auth.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /* SCTP kernel implementation
  2. * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3. *
  4. * This file is part of the SCTP kernel implementation
  5. *
  6. * This SCTP implementation is free software;
  7. * you can redistribute it and/or modify it under the terms of
  8. * the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This SCTP implementation is distributed in the hope that it
  13. * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14. * ************************
  15. * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16. * See the GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with GNU CC; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 59 Temple Place - Suite 330,
  21. * Boston, MA 02111-1307, USA.
  22. *
  23. * Please send any bug reports or fixes you make to the
  24. * email address(es):
  25. * lksctp developers <lksctp-developers@lists.sourceforge.net>
  26. *
  27. * Or submit a bug report through the following website:
  28. * http://www.sf.net/projects/lksctp
  29. *
  30. * Written or modified by:
  31. * Vlad Yasevich <vladislav.yasevich@hp.com>
  32. *
  33. * Any bugs reported given to us we will try to fix... any fixes shared will
  34. * be incorporated into the next SCTP release.
  35. */
  36. #include <linux/types.h>
  37. #include <linux/crypto.h>
  38. #include <linux/scatterlist.h>
  39. #include <net/sctp/sctp.h>
  40. #include <net/sctp/auth.h>
  41. static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  42. {
  43. /* id 0 is reserved. as all 0 */
  44. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  45. },
  46. {
  47. .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  48. .hmac_name="hmac(sha1)",
  49. .hmac_len = SCTP_SHA1_SIG_SIZE,
  50. },
  51. {
  52. /* id 2 is reserved as well */
  53. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  54. },
  55. #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
  56. {
  57. .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  58. .hmac_name="hmac(sha256)",
  59. .hmac_len = SCTP_SHA256_SIG_SIZE,
  60. }
  61. #endif
  62. };
  63. void sctp_auth_key_put(struct sctp_auth_bytes *key)
  64. {
  65. if (!key)
  66. return;
  67. if (atomic_dec_and_test(&key->refcnt)) {
  68. kfree(key);
  69. SCTP_DBG_OBJCNT_DEC(keys);
  70. }
  71. }
  72. /* Create a new key structure of a given length */
  73. static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  74. {
  75. struct sctp_auth_bytes *key;
  76. /* Verify that we are not going to overflow INT_MAX */
  77. if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
  78. return NULL;
  79. /* Allocate the shared key */
  80. key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  81. if (!key)
  82. return NULL;
  83. key->len = key_len;
  84. atomic_set(&key->refcnt, 1);
  85. SCTP_DBG_OBJCNT_INC(keys);
  86. return key;
  87. }
  88. /* Create a new shared key container with a give key id */
  89. struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  90. {
  91. struct sctp_shared_key *new;
  92. /* Allocate the shared key container */
  93. new = kzalloc(sizeof(struct sctp_shared_key), gfp);
  94. if (!new)
  95. return NULL;
  96. INIT_LIST_HEAD(&new->key_list);
  97. new->key_id = key_id;
  98. return new;
  99. }
  100. /* Free the shared key stucture */
  101. static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
  102. {
  103. BUG_ON(!list_empty(&sh_key->key_list));
  104. sctp_auth_key_put(sh_key->key);
  105. sh_key->key = NULL;
  106. kfree(sh_key);
  107. }
  108. /* Destory the entire key list. This is done during the
  109. * associon and endpoint free process.
  110. */
  111. void sctp_auth_destroy_keys(struct list_head *keys)
  112. {
  113. struct sctp_shared_key *ep_key;
  114. struct sctp_shared_key *tmp;
  115. if (list_empty(keys))
  116. return;
  117. key_for_each_safe(ep_key, tmp, keys) {
  118. list_del_init(&ep_key->key_list);
  119. sctp_auth_shkey_free(ep_key);
  120. }
  121. }
  122. /* Compare two byte vectors as numbers. Return values
  123. * are:
  124. * 0 - vectors are equal
  125. * < 0 - vector 1 is smaller than vector2
  126. * > 0 - vector 1 is greater than vector2
  127. *
  128. * Algorithm is:
  129. * This is performed by selecting the numerically smaller key vector...
  130. * If the key vectors are equal as numbers but differ in length ...
  131. * the shorter vector is considered smaller
  132. *
  133. * Examples (with small values):
  134. * 000123456789 > 123456789 (first number is longer)
  135. * 000123456789 < 234567891 (second number is larger numerically)
  136. * 123456789 > 2345678 (first number is both larger & longer)
  137. */
  138. static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
  139. struct sctp_auth_bytes *vector2)
  140. {
  141. int diff;
  142. int i;
  143. const __u8 *longer;
  144. diff = vector1->len - vector2->len;
  145. if (diff) {
  146. longer = (diff > 0) ? vector1->data : vector2->data;
  147. /* Check to see if the longer number is
  148. * lead-zero padded. If it is not, it
  149. * is automatically larger numerically.
  150. */
  151. for (i = 0; i < abs(diff); i++ ) {
  152. if (longer[i] != 0)
  153. return diff;
  154. }
  155. }
  156. /* lengths are the same, compare numbers */
  157. return memcmp(vector1->data, vector2->data, vector1->len);
  158. }
  159. /*
  160. * Create a key vector as described in SCTP-AUTH, Section 6.1
  161. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  162. * parameter sent by each endpoint are concatenated as byte vectors.
  163. * These parameters include the parameter type, parameter length, and
  164. * the parameter value, but padding is omitted; all padding MUST be
  165. * removed from this concatenation before proceeding with further
  166. * computation of keys. Parameters which were not sent are simply
  167. * omitted from the concatenation process. The resulting two vectors
  168. * are called the two key vectors.
  169. */
  170. static struct sctp_auth_bytes *sctp_auth_make_key_vector(
  171. sctp_random_param_t *random,
  172. sctp_chunks_param_t *chunks,
  173. sctp_hmac_algo_param_t *hmacs,
  174. gfp_t gfp)
  175. {
  176. struct sctp_auth_bytes *new;
  177. __u32 len;
  178. __u32 offset = 0;
  179. len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
  180. if (chunks)
  181. len += ntohs(chunks->param_hdr.length);
  182. new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
  183. if (!new)
  184. return NULL;
  185. new->len = len;
  186. memcpy(new->data, random, ntohs(random->param_hdr.length));
  187. offset += ntohs(random->param_hdr.length);
  188. if (chunks) {
  189. memcpy(new->data + offset, chunks,
  190. ntohs(chunks->param_hdr.length));
  191. offset += ntohs(chunks->param_hdr.length);
  192. }
  193. memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
  194. return new;
  195. }
  196. /* Make a key vector based on our local parameters */
  197. static struct sctp_auth_bytes *sctp_auth_make_local_vector(
  198. const struct sctp_association *asoc,
  199. gfp_t gfp)
  200. {
  201. return sctp_auth_make_key_vector(
  202. (sctp_random_param_t*)asoc->c.auth_random,
  203. (sctp_chunks_param_t*)asoc->c.auth_chunks,
  204. (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
  205. gfp);
  206. }
  207. /* Make a key vector based on peer's parameters */
  208. static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
  209. const struct sctp_association *asoc,
  210. gfp_t gfp)
  211. {
  212. return sctp_auth_make_key_vector(asoc->peer.peer_random,
  213. asoc->peer.peer_chunks,
  214. asoc->peer.peer_hmacs,
  215. gfp);
  216. }
  217. /* Set the value of the association shared key base on the parameters
  218. * given. The algorithm is:
  219. * From the endpoint pair shared keys and the key vectors the
  220. * association shared keys are computed. This is performed by selecting
  221. * the numerically smaller key vector and concatenating it to the
  222. * endpoint pair shared key, and then concatenating the numerically
  223. * larger key vector to that. The result of the concatenation is the
  224. * association shared key.
  225. */
  226. static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
  227. struct sctp_shared_key *ep_key,
  228. struct sctp_auth_bytes *first_vector,
  229. struct sctp_auth_bytes *last_vector,
  230. gfp_t gfp)
  231. {
  232. struct sctp_auth_bytes *secret;
  233. __u32 offset = 0;
  234. __u32 auth_len;
  235. auth_len = first_vector->len + last_vector->len;
  236. if (ep_key->key)
  237. auth_len += ep_key->key->len;
  238. secret = sctp_auth_create_key(auth_len, gfp);
  239. if (!secret)
  240. return NULL;
  241. if (ep_key->key) {
  242. memcpy(secret->data, ep_key->key->data, ep_key->key->len);
  243. offset += ep_key->key->len;
  244. }
  245. memcpy(secret->data + offset, first_vector->data, first_vector->len);
  246. offset += first_vector->len;
  247. memcpy(secret->data + offset, last_vector->data, last_vector->len);
  248. return secret;
  249. }
  250. /* Create an association shared key. Follow the algorithm
  251. * described in SCTP-AUTH, Section 6.1
  252. */
  253. static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
  254. const struct sctp_association *asoc,
  255. struct sctp_shared_key *ep_key,
  256. gfp_t gfp)
  257. {
  258. struct sctp_auth_bytes *local_key_vector;
  259. struct sctp_auth_bytes *peer_key_vector;
  260. struct sctp_auth_bytes *first_vector,
  261. *last_vector;
  262. struct sctp_auth_bytes *secret = NULL;
  263. int cmp;
  264. /* Now we need to build the key vectors
  265. * SCTP-AUTH , Section 6.1
  266. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  267. * parameter sent by each endpoint are concatenated as byte vectors.
  268. * These parameters include the parameter type, parameter length, and
  269. * the parameter value, but padding is omitted; all padding MUST be
  270. * removed from this concatenation before proceeding with further
  271. * computation of keys. Parameters which were not sent are simply
  272. * omitted from the concatenation process. The resulting two vectors
  273. * are called the two key vectors.
  274. */
  275. local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
  276. peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
  277. if (!peer_key_vector || !local_key_vector)
  278. goto out;
  279. /* Figure out the order in wich the key_vectors will be
  280. * added to the endpoint shared key.
  281. * SCTP-AUTH, Section 6.1:
  282. * This is performed by selecting the numerically smaller key
  283. * vector and concatenating it to the endpoint pair shared
  284. * key, and then concatenating the numerically larger key
  285. * vector to that. If the key vectors are equal as numbers
  286. * but differ in length, then the concatenation order is the
  287. * endpoint shared key, followed by the shorter key vector,
  288. * followed by the longer key vector. Otherwise, the key
  289. * vectors are identical, and may be concatenated to the
  290. * endpoint pair key in any order.
  291. */
  292. cmp = sctp_auth_compare_vectors(local_key_vector,
  293. peer_key_vector);
  294. if (cmp < 0) {
  295. first_vector = local_key_vector;
  296. last_vector = peer_key_vector;
  297. } else {
  298. first_vector = peer_key_vector;
  299. last_vector = local_key_vector;
  300. }
  301. secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
  302. gfp);
  303. out:
  304. kfree(local_key_vector);
  305. kfree(peer_key_vector);
  306. return secret;
  307. }
  308. /*
  309. * Populate the association overlay list with the list
  310. * from the endpoint.
  311. */
  312. int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
  313. struct sctp_association *asoc,
  314. gfp_t gfp)
  315. {
  316. struct sctp_shared_key *sh_key;
  317. struct sctp_shared_key *new;
  318. BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
  319. key_for_each(sh_key, &ep->endpoint_shared_keys) {
  320. new = sctp_auth_shkey_create(sh_key->key_id, gfp);
  321. if (!new)
  322. goto nomem;
  323. new->key = sh_key->key;
  324. sctp_auth_key_hold(new->key);
  325. list_add(&new->key_list, &asoc->endpoint_shared_keys);
  326. }
  327. return 0;
  328. nomem:
  329. sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
  330. return -ENOMEM;
  331. }
  332. /* Public interface to creat the association shared key.
  333. * See code above for the algorithm.
  334. */
  335. int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
  336. {
  337. struct sctp_auth_bytes *secret;
  338. struct sctp_shared_key *ep_key;
  339. /* If we don't support AUTH, or peer is not capable
  340. * we don't need to do anything.
  341. */
  342. if (!sctp_auth_enable || !asoc->peer.auth_capable)
  343. return 0;
  344. /* If the key_id is non-zero and we couldn't find an
  345. * endpoint pair shared key, we can't compute the
  346. * secret.
  347. * For key_id 0, endpoint pair shared key is a NULL key.
  348. */
  349. ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
  350. BUG_ON(!ep_key);
  351. secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  352. if (!secret)
  353. return -ENOMEM;
  354. sctp_auth_key_put(asoc->asoc_shared_key);
  355. asoc->asoc_shared_key = secret;
  356. return 0;
  357. }
  358. /* Find the endpoint pair shared key based on the key_id */
  359. struct sctp_shared_key *sctp_auth_get_shkey(
  360. const struct sctp_association *asoc,
  361. __u16 key_id)
  362. {
  363. struct sctp_shared_key *key;
  364. /* First search associations set of endpoint pair shared keys */
  365. key_for_each(key, &asoc->endpoint_shared_keys) {
  366. if (key->key_id == key_id)
  367. return key;
  368. }
  369. return NULL;
  370. }
  371. /*
  372. * Initialize all the possible digest transforms that we can use. Right now
  373. * now, the supported digests are SHA1 and SHA256. We do this here once
  374. * because of the restrictiong that transforms may only be allocated in
  375. * user context. This forces us to pre-allocated all possible transforms
  376. * at the endpoint init time.
  377. */
  378. int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
  379. {
  380. struct crypto_hash *tfm = NULL;
  381. __u16 id;
  382. /* if the transforms are already allocted, we are done */
  383. if (!sctp_auth_enable) {
  384. ep->auth_hmacs = NULL;
  385. return 0;
  386. }
  387. if (ep->auth_hmacs)
  388. return 0;
  389. /* Allocated the array of pointers to transorms */
  390. ep->auth_hmacs = kzalloc(
  391. sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
  392. gfp);
  393. if (!ep->auth_hmacs)
  394. return -ENOMEM;
  395. for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
  396. /* See is we support the id. Supported IDs have name and
  397. * length fields set, so that we can allocated and use
  398. * them. We can safely just check for name, for without the
  399. * name, we can't allocate the TFM.
  400. */
  401. if (!sctp_hmac_list[id].hmac_name)
  402. continue;
  403. /* If this TFM has been allocated, we are all set */
  404. if (ep->auth_hmacs[id])
  405. continue;
  406. /* Allocate the ID */
  407. tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
  408. CRYPTO_ALG_ASYNC);
  409. if (IS_ERR(tfm))
  410. goto out_err;
  411. ep->auth_hmacs[id] = tfm;
  412. }
  413. return 0;
  414. out_err:
  415. /* Clean up any successful allocations */
  416. sctp_auth_destroy_hmacs(ep->auth_hmacs);
  417. return -ENOMEM;
  418. }
  419. /* Destroy the hmac tfm array */
  420. void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
  421. {
  422. int i;
  423. if (!auth_hmacs)
  424. return;
  425. for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
  426. {
  427. if (auth_hmacs[i])
  428. crypto_free_hash(auth_hmacs[i]);
  429. }
  430. kfree(auth_hmacs);
  431. }
  432. struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
  433. {
  434. return &sctp_hmac_list[hmac_id];
  435. }
  436. /* Get an hmac description information that we can use to build
  437. * the AUTH chunk
  438. */
  439. struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
  440. {
  441. struct sctp_hmac_algo_param *hmacs;
  442. __u16 n_elt;
  443. __u16 id = 0;
  444. int i;
  445. /* If we have a default entry, use it */
  446. if (asoc->default_hmac_id)
  447. return &sctp_hmac_list[asoc->default_hmac_id];
  448. /* Since we do not have a default entry, find the first entry
  449. * we support and return that. Do not cache that id.
  450. */
  451. hmacs = asoc->peer.peer_hmacs;
  452. if (!hmacs)
  453. return NULL;
  454. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  455. for (i = 0; i < n_elt; i++) {
  456. id = ntohs(hmacs->hmac_ids[i]);
  457. /* Check the id is in the supported range */
  458. if (id > SCTP_AUTH_HMAC_ID_MAX)
  459. continue;
  460. /* See is we support the id. Supported IDs have name and
  461. * length fields set, so that we can allocated and use
  462. * them. We can safely just check for name, for without the
  463. * name, we can't allocate the TFM.
  464. */
  465. if (!sctp_hmac_list[id].hmac_name)
  466. continue;
  467. break;
  468. }
  469. if (id == 0)
  470. return NULL;
  471. return &sctp_hmac_list[id];
  472. }
  473. static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
  474. {
  475. int found = 0;
  476. int i;
  477. for (i = 0; i < n_elts; i++) {
  478. if (hmac_id == hmacs[i]) {
  479. found = 1;
  480. break;
  481. }
  482. }
  483. return found;
  484. }
  485. /* See if the HMAC_ID is one that we claim as supported */
  486. int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
  487. __be16 hmac_id)
  488. {
  489. struct sctp_hmac_algo_param *hmacs;
  490. __u16 n_elt;
  491. if (!asoc)
  492. return 0;
  493. hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
  494. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  495. return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
  496. }
  497. /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
  498. * Section 6.1:
  499. * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
  500. * algorithm it supports.
  501. */
  502. void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
  503. struct sctp_hmac_algo_param *hmacs)
  504. {
  505. struct sctp_endpoint *ep;
  506. __u16 id;
  507. int i;
  508. int n_params;
  509. /* if the default id is already set, use it */
  510. if (asoc->default_hmac_id)
  511. return;
  512. n_params = (ntohs(hmacs->param_hdr.length)
  513. - sizeof(sctp_paramhdr_t)) >> 1;
  514. ep = asoc->ep;
  515. for (i = 0; i < n_params; i++) {
  516. id = ntohs(hmacs->hmac_ids[i]);
  517. /* Check the id is in the supported range */
  518. if (id > SCTP_AUTH_HMAC_ID_MAX)
  519. continue;
  520. /* If this TFM has been allocated, use this id */
  521. if (ep->auth_hmacs[id]) {
  522. asoc->default_hmac_id = id;
  523. break;
  524. }
  525. }
  526. }
  527. /* Check to see if the given chunk is supposed to be authenticated */
  528. static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
  529. {
  530. unsigned short len;
  531. int found = 0;
  532. int i;
  533. if (!param || param->param_hdr.length == 0)
  534. return 0;
  535. len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
  536. /* SCTP-AUTH, Section 3.2
  537. * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
  538. * chunks MUST NOT be listed in the CHUNKS parameter. However, if
  539. * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
  540. * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
  541. */
  542. for (i = 0; !found && i < len; i++) {
  543. switch (param->chunks[i]) {
  544. case SCTP_CID_INIT:
  545. case SCTP_CID_INIT_ACK:
  546. case SCTP_CID_SHUTDOWN_COMPLETE:
  547. case SCTP_CID_AUTH:
  548. break;
  549. default:
  550. if (param->chunks[i] == chunk)
  551. found = 1;
  552. break;
  553. }
  554. }
  555. return found;
  556. }
  557. /* Check if peer requested that this chunk is authenticated */
  558. int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  559. {
  560. if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
  561. return 0;
  562. return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
  563. }
  564. /* Check if we requested that peer authenticate this chunk. */
  565. int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  566. {
  567. if (!sctp_auth_enable || !asoc)
  568. return 0;
  569. return __sctp_auth_cid(chunk,
  570. (struct sctp_chunks_param *)asoc->c.auth_chunks);
  571. }
  572. /* SCTP-AUTH: Section 6.2:
  573. * The sender MUST calculate the MAC as described in RFC2104 [2] using
  574. * the hash function H as described by the MAC Identifier and the shared
  575. * association key K based on the endpoint pair shared key described by
  576. * the shared key identifier. The 'data' used for the computation of
  577. * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
  578. * zero (as shown in Figure 6) followed by all chunks that are placed
  579. * after the AUTH chunk in the SCTP packet.
  580. */
  581. void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
  582. struct sk_buff *skb,
  583. struct sctp_auth_chunk *auth,
  584. gfp_t gfp)
  585. {
  586. struct scatterlist sg;
  587. struct hash_desc desc;
  588. struct sctp_auth_bytes *asoc_key;
  589. __u16 key_id, hmac_id;
  590. __u8 *digest;
  591. unsigned char *end;
  592. int free_key = 0;
  593. /* Extract the info we need:
  594. * - hmac id
  595. * - key id
  596. */
  597. key_id = ntohs(auth->auth_hdr.shkey_id);
  598. hmac_id = ntohs(auth->auth_hdr.hmac_id);
  599. if (key_id == asoc->active_key_id)
  600. asoc_key = asoc->asoc_shared_key;
  601. else {
  602. struct sctp_shared_key *ep_key;
  603. ep_key = sctp_auth_get_shkey(asoc, key_id);
  604. if (!ep_key)
  605. return;
  606. asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  607. if (!asoc_key)
  608. return;
  609. free_key = 1;
  610. }
  611. /* set up scatter list */
  612. end = skb_tail_pointer(skb);
  613. sg_init_one(&sg, auth, end - (unsigned char *)auth);
  614. desc.tfm = asoc->ep->auth_hmacs[hmac_id];
  615. desc.flags = 0;
  616. digest = auth->auth_hdr.hmac;
  617. if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
  618. goto free;
  619. crypto_hash_digest(&desc, &sg, sg.length, digest);
  620. free:
  621. if (free_key)
  622. sctp_auth_key_put(asoc_key);
  623. }
  624. /* API Helpers */
  625. /* Add a chunk to the endpoint authenticated chunk list */
  626. int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
  627. {
  628. struct sctp_chunks_param *p = ep->auth_chunk_list;
  629. __u16 nchunks;
  630. __u16 param_len;
  631. /* If this chunk is already specified, we are done */
  632. if (__sctp_auth_cid(chunk_id, p))
  633. return 0;
  634. /* Check if we can add this chunk to the array */
  635. param_len = ntohs(p->param_hdr.length);
  636. nchunks = param_len - sizeof(sctp_paramhdr_t);
  637. if (nchunks == SCTP_NUM_CHUNK_TYPES)
  638. return -EINVAL;
  639. p->chunks[nchunks] = chunk_id;
  640. p->param_hdr.length = htons(param_len + 1);
  641. return 0;
  642. }
  643. /* Add hmac identifires to the endpoint list of supported hmac ids */
  644. int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
  645. struct sctp_hmacalgo *hmacs)
  646. {
  647. int has_sha1 = 0;
  648. __u16 id;
  649. int i;
  650. /* Scan the list looking for unsupported id. Also make sure that
  651. * SHA1 is specified.
  652. */
  653. for (i = 0; i < hmacs->shmac_num_idents; i++) {
  654. id = hmacs->shmac_idents[i];
  655. if (id > SCTP_AUTH_HMAC_ID_MAX)
  656. return -EOPNOTSUPP;
  657. if (SCTP_AUTH_HMAC_ID_SHA1 == id)
  658. has_sha1 = 1;
  659. if (!sctp_hmac_list[id].hmac_name)
  660. return -EOPNOTSUPP;
  661. }
  662. if (!has_sha1)
  663. return -EINVAL;
  664. memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
  665. hmacs->shmac_num_idents * sizeof(__u16));
  666. ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
  667. hmacs->shmac_num_idents * sizeof(__u16));
  668. return 0;
  669. }
  670. /* Set a new shared key on either endpoint or association. If the
  671. * the key with a same ID already exists, replace the key (remove the
  672. * old key and add a new one).
  673. */
  674. int sctp_auth_set_key(struct sctp_endpoint *ep,
  675. struct sctp_association *asoc,
  676. struct sctp_authkey *auth_key)
  677. {
  678. struct sctp_shared_key *cur_key = NULL;
  679. struct sctp_auth_bytes *key;
  680. struct list_head *sh_keys;
  681. int replace = 0;
  682. /* Try to find the given key id to see if
  683. * we are doing a replace, or adding a new key
  684. */
  685. if (asoc)
  686. sh_keys = &asoc->endpoint_shared_keys;
  687. else
  688. sh_keys = &ep->endpoint_shared_keys;
  689. key_for_each(cur_key, sh_keys) {
  690. if (cur_key->key_id == auth_key->sca_keynumber) {
  691. replace = 1;
  692. break;
  693. }
  694. }
  695. /* If we are not replacing a key id, we need to allocate
  696. * a shared key.
  697. */
  698. if (!replace) {
  699. cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
  700. GFP_KERNEL);
  701. if (!cur_key)
  702. return -ENOMEM;
  703. }
  704. /* Create a new key data based on the info passed in */
  705. key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
  706. if (!key)
  707. goto nomem;
  708. memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
  709. /* If we are replacing, remove the old keys data from the
  710. * key id. If we are adding new key id, add it to the
  711. * list.
  712. */
  713. if (replace)
  714. sctp_auth_key_put(cur_key->key);
  715. else
  716. list_add(&cur_key->key_list, sh_keys);
  717. cur_key->key = key;
  718. sctp_auth_key_hold(key);
  719. return 0;
  720. nomem:
  721. if (!replace)
  722. sctp_auth_shkey_free(cur_key);
  723. return -ENOMEM;
  724. }
  725. int sctp_auth_set_active_key(struct sctp_endpoint *ep,
  726. struct sctp_association *asoc,
  727. __u16 key_id)
  728. {
  729. struct sctp_shared_key *key;
  730. struct list_head *sh_keys;
  731. int found = 0;
  732. /* The key identifier MUST correst to an existing key */
  733. if (asoc)
  734. sh_keys = &asoc->endpoint_shared_keys;
  735. else
  736. sh_keys = &ep->endpoint_shared_keys;
  737. key_for_each(key, sh_keys) {
  738. if (key->key_id == key_id) {
  739. found = 1;
  740. break;
  741. }
  742. }
  743. if (!found)
  744. return -EINVAL;
  745. if (asoc) {
  746. asoc->active_key_id = key_id;
  747. sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
  748. } else
  749. ep->active_key_id = key_id;
  750. return 0;
  751. }
  752. int sctp_auth_del_key_id(struct sctp_endpoint *ep,
  753. struct sctp_association *asoc,
  754. __u16 key_id)
  755. {
  756. struct sctp_shared_key *key;
  757. struct list_head *sh_keys;
  758. int found = 0;
  759. /* The key identifier MUST NOT be the current active key
  760. * The key identifier MUST correst to an existing key
  761. */
  762. if (asoc) {
  763. if (asoc->active_key_id == key_id)
  764. return -EINVAL;
  765. sh_keys = &asoc->endpoint_shared_keys;
  766. } else {
  767. if (ep->active_key_id == key_id)
  768. return -EINVAL;
  769. sh_keys = &ep->endpoint_shared_keys;
  770. }
  771. key_for_each(key, sh_keys) {
  772. if (key->key_id == key_id) {
  773. found = 1;
  774. break;
  775. }
  776. }
  777. if (!found)
  778. return -EINVAL;
  779. /* Delete the shared key */
  780. list_del_init(&key->key_list);
  781. sctp_auth_shkey_free(key);
  782. return 0;
  783. }