builtin-stat.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /*
  2. * builtin-stat.c
  3. *
  4. * Builtin stat command: Give a precise performance counters summary
  5. * overview about any workload, CPU or specific PID.
  6. *
  7. * Sample output:
  8. $ perf stat ~/hackbench 10
  9. Time: 0.104
  10. Performance counter stats for '/home/mingo/hackbench':
  11. 1255.538611 task clock ticks # 10.143 CPU utilization factor
  12. 54011 context switches # 0.043 M/sec
  13. 385 CPU migrations # 0.000 M/sec
  14. 17755 pagefaults # 0.014 M/sec
  15. 3808323185 CPU cycles # 3033.219 M/sec
  16. 1575111190 instructions # 1254.530 M/sec
  17. 17367895 cache references # 13.833 M/sec
  18. 7674421 cache misses # 6.112 M/sec
  19. Wall-clock time elapsed: 123.786620 msecs
  20. *
  21. * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
  22. *
  23. * Improvements and fixes by:
  24. *
  25. * Arjan van de Ven <arjan@linux.intel.com>
  26. * Yanmin Zhang <yanmin.zhang@intel.com>
  27. * Wu Fengguang <fengguang.wu@intel.com>
  28. * Mike Galbraith <efault@gmx.de>
  29. * Paul Mackerras <paulus@samba.org>
  30. * Jaswinder Singh Rajput <jaswinder@kernel.org>
  31. *
  32. * Released under the GPL v2. (and only v2, not any later version)
  33. */
  34. #include "perf.h"
  35. #include "builtin.h"
  36. #include "util/util.h"
  37. #include "util/parse-options.h"
  38. #include "util/parse-events.h"
  39. #include <sys/prctl.h>
  40. #include <math.h>
  41. static struct perf_counter_attr default_attrs[] = {
  42. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
  43. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
  44. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
  45. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
  46. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
  47. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
  48. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
  49. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES },
  50. };
  51. #define MAX_RUN 100
  52. static int system_wide = 0;
  53. static int verbose = 0;
  54. static unsigned int nr_cpus = 0;
  55. static int run_idx = 0;
  56. static int run_count = 1;
  57. static int inherit = 1;
  58. static int scale = 1;
  59. static int target_pid = -1;
  60. static int null_run = 0;
  61. static int fd[MAX_NR_CPUS][MAX_COUNTERS];
  62. static u64 runtime_nsecs[MAX_RUN];
  63. static u64 walltime_nsecs[MAX_RUN];
  64. static u64 runtime_cycles[MAX_RUN];
  65. static u64 event_res[MAX_RUN][MAX_COUNTERS][3];
  66. static u64 event_scaled[MAX_RUN][MAX_COUNTERS];
  67. static u64 event_res_avg[MAX_COUNTERS][3];
  68. static u64 event_res_noise[MAX_COUNTERS][3];
  69. static u64 event_scaled_avg[MAX_COUNTERS];
  70. static u64 runtime_nsecs_avg;
  71. static u64 runtime_nsecs_noise;
  72. static u64 walltime_nsecs_avg;
  73. static u64 walltime_nsecs_noise;
  74. static u64 runtime_cycles_avg;
  75. static u64 runtime_cycles_noise;
  76. #define MATCH_EVENT(t, c, counter) \
  77. (attrs[counter].type == PERF_TYPE_##t && \
  78. attrs[counter].config == PERF_COUNT_##c)
  79. #define ERR_PERF_OPEN \
  80. "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
  81. static void create_perf_stat_counter(int counter, int pid)
  82. {
  83. struct perf_counter_attr *attr = attrs + counter;
  84. if (scale)
  85. attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
  86. PERF_FORMAT_TOTAL_TIME_RUNNING;
  87. if (system_wide) {
  88. unsigned int cpu;
  89. for (cpu = 0; cpu < nr_cpus; cpu++) {
  90. fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
  91. if (fd[cpu][counter] < 0 && verbose)
  92. fprintf(stderr, ERR_PERF_OPEN, counter,
  93. fd[cpu][counter], strerror(errno));
  94. }
  95. } else {
  96. attr->inherit = inherit;
  97. attr->disabled = 1;
  98. attr->enable_on_exec = 1;
  99. fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
  100. if (fd[0][counter] < 0 && verbose)
  101. fprintf(stderr, ERR_PERF_OPEN, counter,
  102. fd[0][counter], strerror(errno));
  103. }
  104. }
  105. /*
  106. * Does the counter have nsecs as a unit?
  107. */
  108. static inline int nsec_counter(int counter)
  109. {
  110. if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
  111. MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
  112. return 1;
  113. return 0;
  114. }
  115. /*
  116. * Read out the results of a single counter:
  117. */
  118. static void read_counter(int counter)
  119. {
  120. u64 *count, single_count[3];
  121. unsigned int cpu;
  122. size_t res, nv;
  123. int scaled;
  124. count = event_res[run_idx][counter];
  125. count[0] = count[1] = count[2] = 0;
  126. nv = scale ? 3 : 1;
  127. for (cpu = 0; cpu < nr_cpus; cpu++) {
  128. if (fd[cpu][counter] < 0)
  129. continue;
  130. res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
  131. assert(res == nv * sizeof(u64));
  132. close(fd[cpu][counter]);
  133. fd[cpu][counter] = -1;
  134. count[0] += single_count[0];
  135. if (scale) {
  136. count[1] += single_count[1];
  137. count[2] += single_count[2];
  138. }
  139. }
  140. scaled = 0;
  141. if (scale) {
  142. if (count[2] == 0) {
  143. event_scaled[run_idx][counter] = -1;
  144. count[0] = 0;
  145. return;
  146. }
  147. if (count[2] < count[1]) {
  148. event_scaled[run_idx][counter] = 1;
  149. count[0] = (unsigned long long)
  150. ((double)count[0] * count[1] / count[2] + 0.5);
  151. }
  152. }
  153. /*
  154. * Save the full runtime - to allow normalization during printout:
  155. */
  156. if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
  157. runtime_nsecs[run_idx] = count[0];
  158. if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
  159. runtime_cycles[run_idx] = count[0];
  160. }
  161. static int run_perf_stat(int argc __used, const char **argv)
  162. {
  163. unsigned long long t0, t1;
  164. int status = 0;
  165. int counter;
  166. int pid;
  167. int child_ready_pipe[2], go_pipe[2];
  168. char buf;
  169. if (!system_wide)
  170. nr_cpus = 1;
  171. if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
  172. perror("failed to create pipes");
  173. exit(1);
  174. }
  175. if ((pid = fork()) < 0)
  176. perror("failed to fork");
  177. if (!pid) {
  178. close(child_ready_pipe[0]);
  179. close(go_pipe[1]);
  180. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  181. /*
  182. * Do a dummy execvp to get the PLT entry resolved,
  183. * so we avoid the resolver overhead on the real
  184. * execvp call.
  185. */
  186. execvp("", (char **)argv);
  187. /*
  188. * Tell the parent we're ready to go
  189. */
  190. close(child_ready_pipe[1]);
  191. /*
  192. * Wait until the parent tells us to go.
  193. */
  194. if (read(go_pipe[0], &buf, 1) == -1)
  195. perror("unable to read pipe");
  196. execvp(argv[0], (char **)argv);
  197. perror(argv[0]);
  198. exit(-1);
  199. }
  200. /*
  201. * Wait for the child to be ready to exec.
  202. */
  203. close(child_ready_pipe[1]);
  204. close(go_pipe[0]);
  205. if (read(child_ready_pipe[0], &buf, 1) == -1)
  206. perror("unable to read pipe");
  207. close(child_ready_pipe[0]);
  208. for (counter = 0; counter < nr_counters; counter++)
  209. create_perf_stat_counter(counter, pid);
  210. /*
  211. * Enable counters and exec the command:
  212. */
  213. t0 = rdclock();
  214. close(go_pipe[1]);
  215. wait(&status);
  216. t1 = rdclock();
  217. walltime_nsecs[run_idx] = t1 - t0;
  218. for (counter = 0; counter < nr_counters; counter++)
  219. read_counter(counter);
  220. return WEXITSTATUS(status);
  221. }
  222. static void print_noise(u64 *count, u64 *noise)
  223. {
  224. if (run_count > 1)
  225. fprintf(stderr, " ( +- %7.3f%% )",
  226. (double)noise[0]/(count[0]+1)*100.0);
  227. }
  228. static void nsec_printout(int counter, u64 *count, u64 *noise)
  229. {
  230. double msecs = (double)count[0] / 1000000;
  231. fprintf(stderr, " %14.6f %-24s", msecs, event_name(counter));
  232. if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
  233. if (walltime_nsecs_avg)
  234. fprintf(stderr, " # %10.3f CPUs ",
  235. (double)count[0] / (double)walltime_nsecs_avg);
  236. }
  237. print_noise(count, noise);
  238. }
  239. static void abs_printout(int counter, u64 *count, u64 *noise)
  240. {
  241. fprintf(stderr, " %14Ld %-24s", count[0], event_name(counter));
  242. if (runtime_cycles_avg &&
  243. MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
  244. fprintf(stderr, " # %10.3f IPC ",
  245. (double)count[0] / (double)runtime_cycles_avg);
  246. } else {
  247. if (runtime_nsecs_avg) {
  248. fprintf(stderr, " # %10.3f M/sec",
  249. (double)count[0]/runtime_nsecs_avg*1000.0);
  250. }
  251. }
  252. print_noise(count, noise);
  253. }
  254. /*
  255. * Print out the results of a single counter:
  256. */
  257. static void print_counter(int counter)
  258. {
  259. u64 *count, *noise;
  260. int scaled;
  261. count = event_res_avg[counter];
  262. noise = event_res_noise[counter];
  263. scaled = event_scaled_avg[counter];
  264. if (scaled == -1) {
  265. fprintf(stderr, " %14s %-24s\n",
  266. "<not counted>", event_name(counter));
  267. return;
  268. }
  269. if (nsec_counter(counter))
  270. nsec_printout(counter, count, noise);
  271. else
  272. abs_printout(counter, count, noise);
  273. if (scaled)
  274. fprintf(stderr, " (scaled from %.2f%%)",
  275. (double) count[2] / count[1] * 100);
  276. fprintf(stderr, "\n");
  277. }
  278. /*
  279. * normalize_noise noise values down to stddev:
  280. */
  281. static void normalize_noise(u64 *val)
  282. {
  283. double res;
  284. res = (double)*val / (run_count * sqrt((double)run_count));
  285. *val = (u64)res;
  286. }
  287. static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
  288. {
  289. *avg += *val;
  290. if (verbose > 1)
  291. fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
  292. }
  293. /*
  294. * Calculate the averages and noises:
  295. */
  296. static void calc_avg(void)
  297. {
  298. int i, j;
  299. if (verbose > 1)
  300. fprintf(stderr, "\n");
  301. for (i = 0; i < run_count; i++) {
  302. update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
  303. update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
  304. update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
  305. for (j = 0; j < nr_counters; j++) {
  306. update_avg("counter/0", j,
  307. event_res_avg[j]+0, event_res[i][j]+0);
  308. update_avg("counter/1", j,
  309. event_res_avg[j]+1, event_res[i][j]+1);
  310. update_avg("counter/2", j,
  311. event_res_avg[j]+2, event_res[i][j]+2);
  312. if (event_scaled[i][j] != (u64)-1)
  313. update_avg("scaled", j,
  314. event_scaled_avg + j, event_scaled[i]+j);
  315. else
  316. event_scaled_avg[j] = -1;
  317. }
  318. }
  319. runtime_nsecs_avg /= run_count;
  320. walltime_nsecs_avg /= run_count;
  321. runtime_cycles_avg /= run_count;
  322. for (j = 0; j < nr_counters; j++) {
  323. event_res_avg[j][0] /= run_count;
  324. event_res_avg[j][1] /= run_count;
  325. event_res_avg[j][2] /= run_count;
  326. }
  327. for (i = 0; i < run_count; i++) {
  328. runtime_nsecs_noise +=
  329. abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
  330. walltime_nsecs_noise +=
  331. abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
  332. runtime_cycles_noise +=
  333. abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
  334. for (j = 0; j < nr_counters; j++) {
  335. event_res_noise[j][0] +=
  336. abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
  337. event_res_noise[j][1] +=
  338. abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
  339. event_res_noise[j][2] +=
  340. abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
  341. }
  342. }
  343. normalize_noise(&runtime_nsecs_noise);
  344. normalize_noise(&walltime_nsecs_noise);
  345. normalize_noise(&runtime_cycles_noise);
  346. for (j = 0; j < nr_counters; j++) {
  347. normalize_noise(&event_res_noise[j][0]);
  348. normalize_noise(&event_res_noise[j][1]);
  349. normalize_noise(&event_res_noise[j][2]);
  350. }
  351. }
  352. static void print_stat(int argc, const char **argv)
  353. {
  354. int i, counter;
  355. calc_avg();
  356. fflush(stdout);
  357. fprintf(stderr, "\n");
  358. fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
  359. for (i = 1; i < argc; i++)
  360. fprintf(stderr, " %s", argv[i]);
  361. fprintf(stderr, "\'");
  362. if (run_count > 1)
  363. fprintf(stderr, " (%d runs)", run_count);
  364. fprintf(stderr, ":\n\n");
  365. for (counter = 0; counter < nr_counters; counter++)
  366. print_counter(counter);
  367. fprintf(stderr, "\n");
  368. fprintf(stderr, " %14.9f seconds time elapsed",
  369. (double)walltime_nsecs_avg/1e9);
  370. if (run_count > 1) {
  371. fprintf(stderr, " ( +- %7.3f%% )",
  372. 100.0*(double)walltime_nsecs_noise/(double)walltime_nsecs_avg);
  373. }
  374. fprintf(stderr, "\n\n");
  375. }
  376. static volatile int signr = -1;
  377. static void skip_signal(int signo)
  378. {
  379. signr = signo;
  380. }
  381. static void sig_atexit(void)
  382. {
  383. if (signr == -1)
  384. return;
  385. signal(signr, SIG_DFL);
  386. kill(getpid(), signr);
  387. }
  388. static const char * const stat_usage[] = {
  389. "perf stat [<options>] <command>",
  390. NULL
  391. };
  392. static const struct option options[] = {
  393. OPT_CALLBACK('e', "event", NULL, "event",
  394. "event selector. use 'perf list' to list available events",
  395. parse_events),
  396. OPT_BOOLEAN('i', "inherit", &inherit,
  397. "child tasks inherit counters"),
  398. OPT_INTEGER('p', "pid", &target_pid,
  399. "stat events on existing pid"),
  400. OPT_BOOLEAN('a', "all-cpus", &system_wide,
  401. "system-wide collection from all CPUs"),
  402. OPT_BOOLEAN('S', "scale", &scale,
  403. "scale/normalize counters"),
  404. OPT_BOOLEAN('v', "verbose", &verbose,
  405. "be more verbose (show counter open errors, etc)"),
  406. OPT_INTEGER('r', "repeat", &run_count,
  407. "repeat command and print average + stddev (max: 100)"),
  408. OPT_BOOLEAN('n', "null", &null_run,
  409. "null run - dont start any counters"),
  410. OPT_END()
  411. };
  412. int cmd_stat(int argc, const char **argv, const char *prefix __used)
  413. {
  414. int status;
  415. argc = parse_options(argc, argv, options, stat_usage,
  416. PARSE_OPT_STOP_AT_NON_OPTION);
  417. if (!argc)
  418. usage_with_options(stat_usage, options);
  419. if (run_count <= 0 || run_count > MAX_RUN)
  420. usage_with_options(stat_usage, options);
  421. /* Set attrs and nr_counters if no event is selected and !null_run */
  422. if (!null_run && !nr_counters) {
  423. memcpy(attrs, default_attrs, sizeof(default_attrs));
  424. nr_counters = ARRAY_SIZE(default_attrs);
  425. }
  426. nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
  427. assert(nr_cpus <= MAX_NR_CPUS);
  428. assert((int)nr_cpus >= 0);
  429. /*
  430. * We dont want to block the signals - that would cause
  431. * child tasks to inherit that and Ctrl-C would not work.
  432. * What we want is for Ctrl-C to work in the exec()-ed
  433. * task, but being ignored by perf stat itself:
  434. */
  435. atexit(sig_atexit);
  436. signal(SIGINT, skip_signal);
  437. signal(SIGALRM, skip_signal);
  438. signal(SIGABRT, skip_signal);
  439. status = 0;
  440. for (run_idx = 0; run_idx < run_count; run_idx++) {
  441. if (run_count != 1 && verbose)
  442. fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
  443. status = run_perf_stat(argc, argv);
  444. }
  445. print_stat(argc, argv);
  446. return status;
  447. }