util.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /*
  2. * Wireless utility functions
  3. *
  4. * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/etherdevice.h>
  8. #include <net/cfg80211.h>
  9. #include <net/ip.h>
  10. #include "core.h"
  11. struct ieee80211_rate *
  12. ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  13. u32 basic_rates, int bitrate)
  14. {
  15. struct ieee80211_rate *result = &sband->bitrates[0];
  16. int i;
  17. for (i = 0; i < sband->n_bitrates; i++) {
  18. if (!(basic_rates & BIT(i)))
  19. continue;
  20. if (sband->bitrates[i].bitrate > bitrate)
  21. continue;
  22. result = &sband->bitrates[i];
  23. }
  24. return result;
  25. }
  26. EXPORT_SYMBOL(ieee80211_get_response_rate);
  27. int ieee80211_channel_to_frequency(int chan)
  28. {
  29. if (chan < 14)
  30. return 2407 + chan * 5;
  31. if (chan == 14)
  32. return 2484;
  33. /* FIXME: 802.11j 17.3.8.3.2 */
  34. return (chan + 1000) * 5;
  35. }
  36. EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  37. int ieee80211_frequency_to_channel(int freq)
  38. {
  39. if (freq == 2484)
  40. return 14;
  41. if (freq < 2484)
  42. return (freq - 2407) / 5;
  43. /* FIXME: 802.11j 17.3.8.3.2 */
  44. return freq/5 - 1000;
  45. }
  46. EXPORT_SYMBOL(ieee80211_frequency_to_channel);
  47. struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
  48. int freq)
  49. {
  50. enum ieee80211_band band;
  51. struct ieee80211_supported_band *sband;
  52. int i;
  53. for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  54. sband = wiphy->bands[band];
  55. if (!sband)
  56. continue;
  57. for (i = 0; i < sband->n_channels; i++) {
  58. if (sband->channels[i].center_freq == freq)
  59. return &sband->channels[i];
  60. }
  61. }
  62. return NULL;
  63. }
  64. EXPORT_SYMBOL(__ieee80211_get_channel);
  65. static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
  66. enum ieee80211_band band)
  67. {
  68. int i, want;
  69. switch (band) {
  70. case IEEE80211_BAND_5GHZ:
  71. want = 3;
  72. for (i = 0; i < sband->n_bitrates; i++) {
  73. if (sband->bitrates[i].bitrate == 60 ||
  74. sband->bitrates[i].bitrate == 120 ||
  75. sband->bitrates[i].bitrate == 240) {
  76. sband->bitrates[i].flags |=
  77. IEEE80211_RATE_MANDATORY_A;
  78. want--;
  79. }
  80. }
  81. WARN_ON(want);
  82. break;
  83. case IEEE80211_BAND_2GHZ:
  84. want = 7;
  85. for (i = 0; i < sband->n_bitrates; i++) {
  86. if (sband->bitrates[i].bitrate == 10) {
  87. sband->bitrates[i].flags |=
  88. IEEE80211_RATE_MANDATORY_B |
  89. IEEE80211_RATE_MANDATORY_G;
  90. want--;
  91. }
  92. if (sband->bitrates[i].bitrate == 20 ||
  93. sband->bitrates[i].bitrate == 55 ||
  94. sband->bitrates[i].bitrate == 110 ||
  95. sband->bitrates[i].bitrate == 60 ||
  96. sband->bitrates[i].bitrate == 120 ||
  97. sband->bitrates[i].bitrate == 240) {
  98. sband->bitrates[i].flags |=
  99. IEEE80211_RATE_MANDATORY_G;
  100. want--;
  101. }
  102. if (sband->bitrates[i].bitrate != 10 &&
  103. sband->bitrates[i].bitrate != 20 &&
  104. sband->bitrates[i].bitrate != 55 &&
  105. sband->bitrates[i].bitrate != 110)
  106. sband->bitrates[i].flags |=
  107. IEEE80211_RATE_ERP_G;
  108. }
  109. WARN_ON(want != 0 && want != 3 && want != 6);
  110. break;
  111. case IEEE80211_NUM_BANDS:
  112. WARN_ON(1);
  113. break;
  114. }
  115. }
  116. void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
  117. {
  118. enum ieee80211_band band;
  119. for (band = 0; band < IEEE80211_NUM_BANDS; band++)
  120. if (wiphy->bands[band])
  121. set_mandatory_flags_band(wiphy->bands[band], band);
  122. }
  123. int cfg80211_validate_key_settings(struct key_params *params, int key_idx,
  124. const u8 *mac_addr)
  125. {
  126. if (key_idx > 5)
  127. return -EINVAL;
  128. /*
  129. * Disallow pairwise keys with non-zero index unless it's WEP
  130. * (because current deployments use pairwise WEP keys with
  131. * non-zero indizes but 802.11i clearly specifies to use zero)
  132. */
  133. if (mac_addr && key_idx &&
  134. params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
  135. params->cipher != WLAN_CIPHER_SUITE_WEP104)
  136. return -EINVAL;
  137. switch (params->cipher) {
  138. case WLAN_CIPHER_SUITE_WEP40:
  139. if (params->key_len != WLAN_KEY_LEN_WEP40)
  140. return -EINVAL;
  141. break;
  142. case WLAN_CIPHER_SUITE_TKIP:
  143. if (params->key_len != WLAN_KEY_LEN_TKIP)
  144. return -EINVAL;
  145. break;
  146. case WLAN_CIPHER_SUITE_CCMP:
  147. if (params->key_len != WLAN_KEY_LEN_CCMP)
  148. return -EINVAL;
  149. break;
  150. case WLAN_CIPHER_SUITE_WEP104:
  151. if (params->key_len != WLAN_KEY_LEN_WEP104)
  152. return -EINVAL;
  153. break;
  154. case WLAN_CIPHER_SUITE_AES_CMAC:
  155. if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
  156. return -EINVAL;
  157. break;
  158. default:
  159. return -EINVAL;
  160. }
  161. if (params->seq) {
  162. switch (params->cipher) {
  163. case WLAN_CIPHER_SUITE_WEP40:
  164. case WLAN_CIPHER_SUITE_WEP104:
  165. /* These ciphers do not use key sequence */
  166. return -EINVAL;
  167. case WLAN_CIPHER_SUITE_TKIP:
  168. case WLAN_CIPHER_SUITE_CCMP:
  169. case WLAN_CIPHER_SUITE_AES_CMAC:
  170. if (params->seq_len != 6)
  171. return -EINVAL;
  172. break;
  173. }
  174. }
  175. return 0;
  176. }
  177. /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
  178. /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
  179. const unsigned char rfc1042_header[] __aligned(2) =
  180. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
  181. EXPORT_SYMBOL(rfc1042_header);
  182. /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
  183. const unsigned char bridge_tunnel_header[] __aligned(2) =
  184. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
  185. EXPORT_SYMBOL(bridge_tunnel_header);
  186. unsigned int ieee80211_hdrlen(__le16 fc)
  187. {
  188. unsigned int hdrlen = 24;
  189. if (ieee80211_is_data(fc)) {
  190. if (ieee80211_has_a4(fc))
  191. hdrlen = 30;
  192. if (ieee80211_is_data_qos(fc))
  193. hdrlen += IEEE80211_QOS_CTL_LEN;
  194. goto out;
  195. }
  196. if (ieee80211_is_ctl(fc)) {
  197. /*
  198. * ACK and CTS are 10 bytes, all others 16. To see how
  199. * to get this condition consider
  200. * subtype mask: 0b0000000011110000 (0x00F0)
  201. * ACK subtype: 0b0000000011010000 (0x00D0)
  202. * CTS subtype: 0b0000000011000000 (0x00C0)
  203. * bits that matter: ^^^ (0x00E0)
  204. * value of those: 0b0000000011000000 (0x00C0)
  205. */
  206. if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
  207. hdrlen = 10;
  208. else
  209. hdrlen = 16;
  210. }
  211. out:
  212. return hdrlen;
  213. }
  214. EXPORT_SYMBOL(ieee80211_hdrlen);
  215. unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
  216. {
  217. const struct ieee80211_hdr *hdr =
  218. (const struct ieee80211_hdr *)skb->data;
  219. unsigned int hdrlen;
  220. if (unlikely(skb->len < 10))
  221. return 0;
  222. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  223. if (unlikely(hdrlen > skb->len))
  224. return 0;
  225. return hdrlen;
  226. }
  227. EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
  228. static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
  229. {
  230. int ae = meshhdr->flags & MESH_FLAGS_AE;
  231. /* 7.1.3.5a.2 */
  232. switch (ae) {
  233. case 0:
  234. return 6;
  235. case 1:
  236. return 12;
  237. case 2:
  238. return 18;
  239. case 3:
  240. return 24;
  241. default:
  242. return 6;
  243. }
  244. }
  245. int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr,
  246. enum nl80211_iftype iftype)
  247. {
  248. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  249. u16 hdrlen, ethertype;
  250. u8 *payload;
  251. u8 dst[ETH_ALEN];
  252. u8 src[ETH_ALEN] __aligned(2);
  253. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  254. return -1;
  255. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  256. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  257. * header
  258. * IEEE 802.11 address fields:
  259. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  260. * 0 0 DA SA BSSID n/a
  261. * 0 1 DA BSSID SA n/a
  262. * 1 0 BSSID SA DA n/a
  263. * 1 1 RA TA DA SA
  264. */
  265. memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
  266. memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
  267. switch (hdr->frame_control &
  268. cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  269. case cpu_to_le16(IEEE80211_FCTL_TODS):
  270. if (unlikely(iftype != NL80211_IFTYPE_AP &&
  271. iftype != NL80211_IFTYPE_AP_VLAN))
  272. return -1;
  273. break;
  274. case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  275. if (unlikely(iftype != NL80211_IFTYPE_WDS &&
  276. iftype != NL80211_IFTYPE_MESH_POINT))
  277. return -1;
  278. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  279. struct ieee80211s_hdr *meshdr =
  280. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  281. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  282. if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
  283. memcpy(dst, meshdr->eaddr1, ETH_ALEN);
  284. memcpy(src, meshdr->eaddr2, ETH_ALEN);
  285. }
  286. }
  287. break;
  288. case cpu_to_le16(IEEE80211_FCTL_FROMDS):
  289. if (iftype != NL80211_IFTYPE_STATION ||
  290. (is_multicast_ether_addr(dst) &&
  291. !compare_ether_addr(src, addr)))
  292. return -1;
  293. break;
  294. case cpu_to_le16(0):
  295. if (iftype != NL80211_IFTYPE_ADHOC)
  296. return -1;
  297. break;
  298. }
  299. if (unlikely(skb->len - hdrlen < 8))
  300. return -1;
  301. payload = skb->data + hdrlen;
  302. ethertype = (payload[6] << 8) | payload[7];
  303. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  304. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  305. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  306. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  307. * replace EtherType */
  308. skb_pull(skb, hdrlen + 6);
  309. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  310. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  311. } else {
  312. struct ethhdr *ehdr;
  313. __be16 len;
  314. skb_pull(skb, hdrlen);
  315. len = htons(skb->len);
  316. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  317. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  318. memcpy(ehdr->h_source, src, ETH_ALEN);
  319. ehdr->h_proto = len;
  320. }
  321. return 0;
  322. }
  323. EXPORT_SYMBOL(ieee80211_data_to_8023);
  324. int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr,
  325. enum nl80211_iftype iftype, u8 *bssid, bool qos)
  326. {
  327. struct ieee80211_hdr hdr;
  328. u16 hdrlen, ethertype;
  329. __le16 fc;
  330. const u8 *encaps_data;
  331. int encaps_len, skip_header_bytes;
  332. int nh_pos, h_pos;
  333. int head_need;
  334. if (unlikely(skb->len < ETH_HLEN))
  335. return -EINVAL;
  336. nh_pos = skb_network_header(skb) - skb->data;
  337. h_pos = skb_transport_header(skb) - skb->data;
  338. /* convert Ethernet header to proper 802.11 header (based on
  339. * operation mode) */
  340. ethertype = (skb->data[12] << 8) | skb->data[13];
  341. fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
  342. switch (iftype) {
  343. case NL80211_IFTYPE_AP:
  344. case NL80211_IFTYPE_AP_VLAN:
  345. fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
  346. /* DA BSSID SA */
  347. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  348. memcpy(hdr.addr2, addr, ETH_ALEN);
  349. memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
  350. hdrlen = 24;
  351. break;
  352. case NL80211_IFTYPE_STATION:
  353. fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
  354. /* BSSID SA DA */
  355. memcpy(hdr.addr1, bssid, ETH_ALEN);
  356. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  357. memcpy(hdr.addr3, skb->data, ETH_ALEN);
  358. hdrlen = 24;
  359. break;
  360. case NL80211_IFTYPE_ADHOC:
  361. /* DA SA BSSID */
  362. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  363. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  364. memcpy(hdr.addr3, bssid, ETH_ALEN);
  365. hdrlen = 24;
  366. break;
  367. default:
  368. return -EOPNOTSUPP;
  369. }
  370. if (qos) {
  371. fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
  372. hdrlen += 2;
  373. }
  374. hdr.frame_control = fc;
  375. hdr.duration_id = 0;
  376. hdr.seq_ctrl = 0;
  377. skip_header_bytes = ETH_HLEN;
  378. if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
  379. encaps_data = bridge_tunnel_header;
  380. encaps_len = sizeof(bridge_tunnel_header);
  381. skip_header_bytes -= 2;
  382. } else if (ethertype > 0x600) {
  383. encaps_data = rfc1042_header;
  384. encaps_len = sizeof(rfc1042_header);
  385. skip_header_bytes -= 2;
  386. } else {
  387. encaps_data = NULL;
  388. encaps_len = 0;
  389. }
  390. skb_pull(skb, skip_header_bytes);
  391. nh_pos -= skip_header_bytes;
  392. h_pos -= skip_header_bytes;
  393. head_need = hdrlen + encaps_len - skb_headroom(skb);
  394. if (head_need > 0 || skb_cloned(skb)) {
  395. head_need = max(head_need, 0);
  396. if (head_need)
  397. skb_orphan(skb);
  398. if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
  399. printk(KERN_ERR "failed to reallocate Tx buffer\n");
  400. return -ENOMEM;
  401. }
  402. skb->truesize += head_need;
  403. }
  404. if (encaps_data) {
  405. memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
  406. nh_pos += encaps_len;
  407. h_pos += encaps_len;
  408. }
  409. memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
  410. nh_pos += hdrlen;
  411. h_pos += hdrlen;
  412. /* Update skb pointers to various headers since this modified frame
  413. * is going to go through Linux networking code that may potentially
  414. * need things like pointer to IP header. */
  415. skb_set_mac_header(skb, 0);
  416. skb_set_network_header(skb, nh_pos);
  417. skb_set_transport_header(skb, h_pos);
  418. return 0;
  419. }
  420. EXPORT_SYMBOL(ieee80211_data_from_8023);
  421. /* Given a data frame determine the 802.1p/1d tag to use. */
  422. unsigned int cfg80211_classify8021d(struct sk_buff *skb)
  423. {
  424. unsigned int dscp;
  425. /* skb->priority values from 256->263 are magic values to
  426. * directly indicate a specific 802.1d priority. This is used
  427. * to allow 802.1d priority to be passed directly in from VLAN
  428. * tags, etc.
  429. */
  430. if (skb->priority >= 256 && skb->priority <= 263)
  431. return skb->priority - 256;
  432. switch (skb->protocol) {
  433. case htons(ETH_P_IP):
  434. dscp = ip_hdr(skb)->tos & 0xfc;
  435. break;
  436. default:
  437. return 0;
  438. }
  439. return dscp >> 5;
  440. }
  441. EXPORT_SYMBOL(cfg80211_classify8021d);