662. if (IS_I965G(dev)) {
  3663. for (i = 0; i < 16; i++)
  3664. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3665. } else {
  3666. for (i = 0; i < 8; i++)
  3667. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3668. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3669. for (i = 0; i < 8; i++)
  3670. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3671. }
  3672. i915_gem_detect_bit_6_swizzle(dev);
  3673. }
  3674. /*
  3675. * Create a physically contiguous memory object for this object
  3676. * e.g. for cursor + overlay regs
  3677. */
  3678. int i915_gem_init_phys_object(struct drm_device *dev,
  3679. int id, int size)
  3680. {
  3681. drm_i915_private_t *dev_priv = dev->dev_private;
  3682. struct drm_i915_gem_phys_object *phys_obj;
  3683. int ret;
  3684. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3685. return 0;
  3686. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3687. if (!phys_obj)
  3688. return -ENOMEM;
  3689. phys_obj->id = id;
  3690. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3691. if (!phys_obj->handle) {
  3692. ret = -ENOMEM;
  3693. goto kfree_obj;
  3694. }
  3695. #ifdef CONFIG_X86
  3696. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3697. #endif
  3698. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3699. return 0;
  3700. kfree_obj:
  3701. kfree(phys_obj);
  3702. return ret;
  3703. }
  3704. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3705. {
  3706. drm_i915_private_t *dev_priv = dev->dev_private;
  3707. struct drm_i915_gem_phys_object *phys_obj;
  3708. if (!dev_priv->mm.phys_objs[id - 1])
  3709. return;
  3710. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3711. if (phys_obj->cur_obj) {
  3712. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3713. }
  3714. #ifdef CONFIG_X86
  3715. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3716. #endif
  3717. drm_pci_free(dev, phys_obj->handle);
  3718. kfree(phys_obj);
  3719. dev_priv->mm.phys_objs[id - 1] = NULL;
  3720. }
  3721. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3722. {
  3723. int i;
  3724. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3725. i915_gem_free_phys_object(dev, i);
  3726. }
  3727. void i915_gem_detach_phys_object(struct drm_device *dev,
  3728. struct drm_gem_object *obj)
  3729. {
  3730. struct drm_i915_gem_object *obj_priv;
  3731. int i;
  3732. int ret;
  3733. int page_count;
  3734. obj_priv = obj->driver_private;
  3735. if (!obj_priv->phys_obj)
  3736. return;
  3737. ret = i915_gem_object_get_pages(obj);
  3738. if (ret)
  3739. goto out;
  3740. page_count = obj->size / PAGE_SIZE;
  3741. for (i = 0; i < page_count; i++) {
  3742. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3743. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3744. memcpy(dst, src, PAGE_SIZE);
  3745. kunmap_atomic(dst, KM_USER0);
  3746. }
  3747. drm_clflush_pages(obj_priv->pages, page_count);
  3748. drm_agp_chipset_flush(dev);
  3749. i915_gem_object_put_pages(obj);
  3750. out:
  3751. obj_priv->phys_obj->cur_obj = NULL;
  3752. obj_priv->phys_obj = NULL;
  3753. }
  3754. int
  3755. i915_gem_attach_phys_object(struct drm_device *dev,
  3756. struct drm_gem_object *obj, int id)
  3757. {
  3758. drm_i915_private_t *dev_priv = dev->dev_private;
  3759. struct drm_i915_gem_object *obj_priv;
  3760. int ret = 0;
  3761. int page_count;
  3762. int i;
  3763. if (id > I915_MAX_PHYS_OBJECT)
  3764. return -EINVAL;
  3765. obj_priv = obj->driver_private;
  3766. if (obj_priv->phys_obj) {
  3767. if (obj_priv->phys_obj->id == id)
  3768. return 0;
  3769. i915_gem_detach_phys_object(dev, obj);
  3770. }
  3771. /* create a new object */
  3772. if (!dev_priv->mm.phys_objs[id - 1]) {
  3773. ret = i915_gem_init_phys_object(dev, id,
  3774. obj->size);
  3775. if (ret) {
  3776. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3777. goto out;
  3778. }
  3779. }
  3780. /* bind to the object */
  3781. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3782. obj_priv->phys_obj->cur_obj = obj;
  3783. ret = i915_gem_object_get_pages(obj);
  3784. if (ret) {
  3785. DRM_ERROR("failed to get page list\n");
  3786. goto out;
  3787. }
  3788. page_count = obj->size / PAGE_SIZE;
  3789. for (i = 0; i < page_count; i++) {
  3790. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3791. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3792. memcpy(dst, src, PAGE_SIZE);
  3793. kunmap_atomic(src, KM_USER0);
  3794. }
  3795. i915_gem_object_put_pages(obj);
  3796. return 0;
  3797. out:
  3798. return ret;
  3799. }
  3800. static int
  3801. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3802. struct drm_i915_gem_pwrite *args,
  3803. struct drm_file *file_priv)
  3804. {
  3805. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3806. void *obj_addr;
  3807. int ret;
  3808. char __user *user_data;
  3809. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3810. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3811. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3812. ret = copy_from_user(obj_addr, user_data, args->size);
  3813. if (ret)
  3814. return -EFAULT;
  3815. drm_agp_chipset_flush(dev);
  3816. return 0;
  3817. }
  3818. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3819. {
  3820. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3821. /* Clean up our request list when the client is going away, so that
  3822. * later retire_requests won't dereference our soon-to-be-gone
  3823. * file_priv.
  3824. */
  3825. mutex_lock(&dev->struct_mutex);
  3826. while (!list_empty(&i915_file_priv->mm.request_list))
  3827. list_del_init(i915_file_priv->mm.request_list.next);
  3828. mutex_unlock(&dev->struct_mutex);
  3829. }