security.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. static inline int verify(struct security_operations *ops)
  25. {
  26. /* verify the security_operations structure exists */
  27. if (!ops)
  28. return -EINVAL;
  29. security_fixup_ops(ops);
  30. return 0;
  31. }
  32. static void __init do_security_initcalls(void)
  33. {
  34. initcall_t *call;
  35. call = __security_initcall_start;
  36. while (call < __security_initcall_end) {
  37. (*call) ();
  38. call++;
  39. }
  40. }
  41. /**
  42. * security_init - initializes the security framework
  43. *
  44. * This should be called early in the kernel initialization sequence.
  45. */
  46. int __init security_init(void)
  47. {
  48. printk(KERN_INFO "Security Framework initialized\n");
  49. security_fixup_ops(&default_security_ops);
  50. security_ops = &default_security_ops;
  51. do_security_initcalls();
  52. return 0;
  53. }
  54. /* Save user chosen LSM */
  55. static int __init choose_lsm(char *str)
  56. {
  57. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  58. return 1;
  59. }
  60. __setup("security=", choose_lsm);
  61. /**
  62. * security_module_enable - Load given security module on boot ?
  63. * @ops: a pointer to the struct security_operations that is to be checked.
  64. *
  65. * Each LSM must pass this method before registering its own operations
  66. * to avoid security registration races. This method may also be used
  67. * to check if your LSM is currently loaded during kernel initialization.
  68. *
  69. * Return true if:
  70. * -The passed LSM is the one chosen by user at boot time,
  71. * -or user didn't specify a specific LSM and we're the first to ask
  72. * for registration permission,
  73. * -or the passed LSM is currently loaded.
  74. * Otherwise, return false.
  75. */
  76. int __init security_module_enable(struct security_operations *ops)
  77. {
  78. if (!*chosen_lsm)
  79. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  80. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  81. return 0;
  82. return 1;
  83. }
  84. /**
  85. * register_security - registers a security framework with the kernel
  86. * @ops: a pointer to the struct security_options that is to be registered
  87. *
  88. * This function allows a security module to register itself with the
  89. * kernel security subsystem. Some rudimentary checking is done on the @ops
  90. * value passed to this function. You'll need to check first if your LSM
  91. * is allowed to register its @ops by calling security_module_enable(@ops).
  92. *
  93. * If there is already a security module registered with the kernel,
  94. * an error will be returned. Otherwise %0 is returned on success.
  95. */
  96. int register_security(struct security_operations *ops)
  97. {
  98. if (verify(ops)) {
  99. printk(KERN_DEBUG "%s could not verify "
  100. "security_operations structure.\n", __func__);
  101. return -EINVAL;
  102. }
  103. if (security_ops != &default_security_ops)
  104. return -EAGAIN;
  105. security_ops = ops;
  106. return 0;
  107. }
  108. /* Security operations */
  109. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  110. {
  111. return security_ops->ptrace_may_access(child, mode);
  112. }
  113. int security_ptrace_traceme(struct task_struct *parent)
  114. {
  115. return security_ops->ptrace_traceme(parent);
  116. }
  117. int security_capget(struct task_struct *target,
  118. kernel_cap_t *effective,
  119. kernel_cap_t *inheritable,
  120. kernel_cap_t *permitted)
  121. {
  122. return security_ops->capget(target, effective, inheritable, permitted);
  123. }
  124. int security_capset(struct cred *new, const struct cred *old,
  125. const kernel_cap_t *effective,
  126. const kernel_cap_t *inheritable,
  127. const kernel_cap_t *permitted)
  128. {
  129. return security_ops->capset(new, old,
  130. effective, inheritable, permitted);
  131. }
  132. int security_capable(int cap)
  133. {
  134. return security_ops->capable(current, current_cred(), cap,
  135. SECURITY_CAP_AUDIT);
  136. }
  137. int security_real_capable(struct task_struct *tsk, int cap)
  138. {
  139. const struct cred *cred;
  140. int ret;
  141. cred = get_task_cred(tsk);
  142. ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
  143. put_cred(cred);
  144. return ret;
  145. }
  146. int security_real_capable_noaudit(struct task_struct *tsk, int cap)
  147. {
  148. const struct cred *cred;
  149. int ret;
  150. cred = get_task_cred(tsk);
  151. ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
  152. put_cred(cred);
  153. return ret;
  154. }
  155. int security_acct(struct file *file)
  156. {
  157. return security_ops->acct(file);
  158. }
  159. int security_sysctl(struct ctl_table *table, int op)
  160. {
  161. return security_ops->sysctl(table, op);
  162. }
  163. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  164. {
  165. return security_ops->quotactl(cmds, type, id, sb);
  166. }
  167. int security_quota_on(struct dentry *dentry)
  168. {
  169. return security_ops->quota_on(dentry);
  170. }
  171. int security_syslog(int type)
  172. {
  173. return security_ops->syslog(type);
  174. }
  175. int security_settime(struct timespec *ts, struct timezone *tz)
  176. {
  177. return security_ops->settime(ts, tz);
  178. }
  179. int security_vm_enough_memory(long pages)
  180. {
  181. WARN_ON(current->mm == NULL);
  182. return security_ops->vm_enough_memory(current->mm, pages);
  183. }
  184. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  185. {
  186. WARN_ON(mm == NULL);
  187. return security_ops->vm_enough_memory(mm, pages);
  188. }
  189. int security_vm_enough_memory_kern(long pages)
  190. {
  191. /* If current->mm is a kernel thread then we will pass NULL,
  192. for this specific case that is fine */
  193. return security_ops->vm_enough_memory(current->mm, pages);
  194. }
  195. int security_bprm_set_creds(struct linux_binprm *bprm)
  196. {
  197. return security_ops->bprm_set_creds(bprm);
  198. }
  199. int security_bprm_check(struct linux_binprm *bprm)
  200. {
  201. return security_ops->bprm_check_security(bprm);
  202. }
  203. void security_bprm_committing_creds(struct linux_binprm *bprm)
  204. {
  205. security_ops->bprm_committing_creds(bprm);
  206. }
  207. void security_bprm_committed_creds(struct linux_binprm *bprm)
  208. {
  209. security_ops->bprm_committed_creds(bprm);
  210. }
  211. int security_bprm_secureexec(struct linux_binprm *bprm)
  212. {
  213. return security_ops->bprm_secureexec(bprm);
  214. }
  215. int security_sb_alloc(struct super_block *sb)
  216. {
  217. return security_ops->sb_alloc_security(sb);
  218. }
  219. void security_sb_free(struct super_block *sb)
  220. {
  221. security_ops->sb_free_security(sb);
  222. }
  223. int security_sb_copy_data(char *orig, char *copy)
  224. {
  225. return security_ops->sb_copy_data(orig, copy);
  226. }
  227. EXPORT_SYMBOL(security_sb_copy_data);
  228. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  229. {
  230. return security_ops->sb_kern_mount(sb, flags, data);
  231. }
  232. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  233. {
  234. return security_ops->sb_show_options(m, sb);
  235. }
  236. int security_sb_statfs(struct dentry *dentry)
  237. {
  238. return security_ops->sb_statfs(dentry);
  239. }
  240. int security_sb_mount(char *dev_name, struct path *path,
  241. char *type, unsigned long flags, void *data)
  242. {
  243. return security_ops->sb_mount(dev_name, path, type, flags, data);
  244. }
  245. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  246. {
  247. return security_ops->sb_check_sb(mnt, path);
  248. }
  249. int security_sb_umount(struct vfsmount *mnt, int flags)
  250. {
  251. return security_ops->sb_umount(mnt, flags);
  252. }
  253. void security_sb_umount_close(struct vfsmount *mnt)
  254. {
  255. security_ops->sb_umount_close(mnt);
  256. }
  257. void security_sb_umount_busy(struct vfsmount *mnt)
  258. {
  259. security_ops->sb_umount_busy(mnt);
  260. }
  261. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  262. {
  263. security_ops->sb_post_remount(mnt, flags, data);
  264. }
  265. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  266. {
  267. security_ops->sb_post_addmount(mnt, mountpoint);
  268. }
  269. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  270. {
  271. return security_ops->sb_pivotroot(old_path, new_path);
  272. }
  273. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  274. {
  275. security_ops->sb_post_pivotroot(old_path, new_path);
  276. }
  277. int security_sb_set_mnt_opts(struct super_block *sb,
  278. struct security_mnt_opts *opts)
  279. {
  280. return security_ops->sb_set_mnt_opts(sb, opts);
  281. }
  282. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  283. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  284. struct super_block *newsb)
  285. {
  286. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  287. }
  288. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  289. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  290. {
  291. return security_ops->sb_parse_opts_str(options, opts);
  292. }
  293. EXPORT_SYMBOL(security_sb_parse_opts_str);
  294. int security_inode_alloc(struct inode *inode)
  295. {
  296. inode->i_security = NULL;
  297. return security_ops->inode_alloc_security(inode);
  298. }
  299. void security_inode_free(struct inode *inode)
  300. {
  301. security_ops->inode_free_security(inode);
  302. }
  303. int security_inode_init_security(struct inode *inode, struct inode *dir,
  304. char **name, void **value, size_t *len)
  305. {
  306. if (unlikely(IS_PRIVATE(inode)))
  307. return -EOPNOTSUPP;
  308. return security_ops->inode_init_security(inode, dir, name, value, len);
  309. }
  310. EXPORT_SYMBOL(security_inode_init_security);
  311. #ifdef CONFIG_SECURITY_PATH
  312. int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
  313. unsigned int dev)
  314. {
  315. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  316. return 0;
  317. return security_ops->path_mknod(path, dentry, mode, dev);
  318. }
  319. EXPORT_SYMBOL(security_path_mknod);
  320. int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
  321. {
  322. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  323. return 0;
  324. return security_ops->path_mkdir(path, dentry, mode);
  325. }
  326. int security_path_rmdir(struct path *path, struct dentry *dentry)
  327. {
  328. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  329. return 0;
  330. return security_ops->path_rmdir(path, dentry);
  331. }
  332. int security_path_unlink(struct path *path, struct dentry *dentry)
  333. {
  334. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  335. return 0;
  336. return security_ops->path_unlink(path, dentry);
  337. }
  338. int security_path_symlink(struct path *path, struct dentry *dentry,
  339. const char *old_name)
  340. {
  341. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  342. return 0;
  343. return security_ops->path_symlink(path, dentry, old_name);
  344. }
  345. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  346. struct dentry *new_dentry)
  347. {
  348. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  349. return 0;
  350. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  351. }
  352. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  353. struct path *new_dir, struct dentry *new_dentry)
  354. {
  355. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  356. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  357. return 0;
  358. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  359. new_dentry);
  360. }
  361. int security_path_truncate(struct path *path, loff_t length,
  362. unsigned int time_attrs)
  363. {
  364. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  365. return 0;
  366. return security_ops->path_truncate(path, length, time_attrs);
  367. }
  368. #endif
  369. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  370. {
  371. if (unlikely(IS_PRIVATE(dir)))
  372. return 0;
  373. return security_ops->inode_create(dir, dentry, mode);
  374. }
  375. EXPORT_SYMBOL_GPL(security_inode_create);
  376. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  377. struct dentry *new_dentry)
  378. {
  379. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  380. return 0;
  381. return security_ops->inode_link(old_dentry, dir, new_dentry);
  382. }
  383. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  384. {
  385. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  386. return 0;
  387. return security_ops->inode_unlink(dir, dentry);
  388. }
  389. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  390. const char *old_name)
  391. {
  392. if (unlikely(IS_PRIVATE(dir)))
  393. return 0;
  394. return security_ops->inode_symlink(dir, dentry, old_name);
  395. }
  396. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  397. {
  398. if (unlikely(IS_PRIVATE(dir)))
  399. return 0;
  400. return security_ops->inode_mkdir(dir, dentry, mode);
  401. }
  402. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  403. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  404. {
  405. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  406. return 0;
  407. return security_ops->inode_rmdir(dir, dentry);
  408. }
  409. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  410. {
  411. if (unlikely(IS_PRIVATE(dir)))
  412. return 0;
  413. return security_ops->inode_mknod(dir, dentry, mode, dev);
  414. }
  415. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  416. struct inode *new_dir, struct dentry *new_dentry)
  417. {
  418. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  419. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  420. return 0;
  421. return security_ops->inode_rename(old_dir, old_dentry,
  422. new_dir, new_dentry);
  423. }
  424. int security_inode_readlink(struct dentry *dentry)
  425. {
  426. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  427. return 0;
  428. return security_ops->inode_readlink(dentry);
  429. }
  430. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  431. {
  432. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  433. return 0;
  434. return security_ops->inode_follow_link(dentry, nd);
  435. }
  436. int security_inode_permission(struct inode *inode, int mask)
  437. {
  438. if (unlikely(IS_PRIVATE(inode)))
  439. return 0;
  440. return security_ops->inode_permission(inode, mask);
  441. }
  442. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  443. {
  444. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  445. return 0;
  446. return security_ops->inode_setattr(dentry, attr);
  447. }
  448. EXPORT_SYMBOL_GPL(security_inode_setattr);
  449. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  450. {
  451. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  452. return 0;
  453. return security_ops->inode_getattr(mnt, dentry);
  454. }
  455. void security_inode_delete(struct inode *inode)
  456. {
  457. if (unlikely(IS_PRIVATE(inode)))
  458. return;
  459. security_ops->inode_delete(inode);
  460. }
  461. int security_inode_setxattr(struct dentry *dentry, const char *name,
  462. const void *value, size_t size, int flags)
  463. {
  464. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  465. return 0;
  466. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  467. }
  468. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  469. const void *value, size_t size, int flags)
  470. {
  471. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  472. return;
  473. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  474. }
  475. int security_inode_getxattr(struct dentry *dentry, const char *name)
  476. {
  477. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  478. return 0;
  479. return security_ops->inode_getxattr(dentry, name);
  480. }
  481. int security_inode_listxattr(struct dentry *dentry)
  482. {
  483. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  484. return 0;
  485. return security_ops->inode_listxattr(dentry);
  486. }
  487. int security_inode_removexattr(struct dentry *dentry, const char *name)
  488. {
  489. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  490. return 0;
  491. return security_ops->inode_removexattr(dentry, name);
  492. }
  493. int security_inode_need_killpriv(struct dentry *dentry)
  494. {
  495. return security_ops->inode_need_killpriv(dentry);
  496. }
  497. int security_inode_killpriv(struct dentry *dentry)
  498. {
  499. return security_ops->inode_killpriv(dentry);
  500. }
  501. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  502. {
  503. if (unlikely(IS_PRIVATE(inode)))
  504. return 0;
  505. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  506. }
  507. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  508. {
  509. if (unlikely(IS_PRIVATE(inode)))
  510. return 0;
  511. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  512. }
  513. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  514. {
  515. if (unlikely(IS_PRIVATE(inode)))
  516. return 0;
  517. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  518. }
  519. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  520. {
  521. security_ops->inode_getsecid(inode, secid);
  522. }
  523. int security_file_permission(struct file *file, int mask)
  524. {
  525. return security_ops->file_permission(file, mask);
  526. }
  527. int security_file_alloc(struct file *file)
  528. {
  529. return security_ops->file_alloc_security(file);
  530. }
  531. void security_file_free(struct file *file)
  532. {
  533. security_ops->file_free_security(file);
  534. }
  535. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  536. {
  537. return security_ops->file_ioctl(file, cmd, arg);
  538. }
  539. int security_file_mmap(struct file *file, unsigned long reqprot,
  540. unsigned long prot, unsigned long flags,
  541. unsigned long addr, unsigned long addr_only)
  542. {
  543. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  544. }
  545. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  546. unsigned long prot)
  547. {
  548. return security_ops->file_mprotect(vma, reqprot, prot);
  549. }
  550. int security_file_lock(struct file *file, unsigned int cmd)
  551. {
  552. return security_ops->file_lock(file, cmd);
  553. }
  554. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  555. {
  556. return security_ops->file_fcntl(file, cmd, arg);
  557. }
  558. int security_file_set_fowner(struct file *file)
  559. {
  560. return security_ops->file_set_fowner(file);
  561. }
  562. int security_file_send_sigiotask(struct task_struct *tsk,
  563. struct fown_struct *fown, int sig)
  564. {
  565. return security_ops->file_send_sigiotask(tsk, fown, sig);
  566. }
  567. int security_file_receive(struct file *file)
  568. {
  569. return security_ops->file_receive(file);
  570. }
  571. int security_dentry_open(struct file *file, const struct cred *cred)
  572. {
  573. return security_ops->dentry_open(file, cred);
  574. }
  575. int security_task_create(unsigned long clone_flags)
  576. {
  577. return security_ops->task_create(clone_flags);
  578. }
  579. void security_cred_free(struct cred *cred)
  580. {
  581. security_ops->cred_free(cred);
  582. }
  583. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  584. {
  585. return security_ops->cred_prepare(new, old, gfp);
  586. }
  587. void security_commit_creds(struct cred *new, const struct cred *old)
  588. {
  589. security_ops->cred_commit(new, old);
  590. }
  591. int security_kernel_act_as(struct cred *new, u32 secid)
  592. {
  593. return security_ops->kernel_act_as(new, secid);
  594. }
  595. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  596. {
  597. return security_ops->kernel_create_files_as(new, inode);
  598. }
  599. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  600. {
  601. return security_ops->task_setuid(id0, id1, id2, flags);
  602. }
  603. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  604. int flags)
  605. {
  606. return security_ops->task_fix_setuid(new, old, flags);
  607. }
  608. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  609. {
  610. return security_ops->task_setgid(id0, id1, id2, flags);
  611. }
  612. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  613. {
  614. return security_ops->task_setpgid(p, pgid);
  615. }
  616. int security_task_getpgid(struct task_struct *p)
  617. {
  618. return security_ops->task_getpgid(p);
  619. }
  620. int security_task_getsid(struct task_struct *p)
  621. {
  622. return security_ops->task_getsid(p);
  623. }
  624. void security_task_getsecid(struct task_struct *p, u32 *secid)
  625. {
  626. security_ops->task_getsecid(p, secid);
  627. }
  628. EXPORT_SYMBOL(security_task_getsecid);
  629. int security_task_setgroups(struct group_info *group_info)
  630. {
  631. return security_ops->task_setgroups(group_info);
  632. }
  633. int security_task_setnice(struct task_struct *p, int nice)
  634. {
  635. return security_ops->task_setnice(p, nice);
  636. }
  637. int security_task_setioprio(struct task_struct *p, int ioprio)
  638. {
  639. return security_ops->task_setioprio(p, ioprio);
  640. }
  641. int security_task_getioprio(struct task_struct *p)
  642. {
  643. return security_ops->task_getioprio(p);
  644. }
  645. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  646. {
  647. return security_ops->task_setrlimit(resource, new_rlim);
  648. }
  649. int security_task_setscheduler(struct task_struct *p,
  650. int policy, struct sched_param *lp)
  651. {
  652. return security_ops->task_setscheduler(p, policy, lp);
  653. }
  654. int security_task_getscheduler(struct task_struct *p)
  655. {
  656. return security_ops->task_getscheduler(p);
  657. }
  658. int security_task_movememory(struct task_struct *p)
  659. {
  660. return security_ops->task_movememory(p);
  661. }
  662. int security_task_kill(struct task_struct *p, struct siginfo *info,
  663. int sig, u32 secid)
  664. {
  665. return security_ops->task_kill(p, info, sig, secid);
  666. }
  667. int security_task_wait(struct task_struct *p)
  668. {
  669. return security_ops->task_wait(p);
  670. }
  671. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  672. unsigned long arg4, unsigned long arg5)
  673. {
  674. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  675. }
  676. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  677. {
  678. security_ops->task_to_inode(p, inode);
  679. }
  680. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  681. {
  682. return security_ops->ipc_permission(ipcp, flag);
  683. }
  684. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  685. {
  686. security_ops->ipc_getsecid(ipcp, secid);
  687. }
  688. int security_msg_msg_alloc(struct msg_msg *msg)
  689. {
  690. return security_ops->msg_msg_alloc_security(msg);
  691. }
  692. void security_msg_msg_free(struct msg_msg *msg)
  693. {
  694. security_ops->msg_msg_free_security(msg);
  695. }
  696. int security_msg_queue_alloc(struct msg_queue *msq)
  697. {
  698. return security_ops->msg_queue_alloc_security(msq);
  699. }
  700. void security_msg_queue_free(struct msg_queue *msq)
  701. {
  702. security_ops->msg_queue_free_security(msq);
  703. }
  704. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  705. {
  706. return security_ops->msg_queue_associate(msq, msqflg);
  707. }
  708. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  709. {
  710. return security_ops->msg_queue_msgctl(msq, cmd);
  711. }
  712. int security_msg_queue_msgsnd(struct msg_queue *msq,
  713. struct msg_msg *msg, int msqflg)
  714. {
  715. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  716. }
  717. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  718. struct task_struct *target, long type, int mode)
  719. {
  720. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  721. }
  722. int security_shm_alloc(struct shmid_kernel *shp)
  723. {
  724. return security_ops->shm_alloc_security(shp);
  725. }
  726. void security_shm_free(struct shmid_kernel *shp)
  727. {
  728. security_ops->shm_free_security(shp);
  729. }
  730. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  731. {
  732. return security_ops->shm_associate(shp, shmflg);
  733. }
  734. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  735. {
  736. return security_ops->shm_shmctl(shp, cmd);
  737. }
  738. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  739. {
  740. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  741. }
  742. int security_sem_alloc(struct sem_array *sma)
  743. {
  744. return security_ops->sem_alloc_security(sma);
  745. }
  746. void security_sem_free(struct sem_array *sma)
  747. {
  748. security_ops->sem_free_security(sma);
  749. }
  750. int security_sem_associate(struct sem_array *sma, int semflg)
  751. {
  752. return security_ops->sem_associate(sma, semflg);
  753. }
  754. int security_sem_semctl(struct sem_array *sma, int cmd)
  755. {
  756. return security_ops->sem_semctl(sma, cmd);
  757. }
  758. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  759. unsigned nsops, int alter)
  760. {
  761. return security_ops->sem_semop(sma, sops, nsops, alter);
  762. }
  763. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  764. {
  765. if (unlikely(inode && IS_PRIVATE(inode)))
  766. return;
  767. security_ops->d_instantiate(dentry, inode);
  768. }
  769. EXPORT_SYMBOL(security_d_instantiate);
  770. int security_getprocattr(struct task_struct *p, char *name, char **value)
  771. {
  772. return security_ops->getprocattr(p, name, value);
  773. }
  774. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  775. {
  776. return security_ops->setprocattr(p, name, value, size);
  777. }
  778. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  779. {
  780. return security_ops->netlink_send(sk, skb);
  781. }
  782. int security_netlink_recv(struct sk_buff *skb, int cap)
  783. {
  784. return security_ops->netlink_recv(skb, cap);
  785. }
  786. EXPORT_SYMBOL(security_netlink_recv);
  787. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  788. {
  789. return security_ops->secid_to_secctx(secid, secdata, seclen);
  790. }
  791. EXPORT_SYMBOL(security_secid_to_secctx);
  792. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  793. {
  794. return security_ops->secctx_to_secid(secdata, seclen, secid);
  795. }
  796. EXPORT_SYMBOL(security_secctx_to_secid);
  797. void security_release_secctx(char *secdata, u32 seclen)
  798. {
  799. security_ops->release_secctx(secdata, seclen);
  800. }
  801. EXPORT_SYMBOL(security_release_secctx);
  802. #ifdef CONFIG_SECURITY_NETWORK
  803. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  804. struct sock *newsk)
  805. {
  806. return security_ops->unix_stream_connect(sock, other, newsk);
  807. }
  808. EXPORT_SYMBOL(security_unix_stream_connect);
  809. int security_unix_may_send(struct socket *sock, struct socket *other)
  810. {
  811. return security_ops->unix_may_send(sock, other);
  812. }
  813. EXPORT_SYMBOL(security_unix_may_send);
  814. int security_socket_create(int family, int type, int protocol, int kern)
  815. {
  816. return security_ops->socket_create(family, type, protocol, kern);
  817. }
  818. int security_socket_post_create(struct socket *sock, int family,
  819. int type, int protocol, int kern)
  820. {
  821. return security_ops->socket_post_create(sock, family, type,
  822. protocol, kern);
  823. }
  824. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  825. {
  826. return security_ops->socket_bind(sock, address, addrlen);
  827. }
  828. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  829. {
  830. return security_ops->socket_connect(sock, address, addrlen);
  831. }
  832. int security_socket_listen(struct socket *sock, int backlog)
  833. {
  834. return security_ops->socket_listen(sock, backlog);
  835. }
  836. int security_socket_accept(struct socket *sock, struct socket *newsock)
  837. {
  838. return security_ops->socket_accept(sock, newsock);
  839. }
  840. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  841. {
  842. return security_ops->socket_sendmsg(sock, msg, size);
  843. }
  844. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  845. int size, int flags)
  846. {
  847. return security_ops->socket_recvmsg(sock, msg, size, flags);
  848. }
  849. int security_socket_getsockname(struct socket *sock)
  850. {
  851. return security_ops->socket_getsockname(sock);
  852. }
  853. int security_socket_getpeername(struct socket *sock)
  854. {
  855. return security_ops->socket_getpeername(sock);
  856. }
  857. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  858. {
  859. return security_ops->socket_getsockopt(sock, level, optname);
  860. }
  861. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  862. {
  863. return security_ops->socket_setsockopt(sock, level, optname);
  864. }
  865. int security_socket_shutdown(struct socket *sock, int how)
  866. {
  867. return security_ops->socket_shutdown(sock, how);
  868. }
  869. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  870. {
  871. return security_ops->socket_sock_rcv_skb(sk, skb);
  872. }
  873. EXPORT_SYMBOL(security_sock_rcv_skb);
  874. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  875. int __user *optlen, unsigned len)
  876. {
  877. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  878. }
  879. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  880. {
  881. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  882. }
  883. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  884. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  885. {
  886. return security_ops->sk_alloc_security(sk, family, priority);
  887. }
  888. void security_sk_free(struct sock *sk)
  889. {
  890. security_ops->sk_free_security(sk);
  891. }
  892. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  893. {
  894. security_ops->sk_clone_security(sk, newsk);
  895. }
  896. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  897. {
  898. security_ops->sk_getsecid(sk, &fl->secid);
  899. }
  900. EXPORT_SYMBOL(security_sk_classify_flow);
  901. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  902. {
  903. security_ops->req_classify_flow(req, fl);
  904. }
  905. EXPORT_SYMBOL(security_req_classify_flow);
  906. void security_sock_graft(struct sock *sk, struct socket *parent)
  907. {
  908. security_ops->sock_graft(sk, parent);
  909. }
  910. EXPORT_SYMBOL(security_sock_graft);
  911. int security_inet_conn_request(struct sock *sk,
  912. struct sk_buff *skb, struct request_sock *req)
  913. {
  914. return security_ops->inet_conn_request(sk, skb, req);
  915. }
  916. EXPORT_SYMBOL(security_inet_conn_request);
  917. void security_inet_csk_clone(struct sock *newsk,
  918. const struct request_sock *req)
  919. {
  920. security_ops->inet_csk_clone(newsk, req);
  921. }
  922. void security_inet_conn_established(struct sock *sk,
  923. struct sk_buff *skb)
  924. {
  925. security_ops->inet_conn_established(sk, skb);
  926. }
  927. #endif /* CONFIG_SECURITY_NETWORK */
  928. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  929. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  930. {
  931. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  932. }
  933. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  934. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  935. struct xfrm_sec_ctx **new_ctxp)
  936. {
  937. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  938. }
  939. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  940. {
  941. security_ops->xfrm_policy_free_security(ctx);
  942. }
  943. EXPORT_SYMBOL(security_xfrm_policy_free);
  944. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  945. {
  946. return security_ops->xfrm_policy_delete_security(ctx);
  947. }
  948. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  949. {
  950. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  951. }
  952. EXPORT_SYMBOL(security_xfrm_state_alloc);
  953. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  954. struct xfrm_sec_ctx *polsec, u32 secid)
  955. {
  956. if (!polsec)
  957. return 0;
  958. /*
  959. * We want the context to be taken from secid which is usually
  960. * from the sock.
  961. */
  962. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  963. }
  964. int security_xfrm_state_delete(struct xfrm_state *x)
  965. {
  966. return security_ops->xfrm_state_delete_security(x);
  967. }
  968. EXPORT_SYMBOL(security_xfrm_state_delete);
  969. void security_xfrm_state_free(struct xfrm_state *x)
  970. {
  971. security_ops->xfrm_state_free_security(x);
  972. }
  973. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  974. {
  975. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  976. }
  977. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  978. struct xfrm_policy *xp, struct flowi *fl)
  979. {
  980. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  981. }
  982. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  983. {
  984. return security_ops->xfrm_decode_session(skb, secid, 1);
  985. }
  986. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  987. {
  988. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  989. BUG_ON(rc);
  990. }
  991. EXPORT_SYMBOL(security_skb_classify_flow);
  992. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  993. #ifdef CONFIG_KEYS
  994. int security_key_alloc(struct key *key, const struct cred *cred,
  995. unsigned long flags)
  996. {
  997. return security_ops->key_alloc(key, cred, flags);
  998. }
  999. void security_key_free(struct key *key)
  1000. {
  1001. security_ops->key_free(key);
  1002. }
  1003. int security_key_permission(key_ref_t key_ref,
  1004. const struct cred *cred, key_perm_t perm)
  1005. {
  1006. return security_ops->key_permission(key_ref, cred, perm);
  1007. }
  1008. int security_key_getsecurity(struct key *key, char **_buffer)
  1009. {
  1010. return security_ops->key_getsecurity(key, _buffer);
  1011. }
  1012. #endif /* CONFIG_KEYS */
  1013. #ifdef CONFIG_AUDIT
  1014. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1015. {
  1016. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1017. }
  1018. int security_audit_rule_known(struct audit_krule *krule)
  1019. {
  1020. return security_ops->audit_rule_known(krule);
  1021. }
  1022. void security_audit_rule_free(void *lsmrule)
  1023. {
  1024. security_ops->audit_rule_free(lsmrule);
  1025. }
  1026. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1027. struct audit_context *actx)
  1028. {
  1029. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1030. }
  1031. #endif /* CONFIG_AUDIT */