ordered-data.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/gfp.h>
  19. #include <linux/slab.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagevec.h>
  23. #include "ctree.h"
  24. #include "transaction.h"
  25. #include "btrfs_inode.h"
  26. #include "extent_io.h"
  27. static u64 entry_end(struct btrfs_ordered_extent *entry)
  28. {
  29. if (entry->file_offset + entry->len < entry->file_offset)
  30. return (u64)-1;
  31. return entry->file_offset + entry->len;
  32. }
  33. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  34. struct rb_node *node)
  35. {
  36. struct rb_node ** p = &root->rb_node;
  37. struct rb_node * parent = NULL;
  38. struct btrfs_ordered_extent *entry;
  39. while(*p) {
  40. parent = *p;
  41. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  42. if (file_offset < entry->file_offset)
  43. p = &(*p)->rb_left;
  44. else if (file_offset >= entry_end(entry))
  45. p = &(*p)->rb_right;
  46. else
  47. return parent;
  48. }
  49. rb_link_node(node, parent, p);
  50. rb_insert_color(node, root);
  51. return NULL;
  52. }
  53. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  54. struct rb_node **prev_ret)
  55. {
  56. struct rb_node * n = root->rb_node;
  57. struct rb_node *prev = NULL;
  58. struct rb_node *test;
  59. struct btrfs_ordered_extent *entry;
  60. struct btrfs_ordered_extent *prev_entry = NULL;
  61. while(n) {
  62. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  63. prev = n;
  64. prev_entry = entry;
  65. if (file_offset < entry->file_offset)
  66. n = n->rb_left;
  67. else if (file_offset >= entry_end(entry))
  68. n = n->rb_right;
  69. else
  70. return n;
  71. }
  72. if (!prev_ret)
  73. return NULL;
  74. while(prev && file_offset >= entry_end(prev_entry)) {
  75. test = rb_next(prev);
  76. if (!test)
  77. break;
  78. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  79. rb_node);
  80. if (file_offset < entry_end(prev_entry))
  81. break;
  82. prev = test;
  83. }
  84. if (prev)
  85. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  86. rb_node);
  87. while(prev && file_offset < entry_end(prev_entry)) {
  88. test = rb_prev(prev);
  89. if (!test)
  90. break;
  91. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  92. rb_node);
  93. prev = test;
  94. }
  95. *prev_ret = prev;
  96. return NULL;
  97. }
  98. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  99. {
  100. if (file_offset < entry->file_offset ||
  101. entry->file_offset + entry->len <= file_offset)
  102. return 0;
  103. return 1;
  104. }
  105. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  106. u64 file_offset)
  107. {
  108. struct rb_root *root = &tree->tree;
  109. struct rb_node *prev;
  110. struct rb_node *ret;
  111. struct btrfs_ordered_extent *entry;
  112. if (tree->last) {
  113. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  114. rb_node);
  115. if (offset_in_entry(entry, file_offset))
  116. return tree->last;
  117. }
  118. ret = __tree_search(root, file_offset, &prev);
  119. if (!ret)
  120. ret = prev;
  121. if (ret)
  122. tree->last = ret;
  123. return ret;
  124. }
  125. /* allocate and add a new ordered_extent into the per-inode tree.
  126. * file_offset is the logical offset in the file
  127. *
  128. * start is the disk block number of an extent already reserved in the
  129. * extent allocation tree
  130. *
  131. * len is the length of the extent
  132. *
  133. * This also sets the EXTENT_ORDERED bit on the range in the inode.
  134. *
  135. * The tree is given a single reference on the ordered extent that was
  136. * inserted.
  137. */
  138. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  139. u64 start, u64 len)
  140. {
  141. struct btrfs_ordered_inode_tree *tree;
  142. struct rb_node *node;
  143. struct btrfs_ordered_extent *entry;
  144. tree = &BTRFS_I(inode)->ordered_tree;
  145. entry = kzalloc(sizeof(*entry), GFP_NOFS);
  146. if (!entry)
  147. return -ENOMEM;
  148. mutex_lock(&tree->mutex);
  149. entry->file_offset = file_offset;
  150. entry->start = start;
  151. entry->len = len;
  152. entry->inode = inode;
  153. /* one ref for the tree */
  154. atomic_set(&entry->refs, 1);
  155. init_waitqueue_head(&entry->wait);
  156. INIT_LIST_HEAD(&entry->list);
  157. INIT_LIST_HEAD(&entry->root_extent_list);
  158. node = tree_insert(&tree->tree, file_offset,
  159. &entry->rb_node);
  160. if (node) {
  161. printk("warning dup entry from add_ordered_extent\n");
  162. BUG();
  163. }
  164. set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
  165. entry_end(entry) - 1, GFP_NOFS);
  166. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  167. list_add_tail(&entry->root_extent_list,
  168. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  169. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  170. mutex_unlock(&tree->mutex);
  171. BUG_ON(node);
  172. return 0;
  173. }
  174. /*
  175. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  176. * when an ordered extent is finished. If the list covers more than one
  177. * ordered extent, it is split across multiples.
  178. */
  179. int btrfs_add_ordered_sum(struct inode *inode,
  180. struct btrfs_ordered_extent *entry,
  181. struct btrfs_ordered_sum *sum)
  182. {
  183. struct btrfs_ordered_inode_tree *tree;
  184. tree = &BTRFS_I(inode)->ordered_tree;
  185. mutex_lock(&tree->mutex);
  186. list_add_tail(&sum->list, &entry->list);
  187. mutex_unlock(&tree->mutex);
  188. return 0;
  189. }
  190. /*
  191. * this is used to account for finished IO across a given range
  192. * of the file. The IO should not span ordered extents. If
  193. * a given ordered_extent is completely done, 1 is returned, otherwise
  194. * 0.
  195. *
  196. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  197. * to make sure this function only returns 1 once for a given ordered extent.
  198. */
  199. int btrfs_dec_test_ordered_pending(struct inode *inode,
  200. u64 file_offset, u64 io_size)
  201. {
  202. struct btrfs_ordered_inode_tree *tree;
  203. struct rb_node *node;
  204. struct btrfs_ordered_extent *entry;
  205. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  206. int ret;
  207. tree = &BTRFS_I(inode)->ordered_tree;
  208. mutex_lock(&tree->mutex);
  209. clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
  210. GFP_NOFS);
  211. node = tree_search(tree, file_offset);
  212. if (!node) {
  213. ret = 1;
  214. goto out;
  215. }
  216. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  217. if (!offset_in_entry(entry, file_offset)) {
  218. ret = 1;
  219. goto out;
  220. }
  221. ret = test_range_bit(io_tree, entry->file_offset,
  222. entry->file_offset + entry->len - 1,
  223. EXTENT_ORDERED, 0);
  224. if (ret == 0)
  225. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  226. out:
  227. mutex_unlock(&tree->mutex);
  228. return ret == 0;
  229. }
  230. /*
  231. * used to drop a reference on an ordered extent. This will free
  232. * the extent if the last reference is dropped
  233. */
  234. int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  235. {
  236. struct list_head *cur;
  237. struct btrfs_ordered_sum *sum;
  238. if (atomic_dec_and_test(&entry->refs)) {
  239. while(!list_empty(&entry->list)) {
  240. cur = entry->list.next;
  241. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  242. list_del(&sum->list);
  243. kfree(sum);
  244. }
  245. kfree(entry);
  246. }
  247. return 0;
  248. }
  249. /*
  250. * remove an ordered extent from the tree. No references are dropped
  251. * but, anyone waiting on this extent is woken up.
  252. */
  253. int btrfs_remove_ordered_extent(struct inode *inode,
  254. struct btrfs_ordered_extent *entry)
  255. {
  256. struct btrfs_ordered_inode_tree *tree;
  257. struct rb_node *node;
  258. tree = &BTRFS_I(inode)->ordered_tree;
  259. mutex_lock(&tree->mutex);
  260. node = &entry->rb_node;
  261. rb_erase(node, &tree->tree);
  262. tree->last = NULL;
  263. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  264. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  265. list_del_init(&entry->root_extent_list);
  266. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  267. mutex_unlock(&tree->mutex);
  268. wake_up(&entry->wait);
  269. return 0;
  270. }
  271. int btrfs_wait_ordered_extents(struct btrfs_root *root)
  272. {
  273. struct list_head splice;
  274. struct list_head *cur;
  275. struct btrfs_ordered_extent *ordered;
  276. struct inode *inode;
  277. INIT_LIST_HEAD(&splice);
  278. spin_lock(&root->fs_info->ordered_extent_lock);
  279. list_splice_init(&root->fs_info->ordered_extents, &splice);
  280. while(!list_empty(&splice)) {
  281. cur = splice.next;
  282. ordered = list_entry(cur, struct btrfs_ordered_extent,
  283. root_extent_list);
  284. list_del_init(&ordered->root_extent_list);
  285. atomic_inc(&ordered->refs);
  286. inode = ordered->inode;
  287. /*
  288. * the inode can't go away until all the pages are gone
  289. * and the pages won't go away while there is still
  290. * an ordered extent and the ordered extent won't go
  291. * away until it is off this list. So, we can safely
  292. * increment i_count here and call iput later
  293. */
  294. atomic_inc(&inode->i_count);
  295. spin_unlock(&root->fs_info->ordered_extent_lock);
  296. btrfs_start_ordered_extent(inode, ordered, 1);
  297. btrfs_put_ordered_extent(ordered);
  298. iput(inode);
  299. spin_lock(&root->fs_info->ordered_extent_lock);
  300. }
  301. spin_unlock(&root->fs_info->ordered_extent_lock);
  302. return 0;
  303. }
  304. /*
  305. * Used to start IO or wait for a given ordered extent to finish.
  306. *
  307. * If wait is one, this effectively waits on page writeback for all the pages
  308. * in the extent, and it waits on the io completion code to insert
  309. * metadata into the btree corresponding to the extent
  310. */
  311. void btrfs_start_ordered_extent(struct inode *inode,
  312. struct btrfs_ordered_extent *entry,
  313. int wait)
  314. {
  315. u64 start = entry->file_offset;
  316. u64 end = start + entry->len - 1;
  317. /*
  318. * pages in the range can be dirty, clean or writeback. We
  319. * start IO on any dirty ones so the wait doesn't stall waiting
  320. * for pdflush to find them
  321. */
  322. btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
  323. if (wait)
  324. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  325. &entry->flags));
  326. }
  327. /*
  328. * Used to wait on ordered extents across a large range of bytes.
  329. */
  330. void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  331. {
  332. u64 end;
  333. u64 orig_end;
  334. u64 wait_end;
  335. struct btrfs_ordered_extent *ordered;
  336. if (start + len < start) {
  337. orig_end = INT_LIMIT(loff_t);
  338. } else {
  339. orig_end = start + len - 1;
  340. if (orig_end > INT_LIMIT(loff_t))
  341. orig_end = INT_LIMIT(loff_t);
  342. }
  343. wait_end = orig_end;
  344. again:
  345. /* start IO across the range first to instantiate any delalloc
  346. * extents
  347. */
  348. btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
  349. btrfs_wait_on_page_writeback_range(inode->i_mapping,
  350. start >> PAGE_CACHE_SHIFT,
  351. orig_end >> PAGE_CACHE_SHIFT);
  352. end = orig_end;
  353. while(1) {
  354. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  355. if (!ordered) {
  356. break;
  357. }
  358. if (ordered->file_offset > orig_end) {
  359. btrfs_put_ordered_extent(ordered);
  360. break;
  361. }
  362. if (ordered->file_offset + ordered->len < start) {
  363. btrfs_put_ordered_extent(ordered);
  364. break;
  365. }
  366. btrfs_start_ordered_extent(inode, ordered, 1);
  367. end = ordered->file_offset;
  368. btrfs_put_ordered_extent(ordered);
  369. if (end == 0 || end == start)
  370. break;
  371. end--;
  372. }
  373. if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
  374. EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
  375. printk("inode %lu still ordered or delalloc after wait "
  376. "%llu %llu\n", inode->i_ino,
  377. (unsigned long long)start,
  378. (unsigned long long)orig_end);
  379. goto again;
  380. }
  381. }
  382. /*
  383. * find an ordered extent corresponding to file_offset. return NULL if
  384. * nothing is found, otherwise take a reference on the extent and return it
  385. */
  386. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  387. u64 file_offset)
  388. {
  389. struct btrfs_ordered_inode_tree *tree;
  390. struct rb_node *node;
  391. struct btrfs_ordered_extent *entry = NULL;
  392. tree = &BTRFS_I(inode)->ordered_tree;
  393. mutex_lock(&tree->mutex);
  394. node = tree_search(tree, file_offset);
  395. if (!node)
  396. goto out;
  397. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  398. if (!offset_in_entry(entry, file_offset))
  399. entry = NULL;
  400. if (entry)
  401. atomic_inc(&entry->refs);
  402. out:
  403. mutex_unlock(&tree->mutex);
  404. return entry;
  405. }
  406. /*
  407. * lookup and return any extent before 'file_offset'. NULL is returned
  408. * if none is found
  409. */
  410. struct btrfs_ordered_extent *
  411. btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
  412. {
  413. struct btrfs_ordered_inode_tree *tree;
  414. struct rb_node *node;
  415. struct btrfs_ordered_extent *entry = NULL;
  416. tree = &BTRFS_I(inode)->ordered_tree;
  417. mutex_lock(&tree->mutex);
  418. node = tree_search(tree, file_offset);
  419. if (!node)
  420. goto out;
  421. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  422. atomic_inc(&entry->refs);
  423. out:
  424. mutex_unlock(&tree->mutex);
  425. return entry;
  426. }
  427. /*
  428. * After an extent is done, call this to conditionally update the on disk
  429. * i_size. i_size is updated to cover any fully written part of the file.
  430. */
  431. int btrfs_ordered_update_i_size(struct inode *inode,
  432. struct btrfs_ordered_extent *ordered)
  433. {
  434. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  435. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  436. u64 disk_i_size;
  437. u64 new_i_size;
  438. u64 i_size_test;
  439. struct rb_node *node;
  440. struct btrfs_ordered_extent *test;
  441. mutex_lock(&tree->mutex);
  442. disk_i_size = BTRFS_I(inode)->disk_i_size;
  443. /*
  444. * if the disk i_size is already at the inode->i_size, or
  445. * this ordered extent is inside the disk i_size, we're done
  446. */
  447. if (disk_i_size >= inode->i_size ||
  448. ordered->file_offset + ordered->len <= disk_i_size) {
  449. goto out;
  450. }
  451. /*
  452. * we can't update the disk_isize if there are delalloc bytes
  453. * between disk_i_size and this ordered extent
  454. */
  455. if (test_range_bit(io_tree, disk_i_size,
  456. ordered->file_offset + ordered->len - 1,
  457. EXTENT_DELALLOC, 0)) {
  458. goto out;
  459. }
  460. /*
  461. * walk backward from this ordered extent to disk_i_size.
  462. * if we find an ordered extent then we can't update disk i_size
  463. * yet
  464. */
  465. node = &ordered->rb_node;
  466. while(1) {
  467. node = rb_prev(node);
  468. if (!node)
  469. break;
  470. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  471. if (test->file_offset + test->len <= disk_i_size)
  472. break;
  473. if (test->file_offset >= inode->i_size)
  474. break;
  475. if (test->file_offset >= disk_i_size)
  476. goto out;
  477. }
  478. new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
  479. /*
  480. * at this point, we know we can safely update i_size to at least
  481. * the offset from this ordered extent. But, we need to
  482. * walk forward and see if ios from higher up in the file have
  483. * finished.
  484. */
  485. node = rb_next(&ordered->rb_node);
  486. i_size_test = 0;
  487. if (node) {
  488. /*
  489. * do we have an area where IO might have finished
  490. * between our ordered extent and the next one.
  491. */
  492. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  493. if (test->file_offset > entry_end(ordered)) {
  494. i_size_test = test->file_offset - 1;
  495. }
  496. } else {
  497. i_size_test = i_size_read(inode);
  498. }
  499. /*
  500. * i_size_test is the end of a region after this ordered
  501. * extent where there are no ordered extents. As long as there
  502. * are no delalloc bytes in this area, it is safe to update
  503. * disk_i_size to the end of the region.
  504. */
  505. if (i_size_test > entry_end(ordered) &&
  506. !test_range_bit(io_tree, entry_end(ordered), i_size_test,
  507. EXTENT_DELALLOC, 0)) {
  508. new_i_size = min_t(u64, i_size_test, i_size_read(inode));
  509. }
  510. BTRFS_I(inode)->disk_i_size = new_i_size;
  511. out:
  512. mutex_unlock(&tree->mutex);
  513. return 0;
  514. }
  515. /*
  516. * search the ordered extents for one corresponding to 'offset' and
  517. * try to find a checksum. This is used because we allow pages to
  518. * be reclaimed before their checksum is actually put into the btree
  519. */
  520. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
  521. {
  522. struct btrfs_ordered_sum *ordered_sum;
  523. struct btrfs_sector_sum *sector_sums;
  524. struct btrfs_ordered_extent *ordered;
  525. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  526. struct list_head *cur;
  527. unsigned long num_sectors;
  528. unsigned long i;
  529. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  530. int ret = 1;
  531. ordered = btrfs_lookup_ordered_extent(inode, offset);
  532. if (!ordered)
  533. return 1;
  534. mutex_lock(&tree->mutex);
  535. list_for_each_prev(cur, &ordered->list) {
  536. ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
  537. if (offset >= ordered_sum->file_offset) {
  538. num_sectors = ordered_sum->len / sectorsize;
  539. sector_sums = ordered_sum->sums;
  540. for (i = 0; i < num_sectors; i++) {
  541. if (sector_sums[i].offset == offset) {
  542. *sum = sector_sums[i].sum;
  543. ret = 0;
  544. goto out;
  545. }
  546. }
  547. }
  548. }
  549. out:
  550. mutex_unlock(&tree->mutex);
  551. btrfs_put_ordered_extent(ordered);
  552. return ret;
  553. }
  554. /**
  555. * taken from mm/filemap.c because it isn't exported
  556. *
  557. * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  558. * @mapping: address space structure to write
  559. * @start: offset in bytes where the range starts
  560. * @end: offset in bytes where the range ends (inclusive)
  561. * @sync_mode: enable synchronous operation
  562. *
  563. * Start writeback against all of a mapping's dirty pages that lie
  564. * within the byte offsets <start, end> inclusive.
  565. *
  566. * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  567. * opposed to a regular memory cleansing writeback. The difference between
  568. * these two operations is that if a dirty page/buffer is encountered, it must
  569. * be waited upon, and not just skipped over.
  570. */
  571. int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
  572. loff_t end, int sync_mode)
  573. {
  574. struct writeback_control wbc = {
  575. .sync_mode = sync_mode,
  576. .nr_to_write = mapping->nrpages * 2,
  577. .range_start = start,
  578. .range_end = end,
  579. .for_writepages = 1,
  580. };
  581. return btrfs_writepages(mapping, &wbc);
  582. }
  583. /**
  584. * taken from mm/filemap.c because it isn't exported
  585. *
  586. * wait_on_page_writeback_range - wait for writeback to complete
  587. * @mapping: target address_space
  588. * @start: beginning page index
  589. * @end: ending page index
  590. *
  591. * Wait for writeback to complete against pages indexed by start->end
  592. * inclusive
  593. */
  594. int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
  595. pgoff_t start, pgoff_t end)
  596. {
  597. struct pagevec pvec;
  598. int nr_pages;
  599. int ret = 0;
  600. pgoff_t index;
  601. if (end < start)
  602. return 0;
  603. pagevec_init(&pvec, 0);
  604. index = start;
  605. while ((index <= end) &&
  606. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  607. PAGECACHE_TAG_WRITEBACK,
  608. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  609. unsigned i;
  610. for (i = 0; i < nr_pages; i++) {
  611. struct page *page = pvec.pages[i];
  612. /* until radix tree lookup accepts end_index */
  613. if (page->index > end)
  614. continue;
  615. wait_on_page_writeback(page);
  616. if (PageError(page))
  617. ret = -EIO;
  618. }
  619. pagevec_release(&pvec);
  620. cond_resched();
  621. }
  622. /* Check for outstanding write errors */
  623. if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  624. ret = -ENOSPC;
  625. if (test_and_clear_bit(AS_EIO, &mapping->flags))
  626. ret = -EIO;
  627. return ret;
  628. }