sata_mv.c 113 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Originally written by Brett Russ.
  9. * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10. *
  11. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; version 2 of the License.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. /*
  28. * sata_mv TODO list:
  29. *
  30. * --> Develop a low-power-consumption strategy, and implement it.
  31. *
  32. * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  33. *
  34. * --> [Experiment, Marvell value added] Is it possible to use target
  35. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  36. * creating LibATA target mode support would be very interesting.
  37. *
  38. * Target mode, for those without docs, is the ability to directly
  39. * connect two SATA ports.
  40. */
  41. /*
  42. * 80x1-B2 errata PCI#11:
  43. *
  44. * Users of the 6041/6081 Rev.B2 chips (current is C0)
  45. * should be careful to insert those cards only onto PCI-X bus #0,
  46. * and only in device slots 0..7, not higher. The chips may not
  47. * work correctly otherwise (note: this is a pretty rare condition).
  48. */
  49. #include <linux/kernel.h>
  50. #include <linux/module.h>
  51. #include <linux/pci.h>
  52. #include <linux/init.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/delay.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/dmapool.h>
  57. #include <linux/dma-mapping.h>
  58. #include <linux/device.h>
  59. #include <linux/platform_device.h>
  60. #include <linux/ata_platform.h>
  61. #include <linux/mbus.h>
  62. #include <linux/bitops.h>
  63. #include <scsi/scsi_host.h>
  64. #include <scsi/scsi_cmnd.h>
  65. #include <scsi/scsi_device.h>
  66. #include <linux/libata.h>
  67. #define DRV_NAME "sata_mv"
  68. #define DRV_VERSION "1.27"
  69. /*
  70. * module options
  71. */
  72. static int msi;
  73. #ifdef CONFIG_PCI
  74. module_param(msi, int, S_IRUGO);
  75. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  76. #endif
  77. static int irq_coalescing_io_count;
  78. module_param(irq_coalescing_io_count, int, S_IRUGO);
  79. MODULE_PARM_DESC(irq_coalescing_io_count,
  80. "IRQ coalescing I/O count threshold (0..255)");
  81. static int irq_coalescing_usecs;
  82. module_param(irq_coalescing_usecs, int, S_IRUGO);
  83. MODULE_PARM_DESC(irq_coalescing_usecs,
  84. "IRQ coalescing time threshold in usecs");
  85. enum {
  86. /* BAR's are enumerated in terms of pci_resource_start() terms */
  87. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  88. MV_IO_BAR = 2, /* offset 0x18: IO space */
  89. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  90. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  91. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  92. /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  93. COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
  94. MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  95. MAX_COAL_IO_COUNT = 255, /* completed I/O count */
  96. MV_PCI_REG_BASE = 0,
  97. /*
  98. * Per-chip ("all ports") interrupt coalescing feature.
  99. * This is only for GEN_II / GEN_IIE hardware.
  100. *
  101. * Coalescing defers the interrupt until either the IO_THRESHOLD
  102. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  103. */
  104. MV_COAL_REG_BASE = 0x18000,
  105. MV_IRQ_COAL_CAUSE = (MV_COAL_REG_BASE + 0x08),
  106. ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
  107. MV_IRQ_COAL_IO_THRESHOLD = (MV_COAL_REG_BASE + 0xcc),
  108. MV_IRQ_COAL_TIME_THRESHOLD = (MV_COAL_REG_BASE + 0xd0),
  109. /*
  110. * Registers for the (unused here) transaction coalescing feature:
  111. */
  112. MV_TRAN_COAL_CAUSE_LO = (MV_COAL_REG_BASE + 0x88),
  113. MV_TRAN_COAL_CAUSE_HI = (MV_COAL_REG_BASE + 0x8c),
  114. MV_SATAHC0_REG_BASE = 0x20000,
  115. MV_FLASH_CTL_OFS = 0x1046c,
  116. MV_GPIO_PORT_CTL_OFS = 0x104f0,
  117. MV_RESET_CFG_OFS = 0x180d8,
  118. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  119. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  120. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  121. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  122. MV_MAX_Q_DEPTH = 32,
  123. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  124. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  125. * CRPB needs alignment on a 256B boundary. Size == 256B
  126. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  127. */
  128. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  129. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  130. MV_MAX_SG_CT = 256,
  131. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  132. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  133. MV_PORT_HC_SHIFT = 2,
  134. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  135. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  136. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  137. /* Host Flags */
  138. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  139. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  140. ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
  141. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  142. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  143. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  144. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  145. CRQB_FLAG_READ = (1 << 0),
  146. CRQB_TAG_SHIFT = 1,
  147. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  148. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  149. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  150. CRQB_CMD_ADDR_SHIFT = 8,
  151. CRQB_CMD_CS = (0x2 << 11),
  152. CRQB_CMD_LAST = (1 << 15),
  153. CRPB_FLAG_STATUS_SHIFT = 8,
  154. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  155. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  156. EPRD_FLAG_END_OF_TBL = (1 << 31),
  157. /* PCI interface registers */
  158. PCI_COMMAND_OFS = 0xc00,
  159. PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
  160. PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  161. PCI_MAIN_CMD_STS_OFS = 0xd30,
  162. STOP_PCI_MASTER = (1 << 2),
  163. PCI_MASTER_EMPTY = (1 << 3),
  164. GLOB_SFT_RST = (1 << 4),
  165. MV_PCI_MODE_OFS = 0xd00,
  166. MV_PCI_MODE_MASK = 0x30,
  167. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  168. MV_PCI_DISC_TIMER = 0xd04,
  169. MV_PCI_MSI_TRIGGER = 0xc38,
  170. MV_PCI_SERR_MASK = 0xc28,
  171. MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
  172. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  173. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  174. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  175. MV_PCI_ERR_COMMAND = 0x1d50,
  176. PCI_IRQ_CAUSE_OFS = 0x1d58,
  177. PCI_IRQ_MASK_OFS = 0x1d5c,
  178. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  179. PCIE_IRQ_CAUSE_OFS = 0x1900,
  180. PCIE_IRQ_MASK_OFS = 0x1910,
  181. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  182. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  183. PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  184. PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  185. SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
  186. SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
  187. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  188. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  189. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  190. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  191. DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
  192. DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
  193. PCI_ERR = (1 << 18),
  194. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  195. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  196. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  197. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  198. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  199. GPIO_INT = (1 << 22),
  200. SELF_INT = (1 << 23),
  201. TWSI_INT = (1 << 24),
  202. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  203. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  204. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  205. /* SATAHC registers */
  206. HC_CFG_OFS = 0,
  207. HC_IRQ_CAUSE_OFS = 0x14,
  208. DMA_IRQ = (1 << 0), /* shift by port # */
  209. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  210. DEV_IRQ = (1 << 8), /* shift by port # */
  211. /*
  212. * Per-HC (Host-Controller) interrupt coalescing feature.
  213. * This is present on all chip generations.
  214. *
  215. * Coalescing defers the interrupt until either the IO_THRESHOLD
  216. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  217. */
  218. HC_IRQ_COAL_IO_THRESHOLD_OFS = 0x000c,
  219. HC_IRQ_COAL_TIME_THRESHOLD_OFS = 0x0010,
  220. SOC_LED_CTRL_OFS = 0x2c,
  221. SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
  222. SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
  223. /* with dev activity LED */
  224. /* Shadow block registers */
  225. SHD_BLK_OFS = 0x100,
  226. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  227. /* SATA registers */
  228. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  229. SATA_ACTIVE_OFS = 0x350,
  230. SATA_FIS_IRQ_CAUSE_OFS = 0x364,
  231. SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
  232. LTMODE_OFS = 0x30c,
  233. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  234. PHY_MODE3 = 0x310,
  235. PHY_MODE4 = 0x314,
  236. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  237. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  238. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  239. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  240. PHY_MODE2 = 0x330,
  241. SATA_IFCTL_OFS = 0x344,
  242. SATA_TESTCTL_OFS = 0x348,
  243. SATA_IFSTAT_OFS = 0x34c,
  244. VENDOR_UNIQUE_FIS_OFS = 0x35c,
  245. FISCFG_OFS = 0x360,
  246. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  247. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  248. MV5_PHY_MODE = 0x74,
  249. MV5_LTMODE_OFS = 0x30,
  250. MV5_PHY_CTL_OFS = 0x0C,
  251. SATA_INTERFACE_CFG_OFS = 0x050,
  252. MV_M2_PREAMP_MASK = 0x7e0,
  253. /* Port registers */
  254. EDMA_CFG_OFS = 0,
  255. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  256. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  257. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  258. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  259. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  260. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  261. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  262. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  263. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  264. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  265. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  266. EDMA_ERR_DEV = (1 << 2), /* device error */
  267. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  268. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  269. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  270. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  271. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  272. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  273. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  274. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  275. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  276. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  277. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  278. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  279. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  280. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  281. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  282. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  283. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  284. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  285. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  286. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  287. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  288. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  289. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  290. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  291. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  292. EDMA_ERR_OVERRUN_5 = (1 << 5),
  293. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  294. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  295. EDMA_ERR_LNK_CTRL_RX_1 |
  296. EDMA_ERR_LNK_CTRL_RX_3 |
  297. EDMA_ERR_LNK_CTRL_TX,
  298. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  299. EDMA_ERR_PRD_PAR |
  300. EDMA_ERR_DEV_DCON |
  301. EDMA_ERR_DEV_CON |
  302. EDMA_ERR_SERR |
  303. EDMA_ERR_SELF_DIS |
  304. EDMA_ERR_CRQB_PAR |
  305. EDMA_ERR_CRPB_PAR |
  306. EDMA_ERR_INTRL_PAR |
  307. EDMA_ERR_IORDY |
  308. EDMA_ERR_LNK_CTRL_RX_2 |
  309. EDMA_ERR_LNK_DATA_RX |
  310. EDMA_ERR_LNK_DATA_TX |
  311. EDMA_ERR_TRANS_PROTO,
  312. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  313. EDMA_ERR_PRD_PAR |
  314. EDMA_ERR_DEV_DCON |
  315. EDMA_ERR_DEV_CON |
  316. EDMA_ERR_OVERRUN_5 |
  317. EDMA_ERR_UNDERRUN_5 |
  318. EDMA_ERR_SELF_DIS_5 |
  319. EDMA_ERR_CRQB_PAR |
  320. EDMA_ERR_CRPB_PAR |
  321. EDMA_ERR_INTRL_PAR |
  322. EDMA_ERR_IORDY,
  323. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  324. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  325. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  326. EDMA_REQ_Q_PTR_SHIFT = 5,
  327. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  328. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  329. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  330. EDMA_RSP_Q_PTR_SHIFT = 3,
  331. EDMA_CMD_OFS = 0x28, /* EDMA command register */
  332. EDMA_EN = (1 << 0), /* enable EDMA */
  333. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  334. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  335. EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
  336. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  337. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  338. EDMA_IORDY_TMOUT_OFS = 0x34,
  339. EDMA_ARB_CFG_OFS = 0x38,
  340. EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
  341. EDMA_UNKNOWN_RSVD_OFS = 0x6C, /* GenIIe unknown/reserved */
  342. BMDMA_CMD_OFS = 0x224, /* bmdma command register */
  343. BMDMA_STATUS_OFS = 0x228, /* bmdma status register */
  344. BMDMA_PRD_LOW_OFS = 0x22c, /* bmdma PRD addr 31:0 */
  345. BMDMA_PRD_HIGH_OFS = 0x230, /* bmdma PRD addr 63:32 */
  346. /* Host private flags (hp_flags) */
  347. MV_HP_FLAG_MSI = (1 << 0),
  348. MV_HP_ERRATA_50XXB0 = (1 << 1),
  349. MV_HP_ERRATA_50XXB2 = (1 << 2),
  350. MV_HP_ERRATA_60X1B2 = (1 << 3),
  351. MV_HP_ERRATA_60X1C0 = (1 << 4),
  352. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  353. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  354. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  355. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  356. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  357. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  358. MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
  359. /* Port private flags (pp_flags) */
  360. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  361. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  362. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  363. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  364. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  365. };
  366. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  367. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  368. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  369. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  370. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  371. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  372. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  373. enum {
  374. /* DMA boundary 0xffff is required by the s/g splitting
  375. * we need on /length/ in mv_fill-sg().
  376. */
  377. MV_DMA_BOUNDARY = 0xffffU,
  378. /* mask of register bits containing lower 32 bits
  379. * of EDMA request queue DMA address
  380. */
  381. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  382. /* ditto, for response queue */
  383. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  384. };
  385. enum chip_type {
  386. chip_504x,
  387. chip_508x,
  388. chip_5080,
  389. chip_604x,
  390. chip_608x,
  391. chip_6042,
  392. chip_7042,
  393. chip_soc,
  394. };
  395. /* Command ReQuest Block: 32B */
  396. struct mv_crqb {
  397. __le32 sg_addr;
  398. __le32 sg_addr_hi;
  399. __le16 ctrl_flags;
  400. __le16 ata_cmd[11];
  401. };
  402. struct mv_crqb_iie {
  403. __le32 addr;
  404. __le32 addr_hi;
  405. __le32 flags;
  406. __le32 len;
  407. __le32 ata_cmd[4];
  408. };
  409. /* Command ResPonse Block: 8B */
  410. struct mv_crpb {
  411. __le16 id;
  412. __le16 flags;
  413. __le32 tmstmp;
  414. };
  415. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  416. struct mv_sg {
  417. __le32 addr;
  418. __le32 flags_size;
  419. __le32 addr_hi;
  420. __le32 reserved;
  421. };
  422. /*
  423. * We keep a local cache of a few frequently accessed port
  424. * registers here, to avoid having to read them (very slow)
  425. * when switching between EDMA and non-EDMA modes.
  426. */
  427. struct mv_cached_regs {
  428. u32 fiscfg;
  429. u32 ltmode;
  430. u32 haltcond;
  431. u32 unknown_rsvd;
  432. };
  433. struct mv_port_priv {
  434. struct mv_crqb *crqb;
  435. dma_addr_t crqb_dma;
  436. struct mv_crpb *crpb;
  437. dma_addr_t crpb_dma;
  438. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  439. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  440. unsigned int req_idx;
  441. unsigned int resp_idx;
  442. u32 pp_flags;
  443. struct mv_cached_regs cached;
  444. unsigned int delayed_eh_pmp_map;
  445. };
  446. struct mv_port_signal {
  447. u32 amps;
  448. u32 pre;
  449. };
  450. struct mv_host_priv {
  451. u32 hp_flags;
  452. u32 main_irq_mask;
  453. struct mv_port_signal signal[8];
  454. const struct mv_hw_ops *ops;
  455. int n_ports;
  456. void __iomem *base;
  457. void __iomem *main_irq_cause_addr;
  458. void __iomem *main_irq_mask_addr;
  459. u32 irq_cause_ofs;
  460. u32 irq_mask_ofs;
  461. u32 unmask_all_irqs;
  462. /*
  463. * These consistent DMA memory pools give us guaranteed
  464. * alignment for hardware-accessed data structures,
  465. * and less memory waste in accomplishing the alignment.
  466. */
  467. struct dma_pool *crqb_pool;
  468. struct dma_pool *crpb_pool;
  469. struct dma_pool *sg_tbl_pool;
  470. };
  471. struct mv_hw_ops {
  472. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  473. unsigned int port);
  474. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  475. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  476. void __iomem *mmio);
  477. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  478. unsigned int n_hc);
  479. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  480. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  481. };
  482. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  483. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  484. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  485. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  486. static int mv_port_start(struct ata_port *ap);
  487. static void mv_port_stop(struct ata_port *ap);
  488. static int mv_qc_defer(struct ata_queued_cmd *qc);
  489. static void mv_qc_prep(struct ata_queued_cmd *qc);
  490. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  491. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  492. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  493. unsigned long deadline);
  494. static void mv_eh_freeze(struct ata_port *ap);
  495. static void mv_eh_thaw(struct ata_port *ap);
  496. static void mv6_dev_config(struct ata_device *dev);
  497. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  498. unsigned int port);
  499. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  500. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  501. void __iomem *mmio);
  502. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  503. unsigned int n_hc);
  504. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  505. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  506. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  507. unsigned int port);
  508. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  509. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  510. void __iomem *mmio);
  511. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  512. unsigned int n_hc);
  513. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  514. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  515. void __iomem *mmio);
  516. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  517. void __iomem *mmio);
  518. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  519. void __iomem *mmio, unsigned int n_hc);
  520. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  521. void __iomem *mmio);
  522. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  523. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  524. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  525. unsigned int port_no);
  526. static int mv_stop_edma(struct ata_port *ap);
  527. static int mv_stop_edma_engine(void __iomem *port_mmio);
  528. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  529. static void mv_pmp_select(struct ata_port *ap, int pmp);
  530. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  531. unsigned long deadline);
  532. static int mv_softreset(struct ata_link *link, unsigned int *class,
  533. unsigned long deadline);
  534. static void mv_pmp_error_handler(struct ata_port *ap);
  535. static void mv_process_crpb_entries(struct ata_port *ap,
  536. struct mv_port_priv *pp);
  537. static void mv_sff_irq_clear(struct ata_port *ap);
  538. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  539. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  540. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  541. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  542. static u8 mv_bmdma_status(struct ata_port *ap);
  543. static u8 mv_sff_check_status(struct ata_port *ap);
  544. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  545. * because we have to allow room for worst case splitting of
  546. * PRDs for 64K boundaries in mv_fill_sg().
  547. */
  548. static struct scsi_host_template mv5_sht = {
  549. ATA_BASE_SHT(DRV_NAME),
  550. .sg_tablesize = MV_MAX_SG_CT / 2,
  551. .dma_boundary = MV_DMA_BOUNDARY,
  552. };
  553. static struct scsi_host_template mv6_sht = {
  554. ATA_NCQ_SHT(DRV_NAME),
  555. .can_queue = MV_MAX_Q_DEPTH - 1,
  556. .sg_tablesize = MV_MAX_SG_CT / 2,
  557. .dma_boundary = MV_DMA_BOUNDARY,
  558. };
  559. static struct ata_port_operations mv5_ops = {
  560. .inherits = &ata_sff_port_ops,
  561. .lost_interrupt = ATA_OP_NULL,
  562. .qc_defer = mv_qc_defer,
  563. .qc_prep = mv_qc_prep,
  564. .qc_issue = mv_qc_issue,
  565. .freeze = mv_eh_freeze,
  566. .thaw = mv_eh_thaw,
  567. .hardreset = mv_hardreset,
  568. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  569. .post_internal_cmd = ATA_OP_NULL,
  570. .scr_read = mv5_scr_read,
  571. .scr_write = mv5_scr_write,
  572. .port_start = mv_port_start,
  573. .port_stop = mv_port_stop,
  574. };
  575. static struct ata_port_operations mv6_ops = {
  576. .inherits = &mv5_ops,
  577. .dev_config = mv6_dev_config,
  578. .scr_read = mv_scr_read,
  579. .scr_write = mv_scr_write,
  580. .pmp_hardreset = mv_pmp_hardreset,
  581. .pmp_softreset = mv_softreset,
  582. .softreset = mv_softreset,
  583. .error_handler = mv_pmp_error_handler,
  584. .sff_check_status = mv_sff_check_status,
  585. .sff_irq_clear = mv_sff_irq_clear,
  586. .check_atapi_dma = mv_check_atapi_dma,
  587. .bmdma_setup = mv_bmdma_setup,
  588. .bmdma_start = mv_bmdma_start,
  589. .bmdma_stop = mv_bmdma_stop,
  590. .bmdma_status = mv_bmdma_status,
  591. };
  592. static struct ata_port_operations mv_iie_ops = {
  593. .inherits = &mv6_ops,
  594. .dev_config = ATA_OP_NULL,
  595. .qc_prep = mv_qc_prep_iie,
  596. };
  597. static const struct ata_port_info mv_port_info[] = {
  598. { /* chip_504x */
  599. .flags = MV_GEN_I_FLAGS,
  600. .pio_mask = ATA_PIO4,
  601. .udma_mask = ATA_UDMA6,
  602. .port_ops = &mv5_ops,
  603. },
  604. { /* chip_508x */
  605. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  606. .pio_mask = ATA_PIO4,
  607. .udma_mask = ATA_UDMA6,
  608. .port_ops = &mv5_ops,
  609. },
  610. { /* chip_5080 */
  611. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  612. .pio_mask = ATA_PIO4,
  613. .udma_mask = ATA_UDMA6,
  614. .port_ops = &mv5_ops,
  615. },
  616. { /* chip_604x */
  617. .flags = MV_GEN_II_FLAGS,
  618. .pio_mask = ATA_PIO4,
  619. .udma_mask = ATA_UDMA6,
  620. .port_ops = &mv6_ops,
  621. },
  622. { /* chip_608x */
  623. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  624. .pio_mask = ATA_PIO4,
  625. .udma_mask = ATA_UDMA6,
  626. .port_ops = &mv6_ops,
  627. },
  628. { /* chip_6042 */
  629. .flags = MV_GEN_IIE_FLAGS,
  630. .pio_mask = ATA_PIO4,
  631. .udma_mask = ATA_UDMA6,
  632. .port_ops = &mv_iie_ops,
  633. },
  634. { /* chip_7042 */
  635. .flags = MV_GEN_IIE_FLAGS,
  636. .pio_mask = ATA_PIO4,
  637. .udma_mask = ATA_UDMA6,
  638. .port_ops = &mv_iie_ops,
  639. },
  640. { /* chip_soc */
  641. .flags = MV_GEN_IIE_FLAGS,
  642. .pio_mask = ATA_PIO4,
  643. .udma_mask = ATA_UDMA6,
  644. .port_ops = &mv_iie_ops,
  645. },
  646. };
  647. static const struct pci_device_id mv_pci_tbl[] = {
  648. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  649. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  650. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  651. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  652. /* RocketRAID 1720/174x have different identifiers */
  653. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  654. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  655. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  656. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  657. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  658. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  659. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  660. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  661. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  662. /* Adaptec 1430SA */
  663. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  664. /* Marvell 7042 support */
  665. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  666. /* Highpoint RocketRAID PCIe series */
  667. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  668. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  669. { } /* terminate list */
  670. };
  671. static const struct mv_hw_ops mv5xxx_ops = {
  672. .phy_errata = mv5_phy_errata,
  673. .enable_leds = mv5_enable_leds,
  674. .read_preamp = mv5_read_preamp,
  675. .reset_hc = mv5_reset_hc,
  676. .reset_flash = mv5_reset_flash,
  677. .reset_bus = mv5_reset_bus,
  678. };
  679. static const struct mv_hw_ops mv6xxx_ops = {
  680. .phy_errata = mv6_phy_errata,
  681. .enable_leds = mv6_enable_leds,
  682. .read_preamp = mv6_read_preamp,
  683. .reset_hc = mv6_reset_hc,
  684. .reset_flash = mv6_reset_flash,
  685. .reset_bus = mv_reset_pci_bus,
  686. };
  687. static const struct mv_hw_ops mv_soc_ops = {
  688. .phy_errata = mv6_phy_errata,
  689. .enable_leds = mv_soc_enable_leds,
  690. .read_preamp = mv_soc_read_preamp,
  691. .reset_hc = mv_soc_reset_hc,
  692. .reset_flash = mv_soc_reset_flash,
  693. .reset_bus = mv_soc_reset_bus,
  694. };
  695. /*
  696. * Functions
  697. */
  698. static inline void writelfl(unsigned long data, void __iomem *addr)
  699. {
  700. writel(data, addr);
  701. (void) readl(addr); /* flush to avoid PCI posted write */
  702. }
  703. static inline unsigned int mv_hc_from_port(unsigned int port)
  704. {
  705. return port >> MV_PORT_HC_SHIFT;
  706. }
  707. static inline unsigned int mv_hardport_from_port(unsigned int port)
  708. {
  709. return port & MV_PORT_MASK;
  710. }
  711. /*
  712. * Consolidate some rather tricky bit shift calculations.
  713. * This is hot-path stuff, so not a function.
  714. * Simple code, with two return values, so macro rather than inline.
  715. *
  716. * port is the sole input, in range 0..7.
  717. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  718. * hardport is the other output, in range 0..3.
  719. *
  720. * Note that port and hardport may be the same variable in some cases.
  721. */
  722. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  723. { \
  724. shift = mv_hc_from_port(port) * HC_SHIFT; \
  725. hardport = mv_hardport_from_port(port); \
  726. shift += hardport * 2; \
  727. }
  728. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  729. {
  730. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  731. }
  732. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  733. unsigned int port)
  734. {
  735. return mv_hc_base(base, mv_hc_from_port(port));
  736. }
  737. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  738. {
  739. return mv_hc_base_from_port(base, port) +
  740. MV_SATAHC_ARBTR_REG_SZ +
  741. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  742. }
  743. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  744. {
  745. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  746. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  747. return hc_mmio + ofs;
  748. }
  749. static inline void __iomem *mv_host_base(struct ata_host *host)
  750. {
  751. struct mv_host_priv *hpriv = host->private_data;
  752. return hpriv->base;
  753. }
  754. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  755. {
  756. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  757. }
  758. static inline int mv_get_hc_count(unsigned long port_flags)
  759. {
  760. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  761. }
  762. /**
  763. * mv_save_cached_regs - (re-)initialize cached port registers
  764. * @ap: the port whose registers we are caching
  765. *
  766. * Initialize the local cache of port registers,
  767. * so that reading them over and over again can
  768. * be avoided on the hotter paths of this driver.
  769. * This saves a few microseconds each time we switch
  770. * to/from EDMA mode to perform (eg.) a drive cache flush.
  771. */
  772. static void mv_save_cached_regs(struct ata_port *ap)
  773. {
  774. void __iomem *port_mmio = mv_ap_base(ap);
  775. struct mv_port_priv *pp = ap->private_data;
  776. pp->cached.fiscfg = readl(port_mmio + FISCFG_OFS);
  777. pp->cached.ltmode = readl(port_mmio + LTMODE_OFS);
  778. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
  779. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD_OFS);
  780. }
  781. /**
  782. * mv_write_cached_reg - write to a cached port register
  783. * @addr: hardware address of the register
  784. * @old: pointer to cached value of the register
  785. * @new: new value for the register
  786. *
  787. * Write a new value to a cached register,
  788. * but only if the value is different from before.
  789. */
  790. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  791. {
  792. if (new != *old) {
  793. *old = new;
  794. writel(new, addr);
  795. }
  796. }
  797. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  798. struct mv_host_priv *hpriv,
  799. struct mv_port_priv *pp)
  800. {
  801. u32 index;
  802. /*
  803. * initialize request queue
  804. */
  805. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  806. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  807. WARN_ON(pp->crqb_dma & 0x3ff);
  808. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  809. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  810. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  811. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  812. /*
  813. * initialize response queue
  814. */
  815. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  816. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  817. WARN_ON(pp->crpb_dma & 0xff);
  818. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  819. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  820. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  821. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  822. }
  823. static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
  824. {
  825. /*
  826. * When writing to the main_irq_mask in hardware,
  827. * we must ensure exclusivity between the interrupt coalescing bits
  828. * and the corresponding individual port DONE_IRQ bits.
  829. *
  830. * Note that this register is really an "IRQ enable" register,
  831. * not an "IRQ mask" register as Marvell's naming might suggest.
  832. */
  833. if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
  834. mask &= ~DONE_IRQ_0_3;
  835. if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
  836. mask &= ~DONE_IRQ_4_7;
  837. writelfl(mask, hpriv->main_irq_mask_addr);
  838. }
  839. static void mv_set_main_irq_mask(struct ata_host *host,
  840. u32 disable_bits, u32 enable_bits)
  841. {
  842. struct mv_host_priv *hpriv = host->private_data;
  843. u32 old_mask, new_mask;
  844. old_mask = hpriv->main_irq_mask;
  845. new_mask = (old_mask & ~disable_bits) | enable_bits;
  846. if (new_mask != old_mask) {
  847. hpriv->main_irq_mask = new_mask;
  848. mv_write_main_irq_mask(new_mask, hpriv);
  849. }
  850. }
  851. static void mv_enable_port_irqs(struct ata_port *ap,
  852. unsigned int port_bits)
  853. {
  854. unsigned int shift, hardport, port = ap->port_no;
  855. u32 disable_bits, enable_bits;
  856. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  857. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  858. enable_bits = port_bits << shift;
  859. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  860. }
  861. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  862. void __iomem *port_mmio,
  863. unsigned int port_irqs)
  864. {
  865. struct mv_host_priv *hpriv = ap->host->private_data;
  866. int hardport = mv_hardport_from_port(ap->port_no);
  867. void __iomem *hc_mmio = mv_hc_base_from_port(
  868. mv_host_base(ap->host), ap->port_no);
  869. u32 hc_irq_cause;
  870. /* clear EDMA event indicators, if any */
  871. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  872. /* clear pending irq events */
  873. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  874. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  875. /* clear FIS IRQ Cause */
  876. if (IS_GEN_IIE(hpriv))
  877. writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  878. mv_enable_port_irqs(ap, port_irqs);
  879. }
  880. static void mv_set_irq_coalescing(struct ata_host *host,
  881. unsigned int count, unsigned int usecs)
  882. {
  883. struct mv_host_priv *hpriv = host->private_data;
  884. void __iomem *mmio = hpriv->base, *hc_mmio;
  885. u32 coal_enable = 0;
  886. unsigned long flags;
  887. unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
  888. const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  889. ALL_PORTS_COAL_DONE;
  890. /* Disable IRQ coalescing if either threshold is zero */
  891. if (!usecs || !count) {
  892. clks = count = 0;
  893. } else {
  894. /* Respect maximum limits of the hardware */
  895. clks = usecs * COAL_CLOCKS_PER_USEC;
  896. if (clks > MAX_COAL_TIME_THRESHOLD)
  897. clks = MAX_COAL_TIME_THRESHOLD;
  898. if (count > MAX_COAL_IO_COUNT)
  899. count = MAX_COAL_IO_COUNT;
  900. }
  901. spin_lock_irqsave(&host->lock, flags);
  902. mv_set_main_irq_mask(host, coal_disable, 0);
  903. if (is_dual_hc && !IS_GEN_I(hpriv)) {
  904. /*
  905. * GEN_II/GEN_IIE with dual host controllers:
  906. * one set of global thresholds for the entire chip.
  907. */
  908. writel(clks, mmio + MV_IRQ_COAL_TIME_THRESHOLD);
  909. writel(count, mmio + MV_IRQ_COAL_IO_THRESHOLD);
  910. /* clear leftover coal IRQ bit */
  911. writel(~ALL_PORTS_COAL_IRQ, mmio + MV_IRQ_COAL_CAUSE);
  912. if (count)
  913. coal_enable = ALL_PORTS_COAL_DONE;
  914. clks = count = 0; /* force clearing of regular regs below */
  915. }
  916. /*
  917. * All chips: independent thresholds for each HC on the chip.
  918. */
  919. hc_mmio = mv_hc_base_from_port(mmio, 0);
  920. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD_OFS);
  921. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD_OFS);
  922. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE_OFS);
  923. if (count)
  924. coal_enable |= PORTS_0_3_COAL_DONE;
  925. if (is_dual_hc) {
  926. hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
  927. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD_OFS);
  928. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD_OFS);
  929. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE_OFS);
  930. if (count)
  931. coal_enable |= PORTS_4_7_COAL_DONE;
  932. }
  933. mv_set_main_irq_mask(host, 0, coal_enable);
  934. spin_unlock_irqrestore(&host->lock, flags);
  935. }
  936. /**
  937. * mv_start_edma - Enable eDMA engine
  938. * @base: port base address
  939. * @pp: port private data
  940. *
  941. * Verify the local cache of the eDMA state is accurate with a
  942. * WARN_ON.
  943. *
  944. * LOCKING:
  945. * Inherited from caller.
  946. */
  947. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  948. struct mv_port_priv *pp, u8 protocol)
  949. {
  950. int want_ncq = (protocol == ATA_PROT_NCQ);
  951. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  952. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  953. if (want_ncq != using_ncq)
  954. mv_stop_edma(ap);
  955. }
  956. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  957. struct mv_host_priv *hpriv = ap->host->private_data;
  958. mv_edma_cfg(ap, want_ncq, 1);
  959. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  960. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  961. writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
  962. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  963. }
  964. }
  965. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  966. {
  967. void __iomem *port_mmio = mv_ap_base(ap);
  968. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  969. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  970. int i;
  971. /*
  972. * Wait for the EDMA engine to finish transactions in progress.
  973. * No idea what a good "timeout" value might be, but measurements
  974. * indicate that it often requires hundreds of microseconds
  975. * with two drives in-use. So we use the 15msec value above
  976. * as a rough guess at what even more drives might require.
  977. */
  978. for (i = 0; i < timeout; ++i) {
  979. u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
  980. if ((edma_stat & empty_idle) == empty_idle)
  981. break;
  982. udelay(per_loop);
  983. }
  984. /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
  985. }
  986. /**
  987. * mv_stop_edma_engine - Disable eDMA engine
  988. * @port_mmio: io base address
  989. *
  990. * LOCKING:
  991. * Inherited from caller.
  992. */
  993. static int mv_stop_edma_engine(void __iomem *port_mmio)
  994. {
  995. int i;
  996. /* Disable eDMA. The disable bit auto clears. */
  997. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  998. /* Wait for the chip to confirm eDMA is off. */
  999. for (i = 10000; i > 0; i--) {
  1000. u32 reg = readl(port_mmio + EDMA_CMD_OFS);
  1001. if (!(reg & EDMA_EN))
  1002. return 0;
  1003. udelay(10);
  1004. }
  1005. return -EIO;
  1006. }
  1007. static int mv_stop_edma(struct ata_port *ap)
  1008. {
  1009. void __iomem *port_mmio = mv_ap_base(ap);
  1010. struct mv_port_priv *pp = ap->private_data;
  1011. int err = 0;
  1012. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1013. return 0;
  1014. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1015. mv_wait_for_edma_empty_idle(ap);
  1016. if (mv_stop_edma_engine(port_mmio)) {
  1017. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  1018. err = -EIO;
  1019. }
  1020. mv_edma_cfg(ap, 0, 0);
  1021. return err;
  1022. }
  1023. #ifdef ATA_DEBUG
  1024. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  1025. {
  1026. int b, w;
  1027. for (b = 0; b < bytes; ) {
  1028. DPRINTK("%p: ", start + b);
  1029. for (w = 0; b < bytes && w < 4; w++) {
  1030. printk("%08x ", readl(start + b));
  1031. b += sizeof(u32);
  1032. }
  1033. printk("\n");
  1034. }
  1035. }
  1036. #endif
  1037. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  1038. {
  1039. #ifdef ATA_DEBUG
  1040. int b, w;
  1041. u32 dw;
  1042. for (b = 0; b < bytes; ) {
  1043. DPRINTK("%02x: ", b);
  1044. for (w = 0; b < bytes && w < 4; w++) {
  1045. (void) pci_read_config_dword(pdev, b, &dw);
  1046. printk("%08x ", dw);
  1047. b += sizeof(u32);
  1048. }
  1049. printk("\n");
  1050. }
  1051. #endif
  1052. }
  1053. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  1054. struct pci_dev *pdev)
  1055. {
  1056. #ifdef ATA_DEBUG
  1057. void __iomem *hc_base = mv_hc_base(mmio_base,
  1058. port >> MV_PORT_HC_SHIFT);
  1059. void __iomem *port_base;
  1060. int start_port, num_ports, p, start_hc, num_hcs, hc;
  1061. if (0 > port) {
  1062. start_hc = start_port = 0;
  1063. num_ports = 8; /* shld be benign for 4 port devs */
  1064. num_hcs = 2;
  1065. } else {
  1066. start_hc = port >> MV_PORT_HC_SHIFT;
  1067. start_port = port;
  1068. num_ports = num_hcs = 1;
  1069. }
  1070. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  1071. num_ports > 1 ? num_ports - 1 : start_port);
  1072. if (NULL != pdev) {
  1073. DPRINTK("PCI config space regs:\n");
  1074. mv_dump_pci_cfg(pdev, 0x68);
  1075. }
  1076. DPRINTK("PCI regs:\n");
  1077. mv_dump_mem(mmio_base+0xc00, 0x3c);
  1078. mv_dump_mem(mmio_base+0xd00, 0x34);
  1079. mv_dump_mem(mmio_base+0xf00, 0x4);
  1080. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  1081. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  1082. hc_base = mv_hc_base(mmio_base, hc);
  1083. DPRINTK("HC regs (HC %i):\n", hc);
  1084. mv_dump_mem(hc_base, 0x1c);
  1085. }
  1086. for (p = start_port; p < start_port + num_ports; p++) {
  1087. port_base = mv_port_base(mmio_base, p);
  1088. DPRINTK("EDMA regs (port %i):\n", p);
  1089. mv_dump_mem(port_base, 0x54);
  1090. DPRINTK("SATA regs (port %i):\n", p);
  1091. mv_dump_mem(port_base+0x300, 0x60);
  1092. }
  1093. #endif
  1094. }
  1095. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  1096. {
  1097. unsigned int ofs;
  1098. switch (sc_reg_in) {
  1099. case SCR_STATUS:
  1100. case SCR_CONTROL:
  1101. case SCR_ERROR:
  1102. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  1103. break;
  1104. case SCR_ACTIVE:
  1105. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  1106. break;
  1107. default:
  1108. ofs = 0xffffffffU;
  1109. break;
  1110. }
  1111. return ofs;
  1112. }
  1113. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1114. {
  1115. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1116. if (ofs != 0xffffffffU) {
  1117. *val = readl(mv_ap_base(link->ap) + ofs);
  1118. return 0;
  1119. } else
  1120. return -EINVAL;
  1121. }
  1122. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1123. {
  1124. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1125. if (ofs != 0xffffffffU) {
  1126. writelfl(val, mv_ap_base(link->ap) + ofs);
  1127. return 0;
  1128. } else
  1129. return -EINVAL;
  1130. }
  1131. static void mv6_dev_config(struct ata_device *adev)
  1132. {
  1133. /*
  1134. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1135. *
  1136. * Gen-II does not support NCQ over a port multiplier
  1137. * (no FIS-based switching).
  1138. */
  1139. if (adev->flags & ATA_DFLAG_NCQ) {
  1140. if (sata_pmp_attached(adev->link->ap)) {
  1141. adev->flags &= ~ATA_DFLAG_NCQ;
  1142. ata_dev_printk(adev, KERN_INFO,
  1143. "NCQ disabled for command-based switching\n");
  1144. }
  1145. }
  1146. }
  1147. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1148. {
  1149. struct ata_link *link = qc->dev->link;
  1150. struct ata_port *ap = link->ap;
  1151. struct mv_port_priv *pp = ap->private_data;
  1152. /*
  1153. * Don't allow new commands if we're in a delayed EH state
  1154. * for NCQ and/or FIS-based switching.
  1155. */
  1156. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1157. return ATA_DEFER_PORT;
  1158. /*
  1159. * If the port is completely idle, then allow the new qc.
  1160. */
  1161. if (ap->nr_active_links == 0)
  1162. return 0;
  1163. /*
  1164. * The port is operating in host queuing mode (EDMA) with NCQ
  1165. * enabled, allow multiple NCQ commands. EDMA also allows
  1166. * queueing multiple DMA commands but libata core currently
  1167. * doesn't allow it.
  1168. */
  1169. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1170. (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
  1171. return 0;
  1172. return ATA_DEFER_PORT;
  1173. }
  1174. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1175. {
  1176. struct mv_port_priv *pp = ap->private_data;
  1177. void __iomem *port_mmio;
  1178. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1179. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1180. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1181. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1182. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1183. if (want_fbs) {
  1184. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1185. ltmode = *old_ltmode | LTMODE_BIT8;
  1186. if (want_ncq)
  1187. haltcond &= ~EDMA_ERR_DEV;
  1188. else
  1189. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1190. } else {
  1191. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1192. }
  1193. port_mmio = mv_ap_base(ap);
  1194. mv_write_cached_reg(port_mmio + FISCFG_OFS, old_fiscfg, fiscfg);
  1195. mv_write_cached_reg(port_mmio + LTMODE_OFS, old_ltmode, ltmode);
  1196. mv_write_cached_reg(port_mmio + EDMA_HALTCOND_OFS, old_haltcond, haltcond);
  1197. }
  1198. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1199. {
  1200. struct mv_host_priv *hpriv = ap->host->private_data;
  1201. u32 old, new;
  1202. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1203. old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1204. if (want_ncq)
  1205. new = old | (1 << 22);
  1206. else
  1207. new = old & ~(1 << 22);
  1208. if (new != old)
  1209. writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1210. }
  1211. /**
  1212. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1213. * @ap: Port being initialized
  1214. *
  1215. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1216. *
  1217. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1218. * of basic DMA on the GEN_IIE versions of the chips.
  1219. *
  1220. * This bit survives EDMA resets, and must be set for basic DMA
  1221. * to function, and should be cleared when EDMA is active.
  1222. */
  1223. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1224. {
  1225. struct mv_port_priv *pp = ap->private_data;
  1226. u32 new, *old = &pp->cached.unknown_rsvd;
  1227. if (enable_bmdma)
  1228. new = *old | 1;
  1229. else
  1230. new = *old & ~1;
  1231. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD_OFS, old, new);
  1232. }
  1233. /*
  1234. * SOC chips have an issue whereby the HDD LEDs don't always blink
  1235. * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
  1236. * of the SOC takes care of it, generating a steady blink rate when
  1237. * any drive on the chip is active.
  1238. *
  1239. * Unfortunately, the blink mode is a global hardware setting for the SOC,
  1240. * so we must use it whenever at least one port on the SOC has NCQ enabled.
  1241. *
  1242. * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
  1243. * LED operation works then, and provides better (more accurate) feedback.
  1244. *
  1245. * Note that this code assumes that an SOC never has more than one HC onboard.
  1246. */
  1247. static void mv_soc_led_blink_enable(struct ata_port *ap)
  1248. {
  1249. struct ata_host *host = ap->host;
  1250. struct mv_host_priv *hpriv = host->private_data;
  1251. void __iomem *hc_mmio;
  1252. u32 led_ctrl;
  1253. if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
  1254. return;
  1255. hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
  1256. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1257. led_ctrl = readl(hc_mmio + SOC_LED_CTRL_OFS);
  1258. writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL_OFS);
  1259. }
  1260. static void mv_soc_led_blink_disable(struct ata_port *ap)
  1261. {
  1262. struct ata_host *host = ap->host;
  1263. struct mv_host_priv *hpriv = host->private_data;
  1264. void __iomem *hc_mmio;
  1265. u32 led_ctrl;
  1266. unsigned int port;
  1267. if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
  1268. return;
  1269. /* disable led-blink only if no ports are using NCQ */
  1270. for (port = 0; port < hpriv->n_ports; port++) {
  1271. struct ata_port *this_ap = host->ports[port];
  1272. struct mv_port_priv *pp = this_ap->private_data;
  1273. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1274. return;
  1275. }
  1276. hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
  1277. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1278. led_ctrl = readl(hc_mmio + SOC_LED_CTRL_OFS);
  1279. writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL_OFS);
  1280. }
  1281. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1282. {
  1283. u32 cfg;
  1284. struct mv_port_priv *pp = ap->private_data;
  1285. struct mv_host_priv *hpriv = ap->host->private_data;
  1286. void __iomem *port_mmio = mv_ap_base(ap);
  1287. /* set up non-NCQ EDMA configuration */
  1288. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1289. pp->pp_flags &=
  1290. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1291. if (IS_GEN_I(hpriv))
  1292. cfg |= (1 << 8); /* enab config burst size mask */
  1293. else if (IS_GEN_II(hpriv)) {
  1294. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1295. mv_60x1_errata_sata25(ap, want_ncq);
  1296. } else if (IS_GEN_IIE(hpriv)) {
  1297. int want_fbs = sata_pmp_attached(ap);
  1298. /*
  1299. * Possible future enhancement:
  1300. *
  1301. * The chip can use FBS with non-NCQ, if we allow it,
  1302. * But first we need to have the error handling in place
  1303. * for this mode (datasheet section 7.3.15.4.2.3).
  1304. * So disallow non-NCQ FBS for now.
  1305. */
  1306. want_fbs &= want_ncq;
  1307. mv_config_fbs(ap, want_ncq, want_fbs);
  1308. if (want_fbs) {
  1309. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1310. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1311. }
  1312. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1313. if (want_edma) {
  1314. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1315. if (!IS_SOC(hpriv))
  1316. cfg |= (1 << 18); /* enab early completion */
  1317. }
  1318. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1319. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1320. mv_bmdma_enable_iie(ap, !want_edma);
  1321. if (IS_SOC(hpriv)) {
  1322. if (want_ncq)
  1323. mv_soc_led_blink_enable(ap);
  1324. else
  1325. mv_soc_led_blink_disable(ap);
  1326. }
  1327. }
  1328. if (want_ncq) {
  1329. cfg |= EDMA_CFG_NCQ;
  1330. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1331. }
  1332. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  1333. }
  1334. static void mv_port_free_dma_mem(struct ata_port *ap)
  1335. {
  1336. struct mv_host_priv *hpriv = ap->host->private_data;
  1337. struct mv_port_priv *pp = ap->private_data;
  1338. int tag;
  1339. if (pp->crqb) {
  1340. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1341. pp->crqb = NULL;
  1342. }
  1343. if (pp->crpb) {
  1344. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1345. pp->crpb = NULL;
  1346. }
  1347. /*
  1348. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1349. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1350. */
  1351. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1352. if (pp->sg_tbl[tag]) {
  1353. if (tag == 0 || !IS_GEN_I(hpriv))
  1354. dma_pool_free(hpriv->sg_tbl_pool,
  1355. pp->sg_tbl[tag],
  1356. pp->sg_tbl_dma[tag]);
  1357. pp->sg_tbl[tag] = NULL;
  1358. }
  1359. }
  1360. }
  1361. /**
  1362. * mv_port_start - Port specific init/start routine.
  1363. * @ap: ATA channel to manipulate
  1364. *
  1365. * Allocate and point to DMA memory, init port private memory,
  1366. * zero indices.
  1367. *
  1368. * LOCKING:
  1369. * Inherited from caller.
  1370. */
  1371. static int mv_port_start(struct ata_port *ap)
  1372. {
  1373. struct device *dev = ap->host->dev;
  1374. struct mv_host_priv *hpriv = ap->host->private_data;
  1375. struct mv_port_priv *pp;
  1376. unsigned long flags;
  1377. int tag;
  1378. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1379. if (!pp)
  1380. return -ENOMEM;
  1381. ap->private_data = pp;
  1382. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1383. if (!pp->crqb)
  1384. return -ENOMEM;
  1385. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1386. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1387. if (!pp->crpb)
  1388. goto out_port_free_dma_mem;
  1389. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1390. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1391. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1392. ap->flags |= ATA_FLAG_AN;
  1393. /*
  1394. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1395. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1396. */
  1397. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1398. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1399. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1400. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1401. if (!pp->sg_tbl[tag])
  1402. goto out_port_free_dma_mem;
  1403. } else {
  1404. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1405. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1406. }
  1407. }
  1408. spin_lock_irqsave(ap->lock, flags);
  1409. mv_save_cached_regs(ap);
  1410. mv_edma_cfg(ap, 0, 0);
  1411. spin_unlock_irqrestore(ap->lock, flags);
  1412. return 0;
  1413. out_port_free_dma_mem:
  1414. mv_port_free_dma_mem(ap);
  1415. return -ENOMEM;
  1416. }
  1417. /**
  1418. * mv_port_stop - Port specific cleanup/stop routine.
  1419. * @ap: ATA channel to manipulate
  1420. *
  1421. * Stop DMA, cleanup port memory.
  1422. *
  1423. * LOCKING:
  1424. * This routine uses the host lock to protect the DMA stop.
  1425. */
  1426. static void mv_port_stop(struct ata_port *ap)
  1427. {
  1428. unsigned long flags;
  1429. spin_lock_irqsave(ap->lock, flags);
  1430. mv_stop_edma(ap);
  1431. mv_enable_port_irqs(ap, 0);
  1432. spin_unlock_irqrestore(ap->lock, flags);
  1433. mv_port_free_dma_mem(ap);
  1434. }
  1435. /**
  1436. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1437. * @qc: queued command whose SG list to source from
  1438. *
  1439. * Populate the SG list and mark the last entry.
  1440. *
  1441. * LOCKING:
  1442. * Inherited from caller.
  1443. */
  1444. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1445. {
  1446. struct mv_port_priv *pp = qc->ap->private_data;
  1447. struct scatterlist *sg;
  1448. struct mv_sg *mv_sg, *last_sg = NULL;
  1449. unsigned int si;
  1450. mv_sg = pp->sg_tbl[qc->tag];
  1451. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1452. dma_addr_t addr = sg_dma_address(sg);
  1453. u32 sg_len = sg_dma_len(sg);
  1454. while (sg_len) {
  1455. u32 offset = addr & 0xffff;
  1456. u32 len = sg_len;
  1457. if (offset + len > 0x10000)
  1458. len = 0x10000 - offset;
  1459. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1460. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1461. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1462. mv_sg->reserved = 0;
  1463. sg_len -= len;
  1464. addr += len;
  1465. last_sg = mv_sg;
  1466. mv_sg++;
  1467. }
  1468. }
  1469. if (likely(last_sg))
  1470. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1471. mb(); /* ensure data structure is visible to the chipset */
  1472. }
  1473. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1474. {
  1475. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1476. (last ? CRQB_CMD_LAST : 0);
  1477. *cmdw = cpu_to_le16(tmp);
  1478. }
  1479. /**
  1480. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1481. * @ap: Port associated with this ATA transaction.
  1482. *
  1483. * We need this only for ATAPI bmdma transactions,
  1484. * as otherwise we experience spurious interrupts
  1485. * after libata-sff handles the bmdma interrupts.
  1486. */
  1487. static void mv_sff_irq_clear(struct ata_port *ap)
  1488. {
  1489. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1490. }
  1491. /**
  1492. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1493. * @qc: queued command to check for chipset/DMA compatibility.
  1494. *
  1495. * The bmdma engines cannot handle speculative data sizes
  1496. * (bytecount under/over flow). So only allow DMA for
  1497. * data transfer commands with known data sizes.
  1498. *
  1499. * LOCKING:
  1500. * Inherited from caller.
  1501. */
  1502. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1503. {
  1504. struct scsi_cmnd *scmd = qc->scsicmd;
  1505. if (scmd) {
  1506. switch (scmd->cmnd[0]) {
  1507. case READ_6:
  1508. case READ_10:
  1509. case READ_12:
  1510. case WRITE_6:
  1511. case WRITE_10:
  1512. case WRITE_12:
  1513. case GPCMD_READ_CD:
  1514. case GPCMD_SEND_DVD_STRUCTURE:
  1515. case GPCMD_SEND_CUE_SHEET:
  1516. return 0; /* DMA is safe */
  1517. }
  1518. }
  1519. return -EOPNOTSUPP; /* use PIO instead */
  1520. }
  1521. /**
  1522. * mv_bmdma_setup - Set up BMDMA transaction
  1523. * @qc: queued command to prepare DMA for.
  1524. *
  1525. * LOCKING:
  1526. * Inherited from caller.
  1527. */
  1528. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1529. {
  1530. struct ata_port *ap = qc->ap;
  1531. void __iomem *port_mmio = mv_ap_base(ap);
  1532. struct mv_port_priv *pp = ap->private_data;
  1533. mv_fill_sg(qc);
  1534. /* clear all DMA cmd bits */
  1535. writel(0, port_mmio + BMDMA_CMD_OFS);
  1536. /* load PRD table addr. */
  1537. writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
  1538. port_mmio + BMDMA_PRD_HIGH_OFS);
  1539. writelfl(pp->sg_tbl_dma[qc->tag],
  1540. port_mmio + BMDMA_PRD_LOW_OFS);
  1541. /* issue r/w command */
  1542. ap->ops->sff_exec_command(ap, &qc->tf);
  1543. }
  1544. /**
  1545. * mv_bmdma_start - Start a BMDMA transaction
  1546. * @qc: queued command to start DMA on.
  1547. *
  1548. * LOCKING:
  1549. * Inherited from caller.
  1550. */
  1551. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1552. {
  1553. struct ata_port *ap = qc->ap;
  1554. void __iomem *port_mmio = mv_ap_base(ap);
  1555. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1556. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1557. /* start host DMA transaction */
  1558. writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
  1559. }
  1560. /**
  1561. * mv_bmdma_stop - Stop BMDMA transfer
  1562. * @qc: queued command to stop DMA on.
  1563. *
  1564. * Clears the ATA_DMA_START flag in the bmdma control register
  1565. *
  1566. * LOCKING:
  1567. * Inherited from caller.
  1568. */
  1569. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1570. {
  1571. struct ata_port *ap = qc->ap;
  1572. void __iomem *port_mmio = mv_ap_base(ap);
  1573. u32 cmd;
  1574. /* clear start/stop bit */
  1575. cmd = readl(port_mmio + BMDMA_CMD_OFS);
  1576. cmd &= ~ATA_DMA_START;
  1577. writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
  1578. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1579. ata_sff_dma_pause(ap);
  1580. }
  1581. /**
  1582. * mv_bmdma_status - Read BMDMA status
  1583. * @ap: port for which to retrieve DMA status.
  1584. *
  1585. * Read and return equivalent of the sff BMDMA status register.
  1586. *
  1587. * LOCKING:
  1588. * Inherited from caller.
  1589. */
  1590. static u8 mv_bmdma_status(struct ata_port *ap)
  1591. {
  1592. void __iomem *port_mmio = mv_ap_base(ap);
  1593. u32 reg, status;
  1594. /*
  1595. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1596. * and the ATA_DMA_INTR bit doesn't exist.
  1597. */
  1598. reg = readl(port_mmio + BMDMA_STATUS_OFS);
  1599. if (reg & ATA_DMA_ACTIVE)
  1600. status = ATA_DMA_ACTIVE;
  1601. else
  1602. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1603. return status;
  1604. }
  1605. /**
  1606. * mv_qc_prep - Host specific command preparation.
  1607. * @qc: queued command to prepare
  1608. *
  1609. * This routine simply redirects to the general purpose routine
  1610. * if command is not DMA. Else, it handles prep of the CRQB
  1611. * (command request block), does some sanity checking, and calls
  1612. * the SG load routine.
  1613. *
  1614. * LOCKING:
  1615. * Inherited from caller.
  1616. */
  1617. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1618. {
  1619. struct ata_port *ap = qc->ap;
  1620. struct mv_port_priv *pp = ap->private_data;
  1621. __le16 *cw;
  1622. struct ata_taskfile *tf;
  1623. u16 flags = 0;
  1624. unsigned in_index;
  1625. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1626. (qc->tf.protocol != ATA_PROT_NCQ))
  1627. return;
  1628. /* Fill in command request block
  1629. */
  1630. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1631. flags |= CRQB_FLAG_READ;
  1632. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1633. flags |= qc->tag << CRQB_TAG_SHIFT;
  1634. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1635. /* get current queue index from software */
  1636. in_index = pp->req_idx;
  1637. pp->crqb[in_index].sg_addr =
  1638. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1639. pp->crqb[in_index].sg_addr_hi =
  1640. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1641. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1642. cw = &pp->crqb[in_index].ata_cmd[0];
  1643. tf = &qc->tf;
  1644. /* Sadly, the CRQB cannot accomodate all registers--there are
  1645. * only 11 bytes...so we must pick and choose required
  1646. * registers based on the command. So, we drop feature and
  1647. * hob_feature for [RW] DMA commands, but they are needed for
  1648. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1649. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1650. */
  1651. switch (tf->command) {
  1652. case ATA_CMD_READ:
  1653. case ATA_CMD_READ_EXT:
  1654. case ATA_CMD_WRITE:
  1655. case ATA_CMD_WRITE_EXT:
  1656. case ATA_CMD_WRITE_FUA_EXT:
  1657. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1658. break;
  1659. case ATA_CMD_FPDMA_READ:
  1660. case ATA_CMD_FPDMA_WRITE:
  1661. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1662. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1663. break;
  1664. default:
  1665. /* The only other commands EDMA supports in non-queued and
  1666. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1667. * of which are defined/used by Linux. If we get here, this
  1668. * driver needs work.
  1669. *
  1670. * FIXME: modify libata to give qc_prep a return value and
  1671. * return error here.
  1672. */
  1673. BUG_ON(tf->command);
  1674. break;
  1675. }
  1676. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1677. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1678. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1679. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1680. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1681. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1682. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1683. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1684. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1685. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1686. return;
  1687. mv_fill_sg(qc);
  1688. }
  1689. /**
  1690. * mv_qc_prep_iie - Host specific command preparation.
  1691. * @qc: queued command to prepare
  1692. *
  1693. * This routine simply redirects to the general purpose routine
  1694. * if command is not DMA. Else, it handles prep of the CRQB
  1695. * (command request block), does some sanity checking, and calls
  1696. * the SG load routine.
  1697. *
  1698. * LOCKING:
  1699. * Inherited from caller.
  1700. */
  1701. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1702. {
  1703. struct ata_port *ap = qc->ap;
  1704. struct mv_port_priv *pp = ap->private_data;
  1705. struct mv_crqb_iie *crqb;
  1706. struct ata_taskfile *tf;
  1707. unsigned in_index;
  1708. u32 flags = 0;
  1709. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1710. (qc->tf.protocol != ATA_PROT_NCQ))
  1711. return;
  1712. /* Fill in Gen IIE command request block */
  1713. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1714. flags |= CRQB_FLAG_READ;
  1715. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1716. flags |= qc->tag << CRQB_TAG_SHIFT;
  1717. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1718. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1719. /* get current queue index from software */
  1720. in_index = pp->req_idx;
  1721. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1722. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1723. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1724. crqb->flags = cpu_to_le32(flags);
  1725. tf = &qc->tf;
  1726. crqb->ata_cmd[0] = cpu_to_le32(
  1727. (tf->command << 16) |
  1728. (tf->feature << 24)
  1729. );
  1730. crqb->ata_cmd[1] = cpu_to_le32(
  1731. (tf->lbal << 0) |
  1732. (tf->lbam << 8) |
  1733. (tf->lbah << 16) |
  1734. (tf->device << 24)
  1735. );
  1736. crqb->ata_cmd[2] = cpu_to_le32(
  1737. (tf->hob_lbal << 0) |
  1738. (tf->hob_lbam << 8) |
  1739. (tf->hob_lbah << 16) |
  1740. (tf->hob_feature << 24)
  1741. );
  1742. crqb->ata_cmd[3] = cpu_to_le32(
  1743. (tf->nsect << 0) |
  1744. (tf->hob_nsect << 8)
  1745. );
  1746. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1747. return;
  1748. mv_fill_sg(qc);
  1749. }
  1750. /**
  1751. * mv_sff_check_status - fetch device status, if valid
  1752. * @ap: ATA port to fetch status from
  1753. *
  1754. * When using command issue via mv_qc_issue_fis(),
  1755. * the initial ATA_BUSY state does not show up in the
  1756. * ATA status (shadow) register. This can confuse libata!
  1757. *
  1758. * So we have a hook here to fake ATA_BUSY for that situation,
  1759. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1760. *
  1761. * The rest of the time, it simply returns the ATA status register.
  1762. */
  1763. static u8 mv_sff_check_status(struct ata_port *ap)
  1764. {
  1765. u8 stat = ioread8(ap->ioaddr.status_addr);
  1766. struct mv_port_priv *pp = ap->private_data;
  1767. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1768. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1769. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1770. else
  1771. stat = ATA_BUSY;
  1772. }
  1773. return stat;
  1774. }
  1775. /**
  1776. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1777. * @fis: fis to be sent
  1778. * @nwords: number of 32-bit words in the fis
  1779. */
  1780. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1781. {
  1782. void __iomem *port_mmio = mv_ap_base(ap);
  1783. u32 ifctl, old_ifctl, ifstat;
  1784. int i, timeout = 200, final_word = nwords - 1;
  1785. /* Initiate FIS transmission mode */
  1786. old_ifctl = readl(port_mmio + SATA_IFCTL_OFS);
  1787. ifctl = 0x100 | (old_ifctl & 0xf);
  1788. writelfl(ifctl, port_mmio + SATA_IFCTL_OFS);
  1789. /* Send all words of the FIS except for the final word */
  1790. for (i = 0; i < final_word; ++i)
  1791. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS_OFS);
  1792. /* Flag end-of-transmission, and then send the final word */
  1793. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL_OFS);
  1794. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS_OFS);
  1795. /*
  1796. * Wait for FIS transmission to complete.
  1797. * This typically takes just a single iteration.
  1798. */
  1799. do {
  1800. ifstat = readl(port_mmio + SATA_IFSTAT_OFS);
  1801. } while (!(ifstat & 0x1000) && --timeout);
  1802. /* Restore original port configuration */
  1803. writelfl(old_ifctl, port_mmio + SATA_IFCTL_OFS);
  1804. /* See if it worked */
  1805. if ((ifstat & 0x3000) != 0x1000) {
  1806. ata_port_printk(ap, KERN_WARNING,
  1807. "%s transmission error, ifstat=%08x\n",
  1808. __func__, ifstat);
  1809. return AC_ERR_OTHER;
  1810. }
  1811. return 0;
  1812. }
  1813. /**
  1814. * mv_qc_issue_fis - Issue a command directly as a FIS
  1815. * @qc: queued command to start
  1816. *
  1817. * Note that the ATA shadow registers are not updated
  1818. * after command issue, so the device will appear "READY"
  1819. * if polled, even while it is BUSY processing the command.
  1820. *
  1821. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1822. *
  1823. * Note: we don't get updated shadow regs on *completion*
  1824. * of non-data commands. So avoid sending them via this function,
  1825. * as they will appear to have completed immediately.
  1826. *
  1827. * GEN_IIE has special registers that we could get the result tf from,
  1828. * but earlier chipsets do not. For now, we ignore those registers.
  1829. */
  1830. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1831. {
  1832. struct ata_port *ap = qc->ap;
  1833. struct mv_port_priv *pp = ap->private_data;
  1834. struct ata_link *link = qc->dev->link;
  1835. u32 fis[5];
  1836. int err = 0;
  1837. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  1838. err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
  1839. if (err)
  1840. return err;
  1841. switch (qc->tf.protocol) {
  1842. case ATAPI_PROT_PIO:
  1843. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1844. /* fall through */
  1845. case ATAPI_PROT_NODATA:
  1846. ap->hsm_task_state = HSM_ST_FIRST;
  1847. break;
  1848. case ATA_PROT_PIO:
  1849. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1850. if (qc->tf.flags & ATA_TFLAG_WRITE)
  1851. ap->hsm_task_state = HSM_ST_FIRST;
  1852. else
  1853. ap->hsm_task_state = HSM_ST;
  1854. break;
  1855. default:
  1856. ap->hsm_task_state = HSM_ST_LAST;
  1857. break;
  1858. }
  1859. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1860. ata_pio_queue_task(ap, qc, 0);
  1861. return 0;
  1862. }
  1863. /**
  1864. * mv_qc_issue - Initiate a command to the host
  1865. * @qc: queued command to start
  1866. *
  1867. * This routine simply redirects to the general purpose routine
  1868. * if command is not DMA. Else, it sanity checks our local
  1869. * caches of the request producer/consumer indices then enables
  1870. * DMA and bumps the request producer index.
  1871. *
  1872. * LOCKING:
  1873. * Inherited from caller.
  1874. */
  1875. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1876. {
  1877. static int limit_warnings = 10;
  1878. struct ata_port *ap = qc->ap;
  1879. void __iomem *port_mmio = mv_ap_base(ap);
  1880. struct mv_port_priv *pp = ap->private_data;
  1881. u32 in_index;
  1882. unsigned int port_irqs;
  1883. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  1884. switch (qc->tf.protocol) {
  1885. case ATA_PROT_DMA:
  1886. case ATA_PROT_NCQ:
  1887. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  1888. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1889. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  1890. /* Write the request in pointer to kick the EDMA to life */
  1891. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  1892. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1893. return 0;
  1894. case ATA_PROT_PIO:
  1895. /*
  1896. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  1897. *
  1898. * Someday, we might implement special polling workarounds
  1899. * for these, but it all seems rather unnecessary since we
  1900. * normally use only DMA for commands which transfer more
  1901. * than a single block of data.
  1902. *
  1903. * Much of the time, this could just work regardless.
  1904. * So for now, just log the incident, and allow the attempt.
  1905. */
  1906. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  1907. --limit_warnings;
  1908. ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
  1909. ": attempting PIO w/multiple DRQ: "
  1910. "this may fail due to h/w errata\n");
  1911. }
  1912. /* drop through */
  1913. case ATA_PROT_NODATA:
  1914. case ATAPI_PROT_PIO:
  1915. case ATAPI_PROT_NODATA:
  1916. if (ap->flags & ATA_FLAG_PIO_POLLING)
  1917. qc->tf.flags |= ATA_TFLAG_POLLING;
  1918. break;
  1919. }
  1920. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1921. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  1922. else
  1923. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  1924. /*
  1925. * We're about to send a non-EDMA capable command to the
  1926. * port. Turn off EDMA so there won't be problems accessing
  1927. * shadow block, etc registers.
  1928. */
  1929. mv_stop_edma(ap);
  1930. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  1931. mv_pmp_select(ap, qc->dev->link->pmp);
  1932. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  1933. struct mv_host_priv *hpriv = ap->host->private_data;
  1934. /*
  1935. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  1936. *
  1937. * After any NCQ error, the READ_LOG_EXT command
  1938. * from libata-eh *must* use mv_qc_issue_fis().
  1939. * Otherwise it might fail, due to chip errata.
  1940. *
  1941. * Rather than special-case it, we'll just *always*
  1942. * use this method here for READ_LOG_EXT, making for
  1943. * easier testing.
  1944. */
  1945. if (IS_GEN_II(hpriv))
  1946. return mv_qc_issue_fis(qc);
  1947. }
  1948. return ata_sff_qc_issue(qc);
  1949. }
  1950. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  1951. {
  1952. struct mv_port_priv *pp = ap->private_data;
  1953. struct ata_queued_cmd *qc;
  1954. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1955. return NULL;
  1956. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1957. if (qc) {
  1958. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1959. qc = NULL;
  1960. else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
  1961. qc = NULL;
  1962. }
  1963. return qc;
  1964. }
  1965. static void mv_pmp_error_handler(struct ata_port *ap)
  1966. {
  1967. unsigned int pmp, pmp_map;
  1968. struct mv_port_priv *pp = ap->private_data;
  1969. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  1970. /*
  1971. * Perform NCQ error analysis on failed PMPs
  1972. * before we freeze the port entirely.
  1973. *
  1974. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  1975. */
  1976. pmp_map = pp->delayed_eh_pmp_map;
  1977. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  1978. for (pmp = 0; pmp_map != 0; pmp++) {
  1979. unsigned int this_pmp = (1 << pmp);
  1980. if (pmp_map & this_pmp) {
  1981. struct ata_link *link = &ap->pmp_link[pmp];
  1982. pmp_map &= ~this_pmp;
  1983. ata_eh_analyze_ncq_error(link);
  1984. }
  1985. }
  1986. ata_port_freeze(ap);
  1987. }
  1988. sata_pmp_error_handler(ap);
  1989. }
  1990. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  1991. {
  1992. void __iomem *port_mmio = mv_ap_base(ap);
  1993. return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
  1994. }
  1995. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  1996. {
  1997. struct ata_eh_info *ehi;
  1998. unsigned int pmp;
  1999. /*
  2000. * Initialize EH info for PMPs which saw device errors
  2001. */
  2002. ehi = &ap->link.eh_info;
  2003. for (pmp = 0; pmp_map != 0; pmp++) {
  2004. unsigned int this_pmp = (1 << pmp);
  2005. if (pmp_map & this_pmp) {
  2006. struct ata_link *link = &ap->pmp_link[pmp];
  2007. pmp_map &= ~this_pmp;
  2008. ehi = &link->eh_info;
  2009. ata_ehi_clear_desc(ehi);
  2010. ata_ehi_push_desc(ehi, "dev err");
  2011. ehi->err_mask |= AC_ERR_DEV;
  2012. ehi->action |= ATA_EH_RESET;
  2013. ata_link_abort(link);
  2014. }
  2015. }
  2016. }
  2017. static int mv_req_q_empty(struct ata_port *ap)
  2018. {
  2019. void __iomem *port_mmio = mv_ap_base(ap);
  2020. u32 in_ptr, out_ptr;
  2021. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
  2022. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2023. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
  2024. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2025. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  2026. }
  2027. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  2028. {
  2029. struct mv_port_priv *pp = ap->private_data;
  2030. int failed_links;
  2031. unsigned int old_map, new_map;
  2032. /*
  2033. * Device error during FBS+NCQ operation:
  2034. *
  2035. * Set a port flag to prevent further I/O being enqueued.
  2036. * Leave the EDMA running to drain outstanding commands from this port.
  2037. * Perform the post-mortem/EH only when all responses are complete.
  2038. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  2039. */
  2040. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  2041. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  2042. pp->delayed_eh_pmp_map = 0;
  2043. }
  2044. old_map = pp->delayed_eh_pmp_map;
  2045. new_map = old_map | mv_get_err_pmp_map(ap);
  2046. if (old_map != new_map) {
  2047. pp->delayed_eh_pmp_map = new_map;
  2048. mv_pmp_eh_prep(ap, new_map & ~old_map);
  2049. }
  2050. failed_links = hweight16(new_map);
  2051. ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
  2052. "failed_links=%d nr_active_links=%d\n",
  2053. __func__, pp->delayed_eh_pmp_map,
  2054. ap->qc_active, failed_links,
  2055. ap->nr_active_links);
  2056. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  2057. mv_process_crpb_entries(ap, pp);
  2058. mv_stop_edma(ap);
  2059. mv_eh_freeze(ap);
  2060. ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
  2061. return 1; /* handled */
  2062. }
  2063. ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
  2064. return 1; /* handled */
  2065. }
  2066. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  2067. {
  2068. /*
  2069. * Possible future enhancement:
  2070. *
  2071. * FBS+non-NCQ operation is not yet implemented.
  2072. * See related notes in mv_edma_cfg().
  2073. *
  2074. * Device error during FBS+non-NCQ operation:
  2075. *
  2076. * We need to snapshot the shadow registers for each failed command.
  2077. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  2078. */
  2079. return 0; /* not handled */
  2080. }
  2081. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  2082. {
  2083. struct mv_port_priv *pp = ap->private_data;
  2084. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  2085. return 0; /* EDMA was not active: not handled */
  2086. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  2087. return 0; /* FBS was not active: not handled */
  2088. if (!(edma_err_cause & EDMA_ERR_DEV))
  2089. return 0; /* non DEV error: not handled */
  2090. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  2091. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  2092. return 0; /* other problems: not handled */
  2093. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  2094. /*
  2095. * EDMA should NOT have self-disabled for this case.
  2096. * If it did, then something is wrong elsewhere,
  2097. * and we cannot handle it here.
  2098. */
  2099. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2100. ata_port_printk(ap, KERN_WARNING,
  2101. "%s: err_cause=0x%x pp_flags=0x%x\n",
  2102. __func__, edma_err_cause, pp->pp_flags);
  2103. return 0; /* not handled */
  2104. }
  2105. return mv_handle_fbs_ncq_dev_err(ap);
  2106. } else {
  2107. /*
  2108. * EDMA should have self-disabled for this case.
  2109. * If it did not, then something is wrong elsewhere,
  2110. * and we cannot handle it here.
  2111. */
  2112. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  2113. ata_port_printk(ap, KERN_WARNING,
  2114. "%s: err_cause=0x%x pp_flags=0x%x\n",
  2115. __func__, edma_err_cause, pp->pp_flags);
  2116. return 0; /* not handled */
  2117. }
  2118. return mv_handle_fbs_non_ncq_dev_err(ap);
  2119. }
  2120. return 0; /* not handled */
  2121. }
  2122. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  2123. {
  2124. struct ata_eh_info *ehi = &ap->link.eh_info;
  2125. char *when = "idle";
  2126. ata_ehi_clear_desc(ehi);
  2127. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  2128. when = "disabled";
  2129. } else if (edma_was_enabled) {
  2130. when = "EDMA enabled";
  2131. } else {
  2132. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2133. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  2134. when = "polling";
  2135. }
  2136. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  2137. ehi->err_mask |= AC_ERR_OTHER;
  2138. ehi->action |= ATA_EH_RESET;
  2139. ata_port_freeze(ap);
  2140. }
  2141. /**
  2142. * mv_err_intr - Handle error interrupts on the port
  2143. * @ap: ATA channel to manipulate
  2144. *
  2145. * Most cases require a full reset of the chip's state machine,
  2146. * which also performs a COMRESET.
  2147. * Also, if the port disabled DMA, update our cached copy to match.
  2148. *
  2149. * LOCKING:
  2150. * Inherited from caller.
  2151. */
  2152. static void mv_err_intr(struct ata_port *ap)
  2153. {
  2154. void __iomem *port_mmio = mv_ap_base(ap);
  2155. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  2156. u32 fis_cause = 0;
  2157. struct mv_port_priv *pp = ap->private_data;
  2158. struct mv_host_priv *hpriv = ap->host->private_data;
  2159. unsigned int action = 0, err_mask = 0;
  2160. struct ata_eh_info *ehi = &ap->link.eh_info;
  2161. struct ata_queued_cmd *qc;
  2162. int abort = 0;
  2163. /*
  2164. * Read and clear the SError and err_cause bits.
  2165. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  2166. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  2167. */
  2168. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  2169. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  2170. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2171. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2172. fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  2173. writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  2174. }
  2175. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2176. if (edma_err_cause & EDMA_ERR_DEV) {
  2177. /*
  2178. * Device errors during FIS-based switching operation
  2179. * require special handling.
  2180. */
  2181. if (mv_handle_dev_err(ap, edma_err_cause))
  2182. return;
  2183. }
  2184. qc = mv_get_active_qc(ap);
  2185. ata_ehi_clear_desc(ehi);
  2186. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2187. edma_err_cause, pp->pp_flags);
  2188. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2189. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2190. if (fis_cause & SATA_FIS_IRQ_AN) {
  2191. u32 ec = edma_err_cause &
  2192. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2193. sata_async_notification(ap);
  2194. if (!ec)
  2195. return; /* Just an AN; no need for the nukes */
  2196. ata_ehi_push_desc(ehi, "SDB notify");
  2197. }
  2198. }
  2199. /*
  2200. * All generations share these EDMA error cause bits:
  2201. */
  2202. if (edma_err_cause & EDMA_ERR_DEV) {
  2203. err_mask |= AC_ERR_DEV;
  2204. action |= ATA_EH_RESET;
  2205. ata_ehi_push_desc(ehi, "dev error");
  2206. }
  2207. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2208. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2209. EDMA_ERR_INTRL_PAR)) {
  2210. err_mask |= AC_ERR_ATA_BUS;
  2211. action |= ATA_EH_RESET;
  2212. ata_ehi_push_desc(ehi, "parity error");
  2213. }
  2214. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2215. ata_ehi_hotplugged(ehi);
  2216. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2217. "dev disconnect" : "dev connect");
  2218. action |= ATA_EH_RESET;
  2219. }
  2220. /*
  2221. * Gen-I has a different SELF_DIS bit,
  2222. * different FREEZE bits, and no SERR bit:
  2223. */
  2224. if (IS_GEN_I(hpriv)) {
  2225. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2226. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2227. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2228. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2229. }
  2230. } else {
  2231. eh_freeze_mask = EDMA_EH_FREEZE;
  2232. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2233. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2234. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2235. }
  2236. if (edma_err_cause & EDMA_ERR_SERR) {
  2237. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2238. err_mask |= AC_ERR_ATA_BUS;
  2239. action |= ATA_EH_RESET;
  2240. }
  2241. }
  2242. if (!err_mask) {
  2243. err_mask = AC_ERR_OTHER;
  2244. action |= ATA_EH_RESET;
  2245. }
  2246. ehi->serror |= serr;
  2247. ehi->action |= action;
  2248. if (qc)
  2249. qc->err_mask |= err_mask;
  2250. else
  2251. ehi->err_mask |= err_mask;
  2252. if (err_mask == AC_ERR_DEV) {
  2253. /*
  2254. * Cannot do ata_port_freeze() here,
  2255. * because it would kill PIO access,
  2256. * which is needed for further diagnosis.
  2257. */
  2258. mv_eh_freeze(ap);
  2259. abort = 1;
  2260. } else if (edma_err_cause & eh_freeze_mask) {
  2261. /*
  2262. * Note to self: ata_port_freeze() calls ata_port_abort()
  2263. */
  2264. ata_port_freeze(ap);
  2265. } else {
  2266. abort = 1;
  2267. }
  2268. if (abort) {
  2269. if (qc)
  2270. ata_link_abort(qc->dev->link);
  2271. else
  2272. ata_port_abort(ap);
  2273. }
  2274. }
  2275. static void mv_process_crpb_response(struct ata_port *ap,
  2276. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2277. {
  2278. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  2279. if (qc) {
  2280. u8 ata_status;
  2281. u16 edma_status = le16_to_cpu(response->flags);
  2282. /*
  2283. * edma_status from a response queue entry:
  2284. * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
  2285. * MSB is saved ATA status from command completion.
  2286. */
  2287. if (!ncq_enabled) {
  2288. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2289. if (err_cause) {
  2290. /*
  2291. * Error will be seen/handled by mv_err_intr().
  2292. * So do nothing at all here.
  2293. */
  2294. return;
  2295. }
  2296. }
  2297. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2298. if (!ac_err_mask(ata_status))
  2299. ata_qc_complete(qc);
  2300. /* else: leave it for mv_err_intr() */
  2301. } else {
  2302. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  2303. __func__, tag);
  2304. }
  2305. }
  2306. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2307. {
  2308. void __iomem *port_mmio = mv_ap_base(ap);
  2309. struct mv_host_priv *hpriv = ap->host->private_data;
  2310. u32 in_index;
  2311. bool work_done = false;
  2312. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2313. /* Get the hardware queue position index */
  2314. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
  2315. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2316. /* Process new responses from since the last time we looked */
  2317. while (in_index != pp->resp_idx) {
  2318. unsigned int tag;
  2319. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2320. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2321. if (IS_GEN_I(hpriv)) {
  2322. /* 50xx: no NCQ, only one command active at a time */
  2323. tag = ap->link.active_tag;
  2324. } else {
  2325. /* Gen II/IIE: get command tag from CRPB entry */
  2326. tag = le16_to_cpu(response->id) & 0x1f;
  2327. }
  2328. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  2329. work_done = true;
  2330. }
  2331. /* Update the software queue position index in hardware */
  2332. if (work_done)
  2333. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2334. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2335. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  2336. }
  2337. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2338. {
  2339. struct mv_port_priv *pp;
  2340. int edma_was_enabled;
  2341. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  2342. mv_unexpected_intr(ap, 0);
  2343. return;
  2344. }
  2345. /*
  2346. * Grab a snapshot of the EDMA_EN flag setting,
  2347. * so that we have a consistent view for this port,
  2348. * even if something we call of our routines changes it.
  2349. */
  2350. pp = ap->private_data;
  2351. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2352. /*
  2353. * Process completed CRPB response(s) before other events.
  2354. */
  2355. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2356. mv_process_crpb_entries(ap, pp);
  2357. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2358. mv_handle_fbs_ncq_dev_err(ap);
  2359. }
  2360. /*
  2361. * Handle chip-reported errors, or continue on to handle PIO.
  2362. */
  2363. if (unlikely(port_cause & ERR_IRQ)) {
  2364. mv_err_intr(ap);
  2365. } else if (!edma_was_enabled) {
  2366. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2367. if (qc)
  2368. ata_sff_host_intr(ap, qc);
  2369. else
  2370. mv_unexpected_intr(ap, edma_was_enabled);
  2371. }
  2372. }
  2373. /**
  2374. * mv_host_intr - Handle all interrupts on the given host controller
  2375. * @host: host specific structure
  2376. * @main_irq_cause: Main interrupt cause register for the chip.
  2377. *
  2378. * LOCKING:
  2379. * Inherited from caller.
  2380. */
  2381. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2382. {
  2383. struct mv_host_priv *hpriv = host->private_data;
  2384. void __iomem *mmio = hpriv->base, *hc_mmio;
  2385. unsigned int handled = 0, port;
  2386. /* If asserted, clear the "all ports" IRQ coalescing bit */
  2387. if (main_irq_cause & ALL_PORTS_COAL_DONE)
  2388. writel(~ALL_PORTS_COAL_IRQ, mmio + MV_IRQ_COAL_CAUSE);
  2389. for (port = 0; port < hpriv->n_ports; port++) {
  2390. struct ata_port *ap = host->ports[port];
  2391. unsigned int p, shift, hardport, port_cause;
  2392. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2393. /*
  2394. * Each hc within the host has its own hc_irq_cause register,
  2395. * where the interrupting ports bits get ack'd.
  2396. */
  2397. if (hardport == 0) { /* first port on this hc ? */
  2398. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2399. u32 port_mask, ack_irqs;
  2400. /*
  2401. * Skip this entire hc if nothing pending for any ports
  2402. */
  2403. if (!hc_cause) {
  2404. port += MV_PORTS_PER_HC - 1;
  2405. continue;
  2406. }
  2407. /*
  2408. * We don't need/want to read the hc_irq_cause register,
  2409. * because doing so hurts performance, and
  2410. * main_irq_cause already gives us everything we need.
  2411. *
  2412. * But we do have to *write* to the hc_irq_cause to ack
  2413. * the ports that we are handling this time through.
  2414. *
  2415. * This requires that we create a bitmap for those
  2416. * ports which interrupted us, and use that bitmap
  2417. * to ack (only) those ports via hc_irq_cause.
  2418. */
  2419. ack_irqs = 0;
  2420. if (hc_cause & PORTS_0_3_COAL_DONE)
  2421. ack_irqs = HC_COAL_IRQ;
  2422. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2423. if ((port + p) >= hpriv->n_ports)
  2424. break;
  2425. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2426. if (hc_cause & port_mask)
  2427. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2428. }
  2429. hc_mmio = mv_hc_base_from_port(mmio, port);
  2430. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
  2431. handled = 1;
  2432. }
  2433. /*
  2434. * Handle interrupts signalled for this port:
  2435. */
  2436. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2437. if (port_cause)
  2438. mv_port_intr(ap, port_cause);
  2439. }
  2440. return handled;
  2441. }
  2442. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2443. {
  2444. struct mv_host_priv *hpriv = host->private_data;
  2445. struct ata_port *ap;
  2446. struct ata_queued_cmd *qc;
  2447. struct ata_eh_info *ehi;
  2448. unsigned int i, err_mask, printed = 0;
  2449. u32 err_cause;
  2450. err_cause = readl(mmio + hpriv->irq_cause_ofs);
  2451. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  2452. err_cause);
  2453. DPRINTK("All regs @ PCI error\n");
  2454. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  2455. writelfl(0, mmio + hpriv->irq_cause_ofs);
  2456. for (i = 0; i < host->n_ports; i++) {
  2457. ap = host->ports[i];
  2458. if (!ata_link_offline(&ap->link)) {
  2459. ehi = &ap->link.eh_info;
  2460. ata_ehi_clear_desc(ehi);
  2461. if (!printed++)
  2462. ata_ehi_push_desc(ehi,
  2463. "PCI err cause 0x%08x", err_cause);
  2464. err_mask = AC_ERR_HOST_BUS;
  2465. ehi->action = ATA_EH_RESET;
  2466. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2467. if (qc)
  2468. qc->err_mask |= err_mask;
  2469. else
  2470. ehi->err_mask |= err_mask;
  2471. ata_port_freeze(ap);
  2472. }
  2473. }
  2474. return 1; /* handled */
  2475. }
  2476. /**
  2477. * mv_interrupt - Main interrupt event handler
  2478. * @irq: unused
  2479. * @dev_instance: private data; in this case the host structure
  2480. *
  2481. * Read the read only register to determine if any host
  2482. * controllers have pending interrupts. If so, call lower level
  2483. * routine to handle. Also check for PCI errors which are only
  2484. * reported here.
  2485. *
  2486. * LOCKING:
  2487. * This routine holds the host lock while processing pending
  2488. * interrupts.
  2489. */
  2490. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2491. {
  2492. struct ata_host *host = dev_instance;
  2493. struct mv_host_priv *hpriv = host->private_data;
  2494. unsigned int handled = 0;
  2495. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2496. u32 main_irq_cause, pending_irqs;
  2497. spin_lock(&host->lock);
  2498. /* for MSI: block new interrupts while in here */
  2499. if (using_msi)
  2500. mv_write_main_irq_mask(0, hpriv);
  2501. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2502. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2503. /*
  2504. * Deal with cases where we either have nothing pending, or have read
  2505. * a bogus register value which can indicate HW removal or PCI fault.
  2506. */
  2507. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2508. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2509. handled = mv_pci_error(host, hpriv->base);
  2510. else
  2511. handled = mv_host_intr(host, pending_irqs);
  2512. }
  2513. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2514. if (using_msi)
  2515. mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
  2516. spin_unlock(&host->lock);
  2517. return IRQ_RETVAL(handled);
  2518. }
  2519. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2520. {
  2521. unsigned int ofs;
  2522. switch (sc_reg_in) {
  2523. case SCR_STATUS:
  2524. case SCR_ERROR:
  2525. case SCR_CONTROL:
  2526. ofs = sc_reg_in * sizeof(u32);
  2527. break;
  2528. default:
  2529. ofs = 0xffffffffU;
  2530. break;
  2531. }
  2532. return ofs;
  2533. }
  2534. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2535. {
  2536. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2537. void __iomem *mmio = hpriv->base;
  2538. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2539. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2540. if (ofs != 0xffffffffU) {
  2541. *val = readl(addr + ofs);
  2542. return 0;
  2543. } else
  2544. return -EINVAL;
  2545. }
  2546. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2547. {
  2548. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2549. void __iomem *mmio = hpriv->base;
  2550. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2551. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2552. if (ofs != 0xffffffffU) {
  2553. writelfl(val, addr + ofs);
  2554. return 0;
  2555. } else
  2556. return -EINVAL;
  2557. }
  2558. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2559. {
  2560. struct pci_dev *pdev = to_pci_dev(host->dev);
  2561. int early_5080;
  2562. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2563. if (!early_5080) {
  2564. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2565. tmp |= (1 << 0);
  2566. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2567. }
  2568. mv_reset_pci_bus(host, mmio);
  2569. }
  2570. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2571. {
  2572. writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
  2573. }
  2574. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2575. void __iomem *mmio)
  2576. {
  2577. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2578. u32 tmp;
  2579. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2580. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2581. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2582. }
  2583. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2584. {
  2585. u32 tmp;
  2586. writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
  2587. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2588. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2589. tmp |= ~(1 << 0);
  2590. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2591. }
  2592. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2593. unsigned int port)
  2594. {
  2595. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2596. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2597. u32 tmp;
  2598. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2599. if (fix_apm_sq) {
  2600. tmp = readl(phy_mmio + MV5_LTMODE_OFS);
  2601. tmp |= (1 << 19);
  2602. writel(tmp, phy_mmio + MV5_LTMODE_OFS);
  2603. tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
  2604. tmp &= ~0x3;
  2605. tmp |= 0x1;
  2606. writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
  2607. }
  2608. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2609. tmp &= ~mask;
  2610. tmp |= hpriv->signal[port].pre;
  2611. tmp |= hpriv->signal[port].amps;
  2612. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2613. }
  2614. #undef ZERO
  2615. #define ZERO(reg) writel(0, port_mmio + (reg))
  2616. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2617. unsigned int port)
  2618. {
  2619. void __iomem *port_mmio = mv_port_base(mmio, port);
  2620. mv_reset_channel(hpriv, mmio, port);
  2621. ZERO(0x028); /* command */
  2622. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  2623. ZERO(0x004); /* timer */
  2624. ZERO(0x008); /* irq err cause */
  2625. ZERO(0x00c); /* irq err mask */
  2626. ZERO(0x010); /* rq bah */
  2627. ZERO(0x014); /* rq inp */
  2628. ZERO(0x018); /* rq outp */
  2629. ZERO(0x01c); /* respq bah */
  2630. ZERO(0x024); /* respq outp */
  2631. ZERO(0x020); /* respq inp */
  2632. ZERO(0x02c); /* test control */
  2633. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2634. }
  2635. #undef ZERO
  2636. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2637. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2638. unsigned int hc)
  2639. {
  2640. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2641. u32 tmp;
  2642. ZERO(0x00c);
  2643. ZERO(0x010);
  2644. ZERO(0x014);
  2645. ZERO(0x018);
  2646. tmp = readl(hc_mmio + 0x20);
  2647. tmp &= 0x1c1c1c1c;
  2648. tmp |= 0x03030303;
  2649. writel(tmp, hc_mmio + 0x20);
  2650. }
  2651. #undef ZERO
  2652. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2653. unsigned int n_hc)
  2654. {
  2655. unsigned int hc, port;
  2656. for (hc = 0; hc < n_hc; hc++) {
  2657. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2658. mv5_reset_hc_port(hpriv, mmio,
  2659. (hc * MV_PORTS_PER_HC) + port);
  2660. mv5_reset_one_hc(hpriv, mmio, hc);
  2661. }
  2662. return 0;
  2663. }
  2664. #undef ZERO
  2665. #define ZERO(reg) writel(0, mmio + (reg))
  2666. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2667. {
  2668. struct mv_host_priv *hpriv = host->private_data;
  2669. u32 tmp;
  2670. tmp = readl(mmio + MV_PCI_MODE_OFS);
  2671. tmp &= 0xff00ffff;
  2672. writel(tmp, mmio + MV_PCI_MODE_OFS);
  2673. ZERO(MV_PCI_DISC_TIMER);
  2674. ZERO(MV_PCI_MSI_TRIGGER);
  2675. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
  2676. ZERO(MV_PCI_SERR_MASK);
  2677. ZERO(hpriv->irq_cause_ofs);
  2678. ZERO(hpriv->irq_mask_ofs);
  2679. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2680. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2681. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2682. ZERO(MV_PCI_ERR_COMMAND);
  2683. }
  2684. #undef ZERO
  2685. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2686. {
  2687. u32 tmp;
  2688. mv5_reset_flash(hpriv, mmio);
  2689. tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
  2690. tmp &= 0x3;
  2691. tmp |= (1 << 5) | (1 << 6);
  2692. writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
  2693. }
  2694. /**
  2695. * mv6_reset_hc - Perform the 6xxx global soft reset
  2696. * @mmio: base address of the HBA
  2697. *
  2698. * This routine only applies to 6xxx parts.
  2699. *
  2700. * LOCKING:
  2701. * Inherited from caller.
  2702. */
  2703. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2704. unsigned int n_hc)
  2705. {
  2706. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  2707. int i, rc = 0;
  2708. u32 t;
  2709. /* Following procedure defined in PCI "main command and status
  2710. * register" table.
  2711. */
  2712. t = readl(reg);
  2713. writel(t | STOP_PCI_MASTER, reg);
  2714. for (i = 0; i < 1000; i++) {
  2715. udelay(1);
  2716. t = readl(reg);
  2717. if (PCI_MASTER_EMPTY & t)
  2718. break;
  2719. }
  2720. if (!(PCI_MASTER_EMPTY & t)) {
  2721. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2722. rc = 1;
  2723. goto done;
  2724. }
  2725. /* set reset */
  2726. i = 5;
  2727. do {
  2728. writel(t | GLOB_SFT_RST, reg);
  2729. t = readl(reg);
  2730. udelay(1);
  2731. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2732. if (!(GLOB_SFT_RST & t)) {
  2733. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2734. rc = 1;
  2735. goto done;
  2736. }
  2737. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2738. i = 5;
  2739. do {
  2740. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2741. t = readl(reg);
  2742. udelay(1);
  2743. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2744. if (GLOB_SFT_RST & t) {
  2745. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2746. rc = 1;
  2747. }
  2748. done:
  2749. return rc;
  2750. }
  2751. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2752. void __iomem *mmio)
  2753. {
  2754. void __iomem *port_mmio;
  2755. u32 tmp;
  2756. tmp = readl(mmio + MV_RESET_CFG_OFS);
  2757. if ((tmp & (1 << 0)) == 0) {
  2758. hpriv->signal[idx].amps = 0x7 << 8;
  2759. hpriv->signal[idx].pre = 0x1 << 5;
  2760. return;
  2761. }
  2762. port_mmio = mv_port_base(mmio, idx);
  2763. tmp = readl(port_mmio + PHY_MODE2);
  2764. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2765. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2766. }
  2767. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2768. {
  2769. writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
  2770. }
  2771. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2772. unsigned int port)
  2773. {
  2774. void __iomem *port_mmio = mv_port_base(mmio, port);
  2775. u32 hp_flags = hpriv->hp_flags;
  2776. int fix_phy_mode2 =
  2777. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2778. int fix_phy_mode4 =
  2779. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2780. u32 m2, m3;
  2781. if (fix_phy_mode2) {
  2782. m2 = readl(port_mmio + PHY_MODE2);
  2783. m2 &= ~(1 << 16);
  2784. m2 |= (1 << 31);
  2785. writel(m2, port_mmio + PHY_MODE2);
  2786. udelay(200);
  2787. m2 = readl(port_mmio + PHY_MODE2);
  2788. m2 &= ~((1 << 16) | (1 << 31));
  2789. writel(m2, port_mmio + PHY_MODE2);
  2790. udelay(200);
  2791. }
  2792. /*
  2793. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2794. * Achieves better receiver noise performance than the h/w default:
  2795. */
  2796. m3 = readl(port_mmio + PHY_MODE3);
  2797. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2798. /* Guideline 88F5182 (GL# SATA-S11) */
  2799. if (IS_SOC(hpriv))
  2800. m3 &= ~0x1c;
  2801. if (fix_phy_mode4) {
  2802. u32 m4 = readl(port_mmio + PHY_MODE4);
  2803. /*
  2804. * Enforce reserved-bit restrictions on GenIIe devices only.
  2805. * For earlier chipsets, force only the internal config field
  2806. * (workaround for errata FEr SATA#10 part 1).
  2807. */
  2808. if (IS_GEN_IIE(hpriv))
  2809. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2810. else
  2811. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2812. writel(m4, port_mmio + PHY_MODE4);
  2813. }
  2814. /*
  2815. * Workaround for 60x1-B2 errata SATA#13:
  2816. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2817. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2818. */
  2819. writel(m3, port_mmio + PHY_MODE3);
  2820. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2821. m2 = readl(port_mmio + PHY_MODE2);
  2822. m2 &= ~MV_M2_PREAMP_MASK;
  2823. m2 |= hpriv->signal[port].amps;
  2824. m2 |= hpriv->signal[port].pre;
  2825. m2 &= ~(1 << 16);
  2826. /* according to mvSata 3.6.1, some IIE values are fixed */
  2827. if (IS_GEN_IIE(hpriv)) {
  2828. m2 &= ~0xC30FF01F;
  2829. m2 |= 0x0000900F;
  2830. }
  2831. writel(m2, port_mmio + PHY_MODE2);
  2832. }
  2833. /* TODO: use the generic LED interface to configure the SATA Presence */
  2834. /* & Acitivy LEDs on the board */
  2835. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2836. void __iomem *mmio)
  2837. {
  2838. return;
  2839. }
  2840. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2841. void __iomem *mmio)
  2842. {
  2843. void __iomem *port_mmio;
  2844. u32 tmp;
  2845. port_mmio = mv_port_base(mmio, idx);
  2846. tmp = readl(port_mmio + PHY_MODE2);
  2847. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2848. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2849. }
  2850. #undef ZERO
  2851. #define ZERO(reg) writel(0, port_mmio + (reg))
  2852. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2853. void __iomem *mmio, unsigned int port)
  2854. {
  2855. void __iomem *port_mmio = mv_port_base(mmio, port);
  2856. mv_reset_channel(hpriv, mmio, port);
  2857. ZERO(0x028); /* command */
  2858. writel(0x101f, port_mmio + EDMA_CFG_OFS);
  2859. ZERO(0x004); /* timer */
  2860. ZERO(0x008); /* irq err cause */
  2861. ZERO(0x00c); /* irq err mask */
  2862. ZERO(0x010); /* rq bah */
  2863. ZERO(0x014); /* rq inp */
  2864. ZERO(0x018); /* rq outp */
  2865. ZERO(0x01c); /* respq bah */
  2866. ZERO(0x024); /* respq outp */
  2867. ZERO(0x020); /* respq inp */
  2868. ZERO(0x02c); /* test control */
  2869. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2870. }
  2871. #undef ZERO
  2872. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2873. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  2874. void __iomem *mmio)
  2875. {
  2876. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  2877. ZERO(0x00c);
  2878. ZERO(0x010);
  2879. ZERO(0x014);
  2880. }
  2881. #undef ZERO
  2882. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  2883. void __iomem *mmio, unsigned int n_hc)
  2884. {
  2885. unsigned int port;
  2886. for (port = 0; port < hpriv->n_ports; port++)
  2887. mv_soc_reset_hc_port(hpriv, mmio, port);
  2888. mv_soc_reset_one_hc(hpriv, mmio);
  2889. return 0;
  2890. }
  2891. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  2892. void __iomem *mmio)
  2893. {
  2894. return;
  2895. }
  2896. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  2897. {
  2898. return;
  2899. }
  2900. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  2901. {
  2902. u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
  2903. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  2904. if (want_gen2i)
  2905. ifcfg |= (1 << 7); /* enable gen2i speed */
  2906. writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
  2907. }
  2908. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  2909. unsigned int port_no)
  2910. {
  2911. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  2912. /*
  2913. * The datasheet warns against setting EDMA_RESET when EDMA is active
  2914. * (but doesn't say what the problem might be). So we first try
  2915. * to disable the EDMA engine before doing the EDMA_RESET operation.
  2916. */
  2917. mv_stop_edma_engine(port_mmio);
  2918. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2919. if (!IS_GEN_I(hpriv)) {
  2920. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  2921. mv_setup_ifcfg(port_mmio, 1);
  2922. }
  2923. /*
  2924. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  2925. * link, and physical layers. It resets all SATA interface registers
  2926. * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
  2927. */
  2928. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2929. udelay(25); /* allow reset propagation */
  2930. writelfl(0, port_mmio + EDMA_CMD_OFS);
  2931. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  2932. if (IS_GEN_I(hpriv))
  2933. mdelay(1);
  2934. }
  2935. static void mv_pmp_select(struct ata_port *ap, int pmp)
  2936. {
  2937. if (sata_pmp_supported(ap)) {
  2938. void __iomem *port_mmio = mv_ap_base(ap);
  2939. u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
  2940. int old = reg & 0xf;
  2941. if (old != pmp) {
  2942. reg = (reg & ~0xf) | pmp;
  2943. writelfl(reg, port_mmio + SATA_IFCTL_OFS);
  2944. }
  2945. }
  2946. }
  2947. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  2948. unsigned long deadline)
  2949. {
  2950. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2951. return sata_std_hardreset(link, class, deadline);
  2952. }
  2953. static int mv_softreset(struct ata_link *link, unsigned int *class,
  2954. unsigned long deadline)
  2955. {
  2956. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2957. return ata_sff_softreset(link, class, deadline);
  2958. }
  2959. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  2960. unsigned long deadline)
  2961. {
  2962. struct ata_port *ap = link->ap;
  2963. struct mv_host_priv *hpriv = ap->host->private_data;
  2964. struct mv_port_priv *pp = ap->private_data;
  2965. void __iomem *mmio = hpriv->base;
  2966. int rc, attempts = 0, extra = 0;
  2967. u32 sstatus;
  2968. bool online;
  2969. mv_reset_channel(hpriv, mmio, ap->port_no);
  2970. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2971. pp->pp_flags &=
  2972. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  2973. /* Workaround for errata FEr SATA#10 (part 2) */
  2974. do {
  2975. const unsigned long *timing =
  2976. sata_ehc_deb_timing(&link->eh_context);
  2977. rc = sata_link_hardreset(link, timing, deadline + extra,
  2978. &online, NULL);
  2979. rc = online ? -EAGAIN : rc;
  2980. if (rc)
  2981. return rc;
  2982. sata_scr_read(link, SCR_STATUS, &sstatus);
  2983. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  2984. /* Force 1.5gb/s link speed and try again */
  2985. mv_setup_ifcfg(mv_ap_base(ap), 0);
  2986. if (time_after(jiffies + HZ, deadline))
  2987. extra = HZ; /* only extend it once, max */
  2988. }
  2989. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  2990. mv_save_cached_regs(ap);
  2991. mv_edma_cfg(ap, 0, 0);
  2992. return rc;
  2993. }
  2994. static void mv_eh_freeze(struct ata_port *ap)
  2995. {
  2996. mv_stop_edma(ap);
  2997. mv_enable_port_irqs(ap, 0);
  2998. }
  2999. static void mv_eh_thaw(struct ata_port *ap)
  3000. {
  3001. struct mv_host_priv *hpriv = ap->host->private_data;
  3002. unsigned int port = ap->port_no;
  3003. unsigned int hardport = mv_hardport_from_port(port);
  3004. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  3005. void __iomem *port_mmio = mv_ap_base(ap);
  3006. u32 hc_irq_cause;
  3007. /* clear EDMA errors on this port */
  3008. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  3009. /* clear pending irq events */
  3010. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  3011. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  3012. mv_enable_port_irqs(ap, ERR_IRQ);
  3013. }
  3014. /**
  3015. * mv_port_init - Perform some early initialization on a single port.
  3016. * @port: libata data structure storing shadow register addresses
  3017. * @port_mmio: base address of the port
  3018. *
  3019. * Initialize shadow register mmio addresses, clear outstanding
  3020. * interrupts on the port, and unmask interrupts for the future
  3021. * start of the port.
  3022. *
  3023. * LOCKING:
  3024. * Inherited from caller.
  3025. */
  3026. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  3027. {
  3028. void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
  3029. unsigned serr_ofs;
  3030. /* PIO related setup
  3031. */
  3032. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  3033. port->error_addr =
  3034. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  3035. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  3036. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  3037. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  3038. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  3039. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  3040. port->status_addr =
  3041. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  3042. /* special case: control/altstatus doesn't have ATA_REG_ address */
  3043. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  3044. /* unused: */
  3045. port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
  3046. /* Clear any currently outstanding port interrupt conditions */
  3047. serr_ofs = mv_scr_offset(SCR_ERROR);
  3048. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  3049. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  3050. /* unmask all non-transient EDMA error interrupts */
  3051. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  3052. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  3053. readl(port_mmio + EDMA_CFG_OFS),
  3054. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  3055. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  3056. }
  3057. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  3058. {
  3059. struct mv_host_priv *hpriv = host->private_data;
  3060. void __iomem *mmio = hpriv->base;
  3061. u32 reg;
  3062. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  3063. return 0; /* not PCI-X capable */
  3064. reg = readl(mmio + MV_PCI_MODE_OFS);
  3065. if ((reg & MV_PCI_MODE_MASK) == 0)
  3066. return 0; /* conventional PCI mode */
  3067. return 1; /* chip is in PCI-X mode */
  3068. }
  3069. static int mv_pci_cut_through_okay(struct ata_host *host)
  3070. {
  3071. struct mv_host_priv *hpriv = host->private_data;
  3072. void __iomem *mmio = hpriv->base;
  3073. u32 reg;
  3074. if (!mv_in_pcix_mode(host)) {
  3075. reg = readl(mmio + PCI_COMMAND_OFS);
  3076. if (reg & PCI_COMMAND_MRDTRIG)
  3077. return 0; /* not okay */
  3078. }
  3079. return 1; /* okay */
  3080. }
  3081. static void mv_60x1b2_errata_pci7(struct ata_host *host)
  3082. {
  3083. struct mv_host_priv *hpriv = host->private_data;
  3084. void __iomem *mmio = hpriv->base;
  3085. /* workaround for 60x1-B2 errata PCI#7 */
  3086. if (mv_in_pcix_mode(host)) {
  3087. u32 reg = readl(mmio + PCI_COMMAND_OFS);
  3088. writelfl(reg & ~PCI_COMMAND_MWRCOM, mmio + PCI_COMMAND_OFS);
  3089. }
  3090. }
  3091. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  3092. {
  3093. struct pci_dev *pdev = to_pci_dev(host->dev);
  3094. struct mv_host_priv *hpriv = host->private_data;
  3095. u32 hp_flags = hpriv->hp_flags;
  3096. switch (board_idx) {
  3097. case chip_5080:
  3098. hpriv->ops = &mv5xxx_ops;
  3099. hp_flags |= MV_HP_GEN_I;
  3100. switch (pdev->revision) {
  3101. case 0x1:
  3102. hp_flags |= MV_HP_ERRATA_50XXB0;
  3103. break;
  3104. case 0x3:
  3105. hp_flags |= MV_HP_ERRATA_50XXB2;
  3106. break;
  3107. default:
  3108. dev_printk(KERN_WARNING, &pdev->dev,
  3109. "Applying 50XXB2 workarounds to unknown rev\n");
  3110. hp_flags |= MV_HP_ERRATA_50XXB2;
  3111. break;
  3112. }
  3113. break;
  3114. case chip_504x:
  3115. case chip_508x:
  3116. hpriv->ops = &mv5xxx_ops;
  3117. hp_flags |= MV_HP_GEN_I;
  3118. switch (pdev->revision) {
  3119. case 0x0:
  3120. hp_flags |= MV_HP_ERRATA_50XXB0;
  3121. break;
  3122. case 0x3:
  3123. hp_flags |= MV_HP_ERRATA_50XXB2;
  3124. break;
  3125. default:
  3126. dev_printk(KERN_WARNING, &pdev->dev,
  3127. "Applying B2 workarounds to unknown rev\n");
  3128. hp_flags |= MV_HP_ERRATA_50XXB2;
  3129. break;
  3130. }
  3131. break;
  3132. case chip_604x:
  3133. case chip_608x:
  3134. hpriv->ops = &mv6xxx_ops;
  3135. hp_flags |= MV_HP_GEN_II;
  3136. switch (pdev->revision) {
  3137. case 0x7:
  3138. mv_60x1b2_errata_pci7(host);
  3139. hp_flags |= MV_HP_ERRATA_60X1B2;
  3140. break;
  3141. case 0x9:
  3142. hp_flags |= MV_HP_ERRATA_60X1C0;
  3143. break;
  3144. default:
  3145. dev_printk(KERN_WARNING, &pdev->dev,
  3146. "Applying B2 workarounds to unknown rev\n");
  3147. hp_flags |= MV_HP_ERRATA_60X1B2;
  3148. break;
  3149. }
  3150. break;
  3151. case chip_7042:
  3152. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  3153. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  3154. (pdev->device == 0x2300 || pdev->device == 0x2310))
  3155. {
  3156. /*
  3157. * Highpoint RocketRAID PCIe 23xx series cards:
  3158. *
  3159. * Unconfigured drives are treated as "Legacy"
  3160. * by the BIOS, and it overwrites sector 8 with
  3161. * a "Lgcy" metadata block prior to Linux boot.
  3162. *
  3163. * Configured drives (RAID or JBOD) leave sector 8
  3164. * alone, but instead overwrite a high numbered
  3165. * sector for the RAID metadata. This sector can
  3166. * be determined exactly, by truncating the physical
  3167. * drive capacity to a nice even GB value.
  3168. *
  3169. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  3170. *
  3171. * Warn the user, lest they think we're just buggy.
  3172. */
  3173. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  3174. " BIOS CORRUPTS DATA on all attached drives,"
  3175. " regardless of if/how they are configured."
  3176. " BEWARE!\n");
  3177. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  3178. " use sectors 8-9 on \"Legacy\" drives,"
  3179. " and avoid the final two gigabytes on"
  3180. " all RocketRAID BIOS initialized drives.\n");
  3181. }
  3182. /* drop through */
  3183. case chip_6042:
  3184. hpriv->ops = &mv6xxx_ops;
  3185. hp_flags |= MV_HP_GEN_IIE;
  3186. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  3187. hp_flags |= MV_HP_CUT_THROUGH;
  3188. switch (pdev->revision) {
  3189. case 0x2: /* Rev.B0: the first/only public release */
  3190. hp_flags |= MV_HP_ERRATA_60X1C0;
  3191. break;
  3192. default:
  3193. dev_printk(KERN_WARNING, &pdev->dev,
  3194. "Applying 60X1C0 workarounds to unknown rev\n");
  3195. hp_flags |= MV_HP_ERRATA_60X1C0;
  3196. break;
  3197. }
  3198. break;
  3199. case chip_soc:
  3200. hpriv->ops = &mv_soc_ops;
  3201. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3202. MV_HP_ERRATA_60X1C0;
  3203. break;
  3204. default:
  3205. dev_printk(KERN_ERR, host->dev,
  3206. "BUG: invalid board index %u\n", board_idx);
  3207. return 1;
  3208. }
  3209. hpriv->hp_flags = hp_flags;
  3210. if (hp_flags & MV_HP_PCIE) {
  3211. hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
  3212. hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
  3213. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3214. } else {
  3215. hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
  3216. hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
  3217. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3218. }
  3219. return 0;
  3220. }
  3221. /**
  3222. * mv_init_host - Perform some early initialization of the host.
  3223. * @host: ATA host to initialize
  3224. * @board_idx: controller index
  3225. *
  3226. * If possible, do an early global reset of the host. Then do
  3227. * our port init and clear/unmask all/relevant host interrupts.
  3228. *
  3229. * LOCKING:
  3230. * Inherited from caller.
  3231. */
  3232. static int mv_init_host(struct ata_host *host, unsigned int board_idx)
  3233. {
  3234. int rc = 0, n_hc, port, hc;
  3235. struct mv_host_priv *hpriv = host->private_data;
  3236. void __iomem *mmio = hpriv->base;
  3237. rc = mv_chip_id(host, board_idx);
  3238. if (rc)
  3239. goto done;
  3240. if (IS_SOC(hpriv)) {
  3241. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
  3242. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
  3243. } else {
  3244. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
  3245. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
  3246. }
  3247. /* initialize shadow irq mask with register's value */
  3248. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3249. /* global interrupt mask: 0 == mask everything */
  3250. mv_set_main_irq_mask(host, ~0, 0);
  3251. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3252. for (port = 0; port < host->n_ports; port++)
  3253. hpriv->ops->read_preamp(hpriv, port, mmio);
  3254. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  3255. if (rc)
  3256. goto done;
  3257. hpriv->ops->reset_flash(hpriv, mmio);
  3258. hpriv->ops->reset_bus(host, mmio);
  3259. hpriv->ops->enable_leds(hpriv, mmio);
  3260. for (port = 0; port < host->n_ports; port++) {
  3261. struct ata_port *ap = host->ports[port];
  3262. void __iomem *port_mmio = mv_port_base(mmio, port);
  3263. mv_port_init(&ap->ioaddr, port_mmio);
  3264. #ifdef CONFIG_PCI
  3265. if (!IS_SOC(hpriv)) {
  3266. unsigned int offset = port_mmio - mmio;
  3267. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3268. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3269. }
  3270. #endif
  3271. }
  3272. for (hc = 0; hc < n_hc; hc++) {
  3273. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3274. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  3275. "(before clear)=0x%08x\n", hc,
  3276. readl(hc_mmio + HC_CFG_OFS),
  3277. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  3278. /* Clear any currently outstanding hc interrupt conditions */
  3279. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  3280. }
  3281. if (!IS_SOC(hpriv)) {
  3282. /* Clear any currently outstanding host interrupt conditions */
  3283. writelfl(0, mmio + hpriv->irq_cause_ofs);
  3284. /* and unmask interrupt generation for host regs */
  3285. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
  3286. }
  3287. /*
  3288. * enable only global host interrupts for now.
  3289. * The per-port interrupts get done later as ports are set up.
  3290. */
  3291. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3292. mv_set_irq_coalescing(host, irq_coalescing_io_count,
  3293. irq_coalescing_usecs);
  3294. done:
  3295. return rc;
  3296. }
  3297. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3298. {
  3299. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3300. MV_CRQB_Q_SZ, 0);
  3301. if (!hpriv->crqb_pool)
  3302. return -ENOMEM;
  3303. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3304. MV_CRPB_Q_SZ, 0);
  3305. if (!hpriv->crpb_pool)
  3306. return -ENOMEM;
  3307. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3308. MV_SG_TBL_SZ, 0);
  3309. if (!hpriv->sg_tbl_pool)
  3310. return -ENOMEM;
  3311. return 0;
  3312. }
  3313. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3314. struct mbus_dram_target_info *dram)
  3315. {
  3316. int i;
  3317. for (i = 0; i < 4; i++) {
  3318. writel(0, hpriv->base + WINDOW_CTRL(i));
  3319. writel(0, hpriv->base + WINDOW_BASE(i));
  3320. }
  3321. for (i = 0; i < dram->num_cs; i++) {
  3322. struct mbus_dram_window *cs = dram->cs + i;
  3323. writel(((cs->size - 1) & 0xffff0000) |
  3324. (cs->mbus_attr << 8) |
  3325. (dram->mbus_dram_target_id << 4) | 1,
  3326. hpriv->base + WINDOW_CTRL(i));
  3327. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3328. }
  3329. }
  3330. /**
  3331. * mv_platform_probe - handle a positive probe of an soc Marvell
  3332. * host
  3333. * @pdev: platform device found
  3334. *
  3335. * LOCKING:
  3336. * Inherited from caller.
  3337. */
  3338. static int mv_platform_probe(struct platform_device *pdev)
  3339. {
  3340. static int printed_version;
  3341. const struct mv_sata_platform_data *mv_platform_data;
  3342. const struct ata_port_info *ppi[] =
  3343. { &mv_port_info[chip_soc], NULL };
  3344. struct ata_host *host;
  3345. struct mv_host_priv *hpriv;
  3346. struct resource *res;
  3347. int n_ports, rc;
  3348. if (!printed_version++)
  3349. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3350. /*
  3351. * Simple resource validation ..
  3352. */
  3353. if (unlikely(pdev->num_resources != 2)) {
  3354. dev_err(&pdev->dev, "invalid number of resources\n");
  3355. return -EINVAL;
  3356. }
  3357. /*
  3358. * Get the register base first
  3359. */
  3360. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3361. if (res == NULL)
  3362. return -EINVAL;
  3363. /* allocate host */
  3364. mv_platform_data = pdev->dev.platform_data;
  3365. n_ports = mv_platform_data->n_ports;
  3366. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3367. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3368. if (!host || !hpriv)
  3369. return -ENOMEM;
  3370. host->private_data = hpriv;
  3371. hpriv->n_ports = n_ports;
  3372. host->iomap = NULL;
  3373. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3374. res->end - res->start + 1);
  3375. hpriv->base -= MV_SATAHC0_REG_BASE;
  3376. /*
  3377. * (Re-)program MBUS remapping windows if we are asked to.
  3378. */
  3379. if (mv_platform_data->dram != NULL)
  3380. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  3381. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3382. if (rc)
  3383. return rc;
  3384. /* initialize adapter */
  3385. rc = mv_init_host(host, chip_soc);
  3386. if (rc)
  3387. return rc;
  3388. dev_printk(KERN_INFO, &pdev->dev,
  3389. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  3390. host->n_ports);
  3391. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  3392. IRQF_SHARED, &mv6_sht);
  3393. }
  3394. /*
  3395. *
  3396. * mv_platform_remove - unplug a platform interface
  3397. * @pdev: platform device
  3398. *
  3399. * A platform bus SATA device has been unplugged. Perform the needed
  3400. * cleanup. Also called on module unload for any active devices.
  3401. */
  3402. static int __devexit mv_platform_remove(struct platform_device *pdev)
  3403. {
  3404. struct device *dev = &pdev->dev;
  3405. struct ata_host *host = dev_get_drvdata(dev);
  3406. ata_host_detach(host);
  3407. return 0;
  3408. }
  3409. static struct platform_driver mv_platform_driver = {
  3410. .probe = mv_platform_probe,
  3411. .remove = __devexit_p(mv_platform_remove),
  3412. .driver = {
  3413. .name = DRV_NAME,
  3414. .owner = THIS_MODULE,
  3415. },
  3416. };
  3417. #ifdef CONFIG_PCI
  3418. static int mv_pci_init_one(struct pci_dev *pdev,
  3419. const struct pci_device_id *ent);
  3420. static struct pci_driver mv_pci_driver = {
  3421. .name = DRV_NAME,
  3422. .id_table = mv_pci_tbl,
  3423. .probe = mv_pci_init_one,
  3424. .remove = ata_pci_remove_one,
  3425. };
  3426. /* move to PCI layer or libata core? */
  3427. static int pci_go_64(struct pci_dev *pdev)
  3428. {
  3429. int rc;
  3430. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3431. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3432. if (rc) {
  3433. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3434. if (rc) {
  3435. dev_printk(KERN_ERR, &pdev->dev,
  3436. "64-bit DMA enable failed\n");
  3437. return rc;
  3438. }
  3439. }
  3440. } else {
  3441. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3442. if (rc) {
  3443. dev_printk(KERN_ERR, &pdev->dev,
  3444. "32-bit DMA enable failed\n");
  3445. return rc;
  3446. }
  3447. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3448. if (rc) {
  3449. dev_printk(KERN_ERR, &pdev->dev,
  3450. "32-bit consistent DMA enable failed\n");
  3451. return rc;
  3452. }
  3453. }
  3454. return rc;
  3455. }
  3456. /**
  3457. * mv_print_info - Dump key info to kernel log for perusal.
  3458. * @host: ATA host to print info about
  3459. *
  3460. * FIXME: complete this.
  3461. *
  3462. * LOCKING:
  3463. * Inherited from caller.
  3464. */
  3465. static void mv_print_info(struct ata_host *host)
  3466. {
  3467. struct pci_dev *pdev = to_pci_dev(host->dev);
  3468. struct mv_host_priv *hpriv = host->private_data;
  3469. u8 scc;
  3470. const char *scc_s, *gen;
  3471. /* Use this to determine the HW stepping of the chip so we know
  3472. * what errata to workaround
  3473. */
  3474. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3475. if (scc == 0)
  3476. scc_s = "SCSI";
  3477. else if (scc == 0x01)
  3478. scc_s = "RAID";
  3479. else
  3480. scc_s = "?";
  3481. if (IS_GEN_I(hpriv))
  3482. gen = "I";
  3483. else if (IS_GEN_II(hpriv))
  3484. gen = "II";
  3485. else if (IS_GEN_IIE(hpriv))
  3486. gen = "IIE";
  3487. else
  3488. gen = "?";
  3489. dev_printk(KERN_INFO, &pdev->dev,
  3490. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3491. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3492. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3493. }
  3494. /**
  3495. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3496. * @pdev: PCI device found
  3497. * @ent: PCI device ID entry for the matched host
  3498. *
  3499. * LOCKING:
  3500. * Inherited from caller.
  3501. */
  3502. static int mv_pci_init_one(struct pci_dev *pdev,
  3503. const struct pci_device_id *ent)
  3504. {
  3505. static int printed_version;
  3506. unsigned int board_idx = (unsigned int)ent->driver_data;
  3507. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3508. struct ata_host *host;
  3509. struct mv_host_priv *hpriv;
  3510. int n_ports, rc;
  3511. if (!printed_version++)
  3512. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3513. /* allocate host */
  3514. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3515. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3516. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3517. if (!host || !hpriv)
  3518. return -ENOMEM;
  3519. host->private_data = hpriv;
  3520. hpriv->n_ports = n_ports;
  3521. /* acquire resources */
  3522. rc = pcim_enable_device(pdev);
  3523. if (rc)
  3524. return rc;
  3525. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3526. if (rc == -EBUSY)
  3527. pcim_pin_device(pdev);
  3528. if (rc)
  3529. return rc;
  3530. host->iomap = pcim_iomap_table(pdev);
  3531. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3532. rc = pci_go_64(pdev);
  3533. if (rc)
  3534. return rc;
  3535. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3536. if (rc)
  3537. return rc;
  3538. /* initialize adapter */
  3539. rc = mv_init_host(host, board_idx);
  3540. if (rc)
  3541. return rc;
  3542. /* Enable message-switched interrupts, if requested */
  3543. if (msi && pci_enable_msi(pdev) == 0)
  3544. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3545. mv_dump_pci_cfg(pdev, 0x68);
  3546. mv_print_info(host);
  3547. pci_set_master(pdev);
  3548. pci_try_set_mwi(pdev);
  3549. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3550. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3551. }
  3552. #endif
  3553. static int mv_platform_probe(struct platform_device *pdev);
  3554. static int __devexit mv_platform_remove(struct platform_device *pdev);
  3555. static int __init mv_init(void)
  3556. {
  3557. int rc = -ENODEV;
  3558. #ifdef CONFIG_PCI
  3559. rc = pci_register_driver(&mv_pci_driver);
  3560. if (rc < 0)
  3561. return rc;
  3562. #endif
  3563. rc = platform_driver_register(&mv_platform_driver);
  3564. #ifdef CONFIG_PCI
  3565. if (rc < 0)
  3566. pci_unregister_driver(&mv_pci_driver);
  3567. #endif
  3568. return rc;
  3569. }
  3570. static void __exit mv_exit(void)
  3571. {
  3572. #ifdef CONFIG_PCI
  3573. pci_unregister_driver(&mv_pci_driver);
  3574. #endif
  3575. platform_driver_unregister(&mv_platform_driver);
  3576. }
  3577. MODULE_AUTHOR("Brett Russ");
  3578. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3579. MODULE_LICENSE("GPL");
  3580. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3581. MODULE_VERSION(DRV_VERSION);
  3582. MODULE_ALIAS("platform:" DRV_NAME);
  3583. module_init(mv_init);
  3584. module_exit(mv_exit);