oxygen_mixer.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. struct oxygen *chip = ctl->private_data;
  30. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  31. info->count = chip->model.dac_channels;
  32. info->value.integer.min = chip->model.dac_volume_min;
  33. info->value.integer.max = chip->model.dac_volume_max;
  34. return 0;
  35. }
  36. static int dac_volume_get(struct snd_kcontrol *ctl,
  37. struct snd_ctl_elem_value *value)
  38. {
  39. struct oxygen *chip = ctl->private_data;
  40. unsigned int i;
  41. mutex_lock(&chip->mutex);
  42. for (i = 0; i < chip->model.dac_channels; ++i)
  43. value->value.integer.value[i] = chip->dac_volume[i];
  44. mutex_unlock(&chip->mutex);
  45. return 0;
  46. }
  47. static int dac_volume_put(struct snd_kcontrol *ctl,
  48. struct snd_ctl_elem_value *value)
  49. {
  50. struct oxygen *chip = ctl->private_data;
  51. unsigned int i;
  52. int changed;
  53. changed = 0;
  54. mutex_lock(&chip->mutex);
  55. for (i = 0; i < chip->model.dac_channels; ++i)
  56. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  57. chip->dac_volume[i] = value->value.integer.value[i];
  58. changed = 1;
  59. }
  60. if (changed)
  61. chip->model.update_dac_volume(chip);
  62. mutex_unlock(&chip->mutex);
  63. return changed;
  64. }
  65. static int dac_mute_get(struct snd_kcontrol *ctl,
  66. struct snd_ctl_elem_value *value)
  67. {
  68. struct oxygen *chip = ctl->private_data;
  69. mutex_lock(&chip->mutex);
  70. value->value.integer.value[0] = !chip->dac_mute;
  71. mutex_unlock(&chip->mutex);
  72. return 0;
  73. }
  74. static int dac_mute_put(struct snd_kcontrol *ctl,
  75. struct snd_ctl_elem_value *value)
  76. {
  77. struct oxygen *chip = ctl->private_data;
  78. int changed;
  79. mutex_lock(&chip->mutex);
  80. changed = !value->value.integer.value[0] != chip->dac_mute;
  81. if (changed) {
  82. chip->dac_mute = !value->value.integer.value[0];
  83. chip->model.update_dac_mute(chip);
  84. }
  85. mutex_unlock(&chip->mutex);
  86. return changed;
  87. }
  88. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  89. {
  90. static const char *const names[3] = {
  91. "Front", "Front+Surround", "Front+Surround+Back"
  92. };
  93. struct oxygen *chip = ctl->private_data;
  94. unsigned int count = 2 + (chip->model.dac_channels == 8);
  95. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  96. info->count = 1;
  97. info->value.enumerated.items = count;
  98. if (info->value.enumerated.item >= count)
  99. info->value.enumerated.item = count - 1;
  100. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  101. return 0;
  102. }
  103. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  104. {
  105. struct oxygen *chip = ctl->private_data;
  106. mutex_lock(&chip->mutex);
  107. value->value.enumerated.item[0] = chip->dac_routing;
  108. mutex_unlock(&chip->mutex);
  109. return 0;
  110. }
  111. void oxygen_update_dac_routing(struct oxygen *chip)
  112. {
  113. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  114. static const unsigned int reg_values[3] = {
  115. /* stereo -> front */
  116. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  117. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  118. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  119. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  120. /* stereo -> front+surround */
  121. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  122. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  123. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  124. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  125. /* stereo -> front+surround+back */
  126. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  127. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  128. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  129. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  130. };
  131. u8 channels;
  132. unsigned int reg_value;
  133. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  134. OXYGEN_PLAY_CHANNELS_MASK;
  135. if (channels == OXYGEN_PLAY_CHANNELS_2)
  136. reg_value = reg_values[chip->dac_routing];
  137. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  138. /* in 7.1 mode, "rear" channels go to the "back" jack */
  139. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  140. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  141. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  142. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  143. else
  144. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  145. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  146. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  147. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  148. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  149. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  150. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  151. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  152. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  153. }
  154. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  155. {
  156. struct oxygen *chip = ctl->private_data;
  157. unsigned int count = 2 + (chip->model.dac_channels == 8);
  158. int changed;
  159. mutex_lock(&chip->mutex);
  160. changed = value->value.enumerated.item[0] != chip->dac_routing;
  161. if (changed) {
  162. chip->dac_routing = min(value->value.enumerated.item[0],
  163. count - 1);
  164. spin_lock_irq(&chip->reg_lock);
  165. oxygen_update_dac_routing(chip);
  166. spin_unlock_irq(&chip->reg_lock);
  167. }
  168. mutex_unlock(&chip->mutex);
  169. return changed;
  170. }
  171. static int spdif_switch_get(struct snd_kcontrol *ctl,
  172. struct snd_ctl_elem_value *value)
  173. {
  174. struct oxygen *chip = ctl->private_data;
  175. mutex_lock(&chip->mutex);
  176. value->value.integer.value[0] = chip->spdif_playback_enable;
  177. mutex_unlock(&chip->mutex);
  178. return 0;
  179. }
  180. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  181. {
  182. switch (oxygen_rate) {
  183. case OXYGEN_RATE_32000:
  184. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  185. case OXYGEN_RATE_44100:
  186. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  187. default: /* OXYGEN_RATE_48000 */
  188. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  189. case OXYGEN_RATE_64000:
  190. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  191. case OXYGEN_RATE_88200:
  192. return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  193. case OXYGEN_RATE_96000:
  194. return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  195. case OXYGEN_RATE_176400:
  196. return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  197. case OXYGEN_RATE_192000:
  198. return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  199. }
  200. }
  201. void oxygen_update_spdif_source(struct oxygen *chip)
  202. {
  203. u32 old_control, new_control;
  204. u16 old_routing, new_routing;
  205. unsigned int oxygen_rate;
  206. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  207. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  208. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  209. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  210. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  211. | OXYGEN_PLAY_SPDIF_SPDIF;
  212. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  213. & OXYGEN_I2S_RATE_MASK;
  214. /* S/PDIF rate was already set by the caller */
  215. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  216. chip->spdif_playback_enable) {
  217. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  218. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  219. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  220. & OXYGEN_I2S_RATE_MASK;
  221. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  222. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  223. OXYGEN_SPDIF_OUT_ENABLE;
  224. } else {
  225. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  226. new_routing = old_routing;
  227. oxygen_rate = OXYGEN_RATE_44100;
  228. }
  229. if (old_routing != new_routing) {
  230. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  231. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  232. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  233. }
  234. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  235. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  236. oxygen_spdif_rate(oxygen_rate) |
  237. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  238. chip->spdif_pcm_bits : chip->spdif_bits));
  239. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  240. }
  241. static int spdif_switch_put(struct snd_kcontrol *ctl,
  242. struct snd_ctl_elem_value *value)
  243. {
  244. struct oxygen *chip = ctl->private_data;
  245. int changed;
  246. mutex_lock(&chip->mutex);
  247. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  248. if (changed) {
  249. chip->spdif_playback_enable = !!value->value.integer.value[0];
  250. spin_lock_irq(&chip->reg_lock);
  251. oxygen_update_spdif_source(chip);
  252. spin_unlock_irq(&chip->reg_lock);
  253. }
  254. mutex_unlock(&chip->mutex);
  255. return changed;
  256. }
  257. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  258. {
  259. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  260. info->count = 1;
  261. return 0;
  262. }
  263. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  264. {
  265. value->value.iec958.status[0] =
  266. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  267. OXYGEN_SPDIF_PREEMPHASIS);
  268. value->value.iec958.status[1] = /* category and original */
  269. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  270. }
  271. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  272. {
  273. u32 bits;
  274. bits = value->value.iec958.status[0] &
  275. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  276. OXYGEN_SPDIF_PREEMPHASIS);
  277. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  278. if (bits & OXYGEN_SPDIF_NONAUDIO)
  279. bits |= OXYGEN_SPDIF_V;
  280. return bits;
  281. }
  282. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  283. {
  284. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  285. OXYGEN_SPDIF_NONAUDIO |
  286. OXYGEN_SPDIF_C |
  287. OXYGEN_SPDIF_PREEMPHASIS |
  288. OXYGEN_SPDIF_CATEGORY_MASK |
  289. OXYGEN_SPDIF_ORIGINAL |
  290. OXYGEN_SPDIF_V);
  291. }
  292. static int spdif_default_get(struct snd_kcontrol *ctl,
  293. struct snd_ctl_elem_value *value)
  294. {
  295. struct oxygen *chip = ctl->private_data;
  296. mutex_lock(&chip->mutex);
  297. oxygen_to_iec958(chip->spdif_bits, value);
  298. mutex_unlock(&chip->mutex);
  299. return 0;
  300. }
  301. static int spdif_default_put(struct snd_kcontrol *ctl,
  302. struct snd_ctl_elem_value *value)
  303. {
  304. struct oxygen *chip = ctl->private_data;
  305. u32 new_bits;
  306. int changed;
  307. new_bits = iec958_to_oxygen(value);
  308. mutex_lock(&chip->mutex);
  309. changed = new_bits != chip->spdif_bits;
  310. if (changed) {
  311. chip->spdif_bits = new_bits;
  312. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  313. write_spdif_bits(chip, new_bits);
  314. }
  315. mutex_unlock(&chip->mutex);
  316. return changed;
  317. }
  318. static int spdif_mask_get(struct snd_kcontrol *ctl,
  319. struct snd_ctl_elem_value *value)
  320. {
  321. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  322. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  323. value->value.iec958.status[1] =
  324. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  325. return 0;
  326. }
  327. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  328. struct snd_ctl_elem_value *value)
  329. {
  330. struct oxygen *chip = ctl->private_data;
  331. mutex_lock(&chip->mutex);
  332. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  333. mutex_unlock(&chip->mutex);
  334. return 0;
  335. }
  336. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  337. struct snd_ctl_elem_value *value)
  338. {
  339. struct oxygen *chip = ctl->private_data;
  340. u32 new_bits;
  341. int changed;
  342. new_bits = iec958_to_oxygen(value);
  343. mutex_lock(&chip->mutex);
  344. changed = new_bits != chip->spdif_pcm_bits;
  345. if (changed) {
  346. chip->spdif_pcm_bits = new_bits;
  347. if (chip->pcm_active & (1 << PCM_SPDIF))
  348. write_spdif_bits(chip, new_bits);
  349. }
  350. mutex_unlock(&chip->mutex);
  351. return changed;
  352. }
  353. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  354. struct snd_ctl_elem_value *value)
  355. {
  356. value->value.iec958.status[0] = 0xff;
  357. value->value.iec958.status[1] = 0xff;
  358. value->value.iec958.status[2] = 0xff;
  359. value->value.iec958.status[3] = 0xff;
  360. return 0;
  361. }
  362. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  363. struct snd_ctl_elem_value *value)
  364. {
  365. struct oxygen *chip = ctl->private_data;
  366. u32 bits;
  367. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  368. value->value.iec958.status[0] = bits;
  369. value->value.iec958.status[1] = bits >> 8;
  370. value->value.iec958.status[2] = bits >> 16;
  371. value->value.iec958.status[3] = bits >> 24;
  372. return 0;
  373. }
  374. static int spdif_loopback_get(struct snd_kcontrol *ctl,
  375. struct snd_ctl_elem_value *value)
  376. {
  377. struct oxygen *chip = ctl->private_data;
  378. value->value.integer.value[0] =
  379. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
  380. & OXYGEN_SPDIF_LOOPBACK);
  381. return 0;
  382. }
  383. static int spdif_loopback_put(struct snd_kcontrol *ctl,
  384. struct snd_ctl_elem_value *value)
  385. {
  386. struct oxygen *chip = ctl->private_data;
  387. u32 oldreg, newreg;
  388. int changed;
  389. spin_lock_irq(&chip->reg_lock);
  390. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  391. if (value->value.integer.value[0])
  392. newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
  393. else
  394. newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
  395. changed = newreg != oldreg;
  396. if (changed)
  397. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  398. spin_unlock_irq(&chip->reg_lock);
  399. return changed;
  400. }
  401. static int monitor_volume_info(struct snd_kcontrol *ctl,
  402. struct snd_ctl_elem_info *info)
  403. {
  404. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  405. info->count = 1;
  406. info->value.integer.min = 0;
  407. info->value.integer.max = 1;
  408. return 0;
  409. }
  410. static int monitor_get(struct snd_kcontrol *ctl,
  411. struct snd_ctl_elem_value *value)
  412. {
  413. struct oxygen *chip = ctl->private_data;
  414. u8 bit = ctl->private_value;
  415. int invert = ctl->private_value & (1 << 8);
  416. value->value.integer.value[0] =
  417. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  418. return 0;
  419. }
  420. static int monitor_put(struct snd_kcontrol *ctl,
  421. struct snd_ctl_elem_value *value)
  422. {
  423. struct oxygen *chip = ctl->private_data;
  424. u8 bit = ctl->private_value;
  425. int invert = ctl->private_value & (1 << 8);
  426. u8 oldreg, newreg;
  427. int changed;
  428. spin_lock_irq(&chip->reg_lock);
  429. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  430. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  431. newreg = oldreg | bit;
  432. else
  433. newreg = oldreg & ~bit;
  434. changed = newreg != oldreg;
  435. if (changed)
  436. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  437. spin_unlock_irq(&chip->reg_lock);
  438. return changed;
  439. }
  440. static int ac97_switch_get(struct snd_kcontrol *ctl,
  441. struct snd_ctl_elem_value *value)
  442. {
  443. struct oxygen *chip = ctl->private_data;
  444. unsigned int codec = (ctl->private_value >> 24) & 1;
  445. unsigned int index = ctl->private_value & 0xff;
  446. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  447. int invert = ctl->private_value & (1 << 16);
  448. u16 reg;
  449. mutex_lock(&chip->mutex);
  450. reg = oxygen_read_ac97(chip, codec, index);
  451. mutex_unlock(&chip->mutex);
  452. if (!(reg & (1 << bitnr)) ^ !invert)
  453. value->value.integer.value[0] = 1;
  454. else
  455. value->value.integer.value[0] = 0;
  456. return 0;
  457. }
  458. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  459. {
  460. unsigned int priv_idx;
  461. u16 value;
  462. if (!chip->controls[control])
  463. return;
  464. priv_idx = chip->controls[control]->private_value & 0xff;
  465. value = oxygen_read_ac97(chip, 0, priv_idx);
  466. if (!(value & 0x8000)) {
  467. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  468. if (chip->model.ac97_switch)
  469. chip->model.ac97_switch(chip, priv_idx, 0x8000);
  470. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  471. &chip->controls[control]->id);
  472. }
  473. }
  474. static int ac97_switch_put(struct snd_kcontrol *ctl,
  475. struct snd_ctl_elem_value *value)
  476. {
  477. struct oxygen *chip = ctl->private_data;
  478. unsigned int codec = (ctl->private_value >> 24) & 1;
  479. unsigned int index = ctl->private_value & 0xff;
  480. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  481. int invert = ctl->private_value & (1 << 16);
  482. u16 oldreg, newreg;
  483. int change;
  484. mutex_lock(&chip->mutex);
  485. oldreg = oxygen_read_ac97(chip, codec, index);
  486. newreg = oldreg;
  487. if (!value->value.integer.value[0] ^ !invert)
  488. newreg |= 1 << bitnr;
  489. else
  490. newreg &= ~(1 << bitnr);
  491. change = newreg != oldreg;
  492. if (change) {
  493. oxygen_write_ac97(chip, codec, index, newreg);
  494. if (codec == 0 && chip->model.ac97_switch)
  495. chip->model.ac97_switch(chip, index, newreg & 0x8000);
  496. if (index == AC97_LINE) {
  497. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  498. newreg & 0x8000 ?
  499. CM9780_GPO0 : 0, CM9780_GPO0);
  500. if (!(newreg & 0x8000)) {
  501. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  502. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  503. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  504. }
  505. } else if ((index == AC97_MIC || index == AC97_CD ||
  506. index == AC97_VIDEO || index == AC97_AUX) &&
  507. bitnr == 15 && !(newreg & 0x8000)) {
  508. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  509. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  510. CM9780_GPO0, CM9780_GPO0);
  511. }
  512. }
  513. mutex_unlock(&chip->mutex);
  514. return change;
  515. }
  516. static int ac97_volume_info(struct snd_kcontrol *ctl,
  517. struct snd_ctl_elem_info *info)
  518. {
  519. int stereo = (ctl->private_value >> 16) & 1;
  520. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  521. info->count = stereo ? 2 : 1;
  522. info->value.integer.min = 0;
  523. info->value.integer.max = 0x1f;
  524. return 0;
  525. }
  526. static int ac97_volume_get(struct snd_kcontrol *ctl,
  527. struct snd_ctl_elem_value *value)
  528. {
  529. struct oxygen *chip = ctl->private_data;
  530. unsigned int codec = (ctl->private_value >> 24) & 1;
  531. int stereo = (ctl->private_value >> 16) & 1;
  532. unsigned int index = ctl->private_value & 0xff;
  533. u16 reg;
  534. mutex_lock(&chip->mutex);
  535. reg = oxygen_read_ac97(chip, codec, index);
  536. mutex_unlock(&chip->mutex);
  537. value->value.integer.value[0] = 31 - (reg & 0x1f);
  538. if (stereo)
  539. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  540. return 0;
  541. }
  542. static int ac97_volume_put(struct snd_kcontrol *ctl,
  543. struct snd_ctl_elem_value *value)
  544. {
  545. struct oxygen *chip = ctl->private_data;
  546. unsigned int codec = (ctl->private_value >> 24) & 1;
  547. int stereo = (ctl->private_value >> 16) & 1;
  548. unsigned int index = ctl->private_value & 0xff;
  549. u16 oldreg, newreg;
  550. int change;
  551. mutex_lock(&chip->mutex);
  552. oldreg = oxygen_read_ac97(chip, codec, index);
  553. newreg = oldreg;
  554. newreg = (newreg & ~0x1f) |
  555. (31 - (value->value.integer.value[0] & 0x1f));
  556. if (stereo)
  557. newreg = (newreg & ~0x1f00) |
  558. ((31 - (value->value.integer.value[1] & 0x1f)) << 8);
  559. else
  560. newreg = (newreg & ~0x1f00) | ((newreg & 0x1f) << 8);
  561. change = newreg != oldreg;
  562. if (change)
  563. oxygen_write_ac97(chip, codec, index, newreg);
  564. mutex_unlock(&chip->mutex);
  565. return change;
  566. }
  567. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  568. struct snd_ctl_elem_info *info)
  569. {
  570. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  571. info->count = 2;
  572. info->value.integer.min = 0;
  573. info->value.integer.max = 7;
  574. return 0;
  575. }
  576. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  577. struct snd_ctl_elem_value *value)
  578. {
  579. struct oxygen *chip = ctl->private_data;
  580. u16 reg;
  581. mutex_lock(&chip->mutex);
  582. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  583. mutex_unlock(&chip->mutex);
  584. value->value.integer.value[0] = reg & 7;
  585. value->value.integer.value[1] = (reg >> 8) & 7;
  586. return 0;
  587. }
  588. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  589. struct snd_ctl_elem_value *value)
  590. {
  591. struct oxygen *chip = ctl->private_data;
  592. u16 oldreg, newreg;
  593. int change;
  594. mutex_lock(&chip->mutex);
  595. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  596. newreg = oldreg & ~0x0707;
  597. newreg = newreg | (value->value.integer.value[0] & 7);
  598. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  599. change = newreg != oldreg;
  600. if (change)
  601. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  602. mutex_unlock(&chip->mutex);
  603. return change;
  604. }
  605. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  606. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  607. .name = xname, \
  608. .info = snd_ctl_boolean_mono_info, \
  609. .get = ac97_switch_get, \
  610. .put = ac97_switch_put, \
  611. .private_value = ((codec) << 24) | ((invert) << 16) | \
  612. ((bitnr) << 8) | (index), \
  613. }
  614. #define AC97_VOLUME(xname, codec, index, stereo) { \
  615. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  616. .name = xname, \
  617. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  618. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  619. .info = ac97_volume_info, \
  620. .get = ac97_volume_get, \
  621. .put = ac97_volume_put, \
  622. .tlv = { .p = ac97_db_scale, }, \
  623. .private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
  624. }
  625. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
  626. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  627. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  628. static const struct snd_kcontrol_new controls[] = {
  629. {
  630. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  631. .name = "Master Playback Volume",
  632. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  633. .info = dac_volume_info,
  634. .get = dac_volume_get,
  635. .put = dac_volume_put,
  636. },
  637. {
  638. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  639. .name = "Master Playback Switch",
  640. .info = snd_ctl_boolean_mono_info,
  641. .get = dac_mute_get,
  642. .put = dac_mute_put,
  643. },
  644. {
  645. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  646. .name = "Stereo Upmixing",
  647. .info = upmix_info,
  648. .get = upmix_get,
  649. .put = upmix_put,
  650. },
  651. {
  652. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  653. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  654. .info = snd_ctl_boolean_mono_info,
  655. .get = spdif_switch_get,
  656. .put = spdif_switch_put,
  657. },
  658. {
  659. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  660. .device = 1,
  661. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  662. .info = spdif_info,
  663. .get = spdif_default_get,
  664. .put = spdif_default_put,
  665. },
  666. {
  667. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  668. .device = 1,
  669. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  670. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  671. .info = spdif_info,
  672. .get = spdif_mask_get,
  673. },
  674. {
  675. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  676. .device = 1,
  677. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  678. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  679. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  680. .info = spdif_info,
  681. .get = spdif_pcm_get,
  682. .put = spdif_pcm_put,
  683. },
  684. };
  685. static const struct snd_kcontrol_new spdif_input_controls[] = {
  686. {
  687. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  688. .device = 1,
  689. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  690. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  691. .info = spdif_info,
  692. .get = spdif_input_mask_get,
  693. },
  694. {
  695. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  696. .device = 1,
  697. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  698. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  699. .info = spdif_info,
  700. .get = spdif_input_default_get,
  701. },
  702. {
  703. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  704. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  705. .info = snd_ctl_boolean_mono_info,
  706. .get = spdif_loopback_get,
  707. .put = spdif_loopback_put,
  708. },
  709. };
  710. static const struct {
  711. unsigned int pcm_dev;
  712. struct snd_kcontrol_new controls[2];
  713. } monitor_controls[] = {
  714. {
  715. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  716. .controls = {
  717. {
  718. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  719. .name = "Analog Input Monitor Switch",
  720. .info = snd_ctl_boolean_mono_info,
  721. .get = monitor_get,
  722. .put = monitor_put,
  723. .private_value = OXYGEN_ADC_MONITOR_A,
  724. },
  725. {
  726. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  727. .name = "Analog Input Monitor Volume",
  728. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  729. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  730. .info = monitor_volume_info,
  731. .get = monitor_get,
  732. .put = monitor_put,
  733. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  734. | (1 << 8),
  735. .tlv = { .p = monitor_db_scale, },
  736. },
  737. },
  738. },
  739. {
  740. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  741. .controls = {
  742. {
  743. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  744. .name = "Analog Input Monitor Switch",
  745. .info = snd_ctl_boolean_mono_info,
  746. .get = monitor_get,
  747. .put = monitor_put,
  748. .private_value = OXYGEN_ADC_MONITOR_B,
  749. },
  750. {
  751. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  752. .name = "Analog Input Monitor Volume",
  753. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  754. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  755. .info = monitor_volume_info,
  756. .get = monitor_get,
  757. .put = monitor_put,
  758. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  759. | (1 << 8),
  760. .tlv = { .p = monitor_db_scale, },
  761. },
  762. },
  763. },
  764. {
  765. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  766. .controls = {
  767. {
  768. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  769. .name = "Analog Input Monitor Switch",
  770. .index = 1,
  771. .info = snd_ctl_boolean_mono_info,
  772. .get = monitor_get,
  773. .put = monitor_put,
  774. .private_value = OXYGEN_ADC_MONITOR_B,
  775. },
  776. {
  777. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  778. .name = "Analog Input Monitor Volume",
  779. .index = 1,
  780. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  781. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  782. .info = monitor_volume_info,
  783. .get = monitor_get,
  784. .put = monitor_put,
  785. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  786. | (1 << 8),
  787. .tlv = { .p = monitor_db_scale, },
  788. },
  789. },
  790. },
  791. {
  792. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  793. .controls = {
  794. {
  795. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  796. .name = "Digital Input Monitor Switch",
  797. .info = snd_ctl_boolean_mono_info,
  798. .get = monitor_get,
  799. .put = monitor_put,
  800. .private_value = OXYGEN_ADC_MONITOR_C,
  801. },
  802. {
  803. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  804. .name = "Digital Input Monitor Volume",
  805. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  806. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  807. .info = monitor_volume_info,
  808. .get = monitor_get,
  809. .put = monitor_put,
  810. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  811. | (1 << 8),
  812. .tlv = { .p = monitor_db_scale, },
  813. },
  814. },
  815. },
  816. };
  817. static const struct snd_kcontrol_new ac97_controls[] = {
  818. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
  819. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  820. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  821. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  822. AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
  823. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  824. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
  825. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  826. };
  827. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  828. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
  829. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  830. {
  831. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  832. .name = "Front Panel Capture Volume",
  833. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  834. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  835. .info = ac97_fp_rec_volume_info,
  836. .get = ac97_fp_rec_volume_get,
  837. .put = ac97_fp_rec_volume_put,
  838. .tlv = { .p = ac97_rec_db_scale, },
  839. },
  840. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  841. };
  842. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  843. {
  844. struct oxygen *chip = ctl->private_data;
  845. unsigned int i;
  846. /* I'm too lazy to write a function for each control :-) */
  847. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  848. chip->controls[i] = NULL;
  849. }
  850. static int add_controls(struct oxygen *chip,
  851. const struct snd_kcontrol_new controls[],
  852. unsigned int count)
  853. {
  854. static const char *const known_ctl_names[CONTROL_COUNT] = {
  855. [CONTROL_SPDIF_PCM] =
  856. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  857. [CONTROL_SPDIF_INPUT_BITS] =
  858. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  859. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  860. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  861. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  862. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  863. };
  864. unsigned int i, j;
  865. struct snd_kcontrol_new template;
  866. struct snd_kcontrol *ctl;
  867. int err;
  868. for (i = 0; i < count; ++i) {
  869. template = controls[i];
  870. if (chip->model.control_filter) {
  871. err = chip->model.control_filter(&template);
  872. if (err < 0)
  873. return err;
  874. if (err == 1)
  875. continue;
  876. }
  877. if (!strcmp(template.name, "Master Playback Volume") &&
  878. chip->model.dac_tlv) {
  879. template.tlv.p = chip->model.dac_tlv;
  880. template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  881. }
  882. ctl = snd_ctl_new1(&template, chip);
  883. if (!ctl)
  884. return -ENOMEM;
  885. err = snd_ctl_add(chip->card, ctl);
  886. if (err < 0)
  887. return err;
  888. for (j = 0; j < CONTROL_COUNT; ++j)
  889. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  890. chip->controls[j] = ctl;
  891. ctl->private_free = oxygen_any_ctl_free;
  892. }
  893. }
  894. return 0;
  895. }
  896. int oxygen_mixer_init(struct oxygen *chip)
  897. {
  898. unsigned int i;
  899. int err;
  900. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  901. if (err < 0)
  902. return err;
  903. if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
  904. err = add_controls(chip, spdif_input_controls,
  905. ARRAY_SIZE(spdif_input_controls));
  906. if (err < 0)
  907. return err;
  908. }
  909. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  910. if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
  911. continue;
  912. err = add_controls(chip, monitor_controls[i].controls,
  913. ARRAY_SIZE(monitor_controls[i].controls));
  914. if (err < 0)
  915. return err;
  916. }
  917. if (chip->has_ac97_0) {
  918. err = add_controls(chip, ac97_controls,
  919. ARRAY_SIZE(ac97_controls));
  920. if (err < 0)
  921. return err;
  922. }
  923. if (chip->has_ac97_1) {
  924. err = add_controls(chip, ac97_fp_controls,
  925. ARRAY_SIZE(ac97_fp_controls));
  926. if (err < 0)
  927. return err;
  928. }
  929. return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
  930. }