af_key.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (net != &init_net)
  118. return -EAFNOSUPPORT;
  119. if (!capable(CAP_NET_ADMIN))
  120. return -EPERM;
  121. if (sock->type != SOCK_RAW)
  122. return -ESOCKTNOSUPPORT;
  123. if (protocol != PF_KEY_V2)
  124. return -EPROTONOSUPPORT;
  125. err = -ENOMEM;
  126. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, 1);
  127. if (sk == NULL)
  128. goto out;
  129. sock->ops = &pfkey_ops;
  130. sock_init_data(sock, sk);
  131. sk->sk_family = PF_KEY;
  132. sk->sk_destruct = pfkey_sock_destruct;
  133. atomic_inc(&pfkey_socks_nr);
  134. pfkey_insert(sk);
  135. return 0;
  136. out:
  137. return err;
  138. }
  139. static int pfkey_release(struct socket *sock)
  140. {
  141. struct sock *sk = sock->sk;
  142. if (!sk)
  143. return 0;
  144. pfkey_remove(sk);
  145. sock_orphan(sk);
  146. sock->sk = NULL;
  147. skb_queue_purge(&sk->sk_write_queue);
  148. sock_put(sk);
  149. return 0;
  150. }
  151. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  152. gfp_t allocation, struct sock *sk)
  153. {
  154. int err = -ENOBUFS;
  155. sock_hold(sk);
  156. if (*skb2 == NULL) {
  157. if (atomic_read(&skb->users) != 1) {
  158. *skb2 = skb_clone(skb, allocation);
  159. } else {
  160. *skb2 = skb;
  161. atomic_inc(&skb->users);
  162. }
  163. }
  164. if (*skb2 != NULL) {
  165. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  166. skb_orphan(*skb2);
  167. skb_set_owner_r(*skb2, sk);
  168. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  169. sk->sk_data_ready(sk, (*skb2)->len);
  170. *skb2 = NULL;
  171. err = 0;
  172. }
  173. }
  174. sock_put(sk);
  175. return err;
  176. }
  177. /* Send SKB to all pfkey sockets matching selected criteria. */
  178. #define BROADCAST_ALL 0
  179. #define BROADCAST_ONE 1
  180. #define BROADCAST_REGISTERED 2
  181. #define BROADCAST_PROMISC_ONLY 4
  182. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  183. int broadcast_flags, struct sock *one_sk)
  184. {
  185. struct sock *sk;
  186. struct hlist_node *node;
  187. struct sk_buff *skb2 = NULL;
  188. int err = -ESRCH;
  189. /* XXX Do we need something like netlink_overrun? I think
  190. * XXX PF_KEY socket apps will not mind current behavior.
  191. */
  192. if (!skb)
  193. return -ENOMEM;
  194. pfkey_lock_table();
  195. sk_for_each(sk, node, &pfkey_table) {
  196. struct pfkey_sock *pfk = pfkey_sk(sk);
  197. int err2;
  198. /* Yes, it means that if you are meant to receive this
  199. * pfkey message you receive it twice as promiscuous
  200. * socket.
  201. */
  202. if (pfk->promisc)
  203. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  204. /* the exact target will be processed later */
  205. if (sk == one_sk)
  206. continue;
  207. if (broadcast_flags != BROADCAST_ALL) {
  208. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  209. continue;
  210. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  211. !pfk->registered)
  212. continue;
  213. if (broadcast_flags & BROADCAST_ONE)
  214. continue;
  215. }
  216. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  217. /* Error is cleare after succecful sending to at least one
  218. * registered KM */
  219. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  220. err = err2;
  221. }
  222. pfkey_unlock_table();
  223. if (one_sk != NULL)
  224. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  225. if (skb2)
  226. kfree_skb(skb2);
  227. kfree_skb(skb);
  228. return err;
  229. }
  230. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  231. {
  232. *new = *orig;
  233. }
  234. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  235. {
  236. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  237. struct sadb_msg *hdr;
  238. if (!skb)
  239. return -ENOBUFS;
  240. /* Woe be to the platform trying to support PFKEY yet
  241. * having normal errnos outside the 1-255 range, inclusive.
  242. */
  243. err = -err;
  244. if (err == ERESTARTSYS ||
  245. err == ERESTARTNOHAND ||
  246. err == ERESTARTNOINTR)
  247. err = EINTR;
  248. if (err >= 512)
  249. err = EINVAL;
  250. BUG_ON(err <= 0 || err >= 256);
  251. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  252. pfkey_hdr_dup(hdr, orig);
  253. hdr->sadb_msg_errno = (uint8_t) err;
  254. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  255. sizeof(uint64_t));
  256. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  257. return 0;
  258. }
  259. static u8 sadb_ext_min_len[] = {
  260. [SADB_EXT_RESERVED] = (u8) 0,
  261. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  262. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  264. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  265. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  267. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  268. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  269. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  270. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  271. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  272. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  273. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  274. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  275. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  276. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  277. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  278. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  279. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  280. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  281. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  282. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  283. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  284. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  285. };
  286. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  287. static int verify_address_len(void *p)
  288. {
  289. struct sadb_address *sp = p;
  290. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  291. struct sockaddr_in *sin;
  292. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  293. struct sockaddr_in6 *sin6;
  294. #endif
  295. int len;
  296. switch (addr->sa_family) {
  297. case AF_INET:
  298. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  299. if (sp->sadb_address_len != len ||
  300. sp->sadb_address_prefixlen > 32)
  301. return -EINVAL;
  302. break;
  303. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  304. case AF_INET6:
  305. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  306. if (sp->sadb_address_len != len ||
  307. sp->sadb_address_prefixlen > 128)
  308. return -EINVAL;
  309. break;
  310. #endif
  311. default:
  312. /* It is user using kernel to keep track of security
  313. * associations for another protocol, such as
  314. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  315. * lengths.
  316. *
  317. * XXX Actually, association/policy database is not yet
  318. * XXX able to cope with arbitrary sockaddr families.
  319. * XXX When it can, remove this -EINVAL. -DaveM
  320. */
  321. return -EINVAL;
  322. break;
  323. }
  324. return 0;
  325. }
  326. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  327. {
  328. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  329. sec_ctx->sadb_x_ctx_len,
  330. sizeof(uint64_t));
  331. }
  332. static inline int verify_sec_ctx_len(void *p)
  333. {
  334. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  335. int len;
  336. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  337. return -EINVAL;
  338. len = pfkey_sec_ctx_len(sec_ctx);
  339. if (sec_ctx->sadb_x_sec_len != len)
  340. return -EINVAL;
  341. return 0;
  342. }
  343. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  344. {
  345. struct xfrm_user_sec_ctx *uctx = NULL;
  346. int ctx_size = sec_ctx->sadb_x_ctx_len;
  347. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  348. if (!uctx)
  349. return NULL;
  350. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  351. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  352. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  353. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  354. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  355. memcpy(uctx + 1, sec_ctx + 1,
  356. uctx->ctx_len);
  357. return uctx;
  358. }
  359. static int present_and_same_family(struct sadb_address *src,
  360. struct sadb_address *dst)
  361. {
  362. struct sockaddr *s_addr, *d_addr;
  363. if (!src || !dst)
  364. return 0;
  365. s_addr = (struct sockaddr *)(src + 1);
  366. d_addr = (struct sockaddr *)(dst + 1);
  367. if (s_addr->sa_family != d_addr->sa_family)
  368. return 0;
  369. if (s_addr->sa_family != AF_INET
  370. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  371. && s_addr->sa_family != AF_INET6
  372. #endif
  373. )
  374. return 0;
  375. return 1;
  376. }
  377. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  378. {
  379. char *p = (char *) hdr;
  380. int len = skb->len;
  381. len -= sizeof(*hdr);
  382. p += sizeof(*hdr);
  383. while (len > 0) {
  384. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  385. uint16_t ext_type;
  386. int ext_len;
  387. ext_len = ehdr->sadb_ext_len;
  388. ext_len *= sizeof(uint64_t);
  389. ext_type = ehdr->sadb_ext_type;
  390. if (ext_len < sizeof(uint64_t) ||
  391. ext_len > len ||
  392. ext_type == SADB_EXT_RESERVED)
  393. return -EINVAL;
  394. if (ext_type <= SADB_EXT_MAX) {
  395. int min = (int) sadb_ext_min_len[ext_type];
  396. if (ext_len < min)
  397. return -EINVAL;
  398. if (ext_hdrs[ext_type-1] != NULL)
  399. return -EINVAL;
  400. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  401. ext_type == SADB_EXT_ADDRESS_DST ||
  402. ext_type == SADB_EXT_ADDRESS_PROXY ||
  403. ext_type == SADB_X_EXT_NAT_T_OA) {
  404. if (verify_address_len(p))
  405. return -EINVAL;
  406. }
  407. if (ext_type == SADB_X_EXT_SEC_CTX) {
  408. if (verify_sec_ctx_len(p))
  409. return -EINVAL;
  410. }
  411. ext_hdrs[ext_type-1] = p;
  412. }
  413. p += ext_len;
  414. len -= ext_len;
  415. }
  416. return 0;
  417. }
  418. static uint16_t
  419. pfkey_satype2proto(uint8_t satype)
  420. {
  421. switch (satype) {
  422. case SADB_SATYPE_UNSPEC:
  423. return IPSEC_PROTO_ANY;
  424. case SADB_SATYPE_AH:
  425. return IPPROTO_AH;
  426. case SADB_SATYPE_ESP:
  427. return IPPROTO_ESP;
  428. case SADB_X_SATYPE_IPCOMP:
  429. return IPPROTO_COMP;
  430. break;
  431. default:
  432. return 0;
  433. }
  434. /* NOTREACHED */
  435. }
  436. static uint8_t
  437. pfkey_proto2satype(uint16_t proto)
  438. {
  439. switch (proto) {
  440. case IPPROTO_AH:
  441. return SADB_SATYPE_AH;
  442. case IPPROTO_ESP:
  443. return SADB_SATYPE_ESP;
  444. case IPPROTO_COMP:
  445. return SADB_X_SATYPE_IPCOMP;
  446. break;
  447. default:
  448. return 0;
  449. }
  450. /* NOTREACHED */
  451. }
  452. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  453. * say specifically 'just raw sockets' as we encode them as 255.
  454. */
  455. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  456. {
  457. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  458. }
  459. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  460. {
  461. return (proto ? proto : IPSEC_PROTO_ANY);
  462. }
  463. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  464. xfrm_address_t *xaddr)
  465. {
  466. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  467. case AF_INET:
  468. xaddr->a4 =
  469. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  470. return AF_INET;
  471. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  472. case AF_INET6:
  473. memcpy(xaddr->a6,
  474. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  475. sizeof(struct in6_addr));
  476. return AF_INET6;
  477. #endif
  478. default:
  479. return 0;
  480. }
  481. /* NOTREACHED */
  482. }
  483. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  484. {
  485. struct sadb_sa *sa;
  486. struct sadb_address *addr;
  487. uint16_t proto;
  488. unsigned short family;
  489. xfrm_address_t *xaddr;
  490. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  491. if (sa == NULL)
  492. return NULL;
  493. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  494. if (proto == 0)
  495. return NULL;
  496. /* sadb_address_len should be checked by caller */
  497. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  498. if (addr == NULL)
  499. return NULL;
  500. family = ((struct sockaddr *)(addr + 1))->sa_family;
  501. switch (family) {
  502. case AF_INET:
  503. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  504. break;
  505. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  506. case AF_INET6:
  507. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  508. break;
  509. #endif
  510. default:
  511. xaddr = NULL;
  512. }
  513. if (!xaddr)
  514. return NULL;
  515. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  516. }
  517. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  518. static int
  519. pfkey_sockaddr_size(sa_family_t family)
  520. {
  521. switch (family) {
  522. case AF_INET:
  523. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  524. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  525. case AF_INET6:
  526. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  527. #endif
  528. default:
  529. return 0;
  530. }
  531. /* NOTREACHED */
  532. }
  533. static inline int pfkey_mode_from_xfrm(int mode)
  534. {
  535. switch(mode) {
  536. case XFRM_MODE_TRANSPORT:
  537. return IPSEC_MODE_TRANSPORT;
  538. case XFRM_MODE_TUNNEL:
  539. return IPSEC_MODE_TUNNEL;
  540. case XFRM_MODE_BEET:
  541. return IPSEC_MODE_BEET;
  542. default:
  543. return -1;
  544. }
  545. }
  546. static inline int pfkey_mode_to_xfrm(int mode)
  547. {
  548. switch(mode) {
  549. case IPSEC_MODE_ANY: /*XXX*/
  550. case IPSEC_MODE_TRANSPORT:
  551. return XFRM_MODE_TRANSPORT;
  552. case IPSEC_MODE_TUNNEL:
  553. return XFRM_MODE_TUNNEL;
  554. case IPSEC_MODE_BEET:
  555. return XFRM_MODE_BEET;
  556. default:
  557. return -1;
  558. }
  559. }
  560. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  561. {
  562. struct sk_buff *skb;
  563. struct sadb_msg *hdr;
  564. struct sadb_sa *sa;
  565. struct sadb_lifetime *lifetime;
  566. struct sadb_address *addr;
  567. struct sadb_key *key;
  568. struct sadb_x_sa2 *sa2;
  569. struct sockaddr_in *sin;
  570. struct sadb_x_sec_ctx *sec_ctx;
  571. struct xfrm_sec_ctx *xfrm_ctx;
  572. int ctx_size = 0;
  573. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  574. struct sockaddr_in6 *sin6;
  575. #endif
  576. int size;
  577. int auth_key_size = 0;
  578. int encrypt_key_size = 0;
  579. int sockaddr_size;
  580. struct xfrm_encap_tmpl *natt = NULL;
  581. int mode;
  582. /* address family check */
  583. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  584. if (!sockaddr_size)
  585. return ERR_PTR(-EINVAL);
  586. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  587. key(AE), (identity(SD),) (sensitivity)> */
  588. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  589. sizeof(struct sadb_lifetime) +
  590. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  591. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  592. sizeof(struct sadb_address)*2 +
  593. sockaddr_size*2 +
  594. sizeof(struct sadb_x_sa2);
  595. if ((xfrm_ctx = x->security)) {
  596. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  597. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  598. }
  599. /* identity & sensitivity */
  600. if ((x->props.family == AF_INET &&
  601. x->sel.saddr.a4 != x->props.saddr.a4)
  602. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  603. || (x->props.family == AF_INET6 &&
  604. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  605. #endif
  606. )
  607. size += sizeof(struct sadb_address) + sockaddr_size;
  608. if (add_keys) {
  609. if (x->aalg && x->aalg->alg_key_len) {
  610. auth_key_size =
  611. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  612. size += sizeof(struct sadb_key) + auth_key_size;
  613. }
  614. if (x->ealg && x->ealg->alg_key_len) {
  615. encrypt_key_size =
  616. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  617. size += sizeof(struct sadb_key) + encrypt_key_size;
  618. }
  619. }
  620. if (x->encap)
  621. natt = x->encap;
  622. if (natt && natt->encap_type) {
  623. size += sizeof(struct sadb_x_nat_t_type);
  624. size += sizeof(struct sadb_x_nat_t_port);
  625. size += sizeof(struct sadb_x_nat_t_port);
  626. }
  627. skb = alloc_skb(size + 16, GFP_ATOMIC);
  628. if (skb == NULL)
  629. return ERR_PTR(-ENOBUFS);
  630. /* call should fill header later */
  631. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  632. memset(hdr, 0, size); /* XXX do we need this ? */
  633. hdr->sadb_msg_len = size / sizeof(uint64_t);
  634. /* sa */
  635. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  636. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  637. sa->sadb_sa_exttype = SADB_EXT_SA;
  638. sa->sadb_sa_spi = x->id.spi;
  639. sa->sadb_sa_replay = x->props.replay_window;
  640. switch (x->km.state) {
  641. case XFRM_STATE_VALID:
  642. sa->sadb_sa_state = x->km.dying ?
  643. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  644. break;
  645. case XFRM_STATE_ACQ:
  646. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  647. break;
  648. default:
  649. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  650. break;
  651. }
  652. sa->sadb_sa_auth = 0;
  653. if (x->aalg) {
  654. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  655. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  656. }
  657. sa->sadb_sa_encrypt = 0;
  658. BUG_ON(x->ealg && x->calg);
  659. if (x->ealg) {
  660. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  661. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  662. }
  663. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  664. if (x->calg) {
  665. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  666. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  667. }
  668. sa->sadb_sa_flags = 0;
  669. if (x->props.flags & XFRM_STATE_NOECN)
  670. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  671. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  672. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  673. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  674. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  675. /* hard time */
  676. if (hsc & 2) {
  677. lifetime = (struct sadb_lifetime *) skb_put(skb,
  678. sizeof(struct sadb_lifetime));
  679. lifetime->sadb_lifetime_len =
  680. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  681. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  682. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  683. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  684. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  685. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  686. }
  687. /* soft time */
  688. if (hsc & 1) {
  689. lifetime = (struct sadb_lifetime *) skb_put(skb,
  690. sizeof(struct sadb_lifetime));
  691. lifetime->sadb_lifetime_len =
  692. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  693. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  694. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  695. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  696. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  697. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  698. }
  699. /* current time */
  700. lifetime = (struct sadb_lifetime *) skb_put(skb,
  701. sizeof(struct sadb_lifetime));
  702. lifetime->sadb_lifetime_len =
  703. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  704. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  705. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  706. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  707. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  708. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  709. /* src address */
  710. addr = (struct sadb_address*) skb_put(skb,
  711. sizeof(struct sadb_address)+sockaddr_size);
  712. addr->sadb_address_len =
  713. (sizeof(struct sadb_address)+sockaddr_size)/
  714. sizeof(uint64_t);
  715. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  716. /* "if the ports are non-zero, then the sadb_address_proto field,
  717. normally zero, MUST be filled in with the transport
  718. protocol's number." - RFC2367 */
  719. addr->sadb_address_proto = 0;
  720. addr->sadb_address_reserved = 0;
  721. if (x->props.family == AF_INET) {
  722. addr->sadb_address_prefixlen = 32;
  723. sin = (struct sockaddr_in *) (addr + 1);
  724. sin->sin_family = AF_INET;
  725. sin->sin_addr.s_addr = x->props.saddr.a4;
  726. sin->sin_port = 0;
  727. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  728. }
  729. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  730. else if (x->props.family == AF_INET6) {
  731. addr->sadb_address_prefixlen = 128;
  732. sin6 = (struct sockaddr_in6 *) (addr + 1);
  733. sin6->sin6_family = AF_INET6;
  734. sin6->sin6_port = 0;
  735. sin6->sin6_flowinfo = 0;
  736. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  737. sizeof(struct in6_addr));
  738. sin6->sin6_scope_id = 0;
  739. }
  740. #endif
  741. else
  742. BUG();
  743. /* dst address */
  744. addr = (struct sadb_address*) skb_put(skb,
  745. sizeof(struct sadb_address)+sockaddr_size);
  746. addr->sadb_address_len =
  747. (sizeof(struct sadb_address)+sockaddr_size)/
  748. sizeof(uint64_t);
  749. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  750. addr->sadb_address_proto = 0;
  751. addr->sadb_address_prefixlen = 32; /* XXX */
  752. addr->sadb_address_reserved = 0;
  753. if (x->props.family == AF_INET) {
  754. sin = (struct sockaddr_in *) (addr + 1);
  755. sin->sin_family = AF_INET;
  756. sin->sin_addr.s_addr = x->id.daddr.a4;
  757. sin->sin_port = 0;
  758. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  759. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  760. addr = (struct sadb_address*) skb_put(skb,
  761. sizeof(struct sadb_address)+sockaddr_size);
  762. addr->sadb_address_len =
  763. (sizeof(struct sadb_address)+sockaddr_size)/
  764. sizeof(uint64_t);
  765. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  766. addr->sadb_address_proto =
  767. pfkey_proto_from_xfrm(x->sel.proto);
  768. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  769. addr->sadb_address_reserved = 0;
  770. sin = (struct sockaddr_in *) (addr + 1);
  771. sin->sin_family = AF_INET;
  772. sin->sin_addr.s_addr = x->sel.saddr.a4;
  773. sin->sin_port = x->sel.sport;
  774. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  775. }
  776. }
  777. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  778. else if (x->props.family == AF_INET6) {
  779. addr->sadb_address_prefixlen = 128;
  780. sin6 = (struct sockaddr_in6 *) (addr + 1);
  781. sin6->sin6_family = AF_INET6;
  782. sin6->sin6_port = 0;
  783. sin6->sin6_flowinfo = 0;
  784. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  785. sin6->sin6_scope_id = 0;
  786. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  787. sizeof(struct in6_addr))) {
  788. addr = (struct sadb_address *) skb_put(skb,
  789. sizeof(struct sadb_address)+sockaddr_size);
  790. addr->sadb_address_len =
  791. (sizeof(struct sadb_address)+sockaddr_size)/
  792. sizeof(uint64_t);
  793. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  794. addr->sadb_address_proto =
  795. pfkey_proto_from_xfrm(x->sel.proto);
  796. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  797. addr->sadb_address_reserved = 0;
  798. sin6 = (struct sockaddr_in6 *) (addr + 1);
  799. sin6->sin6_family = AF_INET6;
  800. sin6->sin6_port = x->sel.sport;
  801. sin6->sin6_flowinfo = 0;
  802. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  803. sizeof(struct in6_addr));
  804. sin6->sin6_scope_id = 0;
  805. }
  806. }
  807. #endif
  808. else
  809. BUG();
  810. /* auth key */
  811. if (add_keys && auth_key_size) {
  812. key = (struct sadb_key *) skb_put(skb,
  813. sizeof(struct sadb_key)+auth_key_size);
  814. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  815. sizeof(uint64_t);
  816. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  817. key->sadb_key_bits = x->aalg->alg_key_len;
  818. key->sadb_key_reserved = 0;
  819. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  820. }
  821. /* encrypt key */
  822. if (add_keys && encrypt_key_size) {
  823. key = (struct sadb_key *) skb_put(skb,
  824. sizeof(struct sadb_key)+encrypt_key_size);
  825. key->sadb_key_len = (sizeof(struct sadb_key) +
  826. encrypt_key_size) / sizeof(uint64_t);
  827. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  828. key->sadb_key_bits = x->ealg->alg_key_len;
  829. key->sadb_key_reserved = 0;
  830. memcpy(key + 1, x->ealg->alg_key,
  831. (x->ealg->alg_key_len+7)/8);
  832. }
  833. /* sa */
  834. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  835. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  836. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  837. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  838. kfree_skb(skb);
  839. return ERR_PTR(-EINVAL);
  840. }
  841. sa2->sadb_x_sa2_mode = mode;
  842. sa2->sadb_x_sa2_reserved1 = 0;
  843. sa2->sadb_x_sa2_reserved2 = 0;
  844. sa2->sadb_x_sa2_sequence = 0;
  845. sa2->sadb_x_sa2_reqid = x->props.reqid;
  846. if (natt && natt->encap_type) {
  847. struct sadb_x_nat_t_type *n_type;
  848. struct sadb_x_nat_t_port *n_port;
  849. /* type */
  850. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  851. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  852. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  853. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  854. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  855. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  857. /* source port */
  858. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  859. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  860. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  861. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  862. n_port->sadb_x_nat_t_port_reserved = 0;
  863. /* dest port */
  864. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  865. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  866. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  867. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  868. n_port->sadb_x_nat_t_port_reserved = 0;
  869. }
  870. /* security context */
  871. if (xfrm_ctx) {
  872. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  873. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  874. sec_ctx->sadb_x_sec_len =
  875. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  876. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  877. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  878. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  879. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  880. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  881. xfrm_ctx->ctx_len);
  882. }
  883. return skb;
  884. }
  885. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  886. void **ext_hdrs)
  887. {
  888. struct xfrm_state *x;
  889. struct sadb_lifetime *lifetime;
  890. struct sadb_sa *sa;
  891. struct sadb_key *key;
  892. struct sadb_x_sec_ctx *sec_ctx;
  893. uint16_t proto;
  894. int err;
  895. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  896. if (!sa ||
  897. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  898. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  899. return ERR_PTR(-EINVAL);
  900. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  901. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  902. return ERR_PTR(-EINVAL);
  903. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  904. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  905. return ERR_PTR(-EINVAL);
  906. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  907. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  908. return ERR_PTR(-EINVAL);
  909. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  910. if (proto == 0)
  911. return ERR_PTR(-EINVAL);
  912. /* default error is no buffer space */
  913. err = -ENOBUFS;
  914. /* RFC2367:
  915. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  916. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  917. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  918. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  919. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  920. not true.
  921. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  922. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  923. */
  924. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  925. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  926. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  927. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  928. return ERR_PTR(-EINVAL);
  929. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  930. if (key != NULL &&
  931. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  932. ((key->sadb_key_bits+7) / 8 == 0 ||
  933. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  934. return ERR_PTR(-EINVAL);
  935. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  936. if (key != NULL &&
  937. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  938. ((key->sadb_key_bits+7) / 8 == 0 ||
  939. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  940. return ERR_PTR(-EINVAL);
  941. x = xfrm_state_alloc();
  942. if (x == NULL)
  943. return ERR_PTR(-ENOBUFS);
  944. x->id.proto = proto;
  945. x->id.spi = sa->sadb_sa_spi;
  946. x->props.replay_window = sa->sadb_sa_replay;
  947. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  948. x->props.flags |= XFRM_STATE_NOECN;
  949. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  950. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  951. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  952. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  953. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  954. if (lifetime != NULL) {
  955. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  956. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  957. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  958. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  959. }
  960. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  961. if (lifetime != NULL) {
  962. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  963. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  964. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  965. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  966. }
  967. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  968. if (sec_ctx != NULL) {
  969. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  970. if (!uctx)
  971. goto out;
  972. err = security_xfrm_state_alloc(x, uctx);
  973. kfree(uctx);
  974. if (err)
  975. goto out;
  976. }
  977. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  978. if (sa->sadb_sa_auth) {
  979. int keysize = 0;
  980. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  981. if (!a) {
  982. err = -ENOSYS;
  983. goto out;
  984. }
  985. if (key)
  986. keysize = (key->sadb_key_bits + 7) / 8;
  987. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  988. if (!x->aalg)
  989. goto out;
  990. strcpy(x->aalg->alg_name, a->name);
  991. x->aalg->alg_key_len = 0;
  992. if (key) {
  993. x->aalg->alg_key_len = key->sadb_key_bits;
  994. memcpy(x->aalg->alg_key, key+1, keysize);
  995. }
  996. x->props.aalgo = sa->sadb_sa_auth;
  997. /* x->algo.flags = sa->sadb_sa_flags; */
  998. }
  999. if (sa->sadb_sa_encrypt) {
  1000. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1001. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1002. if (!a) {
  1003. err = -ENOSYS;
  1004. goto out;
  1005. }
  1006. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1007. if (!x->calg)
  1008. goto out;
  1009. strcpy(x->calg->alg_name, a->name);
  1010. x->props.calgo = sa->sadb_sa_encrypt;
  1011. } else {
  1012. int keysize = 0;
  1013. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1014. if (!a) {
  1015. err = -ENOSYS;
  1016. goto out;
  1017. }
  1018. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1019. if (key)
  1020. keysize = (key->sadb_key_bits + 7) / 8;
  1021. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1022. if (!x->ealg)
  1023. goto out;
  1024. strcpy(x->ealg->alg_name, a->name);
  1025. x->ealg->alg_key_len = 0;
  1026. if (key) {
  1027. x->ealg->alg_key_len = key->sadb_key_bits;
  1028. memcpy(x->ealg->alg_key, key+1, keysize);
  1029. }
  1030. x->props.ealgo = sa->sadb_sa_encrypt;
  1031. }
  1032. }
  1033. /* x->algo.flags = sa->sadb_sa_flags; */
  1034. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1035. &x->props.saddr);
  1036. if (!x->props.family) {
  1037. err = -EAFNOSUPPORT;
  1038. goto out;
  1039. }
  1040. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1041. &x->id.daddr);
  1042. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1043. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1044. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1045. if (mode < 0) {
  1046. err = -EINVAL;
  1047. goto out;
  1048. }
  1049. x->props.mode = mode;
  1050. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1051. }
  1052. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1053. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1054. /* Nobody uses this, but we try. */
  1055. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1056. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1057. }
  1058. if (!x->sel.family)
  1059. x->sel.family = x->props.family;
  1060. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1061. struct sadb_x_nat_t_type* n_type;
  1062. struct xfrm_encap_tmpl *natt;
  1063. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1064. if (!x->encap)
  1065. goto out;
  1066. natt = x->encap;
  1067. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1068. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1069. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1070. struct sadb_x_nat_t_port* n_port =
  1071. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1072. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1073. }
  1074. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1075. struct sadb_x_nat_t_port* n_port =
  1076. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1077. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1078. }
  1079. }
  1080. err = xfrm_init_state(x);
  1081. if (err)
  1082. goto out;
  1083. x->km.seq = hdr->sadb_msg_seq;
  1084. return x;
  1085. out:
  1086. x->km.state = XFRM_STATE_DEAD;
  1087. xfrm_state_put(x);
  1088. return ERR_PTR(err);
  1089. }
  1090. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1091. {
  1092. return -EOPNOTSUPP;
  1093. }
  1094. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1095. {
  1096. struct sk_buff *resp_skb;
  1097. struct sadb_x_sa2 *sa2;
  1098. struct sadb_address *saddr, *daddr;
  1099. struct sadb_msg *out_hdr;
  1100. struct sadb_spirange *range;
  1101. struct xfrm_state *x = NULL;
  1102. int mode;
  1103. int err;
  1104. u32 min_spi, max_spi;
  1105. u32 reqid;
  1106. u8 proto;
  1107. unsigned short family;
  1108. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1109. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1110. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1111. return -EINVAL;
  1112. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1113. if (proto == 0)
  1114. return -EINVAL;
  1115. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1116. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1117. if (mode < 0)
  1118. return -EINVAL;
  1119. reqid = sa2->sadb_x_sa2_reqid;
  1120. } else {
  1121. mode = 0;
  1122. reqid = 0;
  1123. }
  1124. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1125. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1126. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1127. switch (family) {
  1128. case AF_INET:
  1129. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1130. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1131. break;
  1132. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1133. case AF_INET6:
  1134. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1135. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1136. break;
  1137. #endif
  1138. }
  1139. if (hdr->sadb_msg_seq) {
  1140. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1141. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1142. xfrm_state_put(x);
  1143. x = NULL;
  1144. }
  1145. }
  1146. if (!x)
  1147. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1148. if (x == NULL)
  1149. return -ENOENT;
  1150. min_spi = 0x100;
  1151. max_spi = 0x0fffffff;
  1152. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1153. if (range) {
  1154. min_spi = range->sadb_spirange_min;
  1155. max_spi = range->sadb_spirange_max;
  1156. }
  1157. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1158. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x, 0, 3);
  1159. if (IS_ERR(resp_skb)) {
  1160. xfrm_state_put(x);
  1161. return PTR_ERR(resp_skb);
  1162. }
  1163. out_hdr = (struct sadb_msg *) resp_skb->data;
  1164. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1165. out_hdr->sadb_msg_type = SADB_GETSPI;
  1166. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1167. out_hdr->sadb_msg_errno = 0;
  1168. out_hdr->sadb_msg_reserved = 0;
  1169. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1170. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1171. xfrm_state_put(x);
  1172. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1173. return 0;
  1174. }
  1175. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1176. {
  1177. struct xfrm_state *x;
  1178. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1179. return -EOPNOTSUPP;
  1180. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1181. return 0;
  1182. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1183. if (x == NULL)
  1184. return 0;
  1185. spin_lock_bh(&x->lock);
  1186. if (x->km.state == XFRM_STATE_ACQ) {
  1187. x->km.state = XFRM_STATE_ERROR;
  1188. wake_up(&km_waitq);
  1189. }
  1190. spin_unlock_bh(&x->lock);
  1191. xfrm_state_put(x);
  1192. return 0;
  1193. }
  1194. static inline int event2poltype(int event)
  1195. {
  1196. switch (event) {
  1197. case XFRM_MSG_DELPOLICY:
  1198. return SADB_X_SPDDELETE;
  1199. case XFRM_MSG_NEWPOLICY:
  1200. return SADB_X_SPDADD;
  1201. case XFRM_MSG_UPDPOLICY:
  1202. return SADB_X_SPDUPDATE;
  1203. case XFRM_MSG_POLEXPIRE:
  1204. // return SADB_X_SPDEXPIRE;
  1205. default:
  1206. printk("pfkey: Unknown policy event %d\n", event);
  1207. break;
  1208. }
  1209. return 0;
  1210. }
  1211. static inline int event2keytype(int event)
  1212. {
  1213. switch (event) {
  1214. case XFRM_MSG_DELSA:
  1215. return SADB_DELETE;
  1216. case XFRM_MSG_NEWSA:
  1217. return SADB_ADD;
  1218. case XFRM_MSG_UPDSA:
  1219. return SADB_UPDATE;
  1220. case XFRM_MSG_EXPIRE:
  1221. return SADB_EXPIRE;
  1222. default:
  1223. printk("pfkey: Unknown SA event %d\n", event);
  1224. break;
  1225. }
  1226. return 0;
  1227. }
  1228. /* ADD/UPD/DEL */
  1229. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1230. {
  1231. struct sk_buff *skb;
  1232. struct sadb_msg *hdr;
  1233. int hsc = 3;
  1234. if (c->event == XFRM_MSG_DELSA)
  1235. hsc = 0;
  1236. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1237. if (IS_ERR(skb))
  1238. return PTR_ERR(skb);
  1239. hdr = (struct sadb_msg *) skb->data;
  1240. hdr->sadb_msg_version = PF_KEY_V2;
  1241. hdr->sadb_msg_type = event2keytype(c->event);
  1242. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1243. hdr->sadb_msg_errno = 0;
  1244. hdr->sadb_msg_reserved = 0;
  1245. hdr->sadb_msg_seq = c->seq;
  1246. hdr->sadb_msg_pid = c->pid;
  1247. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1248. return 0;
  1249. }
  1250. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1251. {
  1252. struct xfrm_state *x;
  1253. int err;
  1254. struct km_event c;
  1255. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1256. if (IS_ERR(x))
  1257. return PTR_ERR(x);
  1258. xfrm_state_hold(x);
  1259. if (hdr->sadb_msg_type == SADB_ADD)
  1260. err = xfrm_state_add(x);
  1261. else
  1262. err = xfrm_state_update(x);
  1263. xfrm_audit_state_add(x, err ? 0 : 1,
  1264. audit_get_loginuid(current->audit_context), 0);
  1265. if (err < 0) {
  1266. x->km.state = XFRM_STATE_DEAD;
  1267. __xfrm_state_put(x);
  1268. goto out;
  1269. }
  1270. if (hdr->sadb_msg_type == SADB_ADD)
  1271. c.event = XFRM_MSG_NEWSA;
  1272. else
  1273. c.event = XFRM_MSG_UPDSA;
  1274. c.seq = hdr->sadb_msg_seq;
  1275. c.pid = hdr->sadb_msg_pid;
  1276. km_state_notify(x, &c);
  1277. out:
  1278. xfrm_state_put(x);
  1279. return err;
  1280. }
  1281. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1282. {
  1283. struct xfrm_state *x;
  1284. struct km_event c;
  1285. int err;
  1286. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1287. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1288. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1289. return -EINVAL;
  1290. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1291. if (x == NULL)
  1292. return -ESRCH;
  1293. if ((err = security_xfrm_state_delete(x)))
  1294. goto out;
  1295. if (xfrm_state_kern(x)) {
  1296. err = -EPERM;
  1297. goto out;
  1298. }
  1299. err = xfrm_state_delete(x);
  1300. if (err < 0)
  1301. goto out;
  1302. c.seq = hdr->sadb_msg_seq;
  1303. c.pid = hdr->sadb_msg_pid;
  1304. c.event = XFRM_MSG_DELSA;
  1305. km_state_notify(x, &c);
  1306. out:
  1307. xfrm_audit_state_delete(x, err ? 0 : 1,
  1308. audit_get_loginuid(current->audit_context), 0);
  1309. xfrm_state_put(x);
  1310. return err;
  1311. }
  1312. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1313. {
  1314. __u8 proto;
  1315. struct sk_buff *out_skb;
  1316. struct sadb_msg *out_hdr;
  1317. struct xfrm_state *x;
  1318. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1319. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1320. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1321. return -EINVAL;
  1322. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1323. if (x == NULL)
  1324. return -ESRCH;
  1325. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1326. proto = x->id.proto;
  1327. xfrm_state_put(x);
  1328. if (IS_ERR(out_skb))
  1329. return PTR_ERR(out_skb);
  1330. out_hdr = (struct sadb_msg *) out_skb->data;
  1331. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1332. out_hdr->sadb_msg_type = SADB_DUMP;
  1333. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1334. out_hdr->sadb_msg_errno = 0;
  1335. out_hdr->sadb_msg_reserved = 0;
  1336. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1337. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1338. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1339. return 0;
  1340. }
  1341. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1342. gfp_t allocation)
  1343. {
  1344. struct sk_buff *skb;
  1345. struct sadb_msg *hdr;
  1346. int len, auth_len, enc_len, i;
  1347. auth_len = xfrm_count_auth_supported();
  1348. if (auth_len) {
  1349. auth_len *= sizeof(struct sadb_alg);
  1350. auth_len += sizeof(struct sadb_supported);
  1351. }
  1352. enc_len = xfrm_count_enc_supported();
  1353. if (enc_len) {
  1354. enc_len *= sizeof(struct sadb_alg);
  1355. enc_len += sizeof(struct sadb_supported);
  1356. }
  1357. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1358. skb = alloc_skb(len + 16, allocation);
  1359. if (!skb)
  1360. goto out_put_algs;
  1361. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1362. pfkey_hdr_dup(hdr, orig);
  1363. hdr->sadb_msg_errno = 0;
  1364. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1365. if (auth_len) {
  1366. struct sadb_supported *sp;
  1367. struct sadb_alg *ap;
  1368. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1369. ap = (struct sadb_alg *) (sp + 1);
  1370. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1371. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1372. for (i = 0; ; i++) {
  1373. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1374. if (!aalg)
  1375. break;
  1376. if (aalg->available)
  1377. *ap++ = aalg->desc;
  1378. }
  1379. }
  1380. if (enc_len) {
  1381. struct sadb_supported *sp;
  1382. struct sadb_alg *ap;
  1383. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1384. ap = (struct sadb_alg *) (sp + 1);
  1385. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1386. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1387. for (i = 0; ; i++) {
  1388. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1389. if (!ealg)
  1390. break;
  1391. if (ealg->available)
  1392. *ap++ = ealg->desc;
  1393. }
  1394. }
  1395. out_put_algs:
  1396. return skb;
  1397. }
  1398. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1399. {
  1400. struct pfkey_sock *pfk = pfkey_sk(sk);
  1401. struct sk_buff *supp_skb;
  1402. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1403. return -EINVAL;
  1404. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1405. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1406. return -EEXIST;
  1407. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1408. }
  1409. xfrm_probe_algs();
  1410. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1411. if (!supp_skb) {
  1412. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1413. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1414. return -ENOBUFS;
  1415. }
  1416. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1417. return 0;
  1418. }
  1419. static int key_notify_sa_flush(struct km_event *c)
  1420. {
  1421. struct sk_buff *skb;
  1422. struct sadb_msg *hdr;
  1423. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1424. if (!skb)
  1425. return -ENOBUFS;
  1426. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1427. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1428. hdr->sadb_msg_type = SADB_FLUSH;
  1429. hdr->sadb_msg_seq = c->seq;
  1430. hdr->sadb_msg_pid = c->pid;
  1431. hdr->sadb_msg_version = PF_KEY_V2;
  1432. hdr->sadb_msg_errno = (uint8_t) 0;
  1433. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1434. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1435. return 0;
  1436. }
  1437. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1438. {
  1439. unsigned proto;
  1440. struct km_event c;
  1441. struct xfrm_audit audit_info;
  1442. int err;
  1443. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1444. if (proto == 0)
  1445. return -EINVAL;
  1446. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1447. audit_info.secid = 0;
  1448. err = xfrm_state_flush(proto, &audit_info);
  1449. if (err)
  1450. return err;
  1451. c.data.proto = proto;
  1452. c.seq = hdr->sadb_msg_seq;
  1453. c.pid = hdr->sadb_msg_pid;
  1454. c.event = XFRM_MSG_FLUSHSA;
  1455. km_state_notify(NULL, &c);
  1456. return 0;
  1457. }
  1458. struct pfkey_dump_data
  1459. {
  1460. struct sk_buff *skb;
  1461. struct sadb_msg *hdr;
  1462. struct sock *sk;
  1463. };
  1464. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1465. {
  1466. struct pfkey_dump_data *data = ptr;
  1467. struct sk_buff *out_skb;
  1468. struct sadb_msg *out_hdr;
  1469. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1470. if (IS_ERR(out_skb))
  1471. return PTR_ERR(out_skb);
  1472. out_hdr = (struct sadb_msg *) out_skb->data;
  1473. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1474. out_hdr->sadb_msg_type = SADB_DUMP;
  1475. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1476. out_hdr->sadb_msg_errno = 0;
  1477. out_hdr->sadb_msg_reserved = 0;
  1478. out_hdr->sadb_msg_seq = count;
  1479. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1480. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1481. return 0;
  1482. }
  1483. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1484. {
  1485. u8 proto;
  1486. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1487. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1488. if (proto == 0)
  1489. return -EINVAL;
  1490. return xfrm_state_walk(proto, dump_sa, &data);
  1491. }
  1492. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1493. {
  1494. struct pfkey_sock *pfk = pfkey_sk(sk);
  1495. int satype = hdr->sadb_msg_satype;
  1496. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1497. /* XXX we mangle packet... */
  1498. hdr->sadb_msg_errno = 0;
  1499. if (satype != 0 && satype != 1)
  1500. return -EINVAL;
  1501. pfk->promisc = satype;
  1502. }
  1503. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1504. return 0;
  1505. }
  1506. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1507. {
  1508. int i;
  1509. u32 reqid = *(u32*)ptr;
  1510. for (i=0; i<xp->xfrm_nr; i++) {
  1511. if (xp->xfrm_vec[i].reqid == reqid)
  1512. return -EEXIST;
  1513. }
  1514. return 0;
  1515. }
  1516. static u32 gen_reqid(void)
  1517. {
  1518. u32 start;
  1519. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1520. start = reqid;
  1521. do {
  1522. ++reqid;
  1523. if (reqid == 0)
  1524. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1525. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1526. (void*)&reqid) != -EEXIST)
  1527. return reqid;
  1528. } while (reqid != start);
  1529. return 0;
  1530. }
  1531. static int
  1532. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1533. {
  1534. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1535. struct sockaddr_in *sin;
  1536. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1537. struct sockaddr_in6 *sin6;
  1538. #endif
  1539. int mode;
  1540. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1541. return -ELOOP;
  1542. if (rq->sadb_x_ipsecrequest_mode == 0)
  1543. return -EINVAL;
  1544. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1545. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1546. return -EINVAL;
  1547. t->mode = mode;
  1548. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1549. t->optional = 1;
  1550. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1551. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1552. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1553. t->reqid = 0;
  1554. if (!t->reqid && !(t->reqid = gen_reqid()))
  1555. return -ENOBUFS;
  1556. }
  1557. /* addresses present only in tunnel mode */
  1558. if (t->mode == XFRM_MODE_TUNNEL) {
  1559. struct sockaddr *sa;
  1560. sa = (struct sockaddr *)(rq+1);
  1561. switch(sa->sa_family) {
  1562. case AF_INET:
  1563. sin = (struct sockaddr_in*)sa;
  1564. t->saddr.a4 = sin->sin_addr.s_addr;
  1565. sin++;
  1566. if (sin->sin_family != AF_INET)
  1567. return -EINVAL;
  1568. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1569. break;
  1570. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1571. case AF_INET6:
  1572. sin6 = (struct sockaddr_in6*)sa;
  1573. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1574. sin6++;
  1575. if (sin6->sin6_family != AF_INET6)
  1576. return -EINVAL;
  1577. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1578. break;
  1579. #endif
  1580. default:
  1581. return -EINVAL;
  1582. }
  1583. t->encap_family = sa->sa_family;
  1584. } else
  1585. t->encap_family = xp->family;
  1586. /* No way to set this via kame pfkey */
  1587. t->aalgos = t->ealgos = t->calgos = ~0;
  1588. xp->xfrm_nr++;
  1589. return 0;
  1590. }
  1591. static int
  1592. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1593. {
  1594. int err;
  1595. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1596. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1597. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1598. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1599. return err;
  1600. len -= rq->sadb_x_ipsecrequest_len;
  1601. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1602. }
  1603. return 0;
  1604. }
  1605. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1606. {
  1607. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1608. if (xfrm_ctx) {
  1609. int len = sizeof(struct sadb_x_sec_ctx);
  1610. len += xfrm_ctx->ctx_len;
  1611. return PFKEY_ALIGN8(len);
  1612. }
  1613. return 0;
  1614. }
  1615. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1616. {
  1617. struct xfrm_tmpl *t;
  1618. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1619. int socklen = 0;
  1620. int i;
  1621. for (i=0; i<xp->xfrm_nr; i++) {
  1622. t = xp->xfrm_vec + i;
  1623. socklen += (t->encap_family == AF_INET ?
  1624. sizeof(struct sockaddr_in) :
  1625. sizeof(struct sockaddr_in6));
  1626. }
  1627. return sizeof(struct sadb_msg) +
  1628. (sizeof(struct sadb_lifetime) * 3) +
  1629. (sizeof(struct sadb_address) * 2) +
  1630. (sockaddr_size * 2) +
  1631. sizeof(struct sadb_x_policy) +
  1632. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1633. (socklen * 2) +
  1634. pfkey_xfrm_policy2sec_ctx_size(xp);
  1635. }
  1636. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1637. {
  1638. struct sk_buff *skb;
  1639. int size;
  1640. size = pfkey_xfrm_policy2msg_size(xp);
  1641. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1642. if (skb == NULL)
  1643. return ERR_PTR(-ENOBUFS);
  1644. return skb;
  1645. }
  1646. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1647. {
  1648. struct sadb_msg *hdr;
  1649. struct sadb_address *addr;
  1650. struct sadb_lifetime *lifetime;
  1651. struct sadb_x_policy *pol;
  1652. struct sockaddr_in *sin;
  1653. struct sadb_x_sec_ctx *sec_ctx;
  1654. struct xfrm_sec_ctx *xfrm_ctx;
  1655. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1656. struct sockaddr_in6 *sin6;
  1657. #endif
  1658. int i;
  1659. int size;
  1660. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1661. int socklen = (xp->family == AF_INET ?
  1662. sizeof(struct sockaddr_in) :
  1663. sizeof(struct sockaddr_in6));
  1664. size = pfkey_xfrm_policy2msg_size(xp);
  1665. /* call should fill header later */
  1666. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1667. memset(hdr, 0, size); /* XXX do we need this ? */
  1668. /* src address */
  1669. addr = (struct sadb_address*) skb_put(skb,
  1670. sizeof(struct sadb_address)+sockaddr_size);
  1671. addr->sadb_address_len =
  1672. (sizeof(struct sadb_address)+sockaddr_size)/
  1673. sizeof(uint64_t);
  1674. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1675. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1676. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1677. addr->sadb_address_reserved = 0;
  1678. /* src address */
  1679. if (xp->family == AF_INET) {
  1680. sin = (struct sockaddr_in *) (addr + 1);
  1681. sin->sin_family = AF_INET;
  1682. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1683. sin->sin_port = xp->selector.sport;
  1684. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1685. }
  1686. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1687. else if (xp->family == AF_INET6) {
  1688. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1689. sin6->sin6_family = AF_INET6;
  1690. sin6->sin6_port = xp->selector.sport;
  1691. sin6->sin6_flowinfo = 0;
  1692. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1693. sizeof(struct in6_addr));
  1694. sin6->sin6_scope_id = 0;
  1695. }
  1696. #endif
  1697. else
  1698. BUG();
  1699. /* dst address */
  1700. addr = (struct sadb_address*) skb_put(skb,
  1701. sizeof(struct sadb_address)+sockaddr_size);
  1702. addr->sadb_address_len =
  1703. (sizeof(struct sadb_address)+sockaddr_size)/
  1704. sizeof(uint64_t);
  1705. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1706. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1707. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1708. addr->sadb_address_reserved = 0;
  1709. if (xp->family == AF_INET) {
  1710. sin = (struct sockaddr_in *) (addr + 1);
  1711. sin->sin_family = AF_INET;
  1712. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1713. sin->sin_port = xp->selector.dport;
  1714. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1715. }
  1716. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1717. else if (xp->family == AF_INET6) {
  1718. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1719. sin6->sin6_family = AF_INET6;
  1720. sin6->sin6_port = xp->selector.dport;
  1721. sin6->sin6_flowinfo = 0;
  1722. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1723. sizeof(struct in6_addr));
  1724. sin6->sin6_scope_id = 0;
  1725. }
  1726. #endif
  1727. else
  1728. BUG();
  1729. /* hard time */
  1730. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1731. sizeof(struct sadb_lifetime));
  1732. lifetime->sadb_lifetime_len =
  1733. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1734. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1735. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1736. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1737. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1738. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1739. /* soft time */
  1740. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1741. sizeof(struct sadb_lifetime));
  1742. lifetime->sadb_lifetime_len =
  1743. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1744. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1745. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1746. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1747. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1748. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1749. /* current time */
  1750. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1751. sizeof(struct sadb_lifetime));
  1752. lifetime->sadb_lifetime_len =
  1753. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1754. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1755. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1756. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1757. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1758. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1759. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1760. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1761. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1762. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1763. if (xp->action == XFRM_POLICY_ALLOW) {
  1764. if (xp->xfrm_nr)
  1765. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1766. else
  1767. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1768. }
  1769. pol->sadb_x_policy_dir = dir+1;
  1770. pol->sadb_x_policy_id = xp->index;
  1771. pol->sadb_x_policy_priority = xp->priority;
  1772. for (i=0; i<xp->xfrm_nr; i++) {
  1773. struct sadb_x_ipsecrequest *rq;
  1774. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1775. int req_size;
  1776. int mode;
  1777. req_size = sizeof(struct sadb_x_ipsecrequest);
  1778. if (t->mode == XFRM_MODE_TUNNEL)
  1779. req_size += ((t->encap_family == AF_INET ?
  1780. sizeof(struct sockaddr_in) :
  1781. sizeof(struct sockaddr_in6)) * 2);
  1782. else
  1783. size -= 2*socklen;
  1784. rq = (void*)skb_put(skb, req_size);
  1785. pol->sadb_x_policy_len += req_size/8;
  1786. memset(rq, 0, sizeof(*rq));
  1787. rq->sadb_x_ipsecrequest_len = req_size;
  1788. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1789. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1790. return -EINVAL;
  1791. rq->sadb_x_ipsecrequest_mode = mode;
  1792. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1793. if (t->reqid)
  1794. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1795. if (t->optional)
  1796. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1797. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1798. if (t->mode == XFRM_MODE_TUNNEL) {
  1799. switch (t->encap_family) {
  1800. case AF_INET:
  1801. sin = (void*)(rq+1);
  1802. sin->sin_family = AF_INET;
  1803. sin->sin_addr.s_addr = t->saddr.a4;
  1804. sin->sin_port = 0;
  1805. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1806. sin++;
  1807. sin->sin_family = AF_INET;
  1808. sin->sin_addr.s_addr = t->id.daddr.a4;
  1809. sin->sin_port = 0;
  1810. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1811. break;
  1812. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1813. case AF_INET6:
  1814. sin6 = (void*)(rq+1);
  1815. sin6->sin6_family = AF_INET6;
  1816. sin6->sin6_port = 0;
  1817. sin6->sin6_flowinfo = 0;
  1818. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1819. sizeof(struct in6_addr));
  1820. sin6->sin6_scope_id = 0;
  1821. sin6++;
  1822. sin6->sin6_family = AF_INET6;
  1823. sin6->sin6_port = 0;
  1824. sin6->sin6_flowinfo = 0;
  1825. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1826. sizeof(struct in6_addr));
  1827. sin6->sin6_scope_id = 0;
  1828. break;
  1829. #endif
  1830. default:
  1831. break;
  1832. }
  1833. }
  1834. }
  1835. /* security context */
  1836. if ((xfrm_ctx = xp->security)) {
  1837. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1838. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1839. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1840. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1841. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1842. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1843. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1844. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1845. xfrm_ctx->ctx_len);
  1846. }
  1847. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1848. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1849. return 0;
  1850. }
  1851. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1852. {
  1853. struct sk_buff *out_skb;
  1854. struct sadb_msg *out_hdr;
  1855. int err;
  1856. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1857. if (IS_ERR(out_skb)) {
  1858. err = PTR_ERR(out_skb);
  1859. goto out;
  1860. }
  1861. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1862. if (err < 0)
  1863. return err;
  1864. out_hdr = (struct sadb_msg *) out_skb->data;
  1865. out_hdr->sadb_msg_version = PF_KEY_V2;
  1866. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1867. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1868. else
  1869. out_hdr->sadb_msg_type = event2poltype(c->event);
  1870. out_hdr->sadb_msg_errno = 0;
  1871. out_hdr->sadb_msg_seq = c->seq;
  1872. out_hdr->sadb_msg_pid = c->pid;
  1873. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1874. out:
  1875. return 0;
  1876. }
  1877. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1878. {
  1879. int err = 0;
  1880. struct sadb_lifetime *lifetime;
  1881. struct sadb_address *sa;
  1882. struct sadb_x_policy *pol;
  1883. struct xfrm_policy *xp;
  1884. struct km_event c;
  1885. struct sadb_x_sec_ctx *sec_ctx;
  1886. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1887. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1888. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1889. return -EINVAL;
  1890. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1891. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1892. return -EINVAL;
  1893. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1894. return -EINVAL;
  1895. xp = xfrm_policy_alloc(GFP_KERNEL);
  1896. if (xp == NULL)
  1897. return -ENOBUFS;
  1898. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1899. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1900. xp->priority = pol->sadb_x_policy_priority;
  1901. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1902. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1903. if (!xp->family) {
  1904. err = -EINVAL;
  1905. goto out;
  1906. }
  1907. xp->selector.family = xp->family;
  1908. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1909. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1910. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1911. if (xp->selector.sport)
  1912. xp->selector.sport_mask = htons(0xffff);
  1913. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1914. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1915. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1916. /* Amusing, we set this twice. KAME apps appear to set same value
  1917. * in both addresses.
  1918. */
  1919. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1920. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1921. if (xp->selector.dport)
  1922. xp->selector.dport_mask = htons(0xffff);
  1923. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1924. if (sec_ctx != NULL) {
  1925. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1926. if (!uctx) {
  1927. err = -ENOBUFS;
  1928. goto out;
  1929. }
  1930. err = security_xfrm_policy_alloc(xp, uctx);
  1931. kfree(uctx);
  1932. if (err)
  1933. goto out;
  1934. }
  1935. xp->lft.soft_byte_limit = XFRM_INF;
  1936. xp->lft.hard_byte_limit = XFRM_INF;
  1937. xp->lft.soft_packet_limit = XFRM_INF;
  1938. xp->lft.hard_packet_limit = XFRM_INF;
  1939. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1940. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1941. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1942. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1943. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1944. }
  1945. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1946. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1947. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1948. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1949. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1950. }
  1951. xp->xfrm_nr = 0;
  1952. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1953. (err = parse_ipsecrequests(xp, pol)) < 0)
  1954. goto out;
  1955. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1956. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1957. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1958. audit_get_loginuid(current->audit_context), 0);
  1959. if (err)
  1960. goto out;
  1961. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1962. c.event = XFRM_MSG_UPDPOLICY;
  1963. else
  1964. c.event = XFRM_MSG_NEWPOLICY;
  1965. c.seq = hdr->sadb_msg_seq;
  1966. c.pid = hdr->sadb_msg_pid;
  1967. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1968. xfrm_pol_put(xp);
  1969. return 0;
  1970. out:
  1971. security_xfrm_policy_free(xp);
  1972. kfree(xp);
  1973. return err;
  1974. }
  1975. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1976. {
  1977. int err;
  1978. struct sadb_address *sa;
  1979. struct sadb_x_policy *pol;
  1980. struct xfrm_policy *xp, tmp;
  1981. struct xfrm_selector sel;
  1982. struct km_event c;
  1983. struct sadb_x_sec_ctx *sec_ctx;
  1984. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1985. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1986. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1987. return -EINVAL;
  1988. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1989. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1990. return -EINVAL;
  1991. memset(&sel, 0, sizeof(sel));
  1992. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1993. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1994. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1995. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1996. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1997. if (sel.sport)
  1998. sel.sport_mask = htons(0xffff);
  1999. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2000. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2001. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2002. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2003. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2004. if (sel.dport)
  2005. sel.dport_mask = htons(0xffff);
  2006. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2007. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2008. if (sec_ctx != NULL) {
  2009. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2010. if (!uctx)
  2011. return -ENOMEM;
  2012. err = security_xfrm_policy_alloc(&tmp, uctx);
  2013. kfree(uctx);
  2014. if (err)
  2015. return err;
  2016. }
  2017. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2018. &sel, tmp.security, 1, &err);
  2019. security_xfrm_policy_free(&tmp);
  2020. if (xp == NULL)
  2021. return -ENOENT;
  2022. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2023. audit_get_loginuid(current->audit_context), 0);
  2024. if (err)
  2025. goto out;
  2026. c.seq = hdr->sadb_msg_seq;
  2027. c.pid = hdr->sadb_msg_pid;
  2028. c.event = XFRM_MSG_DELPOLICY;
  2029. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2030. out:
  2031. xfrm_pol_put(xp);
  2032. return err;
  2033. }
  2034. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2035. {
  2036. int err;
  2037. struct sk_buff *out_skb;
  2038. struct sadb_msg *out_hdr;
  2039. err = 0;
  2040. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2041. if (IS_ERR(out_skb)) {
  2042. err = PTR_ERR(out_skb);
  2043. goto out;
  2044. }
  2045. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2046. if (err < 0)
  2047. goto out;
  2048. out_hdr = (struct sadb_msg *) out_skb->data;
  2049. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2050. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2051. out_hdr->sadb_msg_satype = 0;
  2052. out_hdr->sadb_msg_errno = 0;
  2053. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2054. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2055. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2056. err = 0;
  2057. out:
  2058. return err;
  2059. }
  2060. #ifdef CONFIG_NET_KEY_MIGRATE
  2061. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2062. {
  2063. switch (family) {
  2064. case AF_INET:
  2065. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2066. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2067. case AF_INET6:
  2068. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2069. #endif
  2070. default:
  2071. return 0;
  2072. }
  2073. /* NOTREACHED */
  2074. }
  2075. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2076. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2077. u16 *family)
  2078. {
  2079. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2080. if (rq->sadb_x_ipsecrequest_len <
  2081. pfkey_sockaddr_pair_size(sa->sa_family))
  2082. return -EINVAL;
  2083. switch (sa->sa_family) {
  2084. case AF_INET:
  2085. {
  2086. struct sockaddr_in *sin;
  2087. sin = (struct sockaddr_in *)sa;
  2088. if ((sin+1)->sin_family != AF_INET)
  2089. return -EINVAL;
  2090. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2091. sin++;
  2092. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2093. *family = AF_INET;
  2094. break;
  2095. }
  2096. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2097. case AF_INET6:
  2098. {
  2099. struct sockaddr_in6 *sin6;
  2100. sin6 = (struct sockaddr_in6 *)sa;
  2101. if ((sin6+1)->sin6_family != AF_INET6)
  2102. return -EINVAL;
  2103. memcpy(&saddr->a6, &sin6->sin6_addr,
  2104. sizeof(saddr->a6));
  2105. sin6++;
  2106. memcpy(&daddr->a6, &sin6->sin6_addr,
  2107. sizeof(daddr->a6));
  2108. *family = AF_INET6;
  2109. break;
  2110. }
  2111. #endif
  2112. default:
  2113. return -EINVAL;
  2114. }
  2115. return 0;
  2116. }
  2117. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2118. struct xfrm_migrate *m)
  2119. {
  2120. int err;
  2121. struct sadb_x_ipsecrequest *rq2;
  2122. int mode;
  2123. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2124. len < rq1->sadb_x_ipsecrequest_len)
  2125. return -EINVAL;
  2126. /* old endoints */
  2127. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2128. &m->old_family);
  2129. if (err)
  2130. return err;
  2131. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2132. len -= rq1->sadb_x_ipsecrequest_len;
  2133. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2134. len < rq2->sadb_x_ipsecrequest_len)
  2135. return -EINVAL;
  2136. /* new endpoints */
  2137. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2138. &m->new_family);
  2139. if (err)
  2140. return err;
  2141. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2142. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2143. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2144. return -EINVAL;
  2145. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2146. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2147. return -EINVAL;
  2148. m->mode = mode;
  2149. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2150. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2151. rq2->sadb_x_ipsecrequest_len));
  2152. }
  2153. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2154. struct sadb_msg *hdr, void **ext_hdrs)
  2155. {
  2156. int i, len, ret, err = -EINVAL;
  2157. u8 dir;
  2158. struct sadb_address *sa;
  2159. struct sadb_x_policy *pol;
  2160. struct sadb_x_ipsecrequest *rq;
  2161. struct xfrm_selector sel;
  2162. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2163. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2164. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2165. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2166. err = -EINVAL;
  2167. goto out;
  2168. }
  2169. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2170. if (!pol) {
  2171. err = -EINVAL;
  2172. goto out;
  2173. }
  2174. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2175. err = -EINVAL;
  2176. goto out;
  2177. }
  2178. dir = pol->sadb_x_policy_dir - 1;
  2179. memset(&sel, 0, sizeof(sel));
  2180. /* set source address info of selector */
  2181. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2182. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2183. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2184. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2185. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2186. if (sel.sport)
  2187. sel.sport_mask = htons(0xffff);
  2188. /* set destination address info of selector */
  2189. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2190. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2191. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2192. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2193. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2194. if (sel.dport)
  2195. sel.dport_mask = htons(0xffff);
  2196. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2197. /* extract ipsecrequests */
  2198. i = 0;
  2199. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2200. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2201. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2202. if (ret < 0) {
  2203. err = ret;
  2204. goto out;
  2205. } else {
  2206. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2207. len -= ret;
  2208. i++;
  2209. }
  2210. }
  2211. if (!i || len > 0) {
  2212. err = -EINVAL;
  2213. goto out;
  2214. }
  2215. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2216. out:
  2217. return err;
  2218. }
  2219. #else
  2220. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2221. struct sadb_msg *hdr, void **ext_hdrs)
  2222. {
  2223. return -ENOPROTOOPT;
  2224. }
  2225. #endif
  2226. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2227. {
  2228. unsigned int dir;
  2229. int err = 0, delete;
  2230. struct sadb_x_policy *pol;
  2231. struct xfrm_policy *xp;
  2232. struct km_event c;
  2233. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2234. return -EINVAL;
  2235. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2236. if (dir >= XFRM_POLICY_MAX)
  2237. return -EINVAL;
  2238. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2239. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2240. delete, &err);
  2241. if (xp == NULL)
  2242. return -ENOENT;
  2243. if (delete) {
  2244. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2245. audit_get_loginuid(current->audit_context), 0);
  2246. if (err)
  2247. goto out;
  2248. c.seq = hdr->sadb_msg_seq;
  2249. c.pid = hdr->sadb_msg_pid;
  2250. c.data.byid = 1;
  2251. c.event = XFRM_MSG_DELPOLICY;
  2252. km_policy_notify(xp, dir, &c);
  2253. } else {
  2254. err = key_pol_get_resp(sk, xp, hdr, dir);
  2255. }
  2256. out:
  2257. xfrm_pol_put(xp);
  2258. return err;
  2259. }
  2260. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2261. {
  2262. struct pfkey_dump_data *data = ptr;
  2263. struct sk_buff *out_skb;
  2264. struct sadb_msg *out_hdr;
  2265. int err;
  2266. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2267. if (IS_ERR(out_skb))
  2268. return PTR_ERR(out_skb);
  2269. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2270. if (err < 0)
  2271. return err;
  2272. out_hdr = (struct sadb_msg *) out_skb->data;
  2273. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2274. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2275. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2276. out_hdr->sadb_msg_errno = 0;
  2277. out_hdr->sadb_msg_seq = count;
  2278. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2279. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2280. return 0;
  2281. }
  2282. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2283. {
  2284. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2285. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2286. }
  2287. static int key_notify_policy_flush(struct km_event *c)
  2288. {
  2289. struct sk_buff *skb_out;
  2290. struct sadb_msg *hdr;
  2291. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2292. if (!skb_out)
  2293. return -ENOBUFS;
  2294. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2295. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2296. hdr->sadb_msg_seq = c->seq;
  2297. hdr->sadb_msg_pid = c->pid;
  2298. hdr->sadb_msg_version = PF_KEY_V2;
  2299. hdr->sadb_msg_errno = (uint8_t) 0;
  2300. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2301. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2302. return 0;
  2303. }
  2304. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2305. {
  2306. struct km_event c;
  2307. struct xfrm_audit audit_info;
  2308. int err;
  2309. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2310. audit_info.secid = 0;
  2311. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2312. if (err)
  2313. return err;
  2314. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2315. c.event = XFRM_MSG_FLUSHPOLICY;
  2316. c.pid = hdr->sadb_msg_pid;
  2317. c.seq = hdr->sadb_msg_seq;
  2318. km_policy_notify(NULL, 0, &c);
  2319. return 0;
  2320. }
  2321. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2322. struct sadb_msg *hdr, void **ext_hdrs);
  2323. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2324. [SADB_RESERVED] = pfkey_reserved,
  2325. [SADB_GETSPI] = pfkey_getspi,
  2326. [SADB_UPDATE] = pfkey_add,
  2327. [SADB_ADD] = pfkey_add,
  2328. [SADB_DELETE] = pfkey_delete,
  2329. [SADB_GET] = pfkey_get,
  2330. [SADB_ACQUIRE] = pfkey_acquire,
  2331. [SADB_REGISTER] = pfkey_register,
  2332. [SADB_EXPIRE] = NULL,
  2333. [SADB_FLUSH] = pfkey_flush,
  2334. [SADB_DUMP] = pfkey_dump,
  2335. [SADB_X_PROMISC] = pfkey_promisc,
  2336. [SADB_X_PCHANGE] = NULL,
  2337. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2338. [SADB_X_SPDADD] = pfkey_spdadd,
  2339. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2340. [SADB_X_SPDGET] = pfkey_spdget,
  2341. [SADB_X_SPDACQUIRE] = NULL,
  2342. [SADB_X_SPDDUMP] = pfkey_spddump,
  2343. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2344. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2345. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2346. [SADB_X_MIGRATE] = pfkey_migrate,
  2347. };
  2348. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2349. {
  2350. void *ext_hdrs[SADB_EXT_MAX];
  2351. int err;
  2352. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2353. BROADCAST_PROMISC_ONLY, NULL);
  2354. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2355. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2356. if (!err) {
  2357. err = -EOPNOTSUPP;
  2358. if (pfkey_funcs[hdr->sadb_msg_type])
  2359. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2360. }
  2361. return err;
  2362. }
  2363. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2364. {
  2365. struct sadb_msg *hdr = NULL;
  2366. if (skb->len < sizeof(*hdr)) {
  2367. *errp = -EMSGSIZE;
  2368. } else {
  2369. hdr = (struct sadb_msg *) skb->data;
  2370. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2371. hdr->sadb_msg_reserved != 0 ||
  2372. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2373. hdr->sadb_msg_type > SADB_MAX)) {
  2374. hdr = NULL;
  2375. *errp = -EINVAL;
  2376. } else if (hdr->sadb_msg_len != (skb->len /
  2377. sizeof(uint64_t)) ||
  2378. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2379. sizeof(uint64_t))) {
  2380. hdr = NULL;
  2381. *errp = -EMSGSIZE;
  2382. } else {
  2383. *errp = 0;
  2384. }
  2385. }
  2386. return hdr;
  2387. }
  2388. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2389. {
  2390. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2391. }
  2392. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2393. {
  2394. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2395. }
  2396. static int count_ah_combs(struct xfrm_tmpl *t)
  2397. {
  2398. int i, sz = 0;
  2399. for (i = 0; ; i++) {
  2400. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2401. if (!aalg)
  2402. break;
  2403. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2404. sz += sizeof(struct sadb_comb);
  2405. }
  2406. return sz + sizeof(struct sadb_prop);
  2407. }
  2408. static int count_esp_combs(struct xfrm_tmpl *t)
  2409. {
  2410. int i, k, sz = 0;
  2411. for (i = 0; ; i++) {
  2412. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2413. if (!ealg)
  2414. break;
  2415. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2416. continue;
  2417. for (k = 1; ; k++) {
  2418. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2419. if (!aalg)
  2420. break;
  2421. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2422. sz += sizeof(struct sadb_comb);
  2423. }
  2424. }
  2425. return sz + sizeof(struct sadb_prop);
  2426. }
  2427. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2428. {
  2429. struct sadb_prop *p;
  2430. int i;
  2431. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2432. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2433. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2434. p->sadb_prop_replay = 32;
  2435. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2436. for (i = 0; ; i++) {
  2437. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2438. if (!aalg)
  2439. break;
  2440. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2441. struct sadb_comb *c;
  2442. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2443. memset(c, 0, sizeof(*c));
  2444. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2445. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2446. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2447. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2448. c->sadb_comb_hard_addtime = 24*60*60;
  2449. c->sadb_comb_soft_addtime = 20*60*60;
  2450. c->sadb_comb_hard_usetime = 8*60*60;
  2451. c->sadb_comb_soft_usetime = 7*60*60;
  2452. }
  2453. }
  2454. }
  2455. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2456. {
  2457. struct sadb_prop *p;
  2458. int i, k;
  2459. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2460. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2461. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2462. p->sadb_prop_replay = 32;
  2463. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2464. for (i=0; ; i++) {
  2465. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2466. if (!ealg)
  2467. break;
  2468. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2469. continue;
  2470. for (k = 1; ; k++) {
  2471. struct sadb_comb *c;
  2472. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2473. if (!aalg)
  2474. break;
  2475. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2476. continue;
  2477. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2478. memset(c, 0, sizeof(*c));
  2479. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2480. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2481. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2482. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2483. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2484. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2485. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2486. c->sadb_comb_hard_addtime = 24*60*60;
  2487. c->sadb_comb_soft_addtime = 20*60*60;
  2488. c->sadb_comb_hard_usetime = 8*60*60;
  2489. c->sadb_comb_soft_usetime = 7*60*60;
  2490. }
  2491. }
  2492. }
  2493. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2494. {
  2495. return 0;
  2496. }
  2497. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2498. {
  2499. struct sk_buff *out_skb;
  2500. struct sadb_msg *out_hdr;
  2501. int hard;
  2502. int hsc;
  2503. hard = c->data.hard;
  2504. if (hard)
  2505. hsc = 2;
  2506. else
  2507. hsc = 1;
  2508. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2509. if (IS_ERR(out_skb))
  2510. return PTR_ERR(out_skb);
  2511. out_hdr = (struct sadb_msg *) out_skb->data;
  2512. out_hdr->sadb_msg_version = PF_KEY_V2;
  2513. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2514. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2515. out_hdr->sadb_msg_errno = 0;
  2516. out_hdr->sadb_msg_reserved = 0;
  2517. out_hdr->sadb_msg_seq = 0;
  2518. out_hdr->sadb_msg_pid = 0;
  2519. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2520. return 0;
  2521. }
  2522. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2523. {
  2524. switch (c->event) {
  2525. case XFRM_MSG_EXPIRE:
  2526. return key_notify_sa_expire(x, c);
  2527. case XFRM_MSG_DELSA:
  2528. case XFRM_MSG_NEWSA:
  2529. case XFRM_MSG_UPDSA:
  2530. return key_notify_sa(x, c);
  2531. case XFRM_MSG_FLUSHSA:
  2532. return key_notify_sa_flush(c);
  2533. case XFRM_MSG_NEWAE: /* not yet supported */
  2534. break;
  2535. default:
  2536. printk("pfkey: Unknown SA event %d\n", c->event);
  2537. break;
  2538. }
  2539. return 0;
  2540. }
  2541. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2542. {
  2543. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2544. return 0;
  2545. switch (c->event) {
  2546. case XFRM_MSG_POLEXPIRE:
  2547. return key_notify_policy_expire(xp, c);
  2548. case XFRM_MSG_DELPOLICY:
  2549. case XFRM_MSG_NEWPOLICY:
  2550. case XFRM_MSG_UPDPOLICY:
  2551. return key_notify_policy(xp, dir, c);
  2552. case XFRM_MSG_FLUSHPOLICY:
  2553. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2554. break;
  2555. return key_notify_policy_flush(c);
  2556. default:
  2557. printk("pfkey: Unknown policy event %d\n", c->event);
  2558. break;
  2559. }
  2560. return 0;
  2561. }
  2562. static u32 get_acqseq(void)
  2563. {
  2564. u32 res;
  2565. static u32 acqseq;
  2566. static DEFINE_SPINLOCK(acqseq_lock);
  2567. spin_lock_bh(&acqseq_lock);
  2568. res = (++acqseq ? : ++acqseq);
  2569. spin_unlock_bh(&acqseq_lock);
  2570. return res;
  2571. }
  2572. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2573. {
  2574. struct sk_buff *skb;
  2575. struct sadb_msg *hdr;
  2576. struct sadb_address *addr;
  2577. struct sadb_x_policy *pol;
  2578. struct sockaddr_in *sin;
  2579. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2580. struct sockaddr_in6 *sin6;
  2581. #endif
  2582. int sockaddr_size;
  2583. int size;
  2584. struct sadb_x_sec_ctx *sec_ctx;
  2585. struct xfrm_sec_ctx *xfrm_ctx;
  2586. int ctx_size = 0;
  2587. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2588. if (!sockaddr_size)
  2589. return -EINVAL;
  2590. size = sizeof(struct sadb_msg) +
  2591. (sizeof(struct sadb_address) * 2) +
  2592. (sockaddr_size * 2) +
  2593. sizeof(struct sadb_x_policy);
  2594. if (x->id.proto == IPPROTO_AH)
  2595. size += count_ah_combs(t);
  2596. else if (x->id.proto == IPPROTO_ESP)
  2597. size += count_esp_combs(t);
  2598. if ((xfrm_ctx = x->security)) {
  2599. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2600. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2601. }
  2602. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2603. if (skb == NULL)
  2604. return -ENOMEM;
  2605. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2606. hdr->sadb_msg_version = PF_KEY_V2;
  2607. hdr->sadb_msg_type = SADB_ACQUIRE;
  2608. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2609. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2610. hdr->sadb_msg_errno = 0;
  2611. hdr->sadb_msg_reserved = 0;
  2612. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2613. hdr->sadb_msg_pid = 0;
  2614. /* src address */
  2615. addr = (struct sadb_address*) skb_put(skb,
  2616. sizeof(struct sadb_address)+sockaddr_size);
  2617. addr->sadb_address_len =
  2618. (sizeof(struct sadb_address)+sockaddr_size)/
  2619. sizeof(uint64_t);
  2620. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2621. addr->sadb_address_proto = 0;
  2622. addr->sadb_address_reserved = 0;
  2623. if (x->props.family == AF_INET) {
  2624. addr->sadb_address_prefixlen = 32;
  2625. sin = (struct sockaddr_in *) (addr + 1);
  2626. sin->sin_family = AF_INET;
  2627. sin->sin_addr.s_addr = x->props.saddr.a4;
  2628. sin->sin_port = 0;
  2629. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2630. }
  2631. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2632. else if (x->props.family == AF_INET6) {
  2633. addr->sadb_address_prefixlen = 128;
  2634. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2635. sin6->sin6_family = AF_INET6;
  2636. sin6->sin6_port = 0;
  2637. sin6->sin6_flowinfo = 0;
  2638. memcpy(&sin6->sin6_addr,
  2639. x->props.saddr.a6, sizeof(struct in6_addr));
  2640. sin6->sin6_scope_id = 0;
  2641. }
  2642. #endif
  2643. else
  2644. BUG();
  2645. /* dst address */
  2646. addr = (struct sadb_address*) skb_put(skb,
  2647. sizeof(struct sadb_address)+sockaddr_size);
  2648. addr->sadb_address_len =
  2649. (sizeof(struct sadb_address)+sockaddr_size)/
  2650. sizeof(uint64_t);
  2651. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2652. addr->sadb_address_proto = 0;
  2653. addr->sadb_address_reserved = 0;
  2654. if (x->props.family == AF_INET) {
  2655. addr->sadb_address_prefixlen = 32;
  2656. sin = (struct sockaddr_in *) (addr + 1);
  2657. sin->sin_family = AF_INET;
  2658. sin->sin_addr.s_addr = x->id.daddr.a4;
  2659. sin->sin_port = 0;
  2660. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2661. }
  2662. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2663. else if (x->props.family == AF_INET6) {
  2664. addr->sadb_address_prefixlen = 128;
  2665. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2666. sin6->sin6_family = AF_INET6;
  2667. sin6->sin6_port = 0;
  2668. sin6->sin6_flowinfo = 0;
  2669. memcpy(&sin6->sin6_addr,
  2670. x->id.daddr.a6, sizeof(struct in6_addr));
  2671. sin6->sin6_scope_id = 0;
  2672. }
  2673. #endif
  2674. else
  2675. BUG();
  2676. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2677. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2678. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2679. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2680. pol->sadb_x_policy_dir = dir+1;
  2681. pol->sadb_x_policy_id = xp->index;
  2682. /* Set sadb_comb's. */
  2683. if (x->id.proto == IPPROTO_AH)
  2684. dump_ah_combs(skb, t);
  2685. else if (x->id.proto == IPPROTO_ESP)
  2686. dump_esp_combs(skb, t);
  2687. /* security context */
  2688. if (xfrm_ctx) {
  2689. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2690. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2691. sec_ctx->sadb_x_sec_len =
  2692. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2693. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2694. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2695. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2696. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2697. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2698. xfrm_ctx->ctx_len);
  2699. }
  2700. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2701. }
  2702. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2703. u8 *data, int len, int *dir)
  2704. {
  2705. struct xfrm_policy *xp;
  2706. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2707. struct sadb_x_sec_ctx *sec_ctx;
  2708. switch (sk->sk_family) {
  2709. case AF_INET:
  2710. if (opt != IP_IPSEC_POLICY) {
  2711. *dir = -EOPNOTSUPP;
  2712. return NULL;
  2713. }
  2714. break;
  2715. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2716. case AF_INET6:
  2717. if (opt != IPV6_IPSEC_POLICY) {
  2718. *dir = -EOPNOTSUPP;
  2719. return NULL;
  2720. }
  2721. break;
  2722. #endif
  2723. default:
  2724. *dir = -EINVAL;
  2725. return NULL;
  2726. }
  2727. *dir = -EINVAL;
  2728. if (len < sizeof(struct sadb_x_policy) ||
  2729. pol->sadb_x_policy_len*8 > len ||
  2730. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2731. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2732. return NULL;
  2733. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2734. if (xp == NULL) {
  2735. *dir = -ENOBUFS;
  2736. return NULL;
  2737. }
  2738. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2739. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2740. xp->lft.soft_byte_limit = XFRM_INF;
  2741. xp->lft.hard_byte_limit = XFRM_INF;
  2742. xp->lft.soft_packet_limit = XFRM_INF;
  2743. xp->lft.hard_packet_limit = XFRM_INF;
  2744. xp->family = sk->sk_family;
  2745. xp->xfrm_nr = 0;
  2746. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2747. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2748. goto out;
  2749. /* security context too */
  2750. if (len >= (pol->sadb_x_policy_len*8 +
  2751. sizeof(struct sadb_x_sec_ctx))) {
  2752. char *p = (char *)pol;
  2753. struct xfrm_user_sec_ctx *uctx;
  2754. p += pol->sadb_x_policy_len*8;
  2755. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2756. if (len < pol->sadb_x_policy_len*8 +
  2757. sec_ctx->sadb_x_sec_len) {
  2758. *dir = -EINVAL;
  2759. goto out;
  2760. }
  2761. if ((*dir = verify_sec_ctx_len(p)))
  2762. goto out;
  2763. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2764. *dir = security_xfrm_policy_alloc(xp, uctx);
  2765. kfree(uctx);
  2766. if (*dir)
  2767. goto out;
  2768. }
  2769. *dir = pol->sadb_x_policy_dir-1;
  2770. return xp;
  2771. out:
  2772. security_xfrm_policy_free(xp);
  2773. kfree(xp);
  2774. return NULL;
  2775. }
  2776. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2777. {
  2778. struct sk_buff *skb;
  2779. struct sadb_msg *hdr;
  2780. struct sadb_sa *sa;
  2781. struct sadb_address *addr;
  2782. struct sadb_x_nat_t_port *n_port;
  2783. struct sockaddr_in *sin;
  2784. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2785. struct sockaddr_in6 *sin6;
  2786. #endif
  2787. int sockaddr_size;
  2788. int size;
  2789. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2790. struct xfrm_encap_tmpl *natt = NULL;
  2791. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2792. if (!sockaddr_size)
  2793. return -EINVAL;
  2794. if (!satype)
  2795. return -EINVAL;
  2796. if (!x->encap)
  2797. return -EINVAL;
  2798. natt = x->encap;
  2799. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2800. *
  2801. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2802. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2803. */
  2804. size = sizeof(struct sadb_msg) +
  2805. sizeof(struct sadb_sa) +
  2806. (sizeof(struct sadb_address) * 2) +
  2807. (sockaddr_size * 2) +
  2808. (sizeof(struct sadb_x_nat_t_port) * 2);
  2809. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2810. if (skb == NULL)
  2811. return -ENOMEM;
  2812. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2813. hdr->sadb_msg_version = PF_KEY_V2;
  2814. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2815. hdr->sadb_msg_satype = satype;
  2816. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2817. hdr->sadb_msg_errno = 0;
  2818. hdr->sadb_msg_reserved = 0;
  2819. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2820. hdr->sadb_msg_pid = 0;
  2821. /* SA */
  2822. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2823. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2824. sa->sadb_sa_exttype = SADB_EXT_SA;
  2825. sa->sadb_sa_spi = x->id.spi;
  2826. sa->sadb_sa_replay = 0;
  2827. sa->sadb_sa_state = 0;
  2828. sa->sadb_sa_auth = 0;
  2829. sa->sadb_sa_encrypt = 0;
  2830. sa->sadb_sa_flags = 0;
  2831. /* ADDRESS_SRC (old addr) */
  2832. addr = (struct sadb_address*)
  2833. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2834. addr->sadb_address_len =
  2835. (sizeof(struct sadb_address)+sockaddr_size)/
  2836. sizeof(uint64_t);
  2837. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2838. addr->sadb_address_proto = 0;
  2839. addr->sadb_address_reserved = 0;
  2840. if (x->props.family == AF_INET) {
  2841. addr->sadb_address_prefixlen = 32;
  2842. sin = (struct sockaddr_in *) (addr + 1);
  2843. sin->sin_family = AF_INET;
  2844. sin->sin_addr.s_addr = x->props.saddr.a4;
  2845. sin->sin_port = 0;
  2846. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2847. }
  2848. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2849. else if (x->props.family == AF_INET6) {
  2850. addr->sadb_address_prefixlen = 128;
  2851. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2852. sin6->sin6_family = AF_INET6;
  2853. sin6->sin6_port = 0;
  2854. sin6->sin6_flowinfo = 0;
  2855. memcpy(&sin6->sin6_addr,
  2856. x->props.saddr.a6, sizeof(struct in6_addr));
  2857. sin6->sin6_scope_id = 0;
  2858. }
  2859. #endif
  2860. else
  2861. BUG();
  2862. /* NAT_T_SPORT (old port) */
  2863. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2864. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2865. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2866. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2867. n_port->sadb_x_nat_t_port_reserved = 0;
  2868. /* ADDRESS_DST (new addr) */
  2869. addr = (struct sadb_address*)
  2870. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2871. addr->sadb_address_len =
  2872. (sizeof(struct sadb_address)+sockaddr_size)/
  2873. sizeof(uint64_t);
  2874. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2875. addr->sadb_address_proto = 0;
  2876. addr->sadb_address_reserved = 0;
  2877. if (x->props.family == AF_INET) {
  2878. addr->sadb_address_prefixlen = 32;
  2879. sin = (struct sockaddr_in *) (addr + 1);
  2880. sin->sin_family = AF_INET;
  2881. sin->sin_addr.s_addr = ipaddr->a4;
  2882. sin->sin_port = 0;
  2883. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2884. }
  2885. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2886. else if (x->props.family == AF_INET6) {
  2887. addr->sadb_address_prefixlen = 128;
  2888. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2889. sin6->sin6_family = AF_INET6;
  2890. sin6->sin6_port = 0;
  2891. sin6->sin6_flowinfo = 0;
  2892. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2893. sin6->sin6_scope_id = 0;
  2894. }
  2895. #endif
  2896. else
  2897. BUG();
  2898. /* NAT_T_DPORT (new port) */
  2899. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2900. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2901. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2902. n_port->sadb_x_nat_t_port_port = sport;
  2903. n_port->sadb_x_nat_t_port_reserved = 0;
  2904. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2905. }
  2906. #ifdef CONFIG_NET_KEY_MIGRATE
  2907. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2908. struct xfrm_selector *sel)
  2909. {
  2910. struct sadb_address *addr;
  2911. struct sockaddr_in *sin;
  2912. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2913. struct sockaddr_in6 *sin6;
  2914. #endif
  2915. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2916. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2917. addr->sadb_address_exttype = type;
  2918. addr->sadb_address_proto = sel->proto;
  2919. addr->sadb_address_reserved = 0;
  2920. switch (type) {
  2921. case SADB_EXT_ADDRESS_SRC:
  2922. if (sel->family == AF_INET) {
  2923. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2924. sin = (struct sockaddr_in *)(addr + 1);
  2925. sin->sin_family = AF_INET;
  2926. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2927. sizeof(sin->sin_addr.s_addr));
  2928. sin->sin_port = 0;
  2929. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2930. }
  2931. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2932. else if (sel->family == AF_INET6) {
  2933. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2934. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2935. sin6->sin6_family = AF_INET6;
  2936. sin6->sin6_port = 0;
  2937. sin6->sin6_flowinfo = 0;
  2938. sin6->sin6_scope_id = 0;
  2939. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2940. sizeof(sin6->sin6_addr.s6_addr));
  2941. }
  2942. #endif
  2943. break;
  2944. case SADB_EXT_ADDRESS_DST:
  2945. if (sel->family == AF_INET) {
  2946. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2947. sin = (struct sockaddr_in *)(addr + 1);
  2948. sin->sin_family = AF_INET;
  2949. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2950. sizeof(sin->sin_addr.s_addr));
  2951. sin->sin_port = 0;
  2952. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2953. }
  2954. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2955. else if (sel->family == AF_INET6) {
  2956. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2957. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2958. sin6->sin6_family = AF_INET6;
  2959. sin6->sin6_port = 0;
  2960. sin6->sin6_flowinfo = 0;
  2961. sin6->sin6_scope_id = 0;
  2962. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2963. sizeof(sin6->sin6_addr.s6_addr));
  2964. }
  2965. #endif
  2966. break;
  2967. default:
  2968. return -EINVAL;
  2969. }
  2970. return 0;
  2971. }
  2972. static int set_ipsecrequest(struct sk_buff *skb,
  2973. uint8_t proto, uint8_t mode, int level,
  2974. uint32_t reqid, uint8_t family,
  2975. xfrm_address_t *src, xfrm_address_t *dst)
  2976. {
  2977. struct sadb_x_ipsecrequest *rq;
  2978. struct sockaddr_in *sin;
  2979. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2980. struct sockaddr_in6 *sin6;
  2981. #endif
  2982. int size_req;
  2983. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2984. pfkey_sockaddr_pair_size(family);
  2985. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2986. memset(rq, 0, size_req);
  2987. rq->sadb_x_ipsecrequest_len = size_req;
  2988. rq->sadb_x_ipsecrequest_proto = proto;
  2989. rq->sadb_x_ipsecrequest_mode = mode;
  2990. rq->sadb_x_ipsecrequest_level = level;
  2991. rq->sadb_x_ipsecrequest_reqid = reqid;
  2992. switch (family) {
  2993. case AF_INET:
  2994. sin = (struct sockaddr_in *)(rq + 1);
  2995. sin->sin_family = AF_INET;
  2996. memcpy(&sin->sin_addr.s_addr, src,
  2997. sizeof(sin->sin_addr.s_addr));
  2998. sin++;
  2999. sin->sin_family = AF_INET;
  3000. memcpy(&sin->sin_addr.s_addr, dst,
  3001. sizeof(sin->sin_addr.s_addr));
  3002. break;
  3003. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3004. case AF_INET6:
  3005. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3006. sin6->sin6_family = AF_INET6;
  3007. sin6->sin6_port = 0;
  3008. sin6->sin6_flowinfo = 0;
  3009. sin6->sin6_scope_id = 0;
  3010. memcpy(&sin6->sin6_addr.s6_addr, src,
  3011. sizeof(sin6->sin6_addr.s6_addr));
  3012. sin6++;
  3013. sin6->sin6_family = AF_INET6;
  3014. sin6->sin6_port = 0;
  3015. sin6->sin6_flowinfo = 0;
  3016. sin6->sin6_scope_id = 0;
  3017. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3018. sizeof(sin6->sin6_addr.s6_addr));
  3019. break;
  3020. #endif
  3021. default:
  3022. return -EINVAL;
  3023. }
  3024. return 0;
  3025. }
  3026. #endif
  3027. #ifdef CONFIG_NET_KEY_MIGRATE
  3028. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3029. struct xfrm_migrate *m, int num_bundles)
  3030. {
  3031. int i;
  3032. int sasize_sel;
  3033. int size = 0;
  3034. int size_pol = 0;
  3035. struct sk_buff *skb;
  3036. struct sadb_msg *hdr;
  3037. struct sadb_x_policy *pol;
  3038. struct xfrm_migrate *mp;
  3039. if (type != XFRM_POLICY_TYPE_MAIN)
  3040. return 0;
  3041. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3042. return -EINVAL;
  3043. /* selector */
  3044. sasize_sel = pfkey_sockaddr_size(sel->family);
  3045. if (!sasize_sel)
  3046. return -EINVAL;
  3047. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3048. /* policy info */
  3049. size_pol += sizeof(struct sadb_x_policy);
  3050. /* ipsecrequests */
  3051. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3052. /* old locator pair */
  3053. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3054. pfkey_sockaddr_pair_size(mp->old_family);
  3055. /* new locator pair */
  3056. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3057. pfkey_sockaddr_pair_size(mp->new_family);
  3058. }
  3059. size += sizeof(struct sadb_msg) + size_pol;
  3060. /* alloc buffer */
  3061. skb = alloc_skb(size, GFP_ATOMIC);
  3062. if (skb == NULL)
  3063. return -ENOMEM;
  3064. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3065. hdr->sadb_msg_version = PF_KEY_V2;
  3066. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3067. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3068. hdr->sadb_msg_len = size / 8;
  3069. hdr->sadb_msg_errno = 0;
  3070. hdr->sadb_msg_reserved = 0;
  3071. hdr->sadb_msg_seq = 0;
  3072. hdr->sadb_msg_pid = 0;
  3073. /* selector src */
  3074. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3075. /* selector dst */
  3076. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3077. /* policy information */
  3078. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3079. pol->sadb_x_policy_len = size_pol / 8;
  3080. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3081. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3082. pol->sadb_x_policy_dir = dir + 1;
  3083. pol->sadb_x_policy_id = 0;
  3084. pol->sadb_x_policy_priority = 0;
  3085. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3086. /* old ipsecrequest */
  3087. int mode = pfkey_mode_from_xfrm(mp->mode);
  3088. if (mode < 0)
  3089. return -EINVAL;
  3090. if (set_ipsecrequest(skb, mp->proto, mode,
  3091. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3092. mp->reqid, mp->old_family,
  3093. &mp->old_saddr, &mp->old_daddr) < 0) {
  3094. return -EINVAL;
  3095. }
  3096. /* new ipsecrequest */
  3097. if (set_ipsecrequest(skb, mp->proto, mode,
  3098. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3099. mp->reqid, mp->new_family,
  3100. &mp->new_saddr, &mp->new_daddr) < 0) {
  3101. return -EINVAL;
  3102. }
  3103. }
  3104. /* broadcast migrate message to sockets */
  3105. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3106. return 0;
  3107. }
  3108. #else
  3109. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3110. struct xfrm_migrate *m, int num_bundles)
  3111. {
  3112. return -ENOPROTOOPT;
  3113. }
  3114. #endif
  3115. static int pfkey_sendmsg(struct kiocb *kiocb,
  3116. struct socket *sock, struct msghdr *msg, size_t len)
  3117. {
  3118. struct sock *sk = sock->sk;
  3119. struct sk_buff *skb = NULL;
  3120. struct sadb_msg *hdr = NULL;
  3121. int err;
  3122. err = -EOPNOTSUPP;
  3123. if (msg->msg_flags & MSG_OOB)
  3124. goto out;
  3125. err = -EMSGSIZE;
  3126. if ((unsigned)len > sk->sk_sndbuf - 32)
  3127. goto out;
  3128. err = -ENOBUFS;
  3129. skb = alloc_skb(len, GFP_KERNEL);
  3130. if (skb == NULL)
  3131. goto out;
  3132. err = -EFAULT;
  3133. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3134. goto out;
  3135. hdr = pfkey_get_base_msg(skb, &err);
  3136. if (!hdr)
  3137. goto out;
  3138. mutex_lock(&xfrm_cfg_mutex);
  3139. err = pfkey_process(sk, skb, hdr);
  3140. mutex_unlock(&xfrm_cfg_mutex);
  3141. out:
  3142. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3143. err = 0;
  3144. if (skb)
  3145. kfree_skb(skb);
  3146. return err ? : len;
  3147. }
  3148. static int pfkey_recvmsg(struct kiocb *kiocb,
  3149. struct socket *sock, struct msghdr *msg, size_t len,
  3150. int flags)
  3151. {
  3152. struct sock *sk = sock->sk;
  3153. struct sk_buff *skb;
  3154. int copied, err;
  3155. err = -EINVAL;
  3156. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3157. goto out;
  3158. msg->msg_namelen = 0;
  3159. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3160. if (skb == NULL)
  3161. goto out;
  3162. copied = skb->len;
  3163. if (copied > len) {
  3164. msg->msg_flags |= MSG_TRUNC;
  3165. copied = len;
  3166. }
  3167. skb_reset_transport_header(skb);
  3168. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3169. if (err)
  3170. goto out_free;
  3171. sock_recv_timestamp(msg, sk, skb);
  3172. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3173. out_free:
  3174. skb_free_datagram(sk, skb);
  3175. out:
  3176. return err;
  3177. }
  3178. static const struct proto_ops pfkey_ops = {
  3179. .family = PF_KEY,
  3180. .owner = THIS_MODULE,
  3181. /* Operations that make no sense on pfkey sockets. */
  3182. .bind = sock_no_bind,
  3183. .connect = sock_no_connect,
  3184. .socketpair = sock_no_socketpair,
  3185. .accept = sock_no_accept,
  3186. .getname = sock_no_getname,
  3187. .ioctl = sock_no_ioctl,
  3188. .listen = sock_no_listen,
  3189. .shutdown = sock_no_shutdown,
  3190. .setsockopt = sock_no_setsockopt,
  3191. .getsockopt = sock_no_getsockopt,
  3192. .mmap = sock_no_mmap,
  3193. .sendpage = sock_no_sendpage,
  3194. /* Now the operations that really occur. */
  3195. .release = pfkey_release,
  3196. .poll = datagram_poll,
  3197. .sendmsg = pfkey_sendmsg,
  3198. .recvmsg = pfkey_recvmsg,
  3199. };
  3200. static struct net_proto_family pfkey_family_ops = {
  3201. .family = PF_KEY,
  3202. .create = pfkey_create,
  3203. .owner = THIS_MODULE,
  3204. };
  3205. #ifdef CONFIG_PROC_FS
  3206. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3207. int length, int *eof, void *data)
  3208. {
  3209. off_t pos = 0;
  3210. off_t begin = 0;
  3211. int len = 0;
  3212. struct sock *s;
  3213. struct hlist_node *node;
  3214. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3215. read_lock(&pfkey_table_lock);
  3216. sk_for_each(s, node, &pfkey_table) {
  3217. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3218. s,
  3219. atomic_read(&s->sk_refcnt),
  3220. atomic_read(&s->sk_rmem_alloc),
  3221. atomic_read(&s->sk_wmem_alloc),
  3222. sock_i_uid(s),
  3223. sock_i_ino(s)
  3224. );
  3225. buffer[len++] = '\n';
  3226. pos = begin + len;
  3227. if (pos < offset) {
  3228. len = 0;
  3229. begin = pos;
  3230. }
  3231. if(pos > offset + length)
  3232. goto done;
  3233. }
  3234. *eof = 1;
  3235. done:
  3236. read_unlock(&pfkey_table_lock);
  3237. *start = buffer + (offset - begin);
  3238. len -= (offset - begin);
  3239. if (len > length)
  3240. len = length;
  3241. if (len < 0)
  3242. len = 0;
  3243. return len;
  3244. }
  3245. #endif
  3246. static struct xfrm_mgr pfkeyv2_mgr =
  3247. {
  3248. .id = "pfkeyv2",
  3249. .notify = pfkey_send_notify,
  3250. .acquire = pfkey_send_acquire,
  3251. .compile_policy = pfkey_compile_policy,
  3252. .new_mapping = pfkey_send_new_mapping,
  3253. .notify_policy = pfkey_send_policy_notify,
  3254. .migrate = pfkey_send_migrate,
  3255. };
  3256. static void __exit ipsec_pfkey_exit(void)
  3257. {
  3258. xfrm_unregister_km(&pfkeyv2_mgr);
  3259. remove_proc_entry("pfkey", init_net.proc_net);
  3260. sock_unregister(PF_KEY);
  3261. proto_unregister(&key_proto);
  3262. }
  3263. static int __init ipsec_pfkey_init(void)
  3264. {
  3265. int err = proto_register(&key_proto, 0);
  3266. if (err != 0)
  3267. goto out;
  3268. err = sock_register(&pfkey_family_ops);
  3269. if (err != 0)
  3270. goto out_unregister_key_proto;
  3271. #ifdef CONFIG_PROC_FS
  3272. err = -ENOMEM;
  3273. if (create_proc_read_entry("pfkey", 0, init_net.proc_net, pfkey_read_proc, NULL) == NULL)
  3274. goto out_sock_unregister;
  3275. #endif
  3276. err = xfrm_register_km(&pfkeyv2_mgr);
  3277. if (err != 0)
  3278. goto out_remove_proc_entry;
  3279. out:
  3280. return err;
  3281. out_remove_proc_entry:
  3282. #ifdef CONFIG_PROC_FS
  3283. remove_proc_entry("net/pfkey", NULL);
  3284. out_sock_unregister:
  3285. #endif
  3286. sock_unregister(PF_KEY);
  3287. out_unregister_key_proto:
  3288. proto_unregister(&key_proto);
  3289. goto out;
  3290. }
  3291. module_init(ipsec_pfkey_init);
  3292. module_exit(ipsec_pfkey_exit);
  3293. MODULE_LICENSE("GPL");
  3294. MODULE_ALIAS_NETPROTO(PF_KEY);