avc.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972
  1. /*
  2. * Implementation of the kernel access vector cache (AVC).
  3. *
  4. * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
  5. * James Morris <jmorris@redhat.com>
  6. *
  7. * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8. * Replaced the avc_lock spinlock by RCU.
  9. *
  10. * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2,
  14. * as published by the Free Software Foundation.
  15. */
  16. #include <linux/types.h>
  17. #include <linux/stddef.h>
  18. #include <linux/kernel.h>
  19. #include <linux/slab.h>
  20. #include <linux/fs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/init.h>
  23. #include <linux/skbuff.h>
  24. #include <linux/percpu.h>
  25. #include <net/sock.h>
  26. #include <linux/un.h>
  27. #include <net/af_unix.h>
  28. #include <linux/ip.h>
  29. #include <linux/audit.h>
  30. #include <linux/ipv6.h>
  31. #include <net/ipv6.h>
  32. #include "avc.h"
  33. #include "avc_ss.h"
  34. static const struct av_perm_to_string av_perm_to_string[] = {
  35. #define S_(c, v, s) { c, v, s },
  36. #include "av_perm_to_string.h"
  37. #undef S_
  38. };
  39. static const char *class_to_string[] = {
  40. #define S_(s) s,
  41. #include "class_to_string.h"
  42. #undef S_
  43. };
  44. #define TB_(s) static const char *s[] = {
  45. #define TE_(s) };
  46. #define S_(s) s,
  47. #include "common_perm_to_string.h"
  48. #undef TB_
  49. #undef TE_
  50. #undef S_
  51. static const struct av_inherit av_inherit[] = {
  52. #define S_(c, i, b) { .tclass = c,\
  53. .common_pts = common_##i##_perm_to_string,\
  54. .common_base = b },
  55. #include "av_inherit.h"
  56. #undef S_
  57. };
  58. const struct selinux_class_perm selinux_class_perm = {
  59. .av_perm_to_string = av_perm_to_string,
  60. .av_pts_len = ARRAY_SIZE(av_perm_to_string),
  61. .class_to_string = class_to_string,
  62. .cts_len = ARRAY_SIZE(class_to_string),
  63. .av_inherit = av_inherit,
  64. .av_inherit_len = ARRAY_SIZE(av_inherit)
  65. };
  66. #define AVC_CACHE_SLOTS 512
  67. #define AVC_DEF_CACHE_THRESHOLD 512
  68. #define AVC_CACHE_RECLAIM 16
  69. #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  70. #define avc_cache_stats_incr(field) \
  71. do { \
  72. per_cpu(avc_cache_stats, get_cpu()).field++; \
  73. put_cpu(); \
  74. } while (0)
  75. #else
  76. #define avc_cache_stats_incr(field) do {} while (0)
  77. #endif
  78. struct avc_entry {
  79. u32 ssid;
  80. u32 tsid;
  81. u16 tclass;
  82. struct av_decision avd;
  83. };
  84. struct avc_node {
  85. struct avc_entry ae;
  86. struct hlist_node list; /* anchored in avc_cache->slots[i] */
  87. struct rcu_head rhead;
  88. };
  89. struct avc_cache {
  90. struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  91. spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  92. atomic_t lru_hint; /* LRU hint for reclaim scan */
  93. atomic_t active_nodes;
  94. u32 latest_notif; /* latest revocation notification */
  95. };
  96. struct avc_callback_node {
  97. int (*callback) (u32 event, u32 ssid, u32 tsid,
  98. u16 tclass, u32 perms,
  99. u32 *out_retained);
  100. u32 events;
  101. u32 ssid;
  102. u32 tsid;
  103. u16 tclass;
  104. u32 perms;
  105. struct avc_callback_node *next;
  106. };
  107. /* Exported via selinufs */
  108. unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  109. #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  110. DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  111. #endif
  112. static struct avc_cache avc_cache;
  113. static struct avc_callback_node *avc_callbacks;
  114. static struct kmem_cache *avc_node_cachep;
  115. static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
  116. {
  117. return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
  118. }
  119. /**
  120. * avc_dump_av - Display an access vector in human-readable form.
  121. * @tclass: target security class
  122. * @av: access vector
  123. */
  124. void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
  125. {
  126. const char **common_pts = NULL;
  127. u32 common_base = 0;
  128. int i, i2, perm;
  129. if (av == 0) {
  130. audit_log_format(ab, " null");
  131. return;
  132. }
  133. for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
  134. if (av_inherit[i].tclass == tclass) {
  135. common_pts = av_inherit[i].common_pts;
  136. common_base = av_inherit[i].common_base;
  137. break;
  138. }
  139. }
  140. audit_log_format(ab, " {");
  141. i = 0;
  142. perm = 1;
  143. while (perm < common_base) {
  144. if (perm & av) {
  145. audit_log_format(ab, " %s", common_pts[i]);
  146. av &= ~perm;
  147. }
  148. i++;
  149. perm <<= 1;
  150. }
  151. while (i < sizeof(av) * 8) {
  152. if (perm & av) {
  153. for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
  154. if ((av_perm_to_string[i2].tclass == tclass) &&
  155. (av_perm_to_string[i2].value == perm))
  156. break;
  157. }
  158. if (i2 < ARRAY_SIZE(av_perm_to_string)) {
  159. audit_log_format(ab, " %s",
  160. av_perm_to_string[i2].name);
  161. av &= ~perm;
  162. }
  163. }
  164. i++;
  165. perm <<= 1;
  166. }
  167. if (av)
  168. audit_log_format(ab, " 0x%x", av);
  169. audit_log_format(ab, " }");
  170. }
  171. /**
  172. * avc_dump_query - Display a SID pair and a class in human-readable form.
  173. * @ssid: source security identifier
  174. * @tsid: target security identifier
  175. * @tclass: target security class
  176. */
  177. static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
  178. {
  179. int rc;
  180. char *scontext;
  181. u32 scontext_len;
  182. rc = security_sid_to_context(ssid, &scontext, &scontext_len);
  183. if (rc)
  184. audit_log_format(ab, "ssid=%d", ssid);
  185. else {
  186. audit_log_format(ab, "scontext=%s", scontext);
  187. kfree(scontext);
  188. }
  189. rc = security_sid_to_context(tsid, &scontext, &scontext_len);
  190. if (rc)
  191. audit_log_format(ab, " tsid=%d", tsid);
  192. else {
  193. audit_log_format(ab, " tcontext=%s", scontext);
  194. kfree(scontext);
  195. }
  196. BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
  197. audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
  198. }
  199. /**
  200. * avc_init - Initialize the AVC.
  201. *
  202. * Initialize the access vector cache.
  203. */
  204. void __init avc_init(void)
  205. {
  206. int i;
  207. for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  208. INIT_HLIST_HEAD(&avc_cache.slots[i]);
  209. spin_lock_init(&avc_cache.slots_lock[i]);
  210. }
  211. atomic_set(&avc_cache.active_nodes, 0);
  212. atomic_set(&avc_cache.lru_hint, 0);
  213. avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
  214. 0, SLAB_PANIC, NULL);
  215. audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
  216. }
  217. int avc_get_hash_stats(char *page)
  218. {
  219. int i, chain_len, max_chain_len, slots_used;
  220. struct avc_node *node;
  221. struct hlist_head *head;
  222. rcu_read_lock();
  223. slots_used = 0;
  224. max_chain_len = 0;
  225. for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  226. head = &avc_cache.slots[i];
  227. if (!hlist_empty(head)) {
  228. struct hlist_node *next;
  229. slots_used++;
  230. chain_len = 0;
  231. hlist_for_each_entry_rcu(node, next, head, list)
  232. chain_len++;
  233. if (chain_len > max_chain_len)
  234. max_chain_len = chain_len;
  235. }
  236. }
  237. rcu_read_unlock();
  238. return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
  239. "longest chain: %d\n",
  240. atomic_read(&avc_cache.active_nodes),
  241. slots_used, AVC_CACHE_SLOTS, max_chain_len);
  242. }
  243. static void avc_node_free(struct rcu_head *rhead)
  244. {
  245. struct avc_node *node = container_of(rhead, struct avc_node, rhead);
  246. kmem_cache_free(avc_node_cachep, node);
  247. avc_cache_stats_incr(frees);
  248. }
  249. static void avc_node_delete(struct avc_node *node)
  250. {
  251. hlist_del_rcu(&node->list);
  252. call_rcu(&node->rhead, avc_node_free);
  253. atomic_dec(&avc_cache.active_nodes);
  254. }
  255. static void avc_node_kill(struct avc_node *node)
  256. {
  257. kmem_cache_free(avc_node_cachep, node);
  258. avc_cache_stats_incr(frees);
  259. atomic_dec(&avc_cache.active_nodes);
  260. }
  261. static void avc_node_replace(struct avc_node *new, struct avc_node *old)
  262. {
  263. hlist_replace_rcu(&old->list, &new->list);
  264. call_rcu(&old->rhead, avc_node_free);
  265. atomic_dec(&avc_cache.active_nodes);
  266. }
  267. static inline int avc_reclaim_node(void)
  268. {
  269. struct avc_node *node;
  270. int hvalue, try, ecx;
  271. unsigned long flags;
  272. struct hlist_head *head;
  273. struct hlist_node *next;
  274. spinlock_t *lock;
  275. for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
  276. hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
  277. head = &avc_cache.slots[hvalue];
  278. lock = &avc_cache.slots_lock[hvalue];
  279. if (!spin_trylock_irqsave(lock, flags))
  280. continue;
  281. rcu_read_lock();
  282. hlist_for_each_entry(node, next, head, list) {
  283. avc_node_delete(node);
  284. avc_cache_stats_incr(reclaims);
  285. ecx++;
  286. if (ecx >= AVC_CACHE_RECLAIM) {
  287. rcu_read_unlock();
  288. spin_unlock_irqrestore(lock, flags);
  289. goto out;
  290. }
  291. }
  292. rcu_read_unlock();
  293. spin_unlock_irqrestore(lock, flags);
  294. }
  295. out:
  296. return ecx;
  297. }
  298. static struct avc_node *avc_alloc_node(void)
  299. {
  300. struct avc_node *node;
  301. node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
  302. if (!node)
  303. goto out;
  304. INIT_RCU_HEAD(&node->rhead);
  305. INIT_HLIST_NODE(&node->list);
  306. avc_cache_stats_incr(allocations);
  307. if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
  308. avc_reclaim_node();
  309. out:
  310. return node;
  311. }
  312. static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
  313. {
  314. node->ae.ssid = ssid;
  315. node->ae.tsid = tsid;
  316. node->ae.tclass = tclass;
  317. memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
  318. }
  319. static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
  320. {
  321. struct avc_node *node, *ret = NULL;
  322. int hvalue;
  323. struct hlist_head *head;
  324. struct hlist_node *next;
  325. hvalue = avc_hash(ssid, tsid, tclass);
  326. head = &avc_cache.slots[hvalue];
  327. hlist_for_each_entry_rcu(node, next, head, list) {
  328. if (ssid == node->ae.ssid &&
  329. tclass == node->ae.tclass &&
  330. tsid == node->ae.tsid) {
  331. ret = node;
  332. break;
  333. }
  334. }
  335. return ret;
  336. }
  337. /**
  338. * avc_lookup - Look up an AVC entry.
  339. * @ssid: source security identifier
  340. * @tsid: target security identifier
  341. * @tclass: target security class
  342. *
  343. * Look up an AVC entry that is valid for the
  344. * (@ssid, @tsid), interpreting the permissions
  345. * based on @tclass. If a valid AVC entry exists,
  346. * then this function return the avc_node.
  347. * Otherwise, this function returns NULL.
  348. */
  349. static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
  350. {
  351. struct avc_node *node;
  352. avc_cache_stats_incr(lookups);
  353. node = avc_search_node(ssid, tsid, tclass);
  354. if (node)
  355. avc_cache_stats_incr(hits);
  356. else
  357. avc_cache_stats_incr(misses);
  358. return node;
  359. }
  360. static int avc_latest_notif_update(int seqno, int is_insert)
  361. {
  362. int ret = 0;
  363. static DEFINE_SPINLOCK(notif_lock);
  364. unsigned long flag;
  365. spin_lock_irqsave(&notif_lock, flag);
  366. if (is_insert) {
  367. if (seqno < avc_cache.latest_notif) {
  368. printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
  369. seqno, avc_cache.latest_notif);
  370. ret = -EAGAIN;
  371. }
  372. } else {
  373. if (seqno > avc_cache.latest_notif)
  374. avc_cache.latest_notif = seqno;
  375. }
  376. spin_unlock_irqrestore(&notif_lock, flag);
  377. return ret;
  378. }
  379. /**
  380. * avc_insert - Insert an AVC entry.
  381. * @ssid: source security identifier
  382. * @tsid: target security identifier
  383. * @tclass: target security class
  384. * @avd: resulting av decision
  385. *
  386. * Insert an AVC entry for the SID pair
  387. * (@ssid, @tsid) and class @tclass.
  388. * The access vectors and the sequence number are
  389. * normally provided by the security server in
  390. * response to a security_compute_av() call. If the
  391. * sequence number @avd->seqno is not less than the latest
  392. * revocation notification, then the function copies
  393. * the access vectors into a cache entry, returns
  394. * avc_node inserted. Otherwise, this function returns NULL.
  395. */
  396. static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
  397. {
  398. struct avc_node *pos, *node = NULL;
  399. int hvalue;
  400. unsigned long flag;
  401. if (avc_latest_notif_update(avd->seqno, 1))
  402. goto out;
  403. node = avc_alloc_node();
  404. if (node) {
  405. struct hlist_head *head;
  406. struct hlist_node *next;
  407. spinlock_t *lock;
  408. hvalue = avc_hash(ssid, tsid, tclass);
  409. avc_node_populate(node, ssid, tsid, tclass, avd);
  410. head = &avc_cache.slots[hvalue];
  411. lock = &avc_cache.slots_lock[hvalue];
  412. spin_lock_irqsave(lock, flag);
  413. hlist_for_each_entry(pos, next, head, list) {
  414. if (pos->ae.ssid == ssid &&
  415. pos->ae.tsid == tsid &&
  416. pos->ae.tclass == tclass) {
  417. avc_node_replace(node, pos);
  418. goto found;
  419. }
  420. }
  421. hlist_add_head_rcu(&node->list, head);
  422. found:
  423. spin_unlock_irqrestore(lock, flag);
  424. }
  425. out:
  426. return node;
  427. }
  428. static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
  429. struct in6_addr *addr, __be16 port,
  430. char *name1, char *name2)
  431. {
  432. if (!ipv6_addr_any(addr))
  433. audit_log_format(ab, " %s=%pI6", name1, addr);
  434. if (port)
  435. audit_log_format(ab, " %s=%d", name2, ntohs(port));
  436. }
  437. static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
  438. __be16 port, char *name1, char *name2)
  439. {
  440. if (addr)
  441. audit_log_format(ab, " %s=%pI4", name1, &addr);
  442. if (port)
  443. audit_log_format(ab, " %s=%d", name2, ntohs(port));
  444. }
  445. /**
  446. * avc_audit - Audit the granting or denial of permissions.
  447. * @ssid: source security identifier
  448. * @tsid: target security identifier
  449. * @tclass: target security class
  450. * @requested: requested permissions
  451. * @avd: access vector decisions
  452. * @result: result from avc_has_perm_noaudit
  453. * @a: auxiliary audit data
  454. *
  455. * Audit the granting or denial of permissions in accordance
  456. * with the policy. This function is typically called by
  457. * avc_has_perm() after a permission check, but can also be
  458. * called directly by callers who use avc_has_perm_noaudit()
  459. * in order to separate the permission check from the auditing.
  460. * For example, this separation is useful when the permission check must
  461. * be performed under a lock, to allow the lock to be released
  462. * before calling the auditing code.
  463. */
  464. void avc_audit(u32 ssid, u32 tsid,
  465. u16 tclass, u32 requested,
  466. struct av_decision *avd, int result, struct avc_audit_data *a)
  467. {
  468. struct task_struct *tsk = current;
  469. struct inode *inode = NULL;
  470. u32 denied, audited;
  471. struct audit_buffer *ab;
  472. denied = requested & ~avd->allowed;
  473. if (denied) {
  474. audited = denied;
  475. if (!(audited & avd->auditdeny))
  476. return;
  477. } else if (result) {
  478. audited = denied = requested;
  479. } else {
  480. audited = requested;
  481. if (!(audited & avd->auditallow))
  482. return;
  483. }
  484. ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
  485. if (!ab)
  486. return; /* audit_panic has been called */
  487. audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
  488. avc_dump_av(ab, tclass, audited);
  489. audit_log_format(ab, " for ");
  490. if (a && a->tsk)
  491. tsk = a->tsk;
  492. if (tsk && tsk->pid) {
  493. audit_log_format(ab, " pid=%d comm=", tsk->pid);
  494. audit_log_untrustedstring(ab, tsk->comm);
  495. }
  496. if (a) {
  497. switch (a->type) {
  498. case AVC_AUDIT_DATA_IPC:
  499. audit_log_format(ab, " key=%d", a->u.ipc_id);
  500. break;
  501. case AVC_AUDIT_DATA_CAP:
  502. audit_log_format(ab, " capability=%d", a->u.cap);
  503. break;
  504. case AVC_AUDIT_DATA_FS:
  505. if (a->u.fs.path.dentry) {
  506. struct dentry *dentry = a->u.fs.path.dentry;
  507. if (a->u.fs.path.mnt) {
  508. audit_log_d_path(ab, "path=",
  509. &a->u.fs.path);
  510. } else {
  511. audit_log_format(ab, " name=");
  512. audit_log_untrustedstring(ab, dentry->d_name.name);
  513. }
  514. inode = dentry->d_inode;
  515. } else if (a->u.fs.inode) {
  516. struct dentry *dentry;
  517. inode = a->u.fs.inode;
  518. dentry = d_find_alias(inode);
  519. if (dentry) {
  520. audit_log_format(ab, " name=");
  521. audit_log_untrustedstring(ab, dentry->d_name.name);
  522. dput(dentry);
  523. }
  524. }
  525. if (inode)
  526. audit_log_format(ab, " dev=%s ino=%lu",
  527. inode->i_sb->s_id,
  528. inode->i_ino);
  529. break;
  530. case AVC_AUDIT_DATA_NET:
  531. if (a->u.net.sk) {
  532. struct sock *sk = a->u.net.sk;
  533. struct unix_sock *u;
  534. int len = 0;
  535. char *p = NULL;
  536. switch (sk->sk_family) {
  537. case AF_INET: {
  538. struct inet_sock *inet = inet_sk(sk);
  539. avc_print_ipv4_addr(ab, inet->rcv_saddr,
  540. inet->sport,
  541. "laddr", "lport");
  542. avc_print_ipv4_addr(ab, inet->daddr,
  543. inet->dport,
  544. "faddr", "fport");
  545. break;
  546. }
  547. case AF_INET6: {
  548. struct inet_sock *inet = inet_sk(sk);
  549. struct ipv6_pinfo *inet6 = inet6_sk(sk);
  550. avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
  551. inet->sport,
  552. "laddr", "lport");
  553. avc_print_ipv6_addr(ab, &inet6->daddr,
  554. inet->dport,
  555. "faddr", "fport");
  556. break;
  557. }
  558. case AF_UNIX:
  559. u = unix_sk(sk);
  560. if (u->dentry) {
  561. struct path path = {
  562. .dentry = u->dentry,
  563. .mnt = u->mnt
  564. };
  565. audit_log_d_path(ab, "path=",
  566. &path);
  567. break;
  568. }
  569. if (!u->addr)
  570. break;
  571. len = u->addr->len-sizeof(short);
  572. p = &u->addr->name->sun_path[0];
  573. audit_log_format(ab, " path=");
  574. if (*p)
  575. audit_log_untrustedstring(ab, p);
  576. else
  577. audit_log_n_hex(ab, p, len);
  578. break;
  579. }
  580. }
  581. switch (a->u.net.family) {
  582. case AF_INET:
  583. avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
  584. a->u.net.sport,
  585. "saddr", "src");
  586. avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
  587. a->u.net.dport,
  588. "daddr", "dest");
  589. break;
  590. case AF_INET6:
  591. avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
  592. a->u.net.sport,
  593. "saddr", "src");
  594. avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
  595. a->u.net.dport,
  596. "daddr", "dest");
  597. break;
  598. }
  599. if (a->u.net.netif > 0) {
  600. struct net_device *dev;
  601. /* NOTE: we always use init's namespace */
  602. dev = dev_get_by_index(&init_net,
  603. a->u.net.netif);
  604. if (dev) {
  605. audit_log_format(ab, " netif=%s",
  606. dev->name);
  607. dev_put(dev);
  608. }
  609. }
  610. break;
  611. }
  612. }
  613. audit_log_format(ab, " ");
  614. avc_dump_query(ab, ssid, tsid, tclass);
  615. audit_log_end(ab);
  616. }
  617. /**
  618. * avc_add_callback - Register a callback for security events.
  619. * @callback: callback function
  620. * @events: security events
  621. * @ssid: source security identifier or %SECSID_WILD
  622. * @tsid: target security identifier or %SECSID_WILD
  623. * @tclass: target security class
  624. * @perms: permissions
  625. *
  626. * Register a callback function for events in the set @events
  627. * related to the SID pair (@ssid, @tsid) and
  628. * and the permissions @perms, interpreting
  629. * @perms based on @tclass. Returns %0 on success or
  630. * -%ENOMEM if insufficient memory exists to add the callback.
  631. */
  632. int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
  633. u16 tclass, u32 perms,
  634. u32 *out_retained),
  635. u32 events, u32 ssid, u32 tsid,
  636. u16 tclass, u32 perms)
  637. {
  638. struct avc_callback_node *c;
  639. int rc = 0;
  640. c = kmalloc(sizeof(*c), GFP_ATOMIC);
  641. if (!c) {
  642. rc = -ENOMEM;
  643. goto out;
  644. }
  645. c->callback = callback;
  646. c->events = events;
  647. c->ssid = ssid;
  648. c->tsid = tsid;
  649. c->perms = perms;
  650. c->next = avc_callbacks;
  651. avc_callbacks = c;
  652. out:
  653. return rc;
  654. }
  655. static inline int avc_sidcmp(u32 x, u32 y)
  656. {
  657. return (x == y || x == SECSID_WILD || y == SECSID_WILD);
  658. }
  659. /**
  660. * avc_update_node Update an AVC entry
  661. * @event : Updating event
  662. * @perms : Permission mask bits
  663. * @ssid,@tsid,@tclass : identifier of an AVC entry
  664. * @seqno : sequence number when decision was made
  665. *
  666. * if a valid AVC entry doesn't exist,this function returns -ENOENT.
  667. * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
  668. * otherwise, this function update the AVC entry. The original AVC-entry object
  669. * will release later by RCU.
  670. */
  671. static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
  672. u32 seqno)
  673. {
  674. int hvalue, rc = 0;
  675. unsigned long flag;
  676. struct avc_node *pos, *node, *orig = NULL;
  677. struct hlist_head *head;
  678. struct hlist_node *next;
  679. spinlock_t *lock;
  680. node = avc_alloc_node();
  681. if (!node) {
  682. rc = -ENOMEM;
  683. goto out;
  684. }
  685. /* Lock the target slot */
  686. hvalue = avc_hash(ssid, tsid, tclass);
  687. head = &avc_cache.slots[hvalue];
  688. lock = &avc_cache.slots_lock[hvalue];
  689. spin_lock_irqsave(lock, flag);
  690. hlist_for_each_entry(pos, next, head, list) {
  691. if (ssid == pos->ae.ssid &&
  692. tsid == pos->ae.tsid &&
  693. tclass == pos->ae.tclass &&
  694. seqno == pos->ae.avd.seqno){
  695. orig = pos;
  696. break;
  697. }
  698. }
  699. if (!orig) {
  700. rc = -ENOENT;
  701. avc_node_kill(node);
  702. goto out_unlock;
  703. }
  704. /*
  705. * Copy and replace original node.
  706. */
  707. avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
  708. switch (event) {
  709. case AVC_CALLBACK_GRANT:
  710. node->ae.avd.allowed |= perms;
  711. break;
  712. case AVC_CALLBACK_TRY_REVOKE:
  713. case AVC_CALLBACK_REVOKE:
  714. node->ae.avd.allowed &= ~perms;
  715. break;
  716. case AVC_CALLBACK_AUDITALLOW_ENABLE:
  717. node->ae.avd.auditallow |= perms;
  718. break;
  719. case AVC_CALLBACK_AUDITALLOW_DISABLE:
  720. node->ae.avd.auditallow &= ~perms;
  721. break;
  722. case AVC_CALLBACK_AUDITDENY_ENABLE:
  723. node->ae.avd.auditdeny |= perms;
  724. break;
  725. case AVC_CALLBACK_AUDITDENY_DISABLE:
  726. node->ae.avd.auditdeny &= ~perms;
  727. break;
  728. }
  729. avc_node_replace(node, orig);
  730. out_unlock:
  731. spin_unlock_irqrestore(lock, flag);
  732. out:
  733. return rc;
  734. }
  735. /**
  736. * avc_ss_reset - Flush the cache and revalidate migrated permissions.
  737. * @seqno: policy sequence number
  738. */
  739. int avc_ss_reset(u32 seqno)
  740. {
  741. struct avc_callback_node *c;
  742. int i, rc = 0, tmprc;
  743. unsigned long flag;
  744. struct avc_node *node;
  745. struct hlist_head *head;
  746. struct hlist_node *next;
  747. spinlock_t *lock;
  748. for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  749. head = &avc_cache.slots[i];
  750. lock = &avc_cache.slots_lock[i];
  751. spin_lock_irqsave(lock, flag);
  752. /*
  753. * With preemptable RCU, the outer spinlock does not
  754. * prevent RCU grace periods from ending.
  755. */
  756. rcu_read_lock();
  757. hlist_for_each_entry(node, next, head, list)
  758. avc_node_delete(node);
  759. rcu_read_unlock();
  760. spin_unlock_irqrestore(lock, flag);
  761. }
  762. for (c = avc_callbacks; c; c = c->next) {
  763. if (c->events & AVC_CALLBACK_RESET) {
  764. tmprc = c->callback(AVC_CALLBACK_RESET,
  765. 0, 0, 0, 0, NULL);
  766. /* save the first error encountered for the return
  767. value and continue processing the callbacks */
  768. if (!rc)
  769. rc = tmprc;
  770. }
  771. }
  772. avc_latest_notif_update(seqno, 0);
  773. return rc;
  774. }
  775. /**
  776. * avc_has_perm_noaudit - Check permissions but perform no auditing.
  777. * @ssid: source security identifier
  778. * @tsid: target security identifier
  779. * @tclass: target security class
  780. * @requested: requested permissions, interpreted based on @tclass
  781. * @flags: AVC_STRICT or 0
  782. * @avd: access vector decisions
  783. *
  784. * Check the AVC to determine whether the @requested permissions are granted
  785. * for the SID pair (@ssid, @tsid), interpreting the permissions
  786. * based on @tclass, and call the security server on a cache miss to obtain
  787. * a new decision and add it to the cache. Return a copy of the decisions
  788. * in @avd. Return %0 if all @requested permissions are granted,
  789. * -%EACCES if any permissions are denied, or another -errno upon
  790. * other errors. This function is typically called by avc_has_perm(),
  791. * but may also be called directly to separate permission checking from
  792. * auditing, e.g. in cases where a lock must be held for the check but
  793. * should be released for the auditing.
  794. */
  795. int avc_has_perm_noaudit(u32 ssid, u32 tsid,
  796. u16 tclass, u32 requested,
  797. unsigned flags,
  798. struct av_decision *in_avd)
  799. {
  800. struct avc_node *node;
  801. struct av_decision avd_entry, *avd;
  802. int rc = 0;
  803. u32 denied;
  804. BUG_ON(!requested);
  805. rcu_read_lock();
  806. node = avc_lookup(ssid, tsid, tclass);
  807. if (!node) {
  808. rcu_read_unlock();
  809. if (in_avd)
  810. avd = in_avd;
  811. else
  812. avd = &avd_entry;
  813. rc = security_compute_av(ssid, tsid, tclass, requested, avd);
  814. if (rc)
  815. goto out;
  816. rcu_read_lock();
  817. node = avc_insert(ssid, tsid, tclass, avd);
  818. } else {
  819. if (in_avd)
  820. memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
  821. avd = &node->ae.avd;
  822. }
  823. denied = requested & ~(avd->allowed);
  824. if (denied) {
  825. if (flags & AVC_STRICT)
  826. rc = -EACCES;
  827. else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
  828. avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
  829. tsid, tclass, avd->seqno);
  830. else
  831. rc = -EACCES;
  832. }
  833. rcu_read_unlock();
  834. out:
  835. return rc;
  836. }
  837. /**
  838. * avc_has_perm - Check permissions and perform any appropriate auditing.
  839. * @ssid: source security identifier
  840. * @tsid: target security identifier
  841. * @tclass: target security class
  842. * @requested: requested permissions, interpreted based on @tclass
  843. * @auditdata: auxiliary audit data
  844. *
  845. * Check the AVC to determine whether the @requested permissions are granted
  846. * for the SID pair (@ssid, @tsid), interpreting the permissions
  847. * based on @tclass, and call the security server on a cache miss to obtain
  848. * a new decision and add it to the cache. Audit the granting or denial of
  849. * permissions in accordance with the policy. Return %0 if all @requested
  850. * permissions are granted, -%EACCES if any permissions are denied, or
  851. * another -errno upon other errors.
  852. */
  853. int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
  854. u32 requested, struct avc_audit_data *auditdata)
  855. {
  856. struct av_decision avd;
  857. int rc;
  858. rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
  859. avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
  860. return rc;
  861. }
  862. u32 avc_policy_seqno(void)
  863. {
  864. return avc_cache.latest_notif;
  865. }