vmx.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. /*
  52. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  53. * ple_gap: upper bound on the amount of time between two successive
  54. * executions of PAUSE in a loop. Also indicate if ple enabled.
  55. * According to test, this time is usually small than 41 cycles.
  56. * ple_window: upper bound on the amount of time a guest is allowed to execute
  57. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  58. * less than 2^12 cycles
  59. * Time is measured based on a counter that runs at the same rate as the TSC,
  60. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  61. */
  62. #define KVM_VMX_DEFAULT_PLE_GAP 41
  63. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  64. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  65. module_param(ple_gap, int, S_IRUGO);
  66. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  67. module_param(ple_window, int, S_IRUGO);
  68. struct vmcs {
  69. u32 revision_id;
  70. u32 abort;
  71. char data[0];
  72. };
  73. struct shared_msr_entry {
  74. unsigned index;
  75. u64 data;
  76. };
  77. struct vcpu_vmx {
  78. struct kvm_vcpu vcpu;
  79. struct list_head local_vcpus_link;
  80. unsigned long host_rsp;
  81. int launched;
  82. u8 fail;
  83. u32 idt_vectoring_info;
  84. struct shared_msr_entry *guest_msrs;
  85. int nmsrs;
  86. int save_nmsrs;
  87. #ifdef CONFIG_X86_64
  88. u64 msr_host_kernel_gs_base;
  89. u64 msr_guest_kernel_gs_base;
  90. #endif
  91. struct vmcs *vmcs;
  92. struct {
  93. int loaded;
  94. u16 fs_sel, gs_sel, ldt_sel;
  95. int gs_ldt_reload_needed;
  96. int fs_reload_needed;
  97. } host_state;
  98. struct {
  99. int vm86_active;
  100. u8 save_iopl;
  101. struct kvm_save_segment {
  102. u16 selector;
  103. unsigned long base;
  104. u32 limit;
  105. u32 ar;
  106. } tr, es, ds, fs, gs;
  107. struct {
  108. bool pending;
  109. u8 vector;
  110. unsigned rip;
  111. } irq;
  112. } rmode;
  113. int vpid;
  114. bool emulation_required;
  115. /* Support for vnmi-less CPUs */
  116. int soft_vnmi_blocked;
  117. ktime_t entry_time;
  118. s64 vnmi_blocked_time;
  119. u32 exit_reason;
  120. };
  121. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  122. {
  123. return container_of(vcpu, struct vcpu_vmx, vcpu);
  124. }
  125. static int init_rmode(struct kvm *kvm);
  126. static u64 construct_eptp(unsigned long root_hpa);
  127. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  128. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  129. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  130. static unsigned long *vmx_io_bitmap_a;
  131. static unsigned long *vmx_io_bitmap_b;
  132. static unsigned long *vmx_msr_bitmap_legacy;
  133. static unsigned long *vmx_msr_bitmap_longmode;
  134. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  135. static DEFINE_SPINLOCK(vmx_vpid_lock);
  136. static struct vmcs_config {
  137. int size;
  138. int order;
  139. u32 revision_id;
  140. u32 pin_based_exec_ctrl;
  141. u32 cpu_based_exec_ctrl;
  142. u32 cpu_based_2nd_exec_ctrl;
  143. u32 vmexit_ctrl;
  144. u32 vmentry_ctrl;
  145. } vmcs_config;
  146. static struct vmx_capability {
  147. u32 ept;
  148. u32 vpid;
  149. } vmx_capability;
  150. #define VMX_SEGMENT_FIELD(seg) \
  151. [VCPU_SREG_##seg] = { \
  152. .selector = GUEST_##seg##_SELECTOR, \
  153. .base = GUEST_##seg##_BASE, \
  154. .limit = GUEST_##seg##_LIMIT, \
  155. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  156. }
  157. static struct kvm_vmx_segment_field {
  158. unsigned selector;
  159. unsigned base;
  160. unsigned limit;
  161. unsigned ar_bytes;
  162. } kvm_vmx_segment_fields[] = {
  163. VMX_SEGMENT_FIELD(CS),
  164. VMX_SEGMENT_FIELD(DS),
  165. VMX_SEGMENT_FIELD(ES),
  166. VMX_SEGMENT_FIELD(FS),
  167. VMX_SEGMENT_FIELD(GS),
  168. VMX_SEGMENT_FIELD(SS),
  169. VMX_SEGMENT_FIELD(TR),
  170. VMX_SEGMENT_FIELD(LDTR),
  171. };
  172. static u64 host_efer;
  173. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  174. /*
  175. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  176. * away by decrementing the array size.
  177. */
  178. static const u32 vmx_msr_index[] = {
  179. #ifdef CONFIG_X86_64
  180. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  181. #endif
  182. MSR_EFER, MSR_K6_STAR,
  183. };
  184. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  185. static inline int is_page_fault(u32 intr_info)
  186. {
  187. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  188. INTR_INFO_VALID_MASK)) ==
  189. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  190. }
  191. static inline int is_no_device(u32 intr_info)
  192. {
  193. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  194. INTR_INFO_VALID_MASK)) ==
  195. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  196. }
  197. static inline int is_invalid_opcode(u32 intr_info)
  198. {
  199. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  200. INTR_INFO_VALID_MASK)) ==
  201. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  202. }
  203. static inline int is_external_interrupt(u32 intr_info)
  204. {
  205. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  206. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  207. }
  208. static inline int is_machine_check(u32 intr_info)
  209. {
  210. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  211. INTR_INFO_VALID_MASK)) ==
  212. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  213. }
  214. static inline int cpu_has_vmx_msr_bitmap(void)
  215. {
  216. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  217. }
  218. static inline int cpu_has_vmx_tpr_shadow(void)
  219. {
  220. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  221. }
  222. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  223. {
  224. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  225. }
  226. static inline int cpu_has_secondary_exec_ctrls(void)
  227. {
  228. return vmcs_config.cpu_based_exec_ctrl &
  229. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  230. }
  231. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  232. {
  233. return vmcs_config.cpu_based_2nd_exec_ctrl &
  234. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  235. }
  236. static inline bool cpu_has_vmx_flexpriority(void)
  237. {
  238. return cpu_has_vmx_tpr_shadow() &&
  239. cpu_has_vmx_virtualize_apic_accesses();
  240. }
  241. static inline bool cpu_has_vmx_ept_execute_only(void)
  242. {
  243. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  244. }
  245. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  246. {
  247. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  248. }
  249. static inline bool cpu_has_vmx_eptp_writeback(void)
  250. {
  251. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  252. }
  253. static inline bool cpu_has_vmx_ept_2m_page(void)
  254. {
  255. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  256. }
  257. static inline int cpu_has_vmx_invept_individual_addr(void)
  258. {
  259. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  260. }
  261. static inline int cpu_has_vmx_invept_context(void)
  262. {
  263. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  264. }
  265. static inline int cpu_has_vmx_invept_global(void)
  266. {
  267. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  268. }
  269. static inline int cpu_has_vmx_ept(void)
  270. {
  271. return vmcs_config.cpu_based_2nd_exec_ctrl &
  272. SECONDARY_EXEC_ENABLE_EPT;
  273. }
  274. static inline int cpu_has_vmx_unrestricted_guest(void)
  275. {
  276. return vmcs_config.cpu_based_2nd_exec_ctrl &
  277. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  278. }
  279. static inline int cpu_has_vmx_ple(void)
  280. {
  281. return vmcs_config.cpu_based_2nd_exec_ctrl &
  282. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  283. }
  284. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  285. {
  286. return flexpriority_enabled &&
  287. (cpu_has_vmx_virtualize_apic_accesses()) &&
  288. (irqchip_in_kernel(kvm));
  289. }
  290. static inline int cpu_has_vmx_vpid(void)
  291. {
  292. return vmcs_config.cpu_based_2nd_exec_ctrl &
  293. SECONDARY_EXEC_ENABLE_VPID;
  294. }
  295. static inline int cpu_has_virtual_nmis(void)
  296. {
  297. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  298. }
  299. static inline bool report_flexpriority(void)
  300. {
  301. return flexpriority_enabled;
  302. }
  303. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  304. {
  305. int i;
  306. for (i = 0; i < vmx->nmsrs; ++i)
  307. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  308. return i;
  309. return -1;
  310. }
  311. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  312. {
  313. struct {
  314. u64 vpid : 16;
  315. u64 rsvd : 48;
  316. u64 gva;
  317. } operand = { vpid, 0, gva };
  318. asm volatile (__ex(ASM_VMX_INVVPID)
  319. /* CF==1 or ZF==1 --> rc = -1 */
  320. "; ja 1f ; ud2 ; 1:"
  321. : : "a"(&operand), "c"(ext) : "cc", "memory");
  322. }
  323. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  324. {
  325. struct {
  326. u64 eptp, gpa;
  327. } operand = {eptp, gpa};
  328. asm volatile (__ex(ASM_VMX_INVEPT)
  329. /* CF==1 or ZF==1 --> rc = -1 */
  330. "; ja 1f ; ud2 ; 1:\n"
  331. : : "a" (&operand), "c" (ext) : "cc", "memory");
  332. }
  333. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  334. {
  335. int i;
  336. i = __find_msr_index(vmx, msr);
  337. if (i >= 0)
  338. return &vmx->guest_msrs[i];
  339. return NULL;
  340. }
  341. static void vmcs_clear(struct vmcs *vmcs)
  342. {
  343. u64 phys_addr = __pa(vmcs);
  344. u8 error;
  345. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  346. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  347. : "cc", "memory");
  348. if (error)
  349. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  350. vmcs, phys_addr);
  351. }
  352. static void __vcpu_clear(void *arg)
  353. {
  354. struct vcpu_vmx *vmx = arg;
  355. int cpu = raw_smp_processor_id();
  356. if (vmx->vcpu.cpu == cpu)
  357. vmcs_clear(vmx->vmcs);
  358. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  359. per_cpu(current_vmcs, cpu) = NULL;
  360. rdtscll(vmx->vcpu.arch.host_tsc);
  361. list_del(&vmx->local_vcpus_link);
  362. vmx->vcpu.cpu = -1;
  363. vmx->launched = 0;
  364. }
  365. static void vcpu_clear(struct vcpu_vmx *vmx)
  366. {
  367. if (vmx->vcpu.cpu == -1)
  368. return;
  369. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  370. }
  371. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  372. {
  373. if (vmx->vpid == 0)
  374. return;
  375. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  376. }
  377. static inline void ept_sync_global(void)
  378. {
  379. if (cpu_has_vmx_invept_global())
  380. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  381. }
  382. static inline void ept_sync_context(u64 eptp)
  383. {
  384. if (enable_ept) {
  385. if (cpu_has_vmx_invept_context())
  386. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  387. else
  388. ept_sync_global();
  389. }
  390. }
  391. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  392. {
  393. if (enable_ept) {
  394. if (cpu_has_vmx_invept_individual_addr())
  395. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  396. eptp, gpa);
  397. else
  398. ept_sync_context(eptp);
  399. }
  400. }
  401. static unsigned long vmcs_readl(unsigned long field)
  402. {
  403. unsigned long value;
  404. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  405. : "=a"(value) : "d"(field) : "cc");
  406. return value;
  407. }
  408. static u16 vmcs_read16(unsigned long field)
  409. {
  410. return vmcs_readl(field);
  411. }
  412. static u32 vmcs_read32(unsigned long field)
  413. {
  414. return vmcs_readl(field);
  415. }
  416. static u64 vmcs_read64(unsigned long field)
  417. {
  418. #ifdef CONFIG_X86_64
  419. return vmcs_readl(field);
  420. #else
  421. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  422. #endif
  423. }
  424. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  425. {
  426. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  427. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  428. dump_stack();
  429. }
  430. static void vmcs_writel(unsigned long field, unsigned long value)
  431. {
  432. u8 error;
  433. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  434. : "=q"(error) : "a"(value), "d"(field) : "cc");
  435. if (unlikely(error))
  436. vmwrite_error(field, value);
  437. }
  438. static void vmcs_write16(unsigned long field, u16 value)
  439. {
  440. vmcs_writel(field, value);
  441. }
  442. static void vmcs_write32(unsigned long field, u32 value)
  443. {
  444. vmcs_writel(field, value);
  445. }
  446. static void vmcs_write64(unsigned long field, u64 value)
  447. {
  448. vmcs_writel(field, value);
  449. #ifndef CONFIG_X86_64
  450. asm volatile ("");
  451. vmcs_writel(field+1, value >> 32);
  452. #endif
  453. }
  454. static void vmcs_clear_bits(unsigned long field, u32 mask)
  455. {
  456. vmcs_writel(field, vmcs_readl(field) & ~mask);
  457. }
  458. static void vmcs_set_bits(unsigned long field, u32 mask)
  459. {
  460. vmcs_writel(field, vmcs_readl(field) | mask);
  461. }
  462. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  463. {
  464. u32 eb;
  465. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  466. if (!vcpu->fpu_active)
  467. eb |= 1u << NM_VECTOR;
  468. /*
  469. * Unconditionally intercept #DB so we can maintain dr6 without
  470. * reading it every exit.
  471. */
  472. eb |= 1u << DB_VECTOR;
  473. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  474. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  475. eb |= 1u << BP_VECTOR;
  476. }
  477. if (to_vmx(vcpu)->rmode.vm86_active)
  478. eb = ~0;
  479. if (enable_ept)
  480. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  481. vmcs_write32(EXCEPTION_BITMAP, eb);
  482. }
  483. static void reload_tss(void)
  484. {
  485. /*
  486. * VT restores TR but not its size. Useless.
  487. */
  488. struct descriptor_table gdt;
  489. struct desc_struct *descs;
  490. kvm_get_gdt(&gdt);
  491. descs = (void *)gdt.base;
  492. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  493. load_TR_desc();
  494. }
  495. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  496. {
  497. u64 guest_efer;
  498. u64 ignore_bits;
  499. guest_efer = vmx->vcpu.arch.shadow_efer;
  500. /*
  501. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  502. * outside long mode
  503. */
  504. ignore_bits = EFER_NX | EFER_SCE;
  505. #ifdef CONFIG_X86_64
  506. ignore_bits |= EFER_LMA | EFER_LME;
  507. /* SCE is meaningful only in long mode on Intel */
  508. if (guest_efer & EFER_LMA)
  509. ignore_bits &= ~(u64)EFER_SCE;
  510. #endif
  511. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  512. return false;
  513. guest_efer &= ~ignore_bits;
  514. guest_efer |= host_efer & ignore_bits;
  515. vmx->guest_msrs[efer_offset].data = guest_efer;
  516. return true;
  517. }
  518. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  519. {
  520. struct vcpu_vmx *vmx = to_vmx(vcpu);
  521. int i;
  522. if (vmx->host_state.loaded)
  523. return;
  524. vmx->host_state.loaded = 1;
  525. /*
  526. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  527. * allow segment selectors with cpl > 0 or ti == 1.
  528. */
  529. vmx->host_state.ldt_sel = kvm_read_ldt();
  530. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  531. vmx->host_state.fs_sel = kvm_read_fs();
  532. if (!(vmx->host_state.fs_sel & 7)) {
  533. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  534. vmx->host_state.fs_reload_needed = 0;
  535. } else {
  536. vmcs_write16(HOST_FS_SELECTOR, 0);
  537. vmx->host_state.fs_reload_needed = 1;
  538. }
  539. vmx->host_state.gs_sel = kvm_read_gs();
  540. if (!(vmx->host_state.gs_sel & 7))
  541. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  542. else {
  543. vmcs_write16(HOST_GS_SELECTOR, 0);
  544. vmx->host_state.gs_ldt_reload_needed = 1;
  545. }
  546. #ifdef CONFIG_X86_64
  547. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  548. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  549. #else
  550. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  551. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  552. #endif
  553. #ifdef CONFIG_X86_64
  554. if (is_long_mode(&vmx->vcpu)) {
  555. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  556. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  557. }
  558. #endif
  559. for (i = 0; i < vmx->save_nmsrs; ++i)
  560. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  561. vmx->guest_msrs[i].data);
  562. }
  563. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  564. {
  565. unsigned long flags;
  566. if (!vmx->host_state.loaded)
  567. return;
  568. ++vmx->vcpu.stat.host_state_reload;
  569. vmx->host_state.loaded = 0;
  570. if (vmx->host_state.fs_reload_needed)
  571. kvm_load_fs(vmx->host_state.fs_sel);
  572. if (vmx->host_state.gs_ldt_reload_needed) {
  573. kvm_load_ldt(vmx->host_state.ldt_sel);
  574. /*
  575. * If we have to reload gs, we must take care to
  576. * preserve our gs base.
  577. */
  578. local_irq_save(flags);
  579. kvm_load_gs(vmx->host_state.gs_sel);
  580. #ifdef CONFIG_X86_64
  581. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  582. #endif
  583. local_irq_restore(flags);
  584. }
  585. reload_tss();
  586. #ifdef CONFIG_X86_64
  587. if (is_long_mode(&vmx->vcpu)) {
  588. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  589. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  590. }
  591. #endif
  592. }
  593. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  594. {
  595. preempt_disable();
  596. __vmx_load_host_state(vmx);
  597. preempt_enable();
  598. }
  599. /*
  600. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  601. * vcpu mutex is already taken.
  602. */
  603. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  604. {
  605. struct vcpu_vmx *vmx = to_vmx(vcpu);
  606. u64 phys_addr = __pa(vmx->vmcs);
  607. u64 tsc_this, delta, new_offset;
  608. if (vcpu->cpu != cpu) {
  609. vcpu_clear(vmx);
  610. kvm_migrate_timers(vcpu);
  611. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  612. local_irq_disable();
  613. list_add(&vmx->local_vcpus_link,
  614. &per_cpu(vcpus_on_cpu, cpu));
  615. local_irq_enable();
  616. }
  617. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  618. u8 error;
  619. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  620. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  621. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  622. : "cc");
  623. if (error)
  624. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  625. vmx->vmcs, phys_addr);
  626. }
  627. if (vcpu->cpu != cpu) {
  628. struct descriptor_table dt;
  629. unsigned long sysenter_esp;
  630. vcpu->cpu = cpu;
  631. /*
  632. * Linux uses per-cpu TSS and GDT, so set these when switching
  633. * processors.
  634. */
  635. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  636. kvm_get_gdt(&dt);
  637. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  638. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  639. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  640. /*
  641. * Make sure the time stamp counter is monotonous.
  642. */
  643. rdtscll(tsc_this);
  644. if (tsc_this < vcpu->arch.host_tsc) {
  645. delta = vcpu->arch.host_tsc - tsc_this;
  646. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  647. vmcs_write64(TSC_OFFSET, new_offset);
  648. }
  649. }
  650. }
  651. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  652. {
  653. __vmx_load_host_state(to_vmx(vcpu));
  654. }
  655. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  656. {
  657. if (vcpu->fpu_active)
  658. return;
  659. vcpu->fpu_active = 1;
  660. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  661. if (vcpu->arch.cr0 & X86_CR0_TS)
  662. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  663. update_exception_bitmap(vcpu);
  664. }
  665. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  666. {
  667. if (!vcpu->fpu_active)
  668. return;
  669. vcpu->fpu_active = 0;
  670. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  671. update_exception_bitmap(vcpu);
  672. }
  673. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  674. {
  675. unsigned long rflags;
  676. rflags = vmcs_readl(GUEST_RFLAGS);
  677. if (to_vmx(vcpu)->rmode.vm86_active)
  678. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  679. return rflags;
  680. }
  681. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  682. {
  683. if (to_vmx(vcpu)->rmode.vm86_active)
  684. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  685. vmcs_writel(GUEST_RFLAGS, rflags);
  686. }
  687. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  688. {
  689. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  690. int ret = 0;
  691. if (interruptibility & GUEST_INTR_STATE_STI)
  692. ret |= X86_SHADOW_INT_STI;
  693. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  694. ret |= X86_SHADOW_INT_MOV_SS;
  695. return ret & mask;
  696. }
  697. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  698. {
  699. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  700. u32 interruptibility = interruptibility_old;
  701. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  702. if (mask & X86_SHADOW_INT_MOV_SS)
  703. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  704. if (mask & X86_SHADOW_INT_STI)
  705. interruptibility |= GUEST_INTR_STATE_STI;
  706. if ((interruptibility != interruptibility_old))
  707. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  708. }
  709. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  710. {
  711. unsigned long rip;
  712. rip = kvm_rip_read(vcpu);
  713. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  714. kvm_rip_write(vcpu, rip);
  715. /* skipping an emulated instruction also counts */
  716. vmx_set_interrupt_shadow(vcpu, 0);
  717. }
  718. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  719. bool has_error_code, u32 error_code)
  720. {
  721. struct vcpu_vmx *vmx = to_vmx(vcpu);
  722. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  723. if (has_error_code) {
  724. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  725. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  726. }
  727. if (vmx->rmode.vm86_active) {
  728. vmx->rmode.irq.pending = true;
  729. vmx->rmode.irq.vector = nr;
  730. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  731. if (kvm_exception_is_soft(nr))
  732. vmx->rmode.irq.rip +=
  733. vmx->vcpu.arch.event_exit_inst_len;
  734. intr_info |= INTR_TYPE_SOFT_INTR;
  735. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  736. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  737. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  738. return;
  739. }
  740. if (kvm_exception_is_soft(nr)) {
  741. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  742. vmx->vcpu.arch.event_exit_inst_len);
  743. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  744. } else
  745. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  746. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  747. }
  748. /*
  749. * Swap MSR entry in host/guest MSR entry array.
  750. */
  751. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  752. {
  753. struct shared_msr_entry tmp;
  754. tmp = vmx->guest_msrs[to];
  755. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  756. vmx->guest_msrs[from] = tmp;
  757. }
  758. /*
  759. * Set up the vmcs to automatically save and restore system
  760. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  761. * mode, as fiddling with msrs is very expensive.
  762. */
  763. static void setup_msrs(struct vcpu_vmx *vmx)
  764. {
  765. int save_nmsrs, index;
  766. unsigned long *msr_bitmap;
  767. vmx_load_host_state(vmx);
  768. save_nmsrs = 0;
  769. #ifdef CONFIG_X86_64
  770. if (is_long_mode(&vmx->vcpu)) {
  771. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  772. if (index >= 0)
  773. move_msr_up(vmx, index, save_nmsrs++);
  774. index = __find_msr_index(vmx, MSR_LSTAR);
  775. if (index >= 0)
  776. move_msr_up(vmx, index, save_nmsrs++);
  777. index = __find_msr_index(vmx, MSR_CSTAR);
  778. if (index >= 0)
  779. move_msr_up(vmx, index, save_nmsrs++);
  780. /*
  781. * MSR_K6_STAR is only needed on long mode guests, and only
  782. * if efer.sce is enabled.
  783. */
  784. index = __find_msr_index(vmx, MSR_K6_STAR);
  785. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  786. move_msr_up(vmx, index, save_nmsrs++);
  787. }
  788. #endif
  789. index = __find_msr_index(vmx, MSR_EFER);
  790. if (index >= 0 && update_transition_efer(vmx, index))
  791. move_msr_up(vmx, index, save_nmsrs++);
  792. vmx->save_nmsrs = save_nmsrs;
  793. if (cpu_has_vmx_msr_bitmap()) {
  794. if (is_long_mode(&vmx->vcpu))
  795. msr_bitmap = vmx_msr_bitmap_longmode;
  796. else
  797. msr_bitmap = vmx_msr_bitmap_legacy;
  798. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  799. }
  800. }
  801. /*
  802. * reads and returns guest's timestamp counter "register"
  803. * guest_tsc = host_tsc + tsc_offset -- 21.3
  804. */
  805. static u64 guest_read_tsc(void)
  806. {
  807. u64 host_tsc, tsc_offset;
  808. rdtscll(host_tsc);
  809. tsc_offset = vmcs_read64(TSC_OFFSET);
  810. return host_tsc + tsc_offset;
  811. }
  812. /*
  813. * writes 'guest_tsc' into guest's timestamp counter "register"
  814. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  815. */
  816. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  817. {
  818. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  819. }
  820. /*
  821. * Reads an msr value (of 'msr_index') into 'pdata'.
  822. * Returns 0 on success, non-0 otherwise.
  823. * Assumes vcpu_load() was already called.
  824. */
  825. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  826. {
  827. u64 data;
  828. struct shared_msr_entry *msr;
  829. if (!pdata) {
  830. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  831. return -EINVAL;
  832. }
  833. switch (msr_index) {
  834. #ifdef CONFIG_X86_64
  835. case MSR_FS_BASE:
  836. data = vmcs_readl(GUEST_FS_BASE);
  837. break;
  838. case MSR_GS_BASE:
  839. data = vmcs_readl(GUEST_GS_BASE);
  840. break;
  841. case MSR_KERNEL_GS_BASE:
  842. vmx_load_host_state(to_vmx(vcpu));
  843. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  844. break;
  845. #endif
  846. case MSR_EFER:
  847. return kvm_get_msr_common(vcpu, msr_index, pdata);
  848. case MSR_IA32_TSC:
  849. data = guest_read_tsc();
  850. break;
  851. case MSR_IA32_SYSENTER_CS:
  852. data = vmcs_read32(GUEST_SYSENTER_CS);
  853. break;
  854. case MSR_IA32_SYSENTER_EIP:
  855. data = vmcs_readl(GUEST_SYSENTER_EIP);
  856. break;
  857. case MSR_IA32_SYSENTER_ESP:
  858. data = vmcs_readl(GUEST_SYSENTER_ESP);
  859. break;
  860. default:
  861. vmx_load_host_state(to_vmx(vcpu));
  862. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  863. if (msr) {
  864. vmx_load_host_state(to_vmx(vcpu));
  865. data = msr->data;
  866. break;
  867. }
  868. return kvm_get_msr_common(vcpu, msr_index, pdata);
  869. }
  870. *pdata = data;
  871. return 0;
  872. }
  873. /*
  874. * Writes msr value into into the appropriate "register".
  875. * Returns 0 on success, non-0 otherwise.
  876. * Assumes vcpu_load() was already called.
  877. */
  878. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  879. {
  880. struct vcpu_vmx *vmx = to_vmx(vcpu);
  881. struct shared_msr_entry *msr;
  882. u64 host_tsc;
  883. int ret = 0;
  884. switch (msr_index) {
  885. case MSR_EFER:
  886. vmx_load_host_state(vmx);
  887. ret = kvm_set_msr_common(vcpu, msr_index, data);
  888. break;
  889. #ifdef CONFIG_X86_64
  890. case MSR_FS_BASE:
  891. vmcs_writel(GUEST_FS_BASE, data);
  892. break;
  893. case MSR_GS_BASE:
  894. vmcs_writel(GUEST_GS_BASE, data);
  895. break;
  896. case MSR_KERNEL_GS_BASE:
  897. vmx_load_host_state(vmx);
  898. vmx->msr_guest_kernel_gs_base = data;
  899. break;
  900. #endif
  901. case MSR_IA32_SYSENTER_CS:
  902. vmcs_write32(GUEST_SYSENTER_CS, data);
  903. break;
  904. case MSR_IA32_SYSENTER_EIP:
  905. vmcs_writel(GUEST_SYSENTER_EIP, data);
  906. break;
  907. case MSR_IA32_SYSENTER_ESP:
  908. vmcs_writel(GUEST_SYSENTER_ESP, data);
  909. break;
  910. case MSR_IA32_TSC:
  911. rdtscll(host_tsc);
  912. guest_write_tsc(data, host_tsc);
  913. break;
  914. case MSR_IA32_CR_PAT:
  915. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  916. vmcs_write64(GUEST_IA32_PAT, data);
  917. vcpu->arch.pat = data;
  918. break;
  919. }
  920. /* Otherwise falls through to kvm_set_msr_common */
  921. default:
  922. msr = find_msr_entry(vmx, msr_index);
  923. if (msr) {
  924. vmx_load_host_state(vmx);
  925. msr->data = data;
  926. break;
  927. }
  928. ret = kvm_set_msr_common(vcpu, msr_index, data);
  929. }
  930. return ret;
  931. }
  932. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  933. {
  934. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  935. switch (reg) {
  936. case VCPU_REGS_RSP:
  937. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  938. break;
  939. case VCPU_REGS_RIP:
  940. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  941. break;
  942. case VCPU_EXREG_PDPTR:
  943. if (enable_ept)
  944. ept_save_pdptrs(vcpu);
  945. break;
  946. default:
  947. break;
  948. }
  949. }
  950. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  951. {
  952. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  953. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  954. else
  955. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  956. update_exception_bitmap(vcpu);
  957. }
  958. static __init int cpu_has_kvm_support(void)
  959. {
  960. return cpu_has_vmx();
  961. }
  962. static __init int vmx_disabled_by_bios(void)
  963. {
  964. u64 msr;
  965. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  966. return (msr & (FEATURE_CONTROL_LOCKED |
  967. FEATURE_CONTROL_VMXON_ENABLED))
  968. == FEATURE_CONTROL_LOCKED;
  969. /* locked but not enabled */
  970. }
  971. static int hardware_enable(void *garbage)
  972. {
  973. int cpu = raw_smp_processor_id();
  974. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  975. u64 old;
  976. if (read_cr4() & X86_CR4_VMXE)
  977. return -EBUSY;
  978. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  979. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  980. if ((old & (FEATURE_CONTROL_LOCKED |
  981. FEATURE_CONTROL_VMXON_ENABLED))
  982. != (FEATURE_CONTROL_LOCKED |
  983. FEATURE_CONTROL_VMXON_ENABLED))
  984. /* enable and lock */
  985. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  986. FEATURE_CONTROL_LOCKED |
  987. FEATURE_CONTROL_VMXON_ENABLED);
  988. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  989. asm volatile (ASM_VMX_VMXON_RAX
  990. : : "a"(&phys_addr), "m"(phys_addr)
  991. : "memory", "cc");
  992. ept_sync_global();
  993. return 0;
  994. }
  995. static void vmclear_local_vcpus(void)
  996. {
  997. int cpu = raw_smp_processor_id();
  998. struct vcpu_vmx *vmx, *n;
  999. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1000. local_vcpus_link)
  1001. __vcpu_clear(vmx);
  1002. }
  1003. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1004. * tricks.
  1005. */
  1006. static void kvm_cpu_vmxoff(void)
  1007. {
  1008. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1009. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1010. }
  1011. static void hardware_disable(void *garbage)
  1012. {
  1013. vmclear_local_vcpus();
  1014. kvm_cpu_vmxoff();
  1015. }
  1016. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1017. u32 msr, u32 *result)
  1018. {
  1019. u32 vmx_msr_low, vmx_msr_high;
  1020. u32 ctl = ctl_min | ctl_opt;
  1021. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1022. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1023. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1024. /* Ensure minimum (required) set of control bits are supported. */
  1025. if (ctl_min & ~ctl)
  1026. return -EIO;
  1027. *result = ctl;
  1028. return 0;
  1029. }
  1030. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1031. {
  1032. u32 vmx_msr_low, vmx_msr_high;
  1033. u32 min, opt, min2, opt2;
  1034. u32 _pin_based_exec_control = 0;
  1035. u32 _cpu_based_exec_control = 0;
  1036. u32 _cpu_based_2nd_exec_control = 0;
  1037. u32 _vmexit_control = 0;
  1038. u32 _vmentry_control = 0;
  1039. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1040. opt = PIN_BASED_VIRTUAL_NMIS;
  1041. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1042. &_pin_based_exec_control) < 0)
  1043. return -EIO;
  1044. min = CPU_BASED_HLT_EXITING |
  1045. #ifdef CONFIG_X86_64
  1046. CPU_BASED_CR8_LOAD_EXITING |
  1047. CPU_BASED_CR8_STORE_EXITING |
  1048. #endif
  1049. CPU_BASED_CR3_LOAD_EXITING |
  1050. CPU_BASED_CR3_STORE_EXITING |
  1051. CPU_BASED_USE_IO_BITMAPS |
  1052. CPU_BASED_MOV_DR_EXITING |
  1053. CPU_BASED_USE_TSC_OFFSETING |
  1054. CPU_BASED_INVLPG_EXITING;
  1055. opt = CPU_BASED_TPR_SHADOW |
  1056. CPU_BASED_USE_MSR_BITMAPS |
  1057. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1058. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1059. &_cpu_based_exec_control) < 0)
  1060. return -EIO;
  1061. #ifdef CONFIG_X86_64
  1062. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1063. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1064. ~CPU_BASED_CR8_STORE_EXITING;
  1065. #endif
  1066. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1067. min2 = 0;
  1068. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1069. SECONDARY_EXEC_WBINVD_EXITING |
  1070. SECONDARY_EXEC_ENABLE_VPID |
  1071. SECONDARY_EXEC_ENABLE_EPT |
  1072. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1073. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1074. if (adjust_vmx_controls(min2, opt2,
  1075. MSR_IA32_VMX_PROCBASED_CTLS2,
  1076. &_cpu_based_2nd_exec_control) < 0)
  1077. return -EIO;
  1078. }
  1079. #ifndef CONFIG_X86_64
  1080. if (!(_cpu_based_2nd_exec_control &
  1081. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1082. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1083. #endif
  1084. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1085. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1086. enabled */
  1087. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1088. CPU_BASED_CR3_STORE_EXITING |
  1089. CPU_BASED_INVLPG_EXITING);
  1090. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1091. vmx_capability.ept, vmx_capability.vpid);
  1092. }
  1093. min = 0;
  1094. #ifdef CONFIG_X86_64
  1095. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1096. #endif
  1097. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1098. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1099. &_vmexit_control) < 0)
  1100. return -EIO;
  1101. min = 0;
  1102. opt = VM_ENTRY_LOAD_IA32_PAT;
  1103. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1104. &_vmentry_control) < 0)
  1105. return -EIO;
  1106. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1107. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1108. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1109. return -EIO;
  1110. #ifdef CONFIG_X86_64
  1111. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1112. if (vmx_msr_high & (1u<<16))
  1113. return -EIO;
  1114. #endif
  1115. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1116. if (((vmx_msr_high >> 18) & 15) != 6)
  1117. return -EIO;
  1118. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1119. vmcs_conf->order = get_order(vmcs_config.size);
  1120. vmcs_conf->revision_id = vmx_msr_low;
  1121. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1122. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1123. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1124. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1125. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1126. return 0;
  1127. }
  1128. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1129. {
  1130. int node = cpu_to_node(cpu);
  1131. struct page *pages;
  1132. struct vmcs *vmcs;
  1133. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1134. if (!pages)
  1135. return NULL;
  1136. vmcs = page_address(pages);
  1137. memset(vmcs, 0, vmcs_config.size);
  1138. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1139. return vmcs;
  1140. }
  1141. static struct vmcs *alloc_vmcs(void)
  1142. {
  1143. return alloc_vmcs_cpu(raw_smp_processor_id());
  1144. }
  1145. static void free_vmcs(struct vmcs *vmcs)
  1146. {
  1147. free_pages((unsigned long)vmcs, vmcs_config.order);
  1148. }
  1149. static void free_kvm_area(void)
  1150. {
  1151. int cpu;
  1152. for_each_possible_cpu(cpu) {
  1153. free_vmcs(per_cpu(vmxarea, cpu));
  1154. per_cpu(vmxarea, cpu) = NULL;
  1155. }
  1156. }
  1157. static __init int alloc_kvm_area(void)
  1158. {
  1159. int cpu;
  1160. for_each_possible_cpu(cpu) {
  1161. struct vmcs *vmcs;
  1162. vmcs = alloc_vmcs_cpu(cpu);
  1163. if (!vmcs) {
  1164. free_kvm_area();
  1165. return -ENOMEM;
  1166. }
  1167. per_cpu(vmxarea, cpu) = vmcs;
  1168. }
  1169. return 0;
  1170. }
  1171. static __init int hardware_setup(void)
  1172. {
  1173. if (setup_vmcs_config(&vmcs_config) < 0)
  1174. return -EIO;
  1175. if (boot_cpu_has(X86_FEATURE_NX))
  1176. kvm_enable_efer_bits(EFER_NX);
  1177. if (!cpu_has_vmx_vpid())
  1178. enable_vpid = 0;
  1179. if (!cpu_has_vmx_ept()) {
  1180. enable_ept = 0;
  1181. enable_unrestricted_guest = 0;
  1182. }
  1183. if (!cpu_has_vmx_unrestricted_guest())
  1184. enable_unrestricted_guest = 0;
  1185. if (!cpu_has_vmx_flexpriority())
  1186. flexpriority_enabled = 0;
  1187. if (!cpu_has_vmx_tpr_shadow())
  1188. kvm_x86_ops->update_cr8_intercept = NULL;
  1189. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1190. kvm_disable_largepages();
  1191. if (!cpu_has_vmx_ple())
  1192. ple_gap = 0;
  1193. return alloc_kvm_area();
  1194. }
  1195. static __exit void hardware_unsetup(void)
  1196. {
  1197. free_kvm_area();
  1198. }
  1199. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1200. {
  1201. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1202. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1203. vmcs_write16(sf->selector, save->selector);
  1204. vmcs_writel(sf->base, save->base);
  1205. vmcs_write32(sf->limit, save->limit);
  1206. vmcs_write32(sf->ar_bytes, save->ar);
  1207. } else {
  1208. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1209. << AR_DPL_SHIFT;
  1210. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1211. }
  1212. }
  1213. static void enter_pmode(struct kvm_vcpu *vcpu)
  1214. {
  1215. unsigned long flags;
  1216. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1217. vmx->emulation_required = 1;
  1218. vmx->rmode.vm86_active = 0;
  1219. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1220. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1221. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1222. flags = vmcs_readl(GUEST_RFLAGS);
  1223. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1224. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1225. vmcs_writel(GUEST_RFLAGS, flags);
  1226. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1227. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1228. update_exception_bitmap(vcpu);
  1229. if (emulate_invalid_guest_state)
  1230. return;
  1231. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1232. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1233. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1234. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1235. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1236. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1237. vmcs_write16(GUEST_CS_SELECTOR,
  1238. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1239. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1240. }
  1241. static gva_t rmode_tss_base(struct kvm *kvm)
  1242. {
  1243. if (!kvm->arch.tss_addr) {
  1244. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1245. kvm->memslots[0].npages - 3;
  1246. return base_gfn << PAGE_SHIFT;
  1247. }
  1248. return kvm->arch.tss_addr;
  1249. }
  1250. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1251. {
  1252. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1253. save->selector = vmcs_read16(sf->selector);
  1254. save->base = vmcs_readl(sf->base);
  1255. save->limit = vmcs_read32(sf->limit);
  1256. save->ar = vmcs_read32(sf->ar_bytes);
  1257. vmcs_write16(sf->selector, save->base >> 4);
  1258. vmcs_write32(sf->base, save->base & 0xfffff);
  1259. vmcs_write32(sf->limit, 0xffff);
  1260. vmcs_write32(sf->ar_bytes, 0xf3);
  1261. }
  1262. static void enter_rmode(struct kvm_vcpu *vcpu)
  1263. {
  1264. unsigned long flags;
  1265. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1266. if (enable_unrestricted_guest)
  1267. return;
  1268. vmx->emulation_required = 1;
  1269. vmx->rmode.vm86_active = 1;
  1270. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1271. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1272. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1273. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1274. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1275. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1276. flags = vmcs_readl(GUEST_RFLAGS);
  1277. vmx->rmode.save_iopl
  1278. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1279. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1280. vmcs_writel(GUEST_RFLAGS, flags);
  1281. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1282. update_exception_bitmap(vcpu);
  1283. if (emulate_invalid_guest_state)
  1284. goto continue_rmode;
  1285. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1286. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1287. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1288. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1289. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1290. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1291. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1292. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1293. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1294. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1295. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1296. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1297. continue_rmode:
  1298. kvm_mmu_reset_context(vcpu);
  1299. init_rmode(vcpu->kvm);
  1300. }
  1301. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1302. {
  1303. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1304. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1305. if (!msr)
  1306. return;
  1307. /*
  1308. * Force kernel_gs_base reloading before EFER changes, as control
  1309. * of this msr depends on is_long_mode().
  1310. */
  1311. vmx_load_host_state(to_vmx(vcpu));
  1312. vcpu->arch.shadow_efer = efer;
  1313. if (!msr)
  1314. return;
  1315. if (efer & EFER_LMA) {
  1316. vmcs_write32(VM_ENTRY_CONTROLS,
  1317. vmcs_read32(VM_ENTRY_CONTROLS) |
  1318. VM_ENTRY_IA32E_MODE);
  1319. msr->data = efer;
  1320. } else {
  1321. vmcs_write32(VM_ENTRY_CONTROLS,
  1322. vmcs_read32(VM_ENTRY_CONTROLS) &
  1323. ~VM_ENTRY_IA32E_MODE);
  1324. msr->data = efer & ~EFER_LME;
  1325. }
  1326. setup_msrs(vmx);
  1327. }
  1328. #ifdef CONFIG_X86_64
  1329. static void enter_lmode(struct kvm_vcpu *vcpu)
  1330. {
  1331. u32 guest_tr_ar;
  1332. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1333. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1334. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1335. __func__);
  1336. vmcs_write32(GUEST_TR_AR_BYTES,
  1337. (guest_tr_ar & ~AR_TYPE_MASK)
  1338. | AR_TYPE_BUSY_64_TSS);
  1339. }
  1340. vcpu->arch.shadow_efer |= EFER_LMA;
  1341. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1342. }
  1343. static void exit_lmode(struct kvm_vcpu *vcpu)
  1344. {
  1345. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1346. vmcs_write32(VM_ENTRY_CONTROLS,
  1347. vmcs_read32(VM_ENTRY_CONTROLS)
  1348. & ~VM_ENTRY_IA32E_MODE);
  1349. }
  1350. #endif
  1351. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1352. {
  1353. vpid_sync_vcpu_all(to_vmx(vcpu));
  1354. if (enable_ept)
  1355. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1356. }
  1357. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1358. {
  1359. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1360. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1361. }
  1362. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1363. {
  1364. if (!test_bit(VCPU_EXREG_PDPTR,
  1365. (unsigned long *)&vcpu->arch.regs_dirty))
  1366. return;
  1367. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1368. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1369. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1370. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1371. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1372. }
  1373. }
  1374. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1375. {
  1376. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1377. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1378. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1379. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1380. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1381. }
  1382. __set_bit(VCPU_EXREG_PDPTR,
  1383. (unsigned long *)&vcpu->arch.regs_avail);
  1384. __set_bit(VCPU_EXREG_PDPTR,
  1385. (unsigned long *)&vcpu->arch.regs_dirty);
  1386. }
  1387. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1388. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1389. unsigned long cr0,
  1390. struct kvm_vcpu *vcpu)
  1391. {
  1392. if (!(cr0 & X86_CR0_PG)) {
  1393. /* From paging/starting to nonpaging */
  1394. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1395. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1396. (CPU_BASED_CR3_LOAD_EXITING |
  1397. CPU_BASED_CR3_STORE_EXITING));
  1398. vcpu->arch.cr0 = cr0;
  1399. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1400. } else if (!is_paging(vcpu)) {
  1401. /* From nonpaging to paging */
  1402. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1403. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1404. ~(CPU_BASED_CR3_LOAD_EXITING |
  1405. CPU_BASED_CR3_STORE_EXITING));
  1406. vcpu->arch.cr0 = cr0;
  1407. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1408. }
  1409. if (!(cr0 & X86_CR0_WP))
  1410. *hw_cr0 &= ~X86_CR0_WP;
  1411. }
  1412. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1413. struct kvm_vcpu *vcpu)
  1414. {
  1415. if (!is_paging(vcpu)) {
  1416. *hw_cr4 &= ~X86_CR4_PAE;
  1417. *hw_cr4 |= X86_CR4_PSE;
  1418. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1419. *hw_cr4 &= ~X86_CR4_PAE;
  1420. }
  1421. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1422. {
  1423. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1424. unsigned long hw_cr0;
  1425. if (enable_unrestricted_guest)
  1426. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1427. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1428. else
  1429. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1430. vmx_fpu_deactivate(vcpu);
  1431. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1432. enter_pmode(vcpu);
  1433. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1434. enter_rmode(vcpu);
  1435. #ifdef CONFIG_X86_64
  1436. if (vcpu->arch.shadow_efer & EFER_LME) {
  1437. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1438. enter_lmode(vcpu);
  1439. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1440. exit_lmode(vcpu);
  1441. }
  1442. #endif
  1443. if (enable_ept)
  1444. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1445. vmcs_writel(CR0_READ_SHADOW, cr0);
  1446. vmcs_writel(GUEST_CR0, hw_cr0);
  1447. vcpu->arch.cr0 = cr0;
  1448. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1449. vmx_fpu_activate(vcpu);
  1450. }
  1451. static u64 construct_eptp(unsigned long root_hpa)
  1452. {
  1453. u64 eptp;
  1454. /* TODO write the value reading from MSR */
  1455. eptp = VMX_EPT_DEFAULT_MT |
  1456. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1457. eptp |= (root_hpa & PAGE_MASK);
  1458. return eptp;
  1459. }
  1460. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1461. {
  1462. unsigned long guest_cr3;
  1463. u64 eptp;
  1464. guest_cr3 = cr3;
  1465. if (enable_ept) {
  1466. eptp = construct_eptp(cr3);
  1467. vmcs_write64(EPT_POINTER, eptp);
  1468. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1469. vcpu->kvm->arch.ept_identity_map_addr;
  1470. ept_load_pdptrs(vcpu);
  1471. }
  1472. vmx_flush_tlb(vcpu);
  1473. vmcs_writel(GUEST_CR3, guest_cr3);
  1474. if (vcpu->arch.cr0 & X86_CR0_PE)
  1475. vmx_fpu_deactivate(vcpu);
  1476. }
  1477. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1478. {
  1479. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1480. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1481. vcpu->arch.cr4 = cr4;
  1482. if (enable_ept)
  1483. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1484. vmcs_writel(CR4_READ_SHADOW, cr4);
  1485. vmcs_writel(GUEST_CR4, hw_cr4);
  1486. }
  1487. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1488. {
  1489. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1490. return vmcs_readl(sf->base);
  1491. }
  1492. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1493. struct kvm_segment *var, int seg)
  1494. {
  1495. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1496. u32 ar;
  1497. var->base = vmcs_readl(sf->base);
  1498. var->limit = vmcs_read32(sf->limit);
  1499. var->selector = vmcs_read16(sf->selector);
  1500. ar = vmcs_read32(sf->ar_bytes);
  1501. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1502. ar = 0;
  1503. var->type = ar & 15;
  1504. var->s = (ar >> 4) & 1;
  1505. var->dpl = (ar >> 5) & 3;
  1506. var->present = (ar >> 7) & 1;
  1507. var->avl = (ar >> 12) & 1;
  1508. var->l = (ar >> 13) & 1;
  1509. var->db = (ar >> 14) & 1;
  1510. var->g = (ar >> 15) & 1;
  1511. var->unusable = (ar >> 16) & 1;
  1512. }
  1513. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1514. {
  1515. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1516. return 0;
  1517. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1518. return 3;
  1519. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1520. }
  1521. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1522. {
  1523. u32 ar;
  1524. if (var->unusable)
  1525. ar = 1 << 16;
  1526. else {
  1527. ar = var->type & 15;
  1528. ar |= (var->s & 1) << 4;
  1529. ar |= (var->dpl & 3) << 5;
  1530. ar |= (var->present & 1) << 7;
  1531. ar |= (var->avl & 1) << 12;
  1532. ar |= (var->l & 1) << 13;
  1533. ar |= (var->db & 1) << 14;
  1534. ar |= (var->g & 1) << 15;
  1535. }
  1536. if (ar == 0) /* a 0 value means unusable */
  1537. ar = AR_UNUSABLE_MASK;
  1538. return ar;
  1539. }
  1540. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1541. struct kvm_segment *var, int seg)
  1542. {
  1543. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1544. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1545. u32 ar;
  1546. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1547. vmx->rmode.tr.selector = var->selector;
  1548. vmx->rmode.tr.base = var->base;
  1549. vmx->rmode.tr.limit = var->limit;
  1550. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1551. return;
  1552. }
  1553. vmcs_writel(sf->base, var->base);
  1554. vmcs_write32(sf->limit, var->limit);
  1555. vmcs_write16(sf->selector, var->selector);
  1556. if (vmx->rmode.vm86_active && var->s) {
  1557. /*
  1558. * Hack real-mode segments into vm86 compatibility.
  1559. */
  1560. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1561. vmcs_writel(sf->base, 0xf0000);
  1562. ar = 0xf3;
  1563. } else
  1564. ar = vmx_segment_access_rights(var);
  1565. /*
  1566. * Fix the "Accessed" bit in AR field of segment registers for older
  1567. * qemu binaries.
  1568. * IA32 arch specifies that at the time of processor reset the
  1569. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1570. * is setting it to 0 in the usedland code. This causes invalid guest
  1571. * state vmexit when "unrestricted guest" mode is turned on.
  1572. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1573. * tree. Newer qemu binaries with that qemu fix would not need this
  1574. * kvm hack.
  1575. */
  1576. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1577. ar |= 0x1; /* Accessed */
  1578. vmcs_write32(sf->ar_bytes, ar);
  1579. }
  1580. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1581. {
  1582. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1583. *db = (ar >> 14) & 1;
  1584. *l = (ar >> 13) & 1;
  1585. }
  1586. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1587. {
  1588. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1589. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1590. }
  1591. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1592. {
  1593. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1594. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1595. }
  1596. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1597. {
  1598. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1599. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1600. }
  1601. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1602. {
  1603. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1604. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1605. }
  1606. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1607. {
  1608. struct kvm_segment var;
  1609. u32 ar;
  1610. vmx_get_segment(vcpu, &var, seg);
  1611. ar = vmx_segment_access_rights(&var);
  1612. if (var.base != (var.selector << 4))
  1613. return false;
  1614. if (var.limit != 0xffff)
  1615. return false;
  1616. if (ar != 0xf3)
  1617. return false;
  1618. return true;
  1619. }
  1620. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1621. {
  1622. struct kvm_segment cs;
  1623. unsigned int cs_rpl;
  1624. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1625. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1626. if (cs.unusable)
  1627. return false;
  1628. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1629. return false;
  1630. if (!cs.s)
  1631. return false;
  1632. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1633. if (cs.dpl > cs_rpl)
  1634. return false;
  1635. } else {
  1636. if (cs.dpl != cs_rpl)
  1637. return false;
  1638. }
  1639. if (!cs.present)
  1640. return false;
  1641. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1642. return true;
  1643. }
  1644. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1645. {
  1646. struct kvm_segment ss;
  1647. unsigned int ss_rpl;
  1648. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1649. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1650. if (ss.unusable)
  1651. return true;
  1652. if (ss.type != 3 && ss.type != 7)
  1653. return false;
  1654. if (!ss.s)
  1655. return false;
  1656. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1657. return false;
  1658. if (!ss.present)
  1659. return false;
  1660. return true;
  1661. }
  1662. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1663. {
  1664. struct kvm_segment var;
  1665. unsigned int rpl;
  1666. vmx_get_segment(vcpu, &var, seg);
  1667. rpl = var.selector & SELECTOR_RPL_MASK;
  1668. if (var.unusable)
  1669. return true;
  1670. if (!var.s)
  1671. return false;
  1672. if (!var.present)
  1673. return false;
  1674. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1675. if (var.dpl < rpl) /* DPL < RPL */
  1676. return false;
  1677. }
  1678. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1679. * rights flags
  1680. */
  1681. return true;
  1682. }
  1683. static bool tr_valid(struct kvm_vcpu *vcpu)
  1684. {
  1685. struct kvm_segment tr;
  1686. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1687. if (tr.unusable)
  1688. return false;
  1689. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1690. return false;
  1691. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1692. return false;
  1693. if (!tr.present)
  1694. return false;
  1695. return true;
  1696. }
  1697. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1698. {
  1699. struct kvm_segment ldtr;
  1700. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1701. if (ldtr.unusable)
  1702. return true;
  1703. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1704. return false;
  1705. if (ldtr.type != 2)
  1706. return false;
  1707. if (!ldtr.present)
  1708. return false;
  1709. return true;
  1710. }
  1711. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1712. {
  1713. struct kvm_segment cs, ss;
  1714. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1715. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1716. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1717. (ss.selector & SELECTOR_RPL_MASK));
  1718. }
  1719. /*
  1720. * Check if guest state is valid. Returns true if valid, false if
  1721. * not.
  1722. * We assume that registers are always usable
  1723. */
  1724. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1725. {
  1726. /* real mode guest state checks */
  1727. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1728. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1729. return false;
  1730. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1731. return false;
  1732. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1733. return false;
  1734. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1735. return false;
  1736. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1737. return false;
  1738. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1739. return false;
  1740. } else {
  1741. /* protected mode guest state checks */
  1742. if (!cs_ss_rpl_check(vcpu))
  1743. return false;
  1744. if (!code_segment_valid(vcpu))
  1745. return false;
  1746. if (!stack_segment_valid(vcpu))
  1747. return false;
  1748. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1749. return false;
  1750. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1751. return false;
  1752. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1753. return false;
  1754. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1755. return false;
  1756. if (!tr_valid(vcpu))
  1757. return false;
  1758. if (!ldtr_valid(vcpu))
  1759. return false;
  1760. }
  1761. /* TODO:
  1762. * - Add checks on RIP
  1763. * - Add checks on RFLAGS
  1764. */
  1765. return true;
  1766. }
  1767. static int init_rmode_tss(struct kvm *kvm)
  1768. {
  1769. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1770. u16 data = 0;
  1771. int ret = 0;
  1772. int r;
  1773. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1774. if (r < 0)
  1775. goto out;
  1776. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1777. r = kvm_write_guest_page(kvm, fn++, &data,
  1778. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1779. if (r < 0)
  1780. goto out;
  1781. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1782. if (r < 0)
  1783. goto out;
  1784. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1785. if (r < 0)
  1786. goto out;
  1787. data = ~0;
  1788. r = kvm_write_guest_page(kvm, fn, &data,
  1789. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1790. sizeof(u8));
  1791. if (r < 0)
  1792. goto out;
  1793. ret = 1;
  1794. out:
  1795. return ret;
  1796. }
  1797. static int init_rmode_identity_map(struct kvm *kvm)
  1798. {
  1799. int i, r, ret;
  1800. pfn_t identity_map_pfn;
  1801. u32 tmp;
  1802. if (!enable_ept)
  1803. return 1;
  1804. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1805. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1806. "haven't been allocated!\n");
  1807. return 0;
  1808. }
  1809. if (likely(kvm->arch.ept_identity_pagetable_done))
  1810. return 1;
  1811. ret = 0;
  1812. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1813. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1814. if (r < 0)
  1815. goto out;
  1816. /* Set up identity-mapping pagetable for EPT in real mode */
  1817. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1818. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1819. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1820. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1821. &tmp, i * sizeof(tmp), sizeof(tmp));
  1822. if (r < 0)
  1823. goto out;
  1824. }
  1825. kvm->arch.ept_identity_pagetable_done = true;
  1826. ret = 1;
  1827. out:
  1828. return ret;
  1829. }
  1830. static void seg_setup(int seg)
  1831. {
  1832. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1833. unsigned int ar;
  1834. vmcs_write16(sf->selector, 0);
  1835. vmcs_writel(sf->base, 0);
  1836. vmcs_write32(sf->limit, 0xffff);
  1837. if (enable_unrestricted_guest) {
  1838. ar = 0x93;
  1839. if (seg == VCPU_SREG_CS)
  1840. ar |= 0x08; /* code segment */
  1841. } else
  1842. ar = 0xf3;
  1843. vmcs_write32(sf->ar_bytes, ar);
  1844. }
  1845. static int alloc_apic_access_page(struct kvm *kvm)
  1846. {
  1847. struct kvm_userspace_memory_region kvm_userspace_mem;
  1848. int r = 0;
  1849. down_write(&kvm->slots_lock);
  1850. if (kvm->arch.apic_access_page)
  1851. goto out;
  1852. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1853. kvm_userspace_mem.flags = 0;
  1854. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1855. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1856. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1857. if (r)
  1858. goto out;
  1859. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1860. out:
  1861. up_write(&kvm->slots_lock);
  1862. return r;
  1863. }
  1864. static int alloc_identity_pagetable(struct kvm *kvm)
  1865. {
  1866. struct kvm_userspace_memory_region kvm_userspace_mem;
  1867. int r = 0;
  1868. down_write(&kvm->slots_lock);
  1869. if (kvm->arch.ept_identity_pagetable)
  1870. goto out;
  1871. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1872. kvm_userspace_mem.flags = 0;
  1873. kvm_userspace_mem.guest_phys_addr =
  1874. kvm->arch.ept_identity_map_addr;
  1875. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1876. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1877. if (r)
  1878. goto out;
  1879. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1880. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1881. out:
  1882. up_write(&kvm->slots_lock);
  1883. return r;
  1884. }
  1885. static void allocate_vpid(struct vcpu_vmx *vmx)
  1886. {
  1887. int vpid;
  1888. vmx->vpid = 0;
  1889. if (!enable_vpid)
  1890. return;
  1891. spin_lock(&vmx_vpid_lock);
  1892. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1893. if (vpid < VMX_NR_VPIDS) {
  1894. vmx->vpid = vpid;
  1895. __set_bit(vpid, vmx_vpid_bitmap);
  1896. }
  1897. spin_unlock(&vmx_vpid_lock);
  1898. }
  1899. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1900. {
  1901. int f = sizeof(unsigned long);
  1902. if (!cpu_has_vmx_msr_bitmap())
  1903. return;
  1904. /*
  1905. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1906. * have the write-low and read-high bitmap offsets the wrong way round.
  1907. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1908. */
  1909. if (msr <= 0x1fff) {
  1910. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1911. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1912. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1913. msr &= 0x1fff;
  1914. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1915. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1916. }
  1917. }
  1918. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1919. {
  1920. if (!longmode_only)
  1921. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1922. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1923. }
  1924. /*
  1925. * Sets up the vmcs for emulated real mode.
  1926. */
  1927. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1928. {
  1929. u32 host_sysenter_cs, msr_low, msr_high;
  1930. u32 junk;
  1931. u64 host_pat, tsc_this, tsc_base;
  1932. unsigned long a;
  1933. struct descriptor_table dt;
  1934. int i;
  1935. unsigned long kvm_vmx_return;
  1936. u32 exec_control;
  1937. /* I/O */
  1938. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1939. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1940. if (cpu_has_vmx_msr_bitmap())
  1941. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1942. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1943. /* Control */
  1944. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1945. vmcs_config.pin_based_exec_ctrl);
  1946. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1947. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1948. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1949. #ifdef CONFIG_X86_64
  1950. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1951. CPU_BASED_CR8_LOAD_EXITING;
  1952. #endif
  1953. }
  1954. if (!enable_ept)
  1955. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1956. CPU_BASED_CR3_LOAD_EXITING |
  1957. CPU_BASED_INVLPG_EXITING;
  1958. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1959. if (cpu_has_secondary_exec_ctrls()) {
  1960. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1961. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1962. exec_control &=
  1963. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1964. if (vmx->vpid == 0)
  1965. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1966. if (!enable_ept)
  1967. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1968. if (!enable_unrestricted_guest)
  1969. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1970. if (!ple_gap)
  1971. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1972. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1973. }
  1974. if (ple_gap) {
  1975. vmcs_write32(PLE_GAP, ple_gap);
  1976. vmcs_write32(PLE_WINDOW, ple_window);
  1977. }
  1978. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1979. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1980. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1981. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1982. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1983. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1984. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1985. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1986. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1987. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1988. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1989. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1990. #ifdef CONFIG_X86_64
  1991. rdmsrl(MSR_FS_BASE, a);
  1992. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1993. rdmsrl(MSR_GS_BASE, a);
  1994. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1995. #else
  1996. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1997. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1998. #endif
  1999. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2000. kvm_get_idt(&dt);
  2001. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2002. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2003. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2004. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2005. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2006. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2007. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2008. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2009. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2010. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2011. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2012. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2013. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2014. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2015. host_pat = msr_low | ((u64) msr_high << 32);
  2016. vmcs_write64(HOST_IA32_PAT, host_pat);
  2017. }
  2018. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2019. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2020. host_pat = msr_low | ((u64) msr_high << 32);
  2021. /* Write the default value follow host pat */
  2022. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2023. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2024. vmx->vcpu.arch.pat = host_pat;
  2025. }
  2026. for (i = 0; i < NR_VMX_MSR; ++i) {
  2027. u32 index = vmx_msr_index[i];
  2028. u32 data_low, data_high;
  2029. u64 data;
  2030. int j = vmx->nmsrs;
  2031. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2032. continue;
  2033. if (wrmsr_safe(index, data_low, data_high) < 0)
  2034. continue;
  2035. data = data_low | ((u64)data_high << 32);
  2036. vmx->guest_msrs[j].index = i;
  2037. vmx->guest_msrs[j].data = 0;
  2038. ++vmx->nmsrs;
  2039. }
  2040. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2041. /* 22.2.1, 20.8.1 */
  2042. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2043. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2044. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2045. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2046. rdtscll(tsc_this);
  2047. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2048. tsc_base = tsc_this;
  2049. guest_write_tsc(0, tsc_base);
  2050. return 0;
  2051. }
  2052. static int init_rmode(struct kvm *kvm)
  2053. {
  2054. if (!init_rmode_tss(kvm))
  2055. return 0;
  2056. if (!init_rmode_identity_map(kvm))
  2057. return 0;
  2058. return 1;
  2059. }
  2060. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2061. {
  2062. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2063. u64 msr;
  2064. int ret;
  2065. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2066. down_read(&vcpu->kvm->slots_lock);
  2067. if (!init_rmode(vmx->vcpu.kvm)) {
  2068. ret = -ENOMEM;
  2069. goto out;
  2070. }
  2071. vmx->rmode.vm86_active = 0;
  2072. vmx->soft_vnmi_blocked = 0;
  2073. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2074. kvm_set_cr8(&vmx->vcpu, 0);
  2075. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2076. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2077. msr |= MSR_IA32_APICBASE_BSP;
  2078. kvm_set_apic_base(&vmx->vcpu, msr);
  2079. fx_init(&vmx->vcpu);
  2080. seg_setup(VCPU_SREG_CS);
  2081. /*
  2082. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2083. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2084. */
  2085. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2086. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2087. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2088. } else {
  2089. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2090. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2091. }
  2092. seg_setup(VCPU_SREG_DS);
  2093. seg_setup(VCPU_SREG_ES);
  2094. seg_setup(VCPU_SREG_FS);
  2095. seg_setup(VCPU_SREG_GS);
  2096. seg_setup(VCPU_SREG_SS);
  2097. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2098. vmcs_writel(GUEST_TR_BASE, 0);
  2099. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2100. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2101. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2102. vmcs_writel(GUEST_LDTR_BASE, 0);
  2103. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2104. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2105. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2106. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2107. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2108. vmcs_writel(GUEST_RFLAGS, 0x02);
  2109. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2110. kvm_rip_write(vcpu, 0xfff0);
  2111. else
  2112. kvm_rip_write(vcpu, 0);
  2113. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2114. vmcs_writel(GUEST_DR7, 0x400);
  2115. vmcs_writel(GUEST_GDTR_BASE, 0);
  2116. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2117. vmcs_writel(GUEST_IDTR_BASE, 0);
  2118. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2119. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2120. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2121. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2122. /* Special registers */
  2123. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2124. setup_msrs(vmx);
  2125. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2126. if (cpu_has_vmx_tpr_shadow()) {
  2127. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2128. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2129. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2130. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2131. vmcs_write32(TPR_THRESHOLD, 0);
  2132. }
  2133. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2134. vmcs_write64(APIC_ACCESS_ADDR,
  2135. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2136. if (vmx->vpid != 0)
  2137. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2138. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2139. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2140. vmx_set_cr4(&vmx->vcpu, 0);
  2141. vmx_set_efer(&vmx->vcpu, 0);
  2142. vmx_fpu_activate(&vmx->vcpu);
  2143. update_exception_bitmap(&vmx->vcpu);
  2144. vpid_sync_vcpu_all(vmx);
  2145. ret = 0;
  2146. /* HACK: Don't enable emulation on guest boot/reset */
  2147. vmx->emulation_required = 0;
  2148. out:
  2149. up_read(&vcpu->kvm->slots_lock);
  2150. return ret;
  2151. }
  2152. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2153. {
  2154. u32 cpu_based_vm_exec_control;
  2155. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2156. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2157. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2158. }
  2159. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2160. {
  2161. u32 cpu_based_vm_exec_control;
  2162. if (!cpu_has_virtual_nmis()) {
  2163. enable_irq_window(vcpu);
  2164. return;
  2165. }
  2166. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2167. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2168. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2169. }
  2170. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2171. {
  2172. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2173. uint32_t intr;
  2174. int irq = vcpu->arch.interrupt.nr;
  2175. trace_kvm_inj_virq(irq);
  2176. ++vcpu->stat.irq_injections;
  2177. if (vmx->rmode.vm86_active) {
  2178. vmx->rmode.irq.pending = true;
  2179. vmx->rmode.irq.vector = irq;
  2180. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2181. if (vcpu->arch.interrupt.soft)
  2182. vmx->rmode.irq.rip +=
  2183. vmx->vcpu.arch.event_exit_inst_len;
  2184. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2185. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2186. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2187. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2188. return;
  2189. }
  2190. intr = irq | INTR_INFO_VALID_MASK;
  2191. if (vcpu->arch.interrupt.soft) {
  2192. intr |= INTR_TYPE_SOFT_INTR;
  2193. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2194. vmx->vcpu.arch.event_exit_inst_len);
  2195. } else
  2196. intr |= INTR_TYPE_EXT_INTR;
  2197. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2198. }
  2199. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2200. {
  2201. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2202. if (!cpu_has_virtual_nmis()) {
  2203. /*
  2204. * Tracking the NMI-blocked state in software is built upon
  2205. * finding the next open IRQ window. This, in turn, depends on
  2206. * well-behaving guests: They have to keep IRQs disabled at
  2207. * least as long as the NMI handler runs. Otherwise we may
  2208. * cause NMI nesting, maybe breaking the guest. But as this is
  2209. * highly unlikely, we can live with the residual risk.
  2210. */
  2211. vmx->soft_vnmi_blocked = 1;
  2212. vmx->vnmi_blocked_time = 0;
  2213. }
  2214. ++vcpu->stat.nmi_injections;
  2215. if (vmx->rmode.vm86_active) {
  2216. vmx->rmode.irq.pending = true;
  2217. vmx->rmode.irq.vector = NMI_VECTOR;
  2218. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2219. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2220. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2221. INTR_INFO_VALID_MASK);
  2222. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2223. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2224. return;
  2225. }
  2226. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2227. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2228. }
  2229. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2230. {
  2231. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2232. return 0;
  2233. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2234. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2235. GUEST_INTR_STATE_NMI));
  2236. }
  2237. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2238. {
  2239. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2240. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2241. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2242. }
  2243. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2244. {
  2245. int ret;
  2246. struct kvm_userspace_memory_region tss_mem = {
  2247. .slot = TSS_PRIVATE_MEMSLOT,
  2248. .guest_phys_addr = addr,
  2249. .memory_size = PAGE_SIZE * 3,
  2250. .flags = 0,
  2251. };
  2252. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2253. if (ret)
  2254. return ret;
  2255. kvm->arch.tss_addr = addr;
  2256. return 0;
  2257. }
  2258. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2259. int vec, u32 err_code)
  2260. {
  2261. /*
  2262. * Instruction with address size override prefix opcode 0x67
  2263. * Cause the #SS fault with 0 error code in VM86 mode.
  2264. */
  2265. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2266. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2267. return 1;
  2268. /*
  2269. * Forward all other exceptions that are valid in real mode.
  2270. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2271. * the required debugging infrastructure rework.
  2272. */
  2273. switch (vec) {
  2274. case DB_VECTOR:
  2275. if (vcpu->guest_debug &
  2276. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2277. return 0;
  2278. kvm_queue_exception(vcpu, vec);
  2279. return 1;
  2280. case BP_VECTOR:
  2281. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2282. return 0;
  2283. /* fall through */
  2284. case DE_VECTOR:
  2285. case OF_VECTOR:
  2286. case BR_VECTOR:
  2287. case UD_VECTOR:
  2288. case DF_VECTOR:
  2289. case SS_VECTOR:
  2290. case GP_VECTOR:
  2291. case MF_VECTOR:
  2292. kvm_queue_exception(vcpu, vec);
  2293. return 1;
  2294. }
  2295. return 0;
  2296. }
  2297. /*
  2298. * Trigger machine check on the host. We assume all the MSRs are already set up
  2299. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2300. * We pass a fake environment to the machine check handler because we want
  2301. * the guest to be always treated like user space, no matter what context
  2302. * it used internally.
  2303. */
  2304. static void kvm_machine_check(void)
  2305. {
  2306. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2307. struct pt_regs regs = {
  2308. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2309. .flags = X86_EFLAGS_IF,
  2310. };
  2311. do_machine_check(&regs, 0);
  2312. #endif
  2313. }
  2314. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2315. {
  2316. /* already handled by vcpu_run */
  2317. return 1;
  2318. }
  2319. static int handle_exception(struct kvm_vcpu *vcpu)
  2320. {
  2321. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2322. struct kvm_run *kvm_run = vcpu->run;
  2323. u32 intr_info, ex_no, error_code;
  2324. unsigned long cr2, rip, dr6;
  2325. u32 vect_info;
  2326. enum emulation_result er;
  2327. vect_info = vmx->idt_vectoring_info;
  2328. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2329. if (is_machine_check(intr_info))
  2330. return handle_machine_check(vcpu);
  2331. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2332. !is_page_fault(intr_info)) {
  2333. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2334. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2335. vcpu->run->internal.ndata = 2;
  2336. vcpu->run->internal.data[0] = vect_info;
  2337. vcpu->run->internal.data[1] = intr_info;
  2338. return 0;
  2339. }
  2340. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2341. return 1; /* already handled by vmx_vcpu_run() */
  2342. if (is_no_device(intr_info)) {
  2343. vmx_fpu_activate(vcpu);
  2344. return 1;
  2345. }
  2346. if (is_invalid_opcode(intr_info)) {
  2347. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2348. if (er != EMULATE_DONE)
  2349. kvm_queue_exception(vcpu, UD_VECTOR);
  2350. return 1;
  2351. }
  2352. error_code = 0;
  2353. rip = kvm_rip_read(vcpu);
  2354. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2355. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2356. if (is_page_fault(intr_info)) {
  2357. /* EPT won't cause page fault directly */
  2358. if (enable_ept)
  2359. BUG();
  2360. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2361. trace_kvm_page_fault(cr2, error_code);
  2362. if (kvm_event_needs_reinjection(vcpu))
  2363. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2364. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2365. }
  2366. if (vmx->rmode.vm86_active &&
  2367. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2368. error_code)) {
  2369. if (vcpu->arch.halt_request) {
  2370. vcpu->arch.halt_request = 0;
  2371. return kvm_emulate_halt(vcpu);
  2372. }
  2373. return 1;
  2374. }
  2375. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2376. switch (ex_no) {
  2377. case DB_VECTOR:
  2378. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2379. if (!(vcpu->guest_debug &
  2380. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2381. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2382. kvm_queue_exception(vcpu, DB_VECTOR);
  2383. return 1;
  2384. }
  2385. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2386. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2387. /* fall through */
  2388. case BP_VECTOR:
  2389. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2390. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2391. kvm_run->debug.arch.exception = ex_no;
  2392. break;
  2393. default:
  2394. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2395. kvm_run->ex.exception = ex_no;
  2396. kvm_run->ex.error_code = error_code;
  2397. break;
  2398. }
  2399. return 0;
  2400. }
  2401. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2402. {
  2403. ++vcpu->stat.irq_exits;
  2404. return 1;
  2405. }
  2406. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2407. {
  2408. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2409. return 0;
  2410. }
  2411. static int handle_io(struct kvm_vcpu *vcpu)
  2412. {
  2413. unsigned long exit_qualification;
  2414. int size, in, string;
  2415. unsigned port;
  2416. ++vcpu->stat.io_exits;
  2417. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2418. string = (exit_qualification & 16) != 0;
  2419. if (string) {
  2420. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2421. return 0;
  2422. return 1;
  2423. }
  2424. size = (exit_qualification & 7) + 1;
  2425. in = (exit_qualification & 8) != 0;
  2426. port = exit_qualification >> 16;
  2427. skip_emulated_instruction(vcpu);
  2428. return kvm_emulate_pio(vcpu, in, size, port);
  2429. }
  2430. static void
  2431. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2432. {
  2433. /*
  2434. * Patch in the VMCALL instruction:
  2435. */
  2436. hypercall[0] = 0x0f;
  2437. hypercall[1] = 0x01;
  2438. hypercall[2] = 0xc1;
  2439. }
  2440. static int handle_cr(struct kvm_vcpu *vcpu)
  2441. {
  2442. unsigned long exit_qualification, val;
  2443. int cr;
  2444. int reg;
  2445. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2446. cr = exit_qualification & 15;
  2447. reg = (exit_qualification >> 8) & 15;
  2448. switch ((exit_qualification >> 4) & 3) {
  2449. case 0: /* mov to cr */
  2450. val = kvm_register_read(vcpu, reg);
  2451. trace_kvm_cr_write(cr, val);
  2452. switch (cr) {
  2453. case 0:
  2454. kvm_set_cr0(vcpu, val);
  2455. skip_emulated_instruction(vcpu);
  2456. return 1;
  2457. case 3:
  2458. kvm_set_cr3(vcpu, val);
  2459. skip_emulated_instruction(vcpu);
  2460. return 1;
  2461. case 4:
  2462. kvm_set_cr4(vcpu, val);
  2463. skip_emulated_instruction(vcpu);
  2464. return 1;
  2465. case 8: {
  2466. u8 cr8_prev = kvm_get_cr8(vcpu);
  2467. u8 cr8 = kvm_register_read(vcpu, reg);
  2468. kvm_set_cr8(vcpu, cr8);
  2469. skip_emulated_instruction(vcpu);
  2470. if (irqchip_in_kernel(vcpu->kvm))
  2471. return 1;
  2472. if (cr8_prev <= cr8)
  2473. return 1;
  2474. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2475. return 0;
  2476. }
  2477. };
  2478. break;
  2479. case 2: /* clts */
  2480. vmx_fpu_deactivate(vcpu);
  2481. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2482. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2483. vmx_fpu_activate(vcpu);
  2484. skip_emulated_instruction(vcpu);
  2485. return 1;
  2486. case 1: /*mov from cr*/
  2487. switch (cr) {
  2488. case 3:
  2489. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2490. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2491. skip_emulated_instruction(vcpu);
  2492. return 1;
  2493. case 8:
  2494. val = kvm_get_cr8(vcpu);
  2495. kvm_register_write(vcpu, reg, val);
  2496. trace_kvm_cr_read(cr, val);
  2497. skip_emulated_instruction(vcpu);
  2498. return 1;
  2499. }
  2500. break;
  2501. case 3: /* lmsw */
  2502. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2503. skip_emulated_instruction(vcpu);
  2504. return 1;
  2505. default:
  2506. break;
  2507. }
  2508. vcpu->run->exit_reason = 0;
  2509. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2510. (int)(exit_qualification >> 4) & 3, cr);
  2511. return 0;
  2512. }
  2513. static int handle_dr(struct kvm_vcpu *vcpu)
  2514. {
  2515. unsigned long exit_qualification;
  2516. unsigned long val;
  2517. int dr, reg;
  2518. if (!kvm_require_cpl(vcpu, 0))
  2519. return 1;
  2520. dr = vmcs_readl(GUEST_DR7);
  2521. if (dr & DR7_GD) {
  2522. /*
  2523. * As the vm-exit takes precedence over the debug trap, we
  2524. * need to emulate the latter, either for the host or the
  2525. * guest debugging itself.
  2526. */
  2527. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2528. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2529. vcpu->run->debug.arch.dr7 = dr;
  2530. vcpu->run->debug.arch.pc =
  2531. vmcs_readl(GUEST_CS_BASE) +
  2532. vmcs_readl(GUEST_RIP);
  2533. vcpu->run->debug.arch.exception = DB_VECTOR;
  2534. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2535. return 0;
  2536. } else {
  2537. vcpu->arch.dr7 &= ~DR7_GD;
  2538. vcpu->arch.dr6 |= DR6_BD;
  2539. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2540. kvm_queue_exception(vcpu, DB_VECTOR);
  2541. return 1;
  2542. }
  2543. }
  2544. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2545. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2546. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2547. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2548. switch (dr) {
  2549. case 0 ... 3:
  2550. val = vcpu->arch.db[dr];
  2551. break;
  2552. case 6:
  2553. val = vcpu->arch.dr6;
  2554. break;
  2555. case 7:
  2556. val = vcpu->arch.dr7;
  2557. break;
  2558. default:
  2559. val = 0;
  2560. }
  2561. kvm_register_write(vcpu, reg, val);
  2562. } else {
  2563. val = vcpu->arch.regs[reg];
  2564. switch (dr) {
  2565. case 0 ... 3:
  2566. vcpu->arch.db[dr] = val;
  2567. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2568. vcpu->arch.eff_db[dr] = val;
  2569. break;
  2570. case 4 ... 5:
  2571. if (vcpu->arch.cr4 & X86_CR4_DE)
  2572. kvm_queue_exception(vcpu, UD_VECTOR);
  2573. break;
  2574. case 6:
  2575. if (val & 0xffffffff00000000ULL) {
  2576. kvm_queue_exception(vcpu, GP_VECTOR);
  2577. break;
  2578. }
  2579. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2580. break;
  2581. case 7:
  2582. if (val & 0xffffffff00000000ULL) {
  2583. kvm_queue_exception(vcpu, GP_VECTOR);
  2584. break;
  2585. }
  2586. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2587. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2588. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2589. vcpu->arch.switch_db_regs =
  2590. (val & DR7_BP_EN_MASK);
  2591. }
  2592. break;
  2593. }
  2594. }
  2595. skip_emulated_instruction(vcpu);
  2596. return 1;
  2597. }
  2598. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2599. {
  2600. kvm_emulate_cpuid(vcpu);
  2601. return 1;
  2602. }
  2603. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2604. {
  2605. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2606. u64 data;
  2607. if (vmx_get_msr(vcpu, ecx, &data)) {
  2608. kvm_inject_gp(vcpu, 0);
  2609. return 1;
  2610. }
  2611. trace_kvm_msr_read(ecx, data);
  2612. /* FIXME: handling of bits 32:63 of rax, rdx */
  2613. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2614. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2615. skip_emulated_instruction(vcpu);
  2616. return 1;
  2617. }
  2618. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2619. {
  2620. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2621. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2622. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2623. trace_kvm_msr_write(ecx, data);
  2624. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2625. kvm_inject_gp(vcpu, 0);
  2626. return 1;
  2627. }
  2628. skip_emulated_instruction(vcpu);
  2629. return 1;
  2630. }
  2631. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2632. {
  2633. return 1;
  2634. }
  2635. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2636. {
  2637. u32 cpu_based_vm_exec_control;
  2638. /* clear pending irq */
  2639. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2640. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2641. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2642. ++vcpu->stat.irq_window_exits;
  2643. /*
  2644. * If the user space waits to inject interrupts, exit as soon as
  2645. * possible
  2646. */
  2647. if (!irqchip_in_kernel(vcpu->kvm) &&
  2648. vcpu->run->request_interrupt_window &&
  2649. !kvm_cpu_has_interrupt(vcpu)) {
  2650. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2651. return 0;
  2652. }
  2653. return 1;
  2654. }
  2655. static int handle_halt(struct kvm_vcpu *vcpu)
  2656. {
  2657. skip_emulated_instruction(vcpu);
  2658. return kvm_emulate_halt(vcpu);
  2659. }
  2660. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2661. {
  2662. skip_emulated_instruction(vcpu);
  2663. kvm_emulate_hypercall(vcpu);
  2664. return 1;
  2665. }
  2666. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2667. {
  2668. kvm_queue_exception(vcpu, UD_VECTOR);
  2669. return 1;
  2670. }
  2671. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2672. {
  2673. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2674. kvm_mmu_invlpg(vcpu, exit_qualification);
  2675. skip_emulated_instruction(vcpu);
  2676. return 1;
  2677. }
  2678. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2679. {
  2680. skip_emulated_instruction(vcpu);
  2681. /* TODO: Add support for VT-d/pass-through device */
  2682. return 1;
  2683. }
  2684. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2685. {
  2686. unsigned long exit_qualification;
  2687. enum emulation_result er;
  2688. unsigned long offset;
  2689. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2690. offset = exit_qualification & 0xffful;
  2691. er = emulate_instruction(vcpu, 0, 0, 0);
  2692. if (er != EMULATE_DONE) {
  2693. printk(KERN_ERR
  2694. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2695. offset);
  2696. return -ENOEXEC;
  2697. }
  2698. return 1;
  2699. }
  2700. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2701. {
  2702. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2703. unsigned long exit_qualification;
  2704. u16 tss_selector;
  2705. int reason, type, idt_v;
  2706. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2707. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2708. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2709. reason = (u32)exit_qualification >> 30;
  2710. if (reason == TASK_SWITCH_GATE && idt_v) {
  2711. switch (type) {
  2712. case INTR_TYPE_NMI_INTR:
  2713. vcpu->arch.nmi_injected = false;
  2714. if (cpu_has_virtual_nmis())
  2715. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2716. GUEST_INTR_STATE_NMI);
  2717. break;
  2718. case INTR_TYPE_EXT_INTR:
  2719. case INTR_TYPE_SOFT_INTR:
  2720. kvm_clear_interrupt_queue(vcpu);
  2721. break;
  2722. case INTR_TYPE_HARD_EXCEPTION:
  2723. case INTR_TYPE_SOFT_EXCEPTION:
  2724. kvm_clear_exception_queue(vcpu);
  2725. break;
  2726. default:
  2727. break;
  2728. }
  2729. }
  2730. tss_selector = exit_qualification;
  2731. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2732. type != INTR_TYPE_EXT_INTR &&
  2733. type != INTR_TYPE_NMI_INTR))
  2734. skip_emulated_instruction(vcpu);
  2735. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2736. return 0;
  2737. /* clear all local breakpoint enable flags */
  2738. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2739. /*
  2740. * TODO: What about debug traps on tss switch?
  2741. * Are we supposed to inject them and update dr6?
  2742. */
  2743. return 1;
  2744. }
  2745. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2746. {
  2747. unsigned long exit_qualification;
  2748. gpa_t gpa;
  2749. int gla_validity;
  2750. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2751. if (exit_qualification & (1 << 6)) {
  2752. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2753. return -EINVAL;
  2754. }
  2755. gla_validity = (exit_qualification >> 7) & 0x3;
  2756. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2757. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2758. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2759. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2760. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2761. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2762. (long unsigned int)exit_qualification);
  2763. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2764. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2765. return 0;
  2766. }
  2767. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2768. trace_kvm_page_fault(gpa, exit_qualification);
  2769. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2770. }
  2771. static u64 ept_rsvd_mask(u64 spte, int level)
  2772. {
  2773. int i;
  2774. u64 mask = 0;
  2775. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2776. mask |= (1ULL << i);
  2777. if (level > 2)
  2778. /* bits 7:3 reserved */
  2779. mask |= 0xf8;
  2780. else if (level == 2) {
  2781. if (spte & (1ULL << 7))
  2782. /* 2MB ref, bits 20:12 reserved */
  2783. mask |= 0x1ff000;
  2784. else
  2785. /* bits 6:3 reserved */
  2786. mask |= 0x78;
  2787. }
  2788. return mask;
  2789. }
  2790. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2791. int level)
  2792. {
  2793. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2794. /* 010b (write-only) */
  2795. WARN_ON((spte & 0x7) == 0x2);
  2796. /* 110b (write/execute) */
  2797. WARN_ON((spte & 0x7) == 0x6);
  2798. /* 100b (execute-only) and value not supported by logical processor */
  2799. if (!cpu_has_vmx_ept_execute_only())
  2800. WARN_ON((spte & 0x7) == 0x4);
  2801. /* not 000b */
  2802. if ((spte & 0x7)) {
  2803. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2804. if (rsvd_bits != 0) {
  2805. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2806. __func__, rsvd_bits);
  2807. WARN_ON(1);
  2808. }
  2809. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2810. u64 ept_mem_type = (spte & 0x38) >> 3;
  2811. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2812. ept_mem_type == 7) {
  2813. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2814. __func__, ept_mem_type);
  2815. WARN_ON(1);
  2816. }
  2817. }
  2818. }
  2819. }
  2820. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2821. {
  2822. u64 sptes[4];
  2823. int nr_sptes, i;
  2824. gpa_t gpa;
  2825. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2826. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2827. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2828. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2829. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2830. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2831. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2832. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2833. return 0;
  2834. }
  2835. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2836. {
  2837. u32 cpu_based_vm_exec_control;
  2838. /* clear pending NMI */
  2839. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2840. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2841. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2842. ++vcpu->stat.nmi_window_exits;
  2843. return 1;
  2844. }
  2845. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2846. {
  2847. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2848. enum emulation_result err = EMULATE_DONE;
  2849. int ret = 1;
  2850. while (!guest_state_valid(vcpu)) {
  2851. err = emulate_instruction(vcpu, 0, 0, 0);
  2852. if (err == EMULATE_DO_MMIO) {
  2853. ret = 0;
  2854. goto out;
  2855. }
  2856. if (err != EMULATE_DONE) {
  2857. kvm_report_emulation_failure(vcpu, "emulation failure");
  2858. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2859. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2860. vcpu->run->internal.ndata = 0;
  2861. ret = 0;
  2862. goto out;
  2863. }
  2864. if (signal_pending(current))
  2865. goto out;
  2866. if (need_resched())
  2867. schedule();
  2868. }
  2869. vmx->emulation_required = 0;
  2870. out:
  2871. return ret;
  2872. }
  2873. /*
  2874. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2875. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2876. */
  2877. static int handle_pause(struct kvm_vcpu *vcpu)
  2878. {
  2879. skip_emulated_instruction(vcpu);
  2880. kvm_vcpu_on_spin(vcpu);
  2881. return 1;
  2882. }
  2883. /*
  2884. * The exit handlers return 1 if the exit was handled fully and guest execution
  2885. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2886. * to be done to userspace and return 0.
  2887. */
  2888. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2889. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2890. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2891. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2892. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2893. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2894. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2895. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2896. [EXIT_REASON_CPUID] = handle_cpuid,
  2897. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2898. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2899. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2900. [EXIT_REASON_HLT] = handle_halt,
  2901. [EXIT_REASON_INVLPG] = handle_invlpg,
  2902. [EXIT_REASON_VMCALL] = handle_vmcall,
  2903. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2904. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2905. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2906. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2907. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2908. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2909. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2910. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2911. [EXIT_REASON_VMON] = handle_vmx_insn,
  2912. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2913. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2914. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2915. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2916. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2917. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2918. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2919. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2920. };
  2921. static const int kvm_vmx_max_exit_handlers =
  2922. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2923. /*
  2924. * The guest has exited. See if we can fix it or if we need userspace
  2925. * assistance.
  2926. */
  2927. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2928. {
  2929. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2930. u32 exit_reason = vmx->exit_reason;
  2931. u32 vectoring_info = vmx->idt_vectoring_info;
  2932. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2933. /* If guest state is invalid, start emulating */
  2934. if (vmx->emulation_required && emulate_invalid_guest_state)
  2935. return handle_invalid_guest_state(vcpu);
  2936. /* Access CR3 don't cause VMExit in paging mode, so we need
  2937. * to sync with guest real CR3. */
  2938. if (enable_ept && is_paging(vcpu))
  2939. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2940. if (unlikely(vmx->fail)) {
  2941. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2942. vcpu->run->fail_entry.hardware_entry_failure_reason
  2943. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2944. return 0;
  2945. }
  2946. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2947. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2948. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2949. exit_reason != EXIT_REASON_TASK_SWITCH))
  2950. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2951. "(0x%x) and exit reason is 0x%x\n",
  2952. __func__, vectoring_info, exit_reason);
  2953. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2954. if (vmx_interrupt_allowed(vcpu)) {
  2955. vmx->soft_vnmi_blocked = 0;
  2956. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2957. vcpu->arch.nmi_pending) {
  2958. /*
  2959. * This CPU don't support us in finding the end of an
  2960. * NMI-blocked window if the guest runs with IRQs
  2961. * disabled. So we pull the trigger after 1 s of
  2962. * futile waiting, but inform the user about this.
  2963. */
  2964. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2965. "state on VCPU %d after 1 s timeout\n",
  2966. __func__, vcpu->vcpu_id);
  2967. vmx->soft_vnmi_blocked = 0;
  2968. }
  2969. }
  2970. if (exit_reason < kvm_vmx_max_exit_handlers
  2971. && kvm_vmx_exit_handlers[exit_reason])
  2972. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  2973. else {
  2974. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2975. vcpu->run->hw.hardware_exit_reason = exit_reason;
  2976. }
  2977. return 0;
  2978. }
  2979. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2980. {
  2981. if (irr == -1 || tpr < irr) {
  2982. vmcs_write32(TPR_THRESHOLD, 0);
  2983. return;
  2984. }
  2985. vmcs_write32(TPR_THRESHOLD, irr);
  2986. }
  2987. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2988. {
  2989. u32 exit_intr_info;
  2990. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2991. bool unblock_nmi;
  2992. u8 vector;
  2993. int type;
  2994. bool idtv_info_valid;
  2995. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2996. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2997. /* Handle machine checks before interrupts are enabled */
  2998. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2999. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3000. && is_machine_check(exit_intr_info)))
  3001. kvm_machine_check();
  3002. /* We need to handle NMIs before interrupts are enabled */
  3003. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3004. (exit_intr_info & INTR_INFO_VALID_MASK))
  3005. asm("int $2");
  3006. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3007. if (cpu_has_virtual_nmis()) {
  3008. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3009. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3010. /*
  3011. * SDM 3: 27.7.1.2 (September 2008)
  3012. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3013. * a guest IRET fault.
  3014. * SDM 3: 23.2.2 (September 2008)
  3015. * Bit 12 is undefined in any of the following cases:
  3016. * If the VM exit sets the valid bit in the IDT-vectoring
  3017. * information field.
  3018. * If the VM exit is due to a double fault.
  3019. */
  3020. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3021. vector != DF_VECTOR && !idtv_info_valid)
  3022. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3023. GUEST_INTR_STATE_NMI);
  3024. } else if (unlikely(vmx->soft_vnmi_blocked))
  3025. vmx->vnmi_blocked_time +=
  3026. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3027. vmx->vcpu.arch.nmi_injected = false;
  3028. kvm_clear_exception_queue(&vmx->vcpu);
  3029. kvm_clear_interrupt_queue(&vmx->vcpu);
  3030. if (!idtv_info_valid)
  3031. return;
  3032. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3033. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3034. switch (type) {
  3035. case INTR_TYPE_NMI_INTR:
  3036. vmx->vcpu.arch.nmi_injected = true;
  3037. /*
  3038. * SDM 3: 27.7.1.2 (September 2008)
  3039. * Clear bit "block by NMI" before VM entry if a NMI
  3040. * delivery faulted.
  3041. */
  3042. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3043. GUEST_INTR_STATE_NMI);
  3044. break;
  3045. case INTR_TYPE_SOFT_EXCEPTION:
  3046. vmx->vcpu.arch.event_exit_inst_len =
  3047. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3048. /* fall through */
  3049. case INTR_TYPE_HARD_EXCEPTION:
  3050. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3051. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3052. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3053. } else
  3054. kvm_queue_exception(&vmx->vcpu, vector);
  3055. break;
  3056. case INTR_TYPE_SOFT_INTR:
  3057. vmx->vcpu.arch.event_exit_inst_len =
  3058. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3059. /* fall through */
  3060. case INTR_TYPE_EXT_INTR:
  3061. kvm_queue_interrupt(&vmx->vcpu, vector,
  3062. type == INTR_TYPE_SOFT_INTR);
  3063. break;
  3064. default:
  3065. break;
  3066. }
  3067. }
  3068. /*
  3069. * Failure to inject an interrupt should give us the information
  3070. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3071. * when fetching the interrupt redirection bitmap in the real-mode
  3072. * tss, this doesn't happen. So we do it ourselves.
  3073. */
  3074. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3075. {
  3076. vmx->rmode.irq.pending = 0;
  3077. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3078. return;
  3079. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3080. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3081. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3082. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3083. return;
  3084. }
  3085. vmx->idt_vectoring_info =
  3086. VECTORING_INFO_VALID_MASK
  3087. | INTR_TYPE_EXT_INTR
  3088. | vmx->rmode.irq.vector;
  3089. }
  3090. #ifdef CONFIG_X86_64
  3091. #define R "r"
  3092. #define Q "q"
  3093. #else
  3094. #define R "e"
  3095. #define Q "l"
  3096. #endif
  3097. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3098. {
  3099. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3100. /* Record the guest's net vcpu time for enforced NMI injections. */
  3101. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3102. vmx->entry_time = ktime_get();
  3103. /* Don't enter VMX if guest state is invalid, let the exit handler
  3104. start emulation until we arrive back to a valid state */
  3105. if (vmx->emulation_required && emulate_invalid_guest_state)
  3106. return;
  3107. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3108. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3109. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3110. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3111. /* When single-stepping over STI and MOV SS, we must clear the
  3112. * corresponding interruptibility bits in the guest state. Otherwise
  3113. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3114. * exceptions being set, but that's not correct for the guest debugging
  3115. * case. */
  3116. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3117. vmx_set_interrupt_shadow(vcpu, 0);
  3118. /*
  3119. * Loading guest fpu may have cleared host cr0.ts
  3120. */
  3121. vmcs_writel(HOST_CR0, read_cr0());
  3122. if (vcpu->arch.switch_db_regs)
  3123. set_debugreg(vcpu->arch.dr6, 6);
  3124. asm(
  3125. /* Store host registers */
  3126. "push %%"R"dx; push %%"R"bp;"
  3127. "push %%"R"cx \n\t"
  3128. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3129. "je 1f \n\t"
  3130. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3131. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3132. "1: \n\t"
  3133. /* Reload cr2 if changed */
  3134. "mov %c[cr2](%0), %%"R"ax \n\t"
  3135. "mov %%cr2, %%"R"dx \n\t"
  3136. "cmp %%"R"ax, %%"R"dx \n\t"
  3137. "je 2f \n\t"
  3138. "mov %%"R"ax, %%cr2 \n\t"
  3139. "2: \n\t"
  3140. /* Check if vmlaunch of vmresume is needed */
  3141. "cmpl $0, %c[launched](%0) \n\t"
  3142. /* Load guest registers. Don't clobber flags. */
  3143. "mov %c[rax](%0), %%"R"ax \n\t"
  3144. "mov %c[rbx](%0), %%"R"bx \n\t"
  3145. "mov %c[rdx](%0), %%"R"dx \n\t"
  3146. "mov %c[rsi](%0), %%"R"si \n\t"
  3147. "mov %c[rdi](%0), %%"R"di \n\t"
  3148. "mov %c[rbp](%0), %%"R"bp \n\t"
  3149. #ifdef CONFIG_X86_64
  3150. "mov %c[r8](%0), %%r8 \n\t"
  3151. "mov %c[r9](%0), %%r9 \n\t"
  3152. "mov %c[r10](%0), %%r10 \n\t"
  3153. "mov %c[r11](%0), %%r11 \n\t"
  3154. "mov %c[r12](%0), %%r12 \n\t"
  3155. "mov %c[r13](%0), %%r13 \n\t"
  3156. "mov %c[r14](%0), %%r14 \n\t"
  3157. "mov %c[r15](%0), %%r15 \n\t"
  3158. #endif
  3159. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3160. /* Enter guest mode */
  3161. "jne .Llaunched \n\t"
  3162. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3163. "jmp .Lkvm_vmx_return \n\t"
  3164. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3165. ".Lkvm_vmx_return: "
  3166. /* Save guest registers, load host registers, keep flags */
  3167. "xchg %0, (%%"R"sp) \n\t"
  3168. "mov %%"R"ax, %c[rax](%0) \n\t"
  3169. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3170. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3171. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3172. "mov %%"R"si, %c[rsi](%0) \n\t"
  3173. "mov %%"R"di, %c[rdi](%0) \n\t"
  3174. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3175. #ifdef CONFIG_X86_64
  3176. "mov %%r8, %c[r8](%0) \n\t"
  3177. "mov %%r9, %c[r9](%0) \n\t"
  3178. "mov %%r10, %c[r10](%0) \n\t"
  3179. "mov %%r11, %c[r11](%0) \n\t"
  3180. "mov %%r12, %c[r12](%0) \n\t"
  3181. "mov %%r13, %c[r13](%0) \n\t"
  3182. "mov %%r14, %c[r14](%0) \n\t"
  3183. "mov %%r15, %c[r15](%0) \n\t"
  3184. #endif
  3185. "mov %%cr2, %%"R"ax \n\t"
  3186. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3187. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3188. "setbe %c[fail](%0) \n\t"
  3189. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3190. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3191. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3192. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3193. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3194. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3195. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3196. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3197. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3198. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3199. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3200. #ifdef CONFIG_X86_64
  3201. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3202. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3203. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3204. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3205. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3206. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3207. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3208. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3209. #endif
  3210. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3211. : "cc", "memory"
  3212. , R"bx", R"di", R"si"
  3213. #ifdef CONFIG_X86_64
  3214. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3215. #endif
  3216. );
  3217. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3218. | (1 << VCPU_EXREG_PDPTR));
  3219. vcpu->arch.regs_dirty = 0;
  3220. if (vcpu->arch.switch_db_regs)
  3221. get_debugreg(vcpu->arch.dr6, 6);
  3222. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3223. if (vmx->rmode.irq.pending)
  3224. fixup_rmode_irq(vmx);
  3225. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3226. vmx->launched = 1;
  3227. vmx_complete_interrupts(vmx);
  3228. }
  3229. #undef R
  3230. #undef Q
  3231. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3232. {
  3233. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3234. if (vmx->vmcs) {
  3235. vcpu_clear(vmx);
  3236. free_vmcs(vmx->vmcs);
  3237. vmx->vmcs = NULL;
  3238. }
  3239. }
  3240. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3241. {
  3242. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3243. spin_lock(&vmx_vpid_lock);
  3244. if (vmx->vpid != 0)
  3245. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3246. spin_unlock(&vmx_vpid_lock);
  3247. vmx_free_vmcs(vcpu);
  3248. kfree(vmx->guest_msrs);
  3249. kvm_vcpu_uninit(vcpu);
  3250. kmem_cache_free(kvm_vcpu_cache, vmx);
  3251. }
  3252. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3253. {
  3254. int err;
  3255. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3256. int cpu;
  3257. if (!vmx)
  3258. return ERR_PTR(-ENOMEM);
  3259. allocate_vpid(vmx);
  3260. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3261. if (err)
  3262. goto free_vcpu;
  3263. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3264. if (!vmx->guest_msrs) {
  3265. err = -ENOMEM;
  3266. goto uninit_vcpu;
  3267. }
  3268. vmx->vmcs = alloc_vmcs();
  3269. if (!vmx->vmcs)
  3270. goto free_msrs;
  3271. vmcs_clear(vmx->vmcs);
  3272. cpu = get_cpu();
  3273. vmx_vcpu_load(&vmx->vcpu, cpu);
  3274. err = vmx_vcpu_setup(vmx);
  3275. vmx_vcpu_put(&vmx->vcpu);
  3276. put_cpu();
  3277. if (err)
  3278. goto free_vmcs;
  3279. if (vm_need_virtualize_apic_accesses(kvm))
  3280. if (alloc_apic_access_page(kvm) != 0)
  3281. goto free_vmcs;
  3282. if (enable_ept) {
  3283. if (!kvm->arch.ept_identity_map_addr)
  3284. kvm->arch.ept_identity_map_addr =
  3285. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3286. if (alloc_identity_pagetable(kvm) != 0)
  3287. goto free_vmcs;
  3288. }
  3289. return &vmx->vcpu;
  3290. free_vmcs:
  3291. free_vmcs(vmx->vmcs);
  3292. free_msrs:
  3293. kfree(vmx->guest_msrs);
  3294. uninit_vcpu:
  3295. kvm_vcpu_uninit(&vmx->vcpu);
  3296. free_vcpu:
  3297. kmem_cache_free(kvm_vcpu_cache, vmx);
  3298. return ERR_PTR(err);
  3299. }
  3300. static void __init vmx_check_processor_compat(void *rtn)
  3301. {
  3302. struct vmcs_config vmcs_conf;
  3303. *(int *)rtn = 0;
  3304. if (setup_vmcs_config(&vmcs_conf) < 0)
  3305. *(int *)rtn = -EIO;
  3306. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3307. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3308. smp_processor_id());
  3309. *(int *)rtn = -EIO;
  3310. }
  3311. }
  3312. static int get_ept_level(void)
  3313. {
  3314. return VMX_EPT_DEFAULT_GAW + 1;
  3315. }
  3316. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3317. {
  3318. u64 ret;
  3319. /* For VT-d and EPT combination
  3320. * 1. MMIO: always map as UC
  3321. * 2. EPT with VT-d:
  3322. * a. VT-d without snooping control feature: can't guarantee the
  3323. * result, try to trust guest.
  3324. * b. VT-d with snooping control feature: snooping control feature of
  3325. * VT-d engine can guarantee the cache correctness. Just set it
  3326. * to WB to keep consistent with host. So the same as item 3.
  3327. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3328. * consistent with host MTRR
  3329. */
  3330. if (is_mmio)
  3331. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3332. else if (vcpu->kvm->arch.iommu_domain &&
  3333. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3334. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3335. VMX_EPT_MT_EPTE_SHIFT;
  3336. else
  3337. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3338. | VMX_EPT_IGMT_BIT;
  3339. return ret;
  3340. }
  3341. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3342. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3343. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3344. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3345. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3346. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3347. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3348. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3349. { EXIT_REASON_CPUID, "cpuid" },
  3350. { EXIT_REASON_MSR_READ, "rdmsr" },
  3351. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3352. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3353. { EXIT_REASON_HLT, "halt" },
  3354. { EXIT_REASON_INVLPG, "invlpg" },
  3355. { EXIT_REASON_VMCALL, "hypercall" },
  3356. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3357. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3358. { EXIT_REASON_WBINVD, "wbinvd" },
  3359. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3360. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3361. { -1, NULL }
  3362. };
  3363. static bool vmx_gb_page_enable(void)
  3364. {
  3365. return false;
  3366. }
  3367. static struct kvm_x86_ops vmx_x86_ops = {
  3368. .cpu_has_kvm_support = cpu_has_kvm_support,
  3369. .disabled_by_bios = vmx_disabled_by_bios,
  3370. .hardware_setup = hardware_setup,
  3371. .hardware_unsetup = hardware_unsetup,
  3372. .check_processor_compatibility = vmx_check_processor_compat,
  3373. .hardware_enable = hardware_enable,
  3374. .hardware_disable = hardware_disable,
  3375. .cpu_has_accelerated_tpr = report_flexpriority,
  3376. .vcpu_create = vmx_create_vcpu,
  3377. .vcpu_free = vmx_free_vcpu,
  3378. .vcpu_reset = vmx_vcpu_reset,
  3379. .prepare_guest_switch = vmx_save_host_state,
  3380. .vcpu_load = vmx_vcpu_load,
  3381. .vcpu_put = vmx_vcpu_put,
  3382. .set_guest_debug = set_guest_debug,
  3383. .get_msr = vmx_get_msr,
  3384. .set_msr = vmx_set_msr,
  3385. .get_segment_base = vmx_get_segment_base,
  3386. .get_segment = vmx_get_segment,
  3387. .set_segment = vmx_set_segment,
  3388. .get_cpl = vmx_get_cpl,
  3389. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3390. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3391. .set_cr0 = vmx_set_cr0,
  3392. .set_cr3 = vmx_set_cr3,
  3393. .set_cr4 = vmx_set_cr4,
  3394. .set_efer = vmx_set_efer,
  3395. .get_idt = vmx_get_idt,
  3396. .set_idt = vmx_set_idt,
  3397. .get_gdt = vmx_get_gdt,
  3398. .set_gdt = vmx_set_gdt,
  3399. .cache_reg = vmx_cache_reg,
  3400. .get_rflags = vmx_get_rflags,
  3401. .set_rflags = vmx_set_rflags,
  3402. .tlb_flush = vmx_flush_tlb,
  3403. .run = vmx_vcpu_run,
  3404. .handle_exit = vmx_handle_exit,
  3405. .skip_emulated_instruction = skip_emulated_instruction,
  3406. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3407. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3408. .patch_hypercall = vmx_patch_hypercall,
  3409. .set_irq = vmx_inject_irq,
  3410. .set_nmi = vmx_inject_nmi,
  3411. .queue_exception = vmx_queue_exception,
  3412. .interrupt_allowed = vmx_interrupt_allowed,
  3413. .nmi_allowed = vmx_nmi_allowed,
  3414. .enable_nmi_window = enable_nmi_window,
  3415. .enable_irq_window = enable_irq_window,
  3416. .update_cr8_intercept = update_cr8_intercept,
  3417. .set_tss_addr = vmx_set_tss_addr,
  3418. .get_tdp_level = get_ept_level,
  3419. .get_mt_mask = vmx_get_mt_mask,
  3420. .exit_reasons_str = vmx_exit_reasons_str,
  3421. .gb_page_enable = vmx_gb_page_enable,
  3422. };
  3423. static int __init vmx_init(void)
  3424. {
  3425. int r, i;
  3426. rdmsrl_safe(MSR_EFER, &host_efer);
  3427. for (i = 0; i < NR_VMX_MSR; ++i)
  3428. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3429. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3430. if (!vmx_io_bitmap_a)
  3431. return -ENOMEM;
  3432. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3433. if (!vmx_io_bitmap_b) {
  3434. r = -ENOMEM;
  3435. goto out;
  3436. }
  3437. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3438. if (!vmx_msr_bitmap_legacy) {
  3439. r = -ENOMEM;
  3440. goto out1;
  3441. }
  3442. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3443. if (!vmx_msr_bitmap_longmode) {
  3444. r = -ENOMEM;
  3445. goto out2;
  3446. }
  3447. /*
  3448. * Allow direct access to the PC debug port (it is often used for I/O
  3449. * delays, but the vmexits simply slow things down).
  3450. */
  3451. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3452. clear_bit(0x80, vmx_io_bitmap_a);
  3453. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3454. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3455. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3456. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3457. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3458. if (r)
  3459. goto out3;
  3460. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3461. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3462. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3463. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3464. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3465. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3466. if (enable_ept) {
  3467. bypass_guest_pf = 0;
  3468. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3469. VMX_EPT_WRITABLE_MASK);
  3470. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3471. VMX_EPT_EXECUTABLE_MASK);
  3472. kvm_enable_tdp();
  3473. } else
  3474. kvm_disable_tdp();
  3475. if (bypass_guest_pf)
  3476. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3477. return 0;
  3478. out3:
  3479. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3480. out2:
  3481. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3482. out1:
  3483. free_page((unsigned long)vmx_io_bitmap_b);
  3484. out:
  3485. free_page((unsigned long)vmx_io_bitmap_a);
  3486. return r;
  3487. }
  3488. static void __exit vmx_exit(void)
  3489. {
  3490. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3491. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3492. free_page((unsigned long)vmx_io_bitmap_b);
  3493. free_page((unsigned long)vmx_io_bitmap_a);
  3494. kvm_exit();
  3495. }
  3496. module_init(vmx_init)
  3497. module_exit(vmx_exit)