tcp_input.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/module.h>
  64. #include <linux/sysctl.h>
  65. #include <linux/kernel.h>
  66. #include <net/dst.h>
  67. #include <net/tcp.h>
  68. #include <net/inet_common.h>
  69. #include <linux/ipsec.h>
  70. #include <asm/unaligned.h>
  71. #include <net/netdma.h>
  72. int sysctl_tcp_timestamps __read_mostly = 1;
  73. int sysctl_tcp_window_scaling __read_mostly = 1;
  74. int sysctl_tcp_sack __read_mostly = 1;
  75. int sysctl_tcp_fack __read_mostly = 1;
  76. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  77. int sysctl_tcp_ecn __read_mostly = 2;
  78. int sysctl_tcp_dsack __read_mostly = 1;
  79. int sysctl_tcp_app_win __read_mostly = 31;
  80. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  81. int sysctl_tcp_stdurg __read_mostly;
  82. int sysctl_tcp_rfc1337 __read_mostly;
  83. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84. int sysctl_tcp_frto __read_mostly = 2;
  85. int sysctl_tcp_frto_response __read_mostly;
  86. int sysctl_tcp_nometrics_save __read_mostly;
  87. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  88. int sysctl_tcp_abc __read_mostly;
  89. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  90. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  91. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  92. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  93. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  94. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  95. #define FLAG_ECE 0x40 /* ECE in this ACK */
  96. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  97. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  98. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  99. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  100. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  101. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  102. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  103. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  104. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  105. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  106. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  107. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  108. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  109. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  110. /* Adapt the MSS value used to make delayed ack decision to the
  111. * real world.
  112. */
  113. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  114. {
  115. struct inet_connection_sock *icsk = inet_csk(sk);
  116. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  117. unsigned int len;
  118. icsk->icsk_ack.last_seg_size = 0;
  119. /* skb->len may jitter because of SACKs, even if peer
  120. * sends good full-sized frames.
  121. */
  122. len = skb_shinfo(skb)->gso_size ? : skb->len;
  123. if (len >= icsk->icsk_ack.rcv_mss) {
  124. icsk->icsk_ack.rcv_mss = len;
  125. } else {
  126. /* Otherwise, we make more careful check taking into account,
  127. * that SACKs block is variable.
  128. *
  129. * "len" is invariant segment length, including TCP header.
  130. */
  131. len += skb->data - skb_transport_header(skb);
  132. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  133. /* If PSH is not set, packet should be
  134. * full sized, provided peer TCP is not badly broken.
  135. * This observation (if it is correct 8)) allows
  136. * to handle super-low mtu links fairly.
  137. */
  138. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  139. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  140. /* Subtract also invariant (if peer is RFC compliant),
  141. * tcp header plus fixed timestamp option length.
  142. * Resulting "len" is MSS free of SACK jitter.
  143. */
  144. len -= tcp_sk(sk)->tcp_header_len;
  145. icsk->icsk_ack.last_seg_size = len;
  146. if (len == lss) {
  147. icsk->icsk_ack.rcv_mss = len;
  148. return;
  149. }
  150. }
  151. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  152. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  153. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  154. }
  155. }
  156. static void tcp_incr_quickack(struct sock *sk)
  157. {
  158. struct inet_connection_sock *icsk = inet_csk(sk);
  159. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  160. if (quickacks == 0)
  161. quickacks = 2;
  162. if (quickacks > icsk->icsk_ack.quick)
  163. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  164. }
  165. void tcp_enter_quickack_mode(struct sock *sk)
  166. {
  167. struct inet_connection_sock *icsk = inet_csk(sk);
  168. tcp_incr_quickack(sk);
  169. icsk->icsk_ack.pingpong = 0;
  170. icsk->icsk_ack.ato = TCP_ATO_MIN;
  171. }
  172. /* Send ACKs quickly, if "quick" count is not exhausted
  173. * and the session is not interactive.
  174. */
  175. static inline int tcp_in_quickack_mode(const struct sock *sk)
  176. {
  177. const struct inet_connection_sock *icsk = inet_csk(sk);
  178. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  179. }
  180. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  181. {
  182. if (tp->ecn_flags & TCP_ECN_OK)
  183. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  184. }
  185. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  186. {
  187. if (tcp_hdr(skb)->cwr)
  188. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  189. }
  190. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  191. {
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  195. {
  196. if (tp->ecn_flags & TCP_ECN_OK) {
  197. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  198. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  199. /* Funny extension: if ECT is not set on a segment,
  200. * it is surely retransmit. It is not in ECN RFC,
  201. * but Linux follows this rule. */
  202. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  203. tcp_enter_quickack_mode((struct sock *)tp);
  204. }
  205. }
  206. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  207. {
  208. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  209. tp->ecn_flags &= ~TCP_ECN_OK;
  210. }
  211. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  212. {
  213. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  214. tp->ecn_flags &= ~TCP_ECN_OK;
  215. }
  216. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  217. {
  218. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  219. return 1;
  220. return 0;
  221. }
  222. /* Buffer size and advertised window tuning.
  223. *
  224. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  225. */
  226. static void tcp_fixup_sndbuf(struct sock *sk)
  227. {
  228. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  229. sizeof(struct sk_buff);
  230. if (sk->sk_sndbuf < 3 * sndmem)
  231. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  232. }
  233. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  234. *
  235. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  236. * forward and advertised in receiver window (tp->rcv_wnd) and
  237. * "application buffer", required to isolate scheduling/application
  238. * latencies from network.
  239. * window_clamp is maximal advertised window. It can be less than
  240. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  241. * is reserved for "application" buffer. The less window_clamp is
  242. * the smoother our behaviour from viewpoint of network, but the lower
  243. * throughput and the higher sensitivity of the connection to losses. 8)
  244. *
  245. * rcv_ssthresh is more strict window_clamp used at "slow start"
  246. * phase to predict further behaviour of this connection.
  247. * It is used for two goals:
  248. * - to enforce header prediction at sender, even when application
  249. * requires some significant "application buffer". It is check #1.
  250. * - to prevent pruning of receive queue because of misprediction
  251. * of receiver window. Check #2.
  252. *
  253. * The scheme does not work when sender sends good segments opening
  254. * window and then starts to feed us spaghetti. But it should work
  255. * in common situations. Otherwise, we have to rely on queue collapsing.
  256. */
  257. /* Slow part of check#2. */
  258. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  259. {
  260. struct tcp_sock *tp = tcp_sk(sk);
  261. /* Optimize this! */
  262. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  263. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  264. while (tp->rcv_ssthresh <= window) {
  265. if (truesize <= skb->len)
  266. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  267. truesize >>= 1;
  268. window >>= 1;
  269. }
  270. return 0;
  271. }
  272. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. /* Check #1 */
  276. if (tp->rcv_ssthresh < tp->window_clamp &&
  277. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  278. !tcp_memory_pressure) {
  279. int incr;
  280. /* Check #2. Increase window, if skb with such overhead
  281. * will fit to rcvbuf in future.
  282. */
  283. if (tcp_win_from_space(skb->truesize) <= skb->len)
  284. incr = 2 * tp->advmss;
  285. else
  286. incr = __tcp_grow_window(sk, skb);
  287. if (incr) {
  288. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  289. tp->window_clamp);
  290. inet_csk(sk)->icsk_ack.quick |= 1;
  291. }
  292. }
  293. }
  294. /* 3. Tuning rcvbuf, when connection enters established state. */
  295. static void tcp_fixup_rcvbuf(struct sock *sk)
  296. {
  297. struct tcp_sock *tp = tcp_sk(sk);
  298. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  299. /* Try to select rcvbuf so that 4 mss-sized segments
  300. * will fit to window and corresponding skbs will fit to our rcvbuf.
  301. * (was 3; 4 is minimum to allow fast retransmit to work.)
  302. */
  303. while (tcp_win_from_space(rcvmem) < tp->advmss)
  304. rcvmem += 128;
  305. if (sk->sk_rcvbuf < 4 * rcvmem)
  306. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  307. }
  308. /* 4. Try to fixup all. It is made immediately after connection enters
  309. * established state.
  310. */
  311. static void tcp_init_buffer_space(struct sock *sk)
  312. {
  313. struct tcp_sock *tp = tcp_sk(sk);
  314. int maxwin;
  315. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  316. tcp_fixup_rcvbuf(sk);
  317. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  318. tcp_fixup_sndbuf(sk);
  319. tp->rcvq_space.space = tp->rcv_wnd;
  320. maxwin = tcp_full_space(sk);
  321. if (tp->window_clamp >= maxwin) {
  322. tp->window_clamp = maxwin;
  323. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  324. tp->window_clamp = max(maxwin -
  325. (maxwin >> sysctl_tcp_app_win),
  326. 4 * tp->advmss);
  327. }
  328. /* Force reservation of one segment. */
  329. if (sysctl_tcp_app_win &&
  330. tp->window_clamp > 2 * tp->advmss &&
  331. tp->window_clamp + tp->advmss > maxwin)
  332. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  333. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  334. tp->snd_cwnd_stamp = tcp_time_stamp;
  335. }
  336. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  337. static void tcp_clamp_window(struct sock *sk)
  338. {
  339. struct tcp_sock *tp = tcp_sk(sk);
  340. struct inet_connection_sock *icsk = inet_csk(sk);
  341. icsk->icsk_ack.quick = 0;
  342. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  343. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  344. !tcp_memory_pressure &&
  345. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  346. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  347. sysctl_tcp_rmem[2]);
  348. }
  349. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  350. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  351. }
  352. /* Initialize RCV_MSS value.
  353. * RCV_MSS is an our guess about MSS used by the peer.
  354. * We haven't any direct information about the MSS.
  355. * It's better to underestimate the RCV_MSS rather than overestimate.
  356. * Overestimations make us ACKing less frequently than needed.
  357. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  358. */
  359. void tcp_initialize_rcv_mss(struct sock *sk)
  360. {
  361. struct tcp_sock *tp = tcp_sk(sk);
  362. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  363. hint = min(hint, tp->rcv_wnd / 2);
  364. hint = min(hint, TCP_MIN_RCVMSS);
  365. hint = max(hint, TCP_MIN_MSS);
  366. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  367. }
  368. /* Receiver "autotuning" code.
  369. *
  370. * The algorithm for RTT estimation w/o timestamps is based on
  371. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  372. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  373. *
  374. * More detail on this code can be found at
  375. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  376. * though this reference is out of date. A new paper
  377. * is pending.
  378. */
  379. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  380. {
  381. u32 new_sample = tp->rcv_rtt_est.rtt;
  382. long m = sample;
  383. if (m == 0)
  384. m = 1;
  385. if (new_sample != 0) {
  386. /* If we sample in larger samples in the non-timestamp
  387. * case, we could grossly overestimate the RTT especially
  388. * with chatty applications or bulk transfer apps which
  389. * are stalled on filesystem I/O.
  390. *
  391. * Also, since we are only going for a minimum in the
  392. * non-timestamp case, we do not smooth things out
  393. * else with timestamps disabled convergence takes too
  394. * long.
  395. */
  396. if (!win_dep) {
  397. m -= (new_sample >> 3);
  398. new_sample += m;
  399. } else if (m < new_sample)
  400. new_sample = m << 3;
  401. } else {
  402. /* No previous measure. */
  403. new_sample = m << 3;
  404. }
  405. if (tp->rcv_rtt_est.rtt != new_sample)
  406. tp->rcv_rtt_est.rtt = new_sample;
  407. }
  408. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  409. {
  410. if (tp->rcv_rtt_est.time == 0)
  411. goto new_measure;
  412. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  413. return;
  414. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  415. new_measure:
  416. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  417. tp->rcv_rtt_est.time = tcp_time_stamp;
  418. }
  419. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  420. const struct sk_buff *skb)
  421. {
  422. struct tcp_sock *tp = tcp_sk(sk);
  423. if (tp->rx_opt.rcv_tsecr &&
  424. (TCP_SKB_CB(skb)->end_seq -
  425. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  426. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  427. }
  428. /*
  429. * This function should be called every time data is copied to user space.
  430. * It calculates the appropriate TCP receive buffer space.
  431. */
  432. void tcp_rcv_space_adjust(struct sock *sk)
  433. {
  434. struct tcp_sock *tp = tcp_sk(sk);
  435. int time;
  436. int space;
  437. if (tp->rcvq_space.time == 0)
  438. goto new_measure;
  439. time = tcp_time_stamp - tp->rcvq_space.time;
  440. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  441. return;
  442. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  443. space = max(tp->rcvq_space.space, space);
  444. if (tp->rcvq_space.space != space) {
  445. int rcvmem;
  446. tp->rcvq_space.space = space;
  447. if (sysctl_tcp_moderate_rcvbuf &&
  448. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  449. int new_clamp = space;
  450. /* Receive space grows, normalize in order to
  451. * take into account packet headers and sk_buff
  452. * structure overhead.
  453. */
  454. space /= tp->advmss;
  455. if (!space)
  456. space = 1;
  457. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  458. 16 + sizeof(struct sk_buff));
  459. while (tcp_win_from_space(rcvmem) < tp->advmss)
  460. rcvmem += 128;
  461. space *= rcvmem;
  462. space = min(space, sysctl_tcp_rmem[2]);
  463. if (space > sk->sk_rcvbuf) {
  464. sk->sk_rcvbuf = space;
  465. /* Make the window clamp follow along. */
  466. tp->window_clamp = new_clamp;
  467. }
  468. }
  469. }
  470. new_measure:
  471. tp->rcvq_space.seq = tp->copied_seq;
  472. tp->rcvq_space.time = tcp_time_stamp;
  473. }
  474. /* There is something which you must keep in mind when you analyze the
  475. * behavior of the tp->ato delayed ack timeout interval. When a
  476. * connection starts up, we want to ack as quickly as possible. The
  477. * problem is that "good" TCP's do slow start at the beginning of data
  478. * transmission. The means that until we send the first few ACK's the
  479. * sender will sit on his end and only queue most of his data, because
  480. * he can only send snd_cwnd unacked packets at any given time. For
  481. * each ACK we send, he increments snd_cwnd and transmits more of his
  482. * queue. -DaveM
  483. */
  484. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  485. {
  486. struct tcp_sock *tp = tcp_sk(sk);
  487. struct inet_connection_sock *icsk = inet_csk(sk);
  488. u32 now;
  489. inet_csk_schedule_ack(sk);
  490. tcp_measure_rcv_mss(sk, skb);
  491. tcp_rcv_rtt_measure(tp);
  492. now = tcp_time_stamp;
  493. if (!icsk->icsk_ack.ato) {
  494. /* The _first_ data packet received, initialize
  495. * delayed ACK engine.
  496. */
  497. tcp_incr_quickack(sk);
  498. icsk->icsk_ack.ato = TCP_ATO_MIN;
  499. } else {
  500. int m = now - icsk->icsk_ack.lrcvtime;
  501. if (m <= TCP_ATO_MIN / 2) {
  502. /* The fastest case is the first. */
  503. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  504. } else if (m < icsk->icsk_ack.ato) {
  505. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  506. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  507. icsk->icsk_ack.ato = icsk->icsk_rto;
  508. } else if (m > icsk->icsk_rto) {
  509. /* Too long gap. Apparently sender failed to
  510. * restart window, so that we send ACKs quickly.
  511. */
  512. tcp_incr_quickack(sk);
  513. sk_mem_reclaim(sk);
  514. }
  515. }
  516. icsk->icsk_ack.lrcvtime = now;
  517. TCP_ECN_check_ce(tp, skb);
  518. if (skb->len >= 128)
  519. tcp_grow_window(sk, skb);
  520. }
  521. /* Called to compute a smoothed rtt estimate. The data fed to this
  522. * routine either comes from timestamps, or from segments that were
  523. * known _not_ to have been retransmitted [see Karn/Partridge
  524. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  525. * piece by Van Jacobson.
  526. * NOTE: the next three routines used to be one big routine.
  527. * To save cycles in the RFC 1323 implementation it was better to break
  528. * it up into three procedures. -- erics
  529. */
  530. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  531. {
  532. struct tcp_sock *tp = tcp_sk(sk);
  533. long m = mrtt; /* RTT */
  534. /* The following amusing code comes from Jacobson's
  535. * article in SIGCOMM '88. Note that rtt and mdev
  536. * are scaled versions of rtt and mean deviation.
  537. * This is designed to be as fast as possible
  538. * m stands for "measurement".
  539. *
  540. * On a 1990 paper the rto value is changed to:
  541. * RTO = rtt + 4 * mdev
  542. *
  543. * Funny. This algorithm seems to be very broken.
  544. * These formulae increase RTO, when it should be decreased, increase
  545. * too slowly, when it should be increased quickly, decrease too quickly
  546. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  547. * does not matter how to _calculate_ it. Seems, it was trap
  548. * that VJ failed to avoid. 8)
  549. */
  550. if (m == 0)
  551. m = 1;
  552. if (tp->srtt != 0) {
  553. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  554. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  555. if (m < 0) {
  556. m = -m; /* m is now abs(error) */
  557. m -= (tp->mdev >> 2); /* similar update on mdev */
  558. /* This is similar to one of Eifel findings.
  559. * Eifel blocks mdev updates when rtt decreases.
  560. * This solution is a bit different: we use finer gain
  561. * for mdev in this case (alpha*beta).
  562. * Like Eifel it also prevents growth of rto,
  563. * but also it limits too fast rto decreases,
  564. * happening in pure Eifel.
  565. */
  566. if (m > 0)
  567. m >>= 3;
  568. } else {
  569. m -= (tp->mdev >> 2); /* similar update on mdev */
  570. }
  571. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  572. if (tp->mdev > tp->mdev_max) {
  573. tp->mdev_max = tp->mdev;
  574. if (tp->mdev_max > tp->rttvar)
  575. tp->rttvar = tp->mdev_max;
  576. }
  577. if (after(tp->snd_una, tp->rtt_seq)) {
  578. if (tp->mdev_max < tp->rttvar)
  579. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  580. tp->rtt_seq = tp->snd_nxt;
  581. tp->mdev_max = tcp_rto_min(sk);
  582. }
  583. } else {
  584. /* no previous measure. */
  585. tp->srtt = m << 3; /* take the measured time to be rtt */
  586. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  587. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  588. tp->rtt_seq = tp->snd_nxt;
  589. }
  590. }
  591. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  592. * routine referred to above.
  593. */
  594. static inline void tcp_set_rto(struct sock *sk)
  595. {
  596. const struct tcp_sock *tp = tcp_sk(sk);
  597. /* Old crap is replaced with new one. 8)
  598. *
  599. * More seriously:
  600. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  601. * It cannot be less due to utterly erratic ACK generation made
  602. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  603. * to do with delayed acks, because at cwnd>2 true delack timeout
  604. * is invisible. Actually, Linux-2.4 also generates erratic
  605. * ACKs in some circumstances.
  606. */
  607. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  608. /* 2. Fixups made earlier cannot be right.
  609. * If we do not estimate RTO correctly without them,
  610. * all the algo is pure shit and should be replaced
  611. * with correct one. It is exactly, which we pretend to do.
  612. */
  613. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  614. * guarantees that rto is higher.
  615. */
  616. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  617. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  618. }
  619. /* Save metrics learned by this TCP session.
  620. This function is called only, when TCP finishes successfully
  621. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  622. */
  623. void tcp_update_metrics(struct sock *sk)
  624. {
  625. struct tcp_sock *tp = tcp_sk(sk);
  626. struct dst_entry *dst = __sk_dst_get(sk);
  627. if (sysctl_tcp_nometrics_save)
  628. return;
  629. dst_confirm(dst);
  630. if (dst && (dst->flags & DST_HOST)) {
  631. const struct inet_connection_sock *icsk = inet_csk(sk);
  632. int m;
  633. unsigned long rtt;
  634. if (icsk->icsk_backoff || !tp->srtt) {
  635. /* This session failed to estimate rtt. Why?
  636. * Probably, no packets returned in time.
  637. * Reset our results.
  638. */
  639. if (!(dst_metric_locked(dst, RTAX_RTT)))
  640. dst->metrics[RTAX_RTT - 1] = 0;
  641. return;
  642. }
  643. rtt = dst_metric_rtt(dst, RTAX_RTT);
  644. m = rtt - tp->srtt;
  645. /* If newly calculated rtt larger than stored one,
  646. * store new one. Otherwise, use EWMA. Remember,
  647. * rtt overestimation is always better than underestimation.
  648. */
  649. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  650. if (m <= 0)
  651. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  652. else
  653. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  654. }
  655. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  656. unsigned long var;
  657. if (m < 0)
  658. m = -m;
  659. /* Scale deviation to rttvar fixed point */
  660. m >>= 1;
  661. if (m < tp->mdev)
  662. m = tp->mdev;
  663. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  664. if (m >= var)
  665. var = m;
  666. else
  667. var -= (var - m) >> 2;
  668. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  669. }
  670. if (tp->snd_ssthresh >= 0xFFFF) {
  671. /* Slow start still did not finish. */
  672. if (dst_metric(dst, RTAX_SSTHRESH) &&
  673. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  674. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  675. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  676. if (!dst_metric_locked(dst, RTAX_CWND) &&
  677. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  678. dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
  679. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  680. icsk->icsk_ca_state == TCP_CA_Open) {
  681. /* Cong. avoidance phase, cwnd is reliable. */
  682. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  683. dst->metrics[RTAX_SSTHRESH-1] =
  684. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  685. if (!dst_metric_locked(dst, RTAX_CWND))
  686. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
  687. } else {
  688. /* Else slow start did not finish, cwnd is non-sense,
  689. ssthresh may be also invalid.
  690. */
  691. if (!dst_metric_locked(dst, RTAX_CWND))
  692. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
  693. if (dst_metric(dst, RTAX_SSTHRESH) &&
  694. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  695. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  696. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  697. }
  698. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  699. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  700. tp->reordering != sysctl_tcp_reordering)
  701. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  702. }
  703. }
  704. }
  705. /* Numbers are taken from RFC3390.
  706. *
  707. * John Heffner states:
  708. *
  709. * The RFC specifies a window of no more than 4380 bytes
  710. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  711. * is a bit misleading because they use a clamp at 4380 bytes
  712. * rather than use a multiplier in the relevant range.
  713. */
  714. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  715. {
  716. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  717. if (!cwnd) {
  718. if (tp->mss_cache > 1460)
  719. cwnd = 2;
  720. else
  721. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  722. }
  723. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  724. }
  725. /* Set slow start threshold and cwnd not falling to slow start */
  726. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  727. {
  728. struct tcp_sock *tp = tcp_sk(sk);
  729. const struct inet_connection_sock *icsk = inet_csk(sk);
  730. tp->prior_ssthresh = 0;
  731. tp->bytes_acked = 0;
  732. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  733. tp->undo_marker = 0;
  734. if (set_ssthresh)
  735. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  736. tp->snd_cwnd = min(tp->snd_cwnd,
  737. tcp_packets_in_flight(tp) + 1U);
  738. tp->snd_cwnd_cnt = 0;
  739. tp->high_seq = tp->snd_nxt;
  740. tp->snd_cwnd_stamp = tcp_time_stamp;
  741. TCP_ECN_queue_cwr(tp);
  742. tcp_set_ca_state(sk, TCP_CA_CWR);
  743. }
  744. }
  745. /*
  746. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  747. * disables it when reordering is detected
  748. */
  749. static void tcp_disable_fack(struct tcp_sock *tp)
  750. {
  751. /* RFC3517 uses different metric in lost marker => reset on change */
  752. if (tcp_is_fack(tp))
  753. tp->lost_skb_hint = NULL;
  754. tp->rx_opt.sack_ok &= ~2;
  755. }
  756. /* Take a notice that peer is sending D-SACKs */
  757. static void tcp_dsack_seen(struct tcp_sock *tp)
  758. {
  759. tp->rx_opt.sack_ok |= 4;
  760. }
  761. /* Initialize metrics on socket. */
  762. static void tcp_init_metrics(struct sock *sk)
  763. {
  764. struct tcp_sock *tp = tcp_sk(sk);
  765. struct dst_entry *dst = __sk_dst_get(sk);
  766. if (dst == NULL)
  767. goto reset;
  768. dst_confirm(dst);
  769. if (dst_metric_locked(dst, RTAX_CWND))
  770. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  771. if (dst_metric(dst, RTAX_SSTHRESH)) {
  772. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  773. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  774. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  775. }
  776. if (dst_metric(dst, RTAX_REORDERING) &&
  777. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  778. tcp_disable_fack(tp);
  779. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  780. }
  781. if (dst_metric(dst, RTAX_RTT) == 0)
  782. goto reset;
  783. if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  784. goto reset;
  785. /* Initial rtt is determined from SYN,SYN-ACK.
  786. * The segment is small and rtt may appear much
  787. * less than real one. Use per-dst memory
  788. * to make it more realistic.
  789. *
  790. * A bit of theory. RTT is time passed after "normal" sized packet
  791. * is sent until it is ACKed. In normal circumstances sending small
  792. * packets force peer to delay ACKs and calculation is correct too.
  793. * The algorithm is adaptive and, provided we follow specs, it
  794. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  795. * tricks sort of "quick acks" for time long enough to decrease RTT
  796. * to low value, and then abruptly stops to do it and starts to delay
  797. * ACKs, wait for troubles.
  798. */
  799. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  800. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  801. tp->rtt_seq = tp->snd_nxt;
  802. }
  803. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  804. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  805. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  806. }
  807. tcp_set_rto(sk);
  808. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  809. goto reset;
  810. cwnd:
  811. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  812. tp->snd_cwnd_stamp = tcp_time_stamp;
  813. return;
  814. reset:
  815. /* Play conservative. If timestamps are not
  816. * supported, TCP will fail to recalculate correct
  817. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  818. */
  819. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  820. tp->srtt = 0;
  821. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  822. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  823. }
  824. goto cwnd;
  825. }
  826. static void tcp_update_reordering(struct sock *sk, const int metric,
  827. const int ts)
  828. {
  829. struct tcp_sock *tp = tcp_sk(sk);
  830. if (metric > tp->reordering) {
  831. int mib_idx;
  832. tp->reordering = min(TCP_MAX_REORDERING, metric);
  833. /* This exciting event is worth to be remembered. 8) */
  834. if (ts)
  835. mib_idx = LINUX_MIB_TCPTSREORDER;
  836. else if (tcp_is_reno(tp))
  837. mib_idx = LINUX_MIB_TCPRENOREORDER;
  838. else if (tcp_is_fack(tp))
  839. mib_idx = LINUX_MIB_TCPFACKREORDER;
  840. else
  841. mib_idx = LINUX_MIB_TCPSACKREORDER;
  842. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  843. #if FASTRETRANS_DEBUG > 1
  844. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  845. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  846. tp->reordering,
  847. tp->fackets_out,
  848. tp->sacked_out,
  849. tp->undo_marker ? tp->undo_retrans : 0);
  850. #endif
  851. tcp_disable_fack(tp);
  852. }
  853. }
  854. /* This must be called before lost_out is incremented */
  855. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  856. {
  857. if ((tp->retransmit_skb_hint == NULL) ||
  858. before(TCP_SKB_CB(skb)->seq,
  859. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  860. tp->retransmit_skb_hint = skb;
  861. if (!tp->lost_out ||
  862. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  863. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  864. }
  865. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  866. {
  867. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  868. tcp_verify_retransmit_hint(tp, skb);
  869. tp->lost_out += tcp_skb_pcount(skb);
  870. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  871. }
  872. }
  873. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  874. struct sk_buff *skb)
  875. {
  876. tcp_verify_retransmit_hint(tp, skb);
  877. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  878. tp->lost_out += tcp_skb_pcount(skb);
  879. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  880. }
  881. }
  882. /* This procedure tags the retransmission queue when SACKs arrive.
  883. *
  884. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  885. * Packets in queue with these bits set are counted in variables
  886. * sacked_out, retrans_out and lost_out, correspondingly.
  887. *
  888. * Valid combinations are:
  889. * Tag InFlight Description
  890. * 0 1 - orig segment is in flight.
  891. * S 0 - nothing flies, orig reached receiver.
  892. * L 0 - nothing flies, orig lost by net.
  893. * R 2 - both orig and retransmit are in flight.
  894. * L|R 1 - orig is lost, retransmit is in flight.
  895. * S|R 1 - orig reached receiver, retrans is still in flight.
  896. * (L|S|R is logically valid, it could occur when L|R is sacked,
  897. * but it is equivalent to plain S and code short-curcuits it to S.
  898. * L|S is logically invalid, it would mean -1 packet in flight 8))
  899. *
  900. * These 6 states form finite state machine, controlled by the following events:
  901. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  902. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  903. * 3. Loss detection event of one of three flavors:
  904. * A. Scoreboard estimator decided the packet is lost.
  905. * A'. Reno "three dupacks" marks head of queue lost.
  906. * A''. Its FACK modfication, head until snd.fack is lost.
  907. * B. SACK arrives sacking data transmitted after never retransmitted
  908. * hole was sent out.
  909. * C. SACK arrives sacking SND.NXT at the moment, when the
  910. * segment was retransmitted.
  911. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  912. *
  913. * It is pleasant to note, that state diagram turns out to be commutative,
  914. * so that we are allowed not to be bothered by order of our actions,
  915. * when multiple events arrive simultaneously. (see the function below).
  916. *
  917. * Reordering detection.
  918. * --------------------
  919. * Reordering metric is maximal distance, which a packet can be displaced
  920. * in packet stream. With SACKs we can estimate it:
  921. *
  922. * 1. SACK fills old hole and the corresponding segment was not
  923. * ever retransmitted -> reordering. Alas, we cannot use it
  924. * when segment was retransmitted.
  925. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  926. * for retransmitted and already SACKed segment -> reordering..
  927. * Both of these heuristics are not used in Loss state, when we cannot
  928. * account for retransmits accurately.
  929. *
  930. * SACK block validation.
  931. * ----------------------
  932. *
  933. * SACK block range validation checks that the received SACK block fits to
  934. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  935. * Note that SND.UNA is not included to the range though being valid because
  936. * it means that the receiver is rather inconsistent with itself reporting
  937. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  938. * perfectly valid, however, in light of RFC2018 which explicitly states
  939. * that "SACK block MUST reflect the newest segment. Even if the newest
  940. * segment is going to be discarded ...", not that it looks very clever
  941. * in case of head skb. Due to potentional receiver driven attacks, we
  942. * choose to avoid immediate execution of a walk in write queue due to
  943. * reneging and defer head skb's loss recovery to standard loss recovery
  944. * procedure that will eventually trigger (nothing forbids us doing this).
  945. *
  946. * Implements also blockage to start_seq wrap-around. Problem lies in the
  947. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  948. * there's no guarantee that it will be before snd_nxt (n). The problem
  949. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  950. * wrap (s_w):
  951. *
  952. * <- outs wnd -> <- wrapzone ->
  953. * u e n u_w e_w s n_w
  954. * | | | | | | |
  955. * |<------------+------+----- TCP seqno space --------------+---------->|
  956. * ...-- <2^31 ->| |<--------...
  957. * ...---- >2^31 ------>| |<--------...
  958. *
  959. * Current code wouldn't be vulnerable but it's better still to discard such
  960. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  961. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  962. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  963. * equal to the ideal case (infinite seqno space without wrap caused issues).
  964. *
  965. * With D-SACK the lower bound is extended to cover sequence space below
  966. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  967. * again, D-SACK block must not to go across snd_una (for the same reason as
  968. * for the normal SACK blocks, explained above). But there all simplicity
  969. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  970. * fully below undo_marker they do not affect behavior in anyway and can
  971. * therefore be safely ignored. In rare cases (which are more or less
  972. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  973. * fragmentation and packet reordering past skb's retransmission. To consider
  974. * them correctly, the acceptable range must be extended even more though
  975. * the exact amount is rather hard to quantify. However, tp->max_window can
  976. * be used as an exaggerated estimate.
  977. */
  978. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  979. u32 start_seq, u32 end_seq)
  980. {
  981. /* Too far in future, or reversed (interpretation is ambiguous) */
  982. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  983. return 0;
  984. /* Nasty start_seq wrap-around check (see comments above) */
  985. if (!before(start_seq, tp->snd_nxt))
  986. return 0;
  987. /* In outstanding window? ...This is valid exit for D-SACKs too.
  988. * start_seq == snd_una is non-sensical (see comments above)
  989. */
  990. if (after(start_seq, tp->snd_una))
  991. return 1;
  992. if (!is_dsack || !tp->undo_marker)
  993. return 0;
  994. /* ...Then it's D-SACK, and must reside below snd_una completely */
  995. if (!after(end_seq, tp->snd_una))
  996. return 0;
  997. if (!before(start_seq, tp->undo_marker))
  998. return 1;
  999. /* Too old */
  1000. if (!after(end_seq, tp->undo_marker))
  1001. return 0;
  1002. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1003. * start_seq < undo_marker and end_seq >= undo_marker.
  1004. */
  1005. return !before(start_seq, end_seq - tp->max_window);
  1006. }
  1007. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1008. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1009. * for reordering! Ugly, but should help.
  1010. *
  1011. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1012. * less than what is now known to be received by the other end (derived from
  1013. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1014. * retransmitted skbs to avoid some costly processing per ACKs.
  1015. */
  1016. static void tcp_mark_lost_retrans(struct sock *sk)
  1017. {
  1018. const struct inet_connection_sock *icsk = inet_csk(sk);
  1019. struct tcp_sock *tp = tcp_sk(sk);
  1020. struct sk_buff *skb;
  1021. int cnt = 0;
  1022. u32 new_low_seq = tp->snd_nxt;
  1023. u32 received_upto = tcp_highest_sack_seq(tp);
  1024. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1025. !after(received_upto, tp->lost_retrans_low) ||
  1026. icsk->icsk_ca_state != TCP_CA_Recovery)
  1027. return;
  1028. tcp_for_write_queue(skb, sk) {
  1029. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1030. if (skb == tcp_send_head(sk))
  1031. break;
  1032. if (cnt == tp->retrans_out)
  1033. break;
  1034. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1035. continue;
  1036. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1037. continue;
  1038. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1039. * constraint here (see above) but figuring out that at
  1040. * least tp->reordering SACK blocks reside between ack_seq
  1041. * and received_upto is not easy task to do cheaply with
  1042. * the available datastructures.
  1043. *
  1044. * Whether FACK should check here for tp->reordering segs
  1045. * in-between one could argue for either way (it would be
  1046. * rather simple to implement as we could count fack_count
  1047. * during the walk and do tp->fackets_out - fack_count).
  1048. */
  1049. if (after(received_upto, ack_seq)) {
  1050. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1051. tp->retrans_out -= tcp_skb_pcount(skb);
  1052. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1053. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1054. } else {
  1055. if (before(ack_seq, new_low_seq))
  1056. new_low_seq = ack_seq;
  1057. cnt += tcp_skb_pcount(skb);
  1058. }
  1059. }
  1060. if (tp->retrans_out)
  1061. tp->lost_retrans_low = new_low_seq;
  1062. }
  1063. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1064. struct tcp_sack_block_wire *sp, int num_sacks,
  1065. u32 prior_snd_una)
  1066. {
  1067. struct tcp_sock *tp = tcp_sk(sk);
  1068. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1069. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1070. int dup_sack = 0;
  1071. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1072. dup_sack = 1;
  1073. tcp_dsack_seen(tp);
  1074. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1075. } else if (num_sacks > 1) {
  1076. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1077. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1078. if (!after(end_seq_0, end_seq_1) &&
  1079. !before(start_seq_0, start_seq_1)) {
  1080. dup_sack = 1;
  1081. tcp_dsack_seen(tp);
  1082. NET_INC_STATS_BH(sock_net(sk),
  1083. LINUX_MIB_TCPDSACKOFORECV);
  1084. }
  1085. }
  1086. /* D-SACK for already forgotten data... Do dumb counting. */
  1087. if (dup_sack &&
  1088. !after(end_seq_0, prior_snd_una) &&
  1089. after(end_seq_0, tp->undo_marker))
  1090. tp->undo_retrans--;
  1091. return dup_sack;
  1092. }
  1093. struct tcp_sacktag_state {
  1094. int reord;
  1095. int fack_count;
  1096. int flag;
  1097. };
  1098. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1099. * the incoming SACK may not exactly match but we can find smaller MSS
  1100. * aligned portion of it that matches. Therefore we might need to fragment
  1101. * which may fail and creates some hassle (caller must handle error case
  1102. * returns).
  1103. *
  1104. * FIXME: this could be merged to shift decision code
  1105. */
  1106. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1107. u32 start_seq, u32 end_seq)
  1108. {
  1109. int in_sack, err;
  1110. unsigned int pkt_len;
  1111. unsigned int mss;
  1112. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1113. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1114. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1115. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1116. mss = tcp_skb_mss(skb);
  1117. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1118. if (!in_sack) {
  1119. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1120. if (pkt_len < mss)
  1121. pkt_len = mss;
  1122. } else {
  1123. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1124. if (pkt_len < mss)
  1125. return -EINVAL;
  1126. }
  1127. /* Round if necessary so that SACKs cover only full MSSes
  1128. * and/or the remaining small portion (if present)
  1129. */
  1130. if (pkt_len > mss) {
  1131. unsigned int new_len = (pkt_len / mss) * mss;
  1132. if (!in_sack && new_len < pkt_len) {
  1133. new_len += mss;
  1134. if (new_len > skb->len)
  1135. return 0;
  1136. }
  1137. pkt_len = new_len;
  1138. }
  1139. err = tcp_fragment(sk, skb, pkt_len, mss);
  1140. if (err < 0)
  1141. return err;
  1142. }
  1143. return in_sack;
  1144. }
  1145. static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1146. struct tcp_sacktag_state *state,
  1147. int dup_sack, int pcount)
  1148. {
  1149. struct tcp_sock *tp = tcp_sk(sk);
  1150. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1151. int fack_count = state->fack_count;
  1152. /* Account D-SACK for retransmitted packet. */
  1153. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1154. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1155. tp->undo_retrans--;
  1156. if (sacked & TCPCB_SACKED_ACKED)
  1157. state->reord = min(fack_count, state->reord);
  1158. }
  1159. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1160. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1161. return sacked;
  1162. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1163. if (sacked & TCPCB_SACKED_RETRANS) {
  1164. /* If the segment is not tagged as lost,
  1165. * we do not clear RETRANS, believing
  1166. * that retransmission is still in flight.
  1167. */
  1168. if (sacked & TCPCB_LOST) {
  1169. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1170. tp->lost_out -= pcount;
  1171. tp->retrans_out -= pcount;
  1172. }
  1173. } else {
  1174. if (!(sacked & TCPCB_RETRANS)) {
  1175. /* New sack for not retransmitted frame,
  1176. * which was in hole. It is reordering.
  1177. */
  1178. if (before(TCP_SKB_CB(skb)->seq,
  1179. tcp_highest_sack_seq(tp)))
  1180. state->reord = min(fack_count,
  1181. state->reord);
  1182. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1183. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1184. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1185. }
  1186. if (sacked & TCPCB_LOST) {
  1187. sacked &= ~TCPCB_LOST;
  1188. tp->lost_out -= pcount;
  1189. }
  1190. }
  1191. sacked |= TCPCB_SACKED_ACKED;
  1192. state->flag |= FLAG_DATA_SACKED;
  1193. tp->sacked_out += pcount;
  1194. fack_count += pcount;
  1195. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1196. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1197. before(TCP_SKB_CB(skb)->seq,
  1198. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1199. tp->lost_cnt_hint += pcount;
  1200. if (fack_count > tp->fackets_out)
  1201. tp->fackets_out = fack_count;
  1202. }
  1203. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1204. * frames and clear it. undo_retrans is decreased above, L|R frames
  1205. * are accounted above as well.
  1206. */
  1207. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1208. sacked &= ~TCPCB_SACKED_RETRANS;
  1209. tp->retrans_out -= pcount;
  1210. }
  1211. return sacked;
  1212. }
  1213. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1214. struct tcp_sacktag_state *state,
  1215. unsigned int pcount, int shifted, int mss,
  1216. int dup_sack)
  1217. {
  1218. struct tcp_sock *tp = tcp_sk(sk);
  1219. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1220. BUG_ON(!pcount);
  1221. /* Tweak before seqno plays */
  1222. if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
  1223. !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
  1224. tp->lost_cnt_hint += pcount;
  1225. TCP_SKB_CB(prev)->end_seq += shifted;
  1226. TCP_SKB_CB(skb)->seq += shifted;
  1227. skb_shinfo(prev)->gso_segs += pcount;
  1228. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1229. skb_shinfo(skb)->gso_segs -= pcount;
  1230. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1231. * in theory this shouldn't be necessary but as long as DSACK
  1232. * code can come after this skb later on it's better to keep
  1233. * setting gso_size to something.
  1234. */
  1235. if (!skb_shinfo(prev)->gso_size) {
  1236. skb_shinfo(prev)->gso_size = mss;
  1237. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1238. }
  1239. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1240. if (skb_shinfo(skb)->gso_segs <= 1) {
  1241. skb_shinfo(skb)->gso_size = 0;
  1242. skb_shinfo(skb)->gso_type = 0;
  1243. }
  1244. /* We discard results */
  1245. tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
  1246. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1247. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1248. if (skb->len > 0) {
  1249. BUG_ON(!tcp_skb_pcount(skb));
  1250. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1251. return 0;
  1252. }
  1253. /* Whole SKB was eaten :-) */
  1254. if (skb == tp->retransmit_skb_hint)
  1255. tp->retransmit_skb_hint = prev;
  1256. if (skb == tp->scoreboard_skb_hint)
  1257. tp->scoreboard_skb_hint = prev;
  1258. if (skb == tp->lost_skb_hint) {
  1259. tp->lost_skb_hint = prev;
  1260. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1261. }
  1262. TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
  1263. if (skb == tcp_highest_sack(sk))
  1264. tcp_advance_highest_sack(sk, skb);
  1265. tcp_unlink_write_queue(skb, sk);
  1266. sk_wmem_free_skb(sk, skb);
  1267. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1268. return 1;
  1269. }
  1270. /* I wish gso_size would have a bit more sane initialization than
  1271. * something-or-zero which complicates things
  1272. */
  1273. static int tcp_skb_seglen(struct sk_buff *skb)
  1274. {
  1275. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1276. }
  1277. /* Shifting pages past head area doesn't work */
  1278. static int skb_can_shift(struct sk_buff *skb)
  1279. {
  1280. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1281. }
  1282. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1283. * skb.
  1284. */
  1285. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1286. struct tcp_sacktag_state *state,
  1287. u32 start_seq, u32 end_seq,
  1288. int dup_sack)
  1289. {
  1290. struct tcp_sock *tp = tcp_sk(sk);
  1291. struct sk_buff *prev;
  1292. int mss;
  1293. int pcount = 0;
  1294. int len;
  1295. int in_sack;
  1296. if (!sk_can_gso(sk))
  1297. goto fallback;
  1298. /* Normally R but no L won't result in plain S */
  1299. if (!dup_sack &&
  1300. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1301. goto fallback;
  1302. if (!skb_can_shift(skb))
  1303. goto fallback;
  1304. /* This frame is about to be dropped (was ACKed). */
  1305. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1306. goto fallback;
  1307. /* Can only happen with delayed DSACK + discard craziness */
  1308. if (unlikely(skb == tcp_write_queue_head(sk)))
  1309. goto fallback;
  1310. prev = tcp_write_queue_prev(sk, skb);
  1311. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1312. goto fallback;
  1313. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1314. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1315. if (in_sack) {
  1316. len = skb->len;
  1317. pcount = tcp_skb_pcount(skb);
  1318. mss = tcp_skb_seglen(skb);
  1319. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1320. * drop this restriction as unnecessary
  1321. */
  1322. if (mss != tcp_skb_seglen(prev))
  1323. goto fallback;
  1324. } else {
  1325. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1326. goto noop;
  1327. /* CHECKME: This is non-MSS split case only?, this will
  1328. * cause skipped skbs due to advancing loop btw, original
  1329. * has that feature too
  1330. */
  1331. if (tcp_skb_pcount(skb) <= 1)
  1332. goto noop;
  1333. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1334. if (!in_sack) {
  1335. /* TODO: head merge to next could be attempted here
  1336. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1337. * though it might not be worth of the additional hassle
  1338. *
  1339. * ...we can probably just fallback to what was done
  1340. * previously. We could try merging non-SACKed ones
  1341. * as well but it probably isn't going to buy off
  1342. * because later SACKs might again split them, and
  1343. * it would make skb timestamp tracking considerably
  1344. * harder problem.
  1345. */
  1346. goto fallback;
  1347. }
  1348. len = end_seq - TCP_SKB_CB(skb)->seq;
  1349. BUG_ON(len < 0);
  1350. BUG_ON(len > skb->len);
  1351. /* MSS boundaries should be honoured or else pcount will
  1352. * severely break even though it makes things bit trickier.
  1353. * Optimize common case to avoid most of the divides
  1354. */
  1355. mss = tcp_skb_mss(skb);
  1356. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1357. * drop this restriction as unnecessary
  1358. */
  1359. if (mss != tcp_skb_seglen(prev))
  1360. goto fallback;
  1361. if (len == mss) {
  1362. pcount = 1;
  1363. } else if (len < mss) {
  1364. goto noop;
  1365. } else {
  1366. pcount = len / mss;
  1367. len = pcount * mss;
  1368. }
  1369. }
  1370. if (!skb_shift(prev, skb, len))
  1371. goto fallback;
  1372. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1373. goto out;
  1374. /* Hole filled allows collapsing with the next as well, this is very
  1375. * useful when hole on every nth skb pattern happens
  1376. */
  1377. if (prev == tcp_write_queue_tail(sk))
  1378. goto out;
  1379. skb = tcp_write_queue_next(sk, prev);
  1380. if (!skb_can_shift(skb) ||
  1381. (skb == tcp_send_head(sk)) ||
  1382. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1383. (mss != tcp_skb_seglen(skb)))
  1384. goto out;
  1385. len = skb->len;
  1386. if (skb_shift(prev, skb, len)) {
  1387. pcount += tcp_skb_pcount(skb);
  1388. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1389. }
  1390. out:
  1391. state->fack_count += pcount;
  1392. return prev;
  1393. noop:
  1394. return skb;
  1395. fallback:
  1396. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1397. return NULL;
  1398. }
  1399. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1400. struct tcp_sack_block *next_dup,
  1401. struct tcp_sacktag_state *state,
  1402. u32 start_seq, u32 end_seq,
  1403. int dup_sack_in)
  1404. {
  1405. struct tcp_sock *tp = tcp_sk(sk);
  1406. struct sk_buff *tmp;
  1407. tcp_for_write_queue_from(skb, sk) {
  1408. int in_sack = 0;
  1409. int dup_sack = dup_sack_in;
  1410. if (skb == tcp_send_head(sk))
  1411. break;
  1412. /* queue is in-order => we can short-circuit the walk early */
  1413. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1414. break;
  1415. if ((next_dup != NULL) &&
  1416. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1417. in_sack = tcp_match_skb_to_sack(sk, skb,
  1418. next_dup->start_seq,
  1419. next_dup->end_seq);
  1420. if (in_sack > 0)
  1421. dup_sack = 1;
  1422. }
  1423. /* skb reference here is a bit tricky to get right, since
  1424. * shifting can eat and free both this skb and the next,
  1425. * so not even _safe variant of the loop is enough.
  1426. */
  1427. if (in_sack <= 0) {
  1428. tmp = tcp_shift_skb_data(sk, skb, state,
  1429. start_seq, end_seq, dup_sack);
  1430. if (tmp != NULL) {
  1431. if (tmp != skb) {
  1432. skb = tmp;
  1433. continue;
  1434. }
  1435. in_sack = 0;
  1436. } else {
  1437. in_sack = tcp_match_skb_to_sack(sk, skb,
  1438. start_seq,
  1439. end_seq);
  1440. }
  1441. }
  1442. if (unlikely(in_sack < 0))
  1443. break;
  1444. if (in_sack) {
  1445. TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
  1446. state,
  1447. dup_sack,
  1448. tcp_skb_pcount(skb));
  1449. if (!before(TCP_SKB_CB(skb)->seq,
  1450. tcp_highest_sack_seq(tp)))
  1451. tcp_advance_highest_sack(sk, skb);
  1452. }
  1453. state->fack_count += tcp_skb_pcount(skb);
  1454. }
  1455. return skb;
  1456. }
  1457. /* Avoid all extra work that is being done by sacktag while walking in
  1458. * a normal way
  1459. */
  1460. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1461. struct tcp_sacktag_state *state,
  1462. u32 skip_to_seq)
  1463. {
  1464. tcp_for_write_queue_from(skb, sk) {
  1465. if (skb == tcp_send_head(sk))
  1466. break;
  1467. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1468. break;
  1469. state->fack_count += tcp_skb_pcount(skb);
  1470. }
  1471. return skb;
  1472. }
  1473. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1474. struct sock *sk,
  1475. struct tcp_sack_block *next_dup,
  1476. struct tcp_sacktag_state *state,
  1477. u32 skip_to_seq)
  1478. {
  1479. if (next_dup == NULL)
  1480. return skb;
  1481. if (before(next_dup->start_seq, skip_to_seq)) {
  1482. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1483. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1484. next_dup->start_seq, next_dup->end_seq,
  1485. 1);
  1486. }
  1487. return skb;
  1488. }
  1489. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1490. {
  1491. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1492. }
  1493. static int
  1494. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1495. u32 prior_snd_una)
  1496. {
  1497. const struct inet_connection_sock *icsk = inet_csk(sk);
  1498. struct tcp_sock *tp = tcp_sk(sk);
  1499. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1500. TCP_SKB_CB(ack_skb)->sacked);
  1501. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1502. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1503. struct tcp_sack_block *cache;
  1504. struct tcp_sacktag_state state;
  1505. struct sk_buff *skb;
  1506. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1507. int used_sacks;
  1508. int found_dup_sack = 0;
  1509. int i, j;
  1510. int first_sack_index;
  1511. state.flag = 0;
  1512. state.reord = tp->packets_out;
  1513. if (!tp->sacked_out) {
  1514. if (WARN_ON(tp->fackets_out))
  1515. tp->fackets_out = 0;
  1516. tcp_highest_sack_reset(sk);
  1517. }
  1518. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1519. num_sacks, prior_snd_una);
  1520. if (found_dup_sack)
  1521. state.flag |= FLAG_DSACKING_ACK;
  1522. /* Eliminate too old ACKs, but take into
  1523. * account more or less fresh ones, they can
  1524. * contain valid SACK info.
  1525. */
  1526. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1527. return 0;
  1528. if (!tp->packets_out)
  1529. goto out;
  1530. used_sacks = 0;
  1531. first_sack_index = 0;
  1532. for (i = 0; i < num_sacks; i++) {
  1533. int dup_sack = !i && found_dup_sack;
  1534. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1535. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1536. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1537. sp[used_sacks].start_seq,
  1538. sp[used_sacks].end_seq)) {
  1539. int mib_idx;
  1540. if (dup_sack) {
  1541. if (!tp->undo_marker)
  1542. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1543. else
  1544. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1545. } else {
  1546. /* Don't count olds caused by ACK reordering */
  1547. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1548. !after(sp[used_sacks].end_seq, tp->snd_una))
  1549. continue;
  1550. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1551. }
  1552. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1553. if (i == 0)
  1554. first_sack_index = -1;
  1555. continue;
  1556. }
  1557. /* Ignore very old stuff early */
  1558. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1559. continue;
  1560. used_sacks++;
  1561. }
  1562. /* order SACK blocks to allow in order walk of the retrans queue */
  1563. for (i = used_sacks - 1; i > 0; i--) {
  1564. for (j = 0; j < i; j++) {
  1565. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1566. swap(sp[j], sp[j + 1]);
  1567. /* Track where the first SACK block goes to */
  1568. if (j == first_sack_index)
  1569. first_sack_index = j + 1;
  1570. }
  1571. }
  1572. }
  1573. skb = tcp_write_queue_head(sk);
  1574. state.fack_count = 0;
  1575. i = 0;
  1576. if (!tp->sacked_out) {
  1577. /* It's already past, so skip checking against it */
  1578. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1579. } else {
  1580. cache = tp->recv_sack_cache;
  1581. /* Skip empty blocks in at head of the cache */
  1582. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1583. !cache->end_seq)
  1584. cache++;
  1585. }
  1586. while (i < used_sacks) {
  1587. u32 start_seq = sp[i].start_seq;
  1588. u32 end_seq = sp[i].end_seq;
  1589. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1590. struct tcp_sack_block *next_dup = NULL;
  1591. if (found_dup_sack && ((i + 1) == first_sack_index))
  1592. next_dup = &sp[i + 1];
  1593. /* Event "B" in the comment above. */
  1594. if (after(end_seq, tp->high_seq))
  1595. state.flag |= FLAG_DATA_LOST;
  1596. /* Skip too early cached blocks */
  1597. while (tcp_sack_cache_ok(tp, cache) &&
  1598. !before(start_seq, cache->end_seq))
  1599. cache++;
  1600. /* Can skip some work by looking recv_sack_cache? */
  1601. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1602. after(end_seq, cache->start_seq)) {
  1603. /* Head todo? */
  1604. if (before(start_seq, cache->start_seq)) {
  1605. skb = tcp_sacktag_skip(skb, sk, &state,
  1606. start_seq);
  1607. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1608. &state,
  1609. start_seq,
  1610. cache->start_seq,
  1611. dup_sack);
  1612. }
  1613. /* Rest of the block already fully processed? */
  1614. if (!after(end_seq, cache->end_seq))
  1615. goto advance_sp;
  1616. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1617. &state,
  1618. cache->end_seq);
  1619. /* ...tail remains todo... */
  1620. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1621. /* ...but better entrypoint exists! */
  1622. skb = tcp_highest_sack(sk);
  1623. if (skb == NULL)
  1624. break;
  1625. state.fack_count = tp->fackets_out;
  1626. cache++;
  1627. goto walk;
  1628. }
  1629. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1630. /* Check overlap against next cached too (past this one already) */
  1631. cache++;
  1632. continue;
  1633. }
  1634. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1635. skb = tcp_highest_sack(sk);
  1636. if (skb == NULL)
  1637. break;
  1638. state.fack_count = tp->fackets_out;
  1639. }
  1640. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1641. walk:
  1642. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1643. start_seq, end_seq, dup_sack);
  1644. advance_sp:
  1645. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1646. * due to in-order walk
  1647. */
  1648. if (after(end_seq, tp->frto_highmark))
  1649. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1650. i++;
  1651. }
  1652. /* Clear the head of the cache sack blocks so we can skip it next time */
  1653. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1654. tp->recv_sack_cache[i].start_seq = 0;
  1655. tp->recv_sack_cache[i].end_seq = 0;
  1656. }
  1657. for (j = 0; j < used_sacks; j++)
  1658. tp->recv_sack_cache[i++] = sp[j];
  1659. tcp_mark_lost_retrans(sk);
  1660. tcp_verify_left_out(tp);
  1661. if ((state.reord < tp->fackets_out) &&
  1662. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1663. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1664. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1665. out:
  1666. #if FASTRETRANS_DEBUG > 0
  1667. WARN_ON((int)tp->sacked_out < 0);
  1668. WARN_ON((int)tp->lost_out < 0);
  1669. WARN_ON((int)tp->retrans_out < 0);
  1670. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1671. #endif
  1672. return state.flag;
  1673. }
  1674. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1675. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1676. */
  1677. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1678. {
  1679. u32 holes;
  1680. holes = max(tp->lost_out, 1U);
  1681. holes = min(holes, tp->packets_out);
  1682. if ((tp->sacked_out + holes) > tp->packets_out) {
  1683. tp->sacked_out = tp->packets_out - holes;
  1684. return 1;
  1685. }
  1686. return 0;
  1687. }
  1688. /* If we receive more dupacks than we expected counting segments
  1689. * in assumption of absent reordering, interpret this as reordering.
  1690. * The only another reason could be bug in receiver TCP.
  1691. */
  1692. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1693. {
  1694. struct tcp_sock *tp = tcp_sk(sk);
  1695. if (tcp_limit_reno_sacked(tp))
  1696. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1697. }
  1698. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1699. static void tcp_add_reno_sack(struct sock *sk)
  1700. {
  1701. struct tcp_sock *tp = tcp_sk(sk);
  1702. tp->sacked_out++;
  1703. tcp_check_reno_reordering(sk, 0);
  1704. tcp_verify_left_out(tp);
  1705. }
  1706. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1707. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1708. {
  1709. struct tcp_sock *tp = tcp_sk(sk);
  1710. if (acked > 0) {
  1711. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1712. if (acked - 1 >= tp->sacked_out)
  1713. tp->sacked_out = 0;
  1714. else
  1715. tp->sacked_out -= acked - 1;
  1716. }
  1717. tcp_check_reno_reordering(sk, acked);
  1718. tcp_verify_left_out(tp);
  1719. }
  1720. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1721. {
  1722. tp->sacked_out = 0;
  1723. }
  1724. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1725. {
  1726. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1727. }
  1728. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1729. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1730. */
  1731. int tcp_use_frto(struct sock *sk)
  1732. {
  1733. const struct tcp_sock *tp = tcp_sk(sk);
  1734. const struct inet_connection_sock *icsk = inet_csk(sk);
  1735. struct sk_buff *skb;
  1736. if (!sysctl_tcp_frto)
  1737. return 0;
  1738. /* MTU probe and F-RTO won't really play nicely along currently */
  1739. if (icsk->icsk_mtup.probe_size)
  1740. return 0;
  1741. if (tcp_is_sackfrto(tp))
  1742. return 1;
  1743. /* Avoid expensive walking of rexmit queue if possible */
  1744. if (tp->retrans_out > 1)
  1745. return 0;
  1746. skb = tcp_write_queue_head(sk);
  1747. if (tcp_skb_is_last(sk, skb))
  1748. return 1;
  1749. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1750. tcp_for_write_queue_from(skb, sk) {
  1751. if (skb == tcp_send_head(sk))
  1752. break;
  1753. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1754. return 0;
  1755. /* Short-circuit when first non-SACKed skb has been checked */
  1756. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1757. break;
  1758. }
  1759. return 1;
  1760. }
  1761. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1762. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1763. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1764. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1765. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1766. * bits are handled if the Loss state is really to be entered (in
  1767. * tcp_enter_frto_loss).
  1768. *
  1769. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1770. * does:
  1771. * "Reduce ssthresh if it has not yet been made inside this window."
  1772. */
  1773. void tcp_enter_frto(struct sock *sk)
  1774. {
  1775. const struct inet_connection_sock *icsk = inet_csk(sk);
  1776. struct tcp_sock *tp = tcp_sk(sk);
  1777. struct sk_buff *skb;
  1778. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1779. tp->snd_una == tp->high_seq ||
  1780. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1781. !icsk->icsk_retransmits)) {
  1782. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1783. /* Our state is too optimistic in ssthresh() call because cwnd
  1784. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1785. * recovery has not yet completed. Pattern would be this: RTO,
  1786. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1787. * up here twice).
  1788. * RFC4138 should be more specific on what to do, even though
  1789. * RTO is quite unlikely to occur after the first Cumulative ACK
  1790. * due to back-off and complexity of triggering events ...
  1791. */
  1792. if (tp->frto_counter) {
  1793. u32 stored_cwnd;
  1794. stored_cwnd = tp->snd_cwnd;
  1795. tp->snd_cwnd = 2;
  1796. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1797. tp->snd_cwnd = stored_cwnd;
  1798. } else {
  1799. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1800. }
  1801. /* ... in theory, cong.control module could do "any tricks" in
  1802. * ssthresh(), which means that ca_state, lost bits and lost_out
  1803. * counter would have to be faked before the call occurs. We
  1804. * consider that too expensive, unlikely and hacky, so modules
  1805. * using these in ssthresh() must deal these incompatibility
  1806. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1807. */
  1808. tcp_ca_event(sk, CA_EVENT_FRTO);
  1809. }
  1810. tp->undo_marker = tp->snd_una;
  1811. tp->undo_retrans = 0;
  1812. skb = tcp_write_queue_head(sk);
  1813. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1814. tp->undo_marker = 0;
  1815. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1816. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1817. tp->retrans_out -= tcp_skb_pcount(skb);
  1818. }
  1819. tcp_verify_left_out(tp);
  1820. /* Too bad if TCP was application limited */
  1821. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1822. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1823. * The last condition is necessary at least in tp->frto_counter case.
  1824. */
  1825. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1826. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1827. after(tp->high_seq, tp->snd_una)) {
  1828. tp->frto_highmark = tp->high_seq;
  1829. } else {
  1830. tp->frto_highmark = tp->snd_nxt;
  1831. }
  1832. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1833. tp->high_seq = tp->snd_nxt;
  1834. tp->frto_counter = 1;
  1835. }
  1836. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1837. * which indicates that we should follow the traditional RTO recovery,
  1838. * i.e. mark everything lost and do go-back-N retransmission.
  1839. */
  1840. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1841. {
  1842. struct tcp_sock *tp = tcp_sk(sk);
  1843. struct sk_buff *skb;
  1844. tp->lost_out = 0;
  1845. tp->retrans_out = 0;
  1846. if (tcp_is_reno(tp))
  1847. tcp_reset_reno_sack(tp);
  1848. tcp_for_write_queue(skb, sk) {
  1849. if (skb == tcp_send_head(sk))
  1850. break;
  1851. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1852. /*
  1853. * Count the retransmission made on RTO correctly (only when
  1854. * waiting for the first ACK and did not get it)...
  1855. */
  1856. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1857. /* For some reason this R-bit might get cleared? */
  1858. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1859. tp->retrans_out += tcp_skb_pcount(skb);
  1860. /* ...enter this if branch just for the first segment */
  1861. flag |= FLAG_DATA_ACKED;
  1862. } else {
  1863. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1864. tp->undo_marker = 0;
  1865. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1866. }
  1867. /* Marking forward transmissions that were made after RTO lost
  1868. * can cause unnecessary retransmissions in some scenarios,
  1869. * SACK blocks will mitigate that in some but not in all cases.
  1870. * We used to not mark them but it was causing break-ups with
  1871. * receivers that do only in-order receival.
  1872. *
  1873. * TODO: we could detect presence of such receiver and select
  1874. * different behavior per flow.
  1875. */
  1876. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1877. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1878. tp->lost_out += tcp_skb_pcount(skb);
  1879. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1880. }
  1881. }
  1882. tcp_verify_left_out(tp);
  1883. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1884. tp->snd_cwnd_cnt = 0;
  1885. tp->snd_cwnd_stamp = tcp_time_stamp;
  1886. tp->frto_counter = 0;
  1887. tp->bytes_acked = 0;
  1888. tp->reordering = min_t(unsigned int, tp->reordering,
  1889. sysctl_tcp_reordering);
  1890. tcp_set_ca_state(sk, TCP_CA_Loss);
  1891. tp->high_seq = tp->snd_nxt;
  1892. TCP_ECN_queue_cwr(tp);
  1893. tcp_clear_all_retrans_hints(tp);
  1894. }
  1895. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1896. {
  1897. tp->retrans_out = 0;
  1898. tp->lost_out = 0;
  1899. tp->undo_marker = 0;
  1900. tp->undo_retrans = 0;
  1901. }
  1902. void tcp_clear_retrans(struct tcp_sock *tp)
  1903. {
  1904. tcp_clear_retrans_partial(tp);
  1905. tp->fackets_out = 0;
  1906. tp->sacked_out = 0;
  1907. }
  1908. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1909. * and reset tags completely, otherwise preserve SACKs. If receiver
  1910. * dropped its ofo queue, we will know this due to reneging detection.
  1911. */
  1912. void tcp_enter_loss(struct sock *sk, int how)
  1913. {
  1914. const struct inet_connection_sock *icsk = inet_csk(sk);
  1915. struct tcp_sock *tp = tcp_sk(sk);
  1916. struct sk_buff *skb;
  1917. /* Reduce ssthresh if it has not yet been made inside this window. */
  1918. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1919. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1920. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1921. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1922. tcp_ca_event(sk, CA_EVENT_LOSS);
  1923. }
  1924. tp->snd_cwnd = 1;
  1925. tp->snd_cwnd_cnt = 0;
  1926. tp->snd_cwnd_stamp = tcp_time_stamp;
  1927. tp->bytes_acked = 0;
  1928. tcp_clear_retrans_partial(tp);
  1929. if (tcp_is_reno(tp))
  1930. tcp_reset_reno_sack(tp);
  1931. if (!how) {
  1932. /* Push undo marker, if it was plain RTO and nothing
  1933. * was retransmitted. */
  1934. tp->undo_marker = tp->snd_una;
  1935. } else {
  1936. tp->sacked_out = 0;
  1937. tp->fackets_out = 0;
  1938. }
  1939. tcp_clear_all_retrans_hints(tp);
  1940. tcp_for_write_queue(skb, sk) {
  1941. if (skb == tcp_send_head(sk))
  1942. break;
  1943. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1944. tp->undo_marker = 0;
  1945. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1946. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1947. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1948. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1949. tp->lost_out += tcp_skb_pcount(skb);
  1950. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1951. }
  1952. }
  1953. tcp_verify_left_out(tp);
  1954. tp->reordering = min_t(unsigned int, tp->reordering,
  1955. sysctl_tcp_reordering);
  1956. tcp_set_ca_state(sk, TCP_CA_Loss);
  1957. tp->high_seq = tp->snd_nxt;
  1958. TCP_ECN_queue_cwr(tp);
  1959. /* Abort F-RTO algorithm if one is in progress */
  1960. tp->frto_counter = 0;
  1961. }
  1962. /* If ACK arrived pointing to a remembered SACK, it means that our
  1963. * remembered SACKs do not reflect real state of receiver i.e.
  1964. * receiver _host_ is heavily congested (or buggy).
  1965. *
  1966. * Do processing similar to RTO timeout.
  1967. */
  1968. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1969. {
  1970. if (flag & FLAG_SACK_RENEGING) {
  1971. struct inet_connection_sock *icsk = inet_csk(sk);
  1972. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1973. tcp_enter_loss(sk, 1);
  1974. icsk->icsk_retransmits++;
  1975. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1976. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1977. icsk->icsk_rto, TCP_RTO_MAX);
  1978. return 1;
  1979. }
  1980. return 0;
  1981. }
  1982. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1983. {
  1984. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1985. }
  1986. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1987. * counter when SACK is enabled (without SACK, sacked_out is used for
  1988. * that purpose).
  1989. *
  1990. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1991. * segments up to the highest received SACK block so far and holes in
  1992. * between them.
  1993. *
  1994. * With reordering, holes may still be in flight, so RFC3517 recovery
  1995. * uses pure sacked_out (total number of SACKed segments) even though
  1996. * it violates the RFC that uses duplicate ACKs, often these are equal
  1997. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1998. * they differ. Since neither occurs due to loss, TCP should really
  1999. * ignore them.
  2000. */
  2001. static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
  2002. {
  2003. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2004. }
  2005. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  2006. {
  2007. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  2008. }
  2009. static inline int tcp_head_timedout(struct sock *sk)
  2010. {
  2011. struct tcp_sock *tp = tcp_sk(sk);
  2012. return tp->packets_out &&
  2013. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2014. }
  2015. /* Linux NewReno/SACK/FACK/ECN state machine.
  2016. * --------------------------------------
  2017. *
  2018. * "Open" Normal state, no dubious events, fast path.
  2019. * "Disorder" In all the respects it is "Open",
  2020. * but requires a bit more attention. It is entered when
  2021. * we see some SACKs or dupacks. It is split of "Open"
  2022. * mainly to move some processing from fast path to slow one.
  2023. * "CWR" CWND was reduced due to some Congestion Notification event.
  2024. * It can be ECN, ICMP source quench, local device congestion.
  2025. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2026. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2027. *
  2028. * tcp_fastretrans_alert() is entered:
  2029. * - each incoming ACK, if state is not "Open"
  2030. * - when arrived ACK is unusual, namely:
  2031. * * SACK
  2032. * * Duplicate ACK.
  2033. * * ECN ECE.
  2034. *
  2035. * Counting packets in flight is pretty simple.
  2036. *
  2037. * in_flight = packets_out - left_out + retrans_out
  2038. *
  2039. * packets_out is SND.NXT-SND.UNA counted in packets.
  2040. *
  2041. * retrans_out is number of retransmitted segments.
  2042. *
  2043. * left_out is number of segments left network, but not ACKed yet.
  2044. *
  2045. * left_out = sacked_out + lost_out
  2046. *
  2047. * sacked_out: Packets, which arrived to receiver out of order
  2048. * and hence not ACKed. With SACKs this number is simply
  2049. * amount of SACKed data. Even without SACKs
  2050. * it is easy to give pretty reliable estimate of this number,
  2051. * counting duplicate ACKs.
  2052. *
  2053. * lost_out: Packets lost by network. TCP has no explicit
  2054. * "loss notification" feedback from network (for now).
  2055. * It means that this number can be only _guessed_.
  2056. * Actually, it is the heuristics to predict lossage that
  2057. * distinguishes different algorithms.
  2058. *
  2059. * F.e. after RTO, when all the queue is considered as lost,
  2060. * lost_out = packets_out and in_flight = retrans_out.
  2061. *
  2062. * Essentially, we have now two algorithms counting
  2063. * lost packets.
  2064. *
  2065. * FACK: It is the simplest heuristics. As soon as we decided
  2066. * that something is lost, we decide that _all_ not SACKed
  2067. * packets until the most forward SACK are lost. I.e.
  2068. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2069. * It is absolutely correct estimate, if network does not reorder
  2070. * packets. And it loses any connection to reality when reordering
  2071. * takes place. We use FACK by default until reordering
  2072. * is suspected on the path to this destination.
  2073. *
  2074. * NewReno: when Recovery is entered, we assume that one segment
  2075. * is lost (classic Reno). While we are in Recovery and
  2076. * a partial ACK arrives, we assume that one more packet
  2077. * is lost (NewReno). This heuristics are the same in NewReno
  2078. * and SACK.
  2079. *
  2080. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2081. * deflation etc. CWND is real congestion window, never inflated, changes
  2082. * only according to classic VJ rules.
  2083. *
  2084. * Really tricky (and requiring careful tuning) part of algorithm
  2085. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2086. * The first determines the moment _when_ we should reduce CWND and,
  2087. * hence, slow down forward transmission. In fact, it determines the moment
  2088. * when we decide that hole is caused by loss, rather than by a reorder.
  2089. *
  2090. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2091. * holes, caused by lost packets.
  2092. *
  2093. * And the most logically complicated part of algorithm is undo
  2094. * heuristics. We detect false retransmits due to both too early
  2095. * fast retransmit (reordering) and underestimated RTO, analyzing
  2096. * timestamps and D-SACKs. When we detect that some segments were
  2097. * retransmitted by mistake and CWND reduction was wrong, we undo
  2098. * window reduction and abort recovery phase. This logic is hidden
  2099. * inside several functions named tcp_try_undo_<something>.
  2100. */
  2101. /* This function decides, when we should leave Disordered state
  2102. * and enter Recovery phase, reducing congestion window.
  2103. *
  2104. * Main question: may we further continue forward transmission
  2105. * with the same cwnd?
  2106. */
  2107. static int tcp_time_to_recover(struct sock *sk)
  2108. {
  2109. struct tcp_sock *tp = tcp_sk(sk);
  2110. __u32 packets_out;
  2111. /* Do not perform any recovery during F-RTO algorithm */
  2112. if (tp->frto_counter)
  2113. return 0;
  2114. /* Trick#1: The loss is proven. */
  2115. if (tp->lost_out)
  2116. return 1;
  2117. /* Not-A-Trick#2 : Classic rule... */
  2118. if (tcp_dupack_heurestics(tp) > tp->reordering)
  2119. return 1;
  2120. /* Trick#3 : when we use RFC2988 timer restart, fast
  2121. * retransmit can be triggered by timeout of queue head.
  2122. */
  2123. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2124. return 1;
  2125. /* Trick#4: It is still not OK... But will it be useful to delay
  2126. * recovery more?
  2127. */
  2128. packets_out = tp->packets_out;
  2129. if (packets_out <= tp->reordering &&
  2130. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2131. !tcp_may_send_now(sk)) {
  2132. /* We have nothing to send. This connection is limited
  2133. * either by receiver window or by application.
  2134. */
  2135. return 1;
  2136. }
  2137. return 0;
  2138. }
  2139. /* New heuristics: it is possible only after we switched to restart timer
  2140. * each time when something is ACKed. Hence, we can detect timed out packets
  2141. * during fast retransmit without falling to slow start.
  2142. *
  2143. * Usefulness of this as is very questionable, since we should know which of
  2144. * the segments is the next to timeout which is relatively expensive to find
  2145. * in general case unless we add some data structure just for that. The
  2146. * current approach certainly won't find the right one too often and when it
  2147. * finally does find _something_ it usually marks large part of the window
  2148. * right away (because a retransmission with a larger timestamp blocks the
  2149. * loop from advancing). -ij
  2150. */
  2151. static void tcp_timeout_skbs(struct sock *sk)
  2152. {
  2153. struct tcp_sock *tp = tcp_sk(sk);
  2154. struct sk_buff *skb;
  2155. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2156. return;
  2157. skb = tp->scoreboard_skb_hint;
  2158. if (tp->scoreboard_skb_hint == NULL)
  2159. skb = tcp_write_queue_head(sk);
  2160. tcp_for_write_queue_from(skb, sk) {
  2161. if (skb == tcp_send_head(sk))
  2162. break;
  2163. if (!tcp_skb_timedout(sk, skb))
  2164. break;
  2165. tcp_skb_mark_lost(tp, skb);
  2166. }
  2167. tp->scoreboard_skb_hint = skb;
  2168. tcp_verify_left_out(tp);
  2169. }
  2170. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  2171. * is against sacked "cnt", otherwise it's against facked "cnt"
  2172. */
  2173. static void tcp_mark_head_lost(struct sock *sk, int packets)
  2174. {
  2175. struct tcp_sock *tp = tcp_sk(sk);
  2176. struct sk_buff *skb;
  2177. int cnt, oldcnt;
  2178. int err;
  2179. unsigned int mss;
  2180. WARN_ON(packets > tp->packets_out);
  2181. if (tp->lost_skb_hint) {
  2182. skb = tp->lost_skb_hint;
  2183. cnt = tp->lost_cnt_hint;
  2184. } else {
  2185. skb = tcp_write_queue_head(sk);
  2186. cnt = 0;
  2187. }
  2188. tcp_for_write_queue_from(skb, sk) {
  2189. if (skb == tcp_send_head(sk))
  2190. break;
  2191. /* TODO: do this better */
  2192. /* this is not the most efficient way to do this... */
  2193. tp->lost_skb_hint = skb;
  2194. tp->lost_cnt_hint = cnt;
  2195. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  2196. break;
  2197. oldcnt = cnt;
  2198. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2199. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2200. cnt += tcp_skb_pcount(skb);
  2201. if (cnt > packets) {
  2202. if (tcp_is_sack(tp) || (oldcnt >= packets))
  2203. break;
  2204. mss = skb_shinfo(skb)->gso_size;
  2205. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2206. if (err < 0)
  2207. break;
  2208. cnt = packets;
  2209. }
  2210. tcp_skb_mark_lost(tp, skb);
  2211. }
  2212. tcp_verify_left_out(tp);
  2213. }
  2214. /* Account newly detected lost packet(s) */
  2215. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2216. {
  2217. struct tcp_sock *tp = tcp_sk(sk);
  2218. if (tcp_is_reno(tp)) {
  2219. tcp_mark_head_lost(sk, 1);
  2220. } else if (tcp_is_fack(tp)) {
  2221. int lost = tp->fackets_out - tp->reordering;
  2222. if (lost <= 0)
  2223. lost = 1;
  2224. tcp_mark_head_lost(sk, lost);
  2225. } else {
  2226. int sacked_upto = tp->sacked_out - tp->reordering;
  2227. if (sacked_upto < fast_rexmit)
  2228. sacked_upto = fast_rexmit;
  2229. tcp_mark_head_lost(sk, sacked_upto);
  2230. }
  2231. tcp_timeout_skbs(sk);
  2232. }
  2233. /* CWND moderation, preventing bursts due to too big ACKs
  2234. * in dubious situations.
  2235. */
  2236. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2237. {
  2238. tp->snd_cwnd = min(tp->snd_cwnd,
  2239. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2240. tp->snd_cwnd_stamp = tcp_time_stamp;
  2241. }
  2242. /* Lower bound on congestion window is slow start threshold
  2243. * unless congestion avoidance choice decides to overide it.
  2244. */
  2245. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2246. {
  2247. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2248. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2249. }
  2250. /* Decrease cwnd each second ack. */
  2251. static void tcp_cwnd_down(struct sock *sk, int flag)
  2252. {
  2253. struct tcp_sock *tp = tcp_sk(sk);
  2254. int decr = tp->snd_cwnd_cnt + 1;
  2255. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2256. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2257. tp->snd_cwnd_cnt = decr & 1;
  2258. decr >>= 1;
  2259. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2260. tp->snd_cwnd -= decr;
  2261. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2262. tp->snd_cwnd_stamp = tcp_time_stamp;
  2263. }
  2264. }
  2265. /* Nothing was retransmitted or returned timestamp is less
  2266. * than timestamp of the first retransmission.
  2267. */
  2268. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2269. {
  2270. return !tp->retrans_stamp ||
  2271. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2272. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2273. }
  2274. /* Undo procedures. */
  2275. #if FASTRETRANS_DEBUG > 1
  2276. static void DBGUNDO(struct sock *sk, const char *msg)
  2277. {
  2278. struct tcp_sock *tp = tcp_sk(sk);
  2279. struct inet_sock *inet = inet_sk(sk);
  2280. if (sk->sk_family == AF_INET) {
  2281. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2282. msg,
  2283. &inet->daddr, ntohs(inet->dport),
  2284. tp->snd_cwnd, tcp_left_out(tp),
  2285. tp->snd_ssthresh, tp->prior_ssthresh,
  2286. tp->packets_out);
  2287. }
  2288. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2289. else if (sk->sk_family == AF_INET6) {
  2290. struct ipv6_pinfo *np = inet6_sk(sk);
  2291. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2292. msg,
  2293. &np->daddr, ntohs(inet->dport),
  2294. tp->snd_cwnd, tcp_left_out(tp),
  2295. tp->snd_ssthresh, tp->prior_ssthresh,
  2296. tp->packets_out);
  2297. }
  2298. #endif
  2299. }
  2300. #else
  2301. #define DBGUNDO(x...) do { } while (0)
  2302. #endif
  2303. static void tcp_undo_cwr(struct sock *sk, const int undo)
  2304. {
  2305. struct tcp_sock *tp = tcp_sk(sk);
  2306. if (tp->prior_ssthresh) {
  2307. const struct inet_connection_sock *icsk = inet_csk(sk);
  2308. if (icsk->icsk_ca_ops->undo_cwnd)
  2309. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2310. else
  2311. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2312. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2313. tp->snd_ssthresh = tp->prior_ssthresh;
  2314. TCP_ECN_withdraw_cwr(tp);
  2315. }
  2316. } else {
  2317. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2318. }
  2319. tcp_moderate_cwnd(tp);
  2320. tp->snd_cwnd_stamp = tcp_time_stamp;
  2321. }
  2322. static inline int tcp_may_undo(struct tcp_sock *tp)
  2323. {
  2324. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2325. }
  2326. /* People celebrate: "We love our President!" */
  2327. static int tcp_try_undo_recovery(struct sock *sk)
  2328. {
  2329. struct tcp_sock *tp = tcp_sk(sk);
  2330. if (tcp_may_undo(tp)) {
  2331. int mib_idx;
  2332. /* Happy end! We did not retransmit anything
  2333. * or our original transmission succeeded.
  2334. */
  2335. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2336. tcp_undo_cwr(sk, 1);
  2337. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2338. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2339. else
  2340. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2341. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2342. tp->undo_marker = 0;
  2343. }
  2344. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2345. /* Hold old state until something *above* high_seq
  2346. * is ACKed. For Reno it is MUST to prevent false
  2347. * fast retransmits (RFC2582). SACK TCP is safe. */
  2348. tcp_moderate_cwnd(tp);
  2349. return 1;
  2350. }
  2351. tcp_set_ca_state(sk, TCP_CA_Open);
  2352. return 0;
  2353. }
  2354. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2355. static void tcp_try_undo_dsack(struct sock *sk)
  2356. {
  2357. struct tcp_sock *tp = tcp_sk(sk);
  2358. if (tp->undo_marker && !tp->undo_retrans) {
  2359. DBGUNDO(sk, "D-SACK");
  2360. tcp_undo_cwr(sk, 1);
  2361. tp->undo_marker = 0;
  2362. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2363. }
  2364. }
  2365. /* Undo during fast recovery after partial ACK. */
  2366. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2367. {
  2368. struct tcp_sock *tp = tcp_sk(sk);
  2369. /* Partial ACK arrived. Force Hoe's retransmit. */
  2370. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2371. if (tcp_may_undo(tp)) {
  2372. /* Plain luck! Hole if filled with delayed
  2373. * packet, rather than with a retransmit.
  2374. */
  2375. if (tp->retrans_out == 0)
  2376. tp->retrans_stamp = 0;
  2377. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2378. DBGUNDO(sk, "Hoe");
  2379. tcp_undo_cwr(sk, 0);
  2380. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2381. /* So... Do not make Hoe's retransmit yet.
  2382. * If the first packet was delayed, the rest
  2383. * ones are most probably delayed as well.
  2384. */
  2385. failed = 0;
  2386. }
  2387. return failed;
  2388. }
  2389. /* Undo during loss recovery after partial ACK. */
  2390. static int tcp_try_undo_loss(struct sock *sk)
  2391. {
  2392. struct tcp_sock *tp = tcp_sk(sk);
  2393. if (tcp_may_undo(tp)) {
  2394. struct sk_buff *skb;
  2395. tcp_for_write_queue(skb, sk) {
  2396. if (skb == tcp_send_head(sk))
  2397. break;
  2398. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2399. }
  2400. tcp_clear_all_retrans_hints(tp);
  2401. DBGUNDO(sk, "partial loss");
  2402. tp->lost_out = 0;
  2403. tcp_undo_cwr(sk, 1);
  2404. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2405. inet_csk(sk)->icsk_retransmits = 0;
  2406. tp->undo_marker = 0;
  2407. if (tcp_is_sack(tp))
  2408. tcp_set_ca_state(sk, TCP_CA_Open);
  2409. return 1;
  2410. }
  2411. return 0;
  2412. }
  2413. static inline void tcp_complete_cwr(struct sock *sk)
  2414. {
  2415. struct tcp_sock *tp = tcp_sk(sk);
  2416. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2417. tp->snd_cwnd_stamp = tcp_time_stamp;
  2418. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2419. }
  2420. static void tcp_try_keep_open(struct sock *sk)
  2421. {
  2422. struct tcp_sock *tp = tcp_sk(sk);
  2423. int state = TCP_CA_Open;
  2424. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  2425. state = TCP_CA_Disorder;
  2426. if (inet_csk(sk)->icsk_ca_state != state) {
  2427. tcp_set_ca_state(sk, state);
  2428. tp->high_seq = tp->snd_nxt;
  2429. }
  2430. }
  2431. static void tcp_try_to_open(struct sock *sk, int flag)
  2432. {
  2433. struct tcp_sock *tp = tcp_sk(sk);
  2434. tcp_verify_left_out(tp);
  2435. if (!tp->frto_counter && tp->retrans_out == 0)
  2436. tp->retrans_stamp = 0;
  2437. if (flag & FLAG_ECE)
  2438. tcp_enter_cwr(sk, 1);
  2439. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2440. tcp_try_keep_open(sk);
  2441. tcp_moderate_cwnd(tp);
  2442. } else {
  2443. tcp_cwnd_down(sk, flag);
  2444. }
  2445. }
  2446. static void tcp_mtup_probe_failed(struct sock *sk)
  2447. {
  2448. struct inet_connection_sock *icsk = inet_csk(sk);
  2449. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2450. icsk->icsk_mtup.probe_size = 0;
  2451. }
  2452. static void tcp_mtup_probe_success(struct sock *sk)
  2453. {
  2454. struct tcp_sock *tp = tcp_sk(sk);
  2455. struct inet_connection_sock *icsk = inet_csk(sk);
  2456. /* FIXME: breaks with very large cwnd */
  2457. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2458. tp->snd_cwnd = tp->snd_cwnd *
  2459. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2460. icsk->icsk_mtup.probe_size;
  2461. tp->snd_cwnd_cnt = 0;
  2462. tp->snd_cwnd_stamp = tcp_time_stamp;
  2463. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2464. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2465. icsk->icsk_mtup.probe_size = 0;
  2466. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2467. }
  2468. /* Do a simple retransmit without using the backoff mechanisms in
  2469. * tcp_timer. This is used for path mtu discovery.
  2470. * The socket is already locked here.
  2471. */
  2472. void tcp_simple_retransmit(struct sock *sk)
  2473. {
  2474. const struct inet_connection_sock *icsk = inet_csk(sk);
  2475. struct tcp_sock *tp = tcp_sk(sk);
  2476. struct sk_buff *skb;
  2477. unsigned int mss = tcp_current_mss(sk);
  2478. u32 prior_lost = tp->lost_out;
  2479. tcp_for_write_queue(skb, sk) {
  2480. if (skb == tcp_send_head(sk))
  2481. break;
  2482. if (tcp_skb_seglen(skb) > mss &&
  2483. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2484. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2485. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2486. tp->retrans_out -= tcp_skb_pcount(skb);
  2487. }
  2488. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2489. }
  2490. }
  2491. tcp_clear_retrans_hints_partial(tp);
  2492. if (prior_lost == tp->lost_out)
  2493. return;
  2494. if (tcp_is_reno(tp))
  2495. tcp_limit_reno_sacked(tp);
  2496. tcp_verify_left_out(tp);
  2497. /* Don't muck with the congestion window here.
  2498. * Reason is that we do not increase amount of _data_
  2499. * in network, but units changed and effective
  2500. * cwnd/ssthresh really reduced now.
  2501. */
  2502. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2503. tp->high_seq = tp->snd_nxt;
  2504. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2505. tp->prior_ssthresh = 0;
  2506. tp->undo_marker = 0;
  2507. tcp_set_ca_state(sk, TCP_CA_Loss);
  2508. }
  2509. tcp_xmit_retransmit_queue(sk);
  2510. }
  2511. /* Process an event, which can update packets-in-flight not trivially.
  2512. * Main goal of this function is to calculate new estimate for left_out,
  2513. * taking into account both packets sitting in receiver's buffer and
  2514. * packets lost by network.
  2515. *
  2516. * Besides that it does CWND reduction, when packet loss is detected
  2517. * and changes state of machine.
  2518. *
  2519. * It does _not_ decide what to send, it is made in function
  2520. * tcp_xmit_retransmit_queue().
  2521. */
  2522. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2523. {
  2524. struct inet_connection_sock *icsk = inet_csk(sk);
  2525. struct tcp_sock *tp = tcp_sk(sk);
  2526. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2527. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2528. (tcp_fackets_out(tp) > tp->reordering));
  2529. int fast_rexmit = 0, mib_idx;
  2530. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2531. tp->sacked_out = 0;
  2532. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2533. tp->fackets_out = 0;
  2534. /* Now state machine starts.
  2535. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2536. if (flag & FLAG_ECE)
  2537. tp->prior_ssthresh = 0;
  2538. /* B. In all the states check for reneging SACKs. */
  2539. if (tcp_check_sack_reneging(sk, flag))
  2540. return;
  2541. /* C. Process data loss notification, provided it is valid. */
  2542. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2543. before(tp->snd_una, tp->high_seq) &&
  2544. icsk->icsk_ca_state != TCP_CA_Open &&
  2545. tp->fackets_out > tp->reordering) {
  2546. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
  2547. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2548. }
  2549. /* D. Check consistency of the current state. */
  2550. tcp_verify_left_out(tp);
  2551. /* E. Check state exit conditions. State can be terminated
  2552. * when high_seq is ACKed. */
  2553. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2554. WARN_ON(tp->retrans_out != 0);
  2555. tp->retrans_stamp = 0;
  2556. } else if (!before(tp->snd_una, tp->high_seq)) {
  2557. switch (icsk->icsk_ca_state) {
  2558. case TCP_CA_Loss:
  2559. icsk->icsk_retransmits = 0;
  2560. if (tcp_try_undo_recovery(sk))
  2561. return;
  2562. break;
  2563. case TCP_CA_CWR:
  2564. /* CWR is to be held something *above* high_seq
  2565. * is ACKed for CWR bit to reach receiver. */
  2566. if (tp->snd_una != tp->high_seq) {
  2567. tcp_complete_cwr(sk);
  2568. tcp_set_ca_state(sk, TCP_CA_Open);
  2569. }
  2570. break;
  2571. case TCP_CA_Disorder:
  2572. tcp_try_undo_dsack(sk);
  2573. if (!tp->undo_marker ||
  2574. /* For SACK case do not Open to allow to undo
  2575. * catching for all duplicate ACKs. */
  2576. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2577. tp->undo_marker = 0;
  2578. tcp_set_ca_state(sk, TCP_CA_Open);
  2579. }
  2580. break;
  2581. case TCP_CA_Recovery:
  2582. if (tcp_is_reno(tp))
  2583. tcp_reset_reno_sack(tp);
  2584. if (tcp_try_undo_recovery(sk))
  2585. return;
  2586. tcp_complete_cwr(sk);
  2587. break;
  2588. }
  2589. }
  2590. /* F. Process state. */
  2591. switch (icsk->icsk_ca_state) {
  2592. case TCP_CA_Recovery:
  2593. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2594. if (tcp_is_reno(tp) && is_dupack)
  2595. tcp_add_reno_sack(sk);
  2596. } else
  2597. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2598. break;
  2599. case TCP_CA_Loss:
  2600. if (flag & FLAG_DATA_ACKED)
  2601. icsk->icsk_retransmits = 0;
  2602. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2603. tcp_reset_reno_sack(tp);
  2604. if (!tcp_try_undo_loss(sk)) {
  2605. tcp_moderate_cwnd(tp);
  2606. tcp_xmit_retransmit_queue(sk);
  2607. return;
  2608. }
  2609. if (icsk->icsk_ca_state != TCP_CA_Open)
  2610. return;
  2611. /* Loss is undone; fall through to processing in Open state. */
  2612. default:
  2613. if (tcp_is_reno(tp)) {
  2614. if (flag & FLAG_SND_UNA_ADVANCED)
  2615. tcp_reset_reno_sack(tp);
  2616. if (is_dupack)
  2617. tcp_add_reno_sack(sk);
  2618. }
  2619. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2620. tcp_try_undo_dsack(sk);
  2621. if (!tcp_time_to_recover(sk)) {
  2622. tcp_try_to_open(sk, flag);
  2623. return;
  2624. }
  2625. /* MTU probe failure: don't reduce cwnd */
  2626. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2627. icsk->icsk_mtup.probe_size &&
  2628. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2629. tcp_mtup_probe_failed(sk);
  2630. /* Restores the reduction we did in tcp_mtup_probe() */
  2631. tp->snd_cwnd++;
  2632. tcp_simple_retransmit(sk);
  2633. return;
  2634. }
  2635. /* Otherwise enter Recovery state */
  2636. if (tcp_is_reno(tp))
  2637. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2638. else
  2639. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2640. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2641. tp->high_seq = tp->snd_nxt;
  2642. tp->prior_ssthresh = 0;
  2643. tp->undo_marker = tp->snd_una;
  2644. tp->undo_retrans = tp->retrans_out;
  2645. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2646. if (!(flag & FLAG_ECE))
  2647. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2648. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2649. TCP_ECN_queue_cwr(tp);
  2650. }
  2651. tp->bytes_acked = 0;
  2652. tp->snd_cwnd_cnt = 0;
  2653. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2654. fast_rexmit = 1;
  2655. }
  2656. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2657. tcp_update_scoreboard(sk, fast_rexmit);
  2658. tcp_cwnd_down(sk, flag);
  2659. tcp_xmit_retransmit_queue(sk);
  2660. }
  2661. static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2662. {
  2663. tcp_rtt_estimator(sk, seq_rtt);
  2664. tcp_set_rto(sk);
  2665. inet_csk(sk)->icsk_backoff = 0;
  2666. }
  2667. /* Read draft-ietf-tcplw-high-performance before mucking
  2668. * with this code. (Supersedes RFC1323)
  2669. */
  2670. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2671. {
  2672. /* RTTM Rule: A TSecr value received in a segment is used to
  2673. * update the averaged RTT measurement only if the segment
  2674. * acknowledges some new data, i.e., only if it advances the
  2675. * left edge of the send window.
  2676. *
  2677. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2678. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2679. *
  2680. * Changed: reset backoff as soon as we see the first valid sample.
  2681. * If we do not, we get strongly overestimated rto. With timestamps
  2682. * samples are accepted even from very old segments: f.e., when rtt=1
  2683. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2684. * answer arrives rto becomes 120 seconds! If at least one of segments
  2685. * in window is lost... Voila. --ANK (010210)
  2686. */
  2687. struct tcp_sock *tp = tcp_sk(sk);
  2688. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2689. }
  2690. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2691. {
  2692. /* We don't have a timestamp. Can only use
  2693. * packets that are not retransmitted to determine
  2694. * rtt estimates. Also, we must not reset the
  2695. * backoff for rto until we get a non-retransmitted
  2696. * packet. This allows us to deal with a situation
  2697. * where the network delay has increased suddenly.
  2698. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2699. */
  2700. if (flag & FLAG_RETRANS_DATA_ACKED)
  2701. return;
  2702. tcp_valid_rtt_meas(sk, seq_rtt);
  2703. }
  2704. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2705. const s32 seq_rtt)
  2706. {
  2707. const struct tcp_sock *tp = tcp_sk(sk);
  2708. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2709. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2710. tcp_ack_saw_tstamp(sk, flag);
  2711. else if (seq_rtt >= 0)
  2712. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2713. }
  2714. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2715. {
  2716. const struct inet_connection_sock *icsk = inet_csk(sk);
  2717. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2718. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2719. }
  2720. /* Restart timer after forward progress on connection.
  2721. * RFC2988 recommends to restart timer to now+rto.
  2722. */
  2723. static void tcp_rearm_rto(struct sock *sk)
  2724. {
  2725. struct tcp_sock *tp = tcp_sk(sk);
  2726. if (!tp->packets_out) {
  2727. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2728. } else {
  2729. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2730. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2731. }
  2732. }
  2733. /* If we get here, the whole TSO packet has not been acked. */
  2734. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2735. {
  2736. struct tcp_sock *tp = tcp_sk(sk);
  2737. u32 packets_acked;
  2738. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2739. packets_acked = tcp_skb_pcount(skb);
  2740. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2741. return 0;
  2742. packets_acked -= tcp_skb_pcount(skb);
  2743. if (packets_acked) {
  2744. BUG_ON(tcp_skb_pcount(skb) == 0);
  2745. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2746. }
  2747. return packets_acked;
  2748. }
  2749. /* Remove acknowledged frames from the retransmission queue. If our packet
  2750. * is before the ack sequence we can discard it as it's confirmed to have
  2751. * arrived at the other end.
  2752. */
  2753. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2754. u32 prior_snd_una)
  2755. {
  2756. struct tcp_sock *tp = tcp_sk(sk);
  2757. const struct inet_connection_sock *icsk = inet_csk(sk);
  2758. struct sk_buff *skb;
  2759. u32 now = tcp_time_stamp;
  2760. int fully_acked = 1;
  2761. int flag = 0;
  2762. u32 pkts_acked = 0;
  2763. u32 reord = tp->packets_out;
  2764. u32 prior_sacked = tp->sacked_out;
  2765. s32 seq_rtt = -1;
  2766. s32 ca_seq_rtt = -1;
  2767. ktime_t last_ackt = net_invalid_timestamp();
  2768. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2769. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2770. u32 acked_pcount;
  2771. u8 sacked = scb->sacked;
  2772. /* Determine how many packets and what bytes were acked, tso and else */
  2773. if (after(scb->end_seq, tp->snd_una)) {
  2774. if (tcp_skb_pcount(skb) == 1 ||
  2775. !after(tp->snd_una, scb->seq))
  2776. break;
  2777. acked_pcount = tcp_tso_acked(sk, skb);
  2778. if (!acked_pcount)
  2779. break;
  2780. fully_acked = 0;
  2781. } else {
  2782. acked_pcount = tcp_skb_pcount(skb);
  2783. }
  2784. if (sacked & TCPCB_RETRANS) {
  2785. if (sacked & TCPCB_SACKED_RETRANS)
  2786. tp->retrans_out -= acked_pcount;
  2787. flag |= FLAG_RETRANS_DATA_ACKED;
  2788. ca_seq_rtt = -1;
  2789. seq_rtt = -1;
  2790. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2791. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2792. } else {
  2793. ca_seq_rtt = now - scb->when;
  2794. last_ackt = skb->tstamp;
  2795. if (seq_rtt < 0) {
  2796. seq_rtt = ca_seq_rtt;
  2797. }
  2798. if (!(sacked & TCPCB_SACKED_ACKED))
  2799. reord = min(pkts_acked, reord);
  2800. }
  2801. if (sacked & TCPCB_SACKED_ACKED)
  2802. tp->sacked_out -= acked_pcount;
  2803. if (sacked & TCPCB_LOST)
  2804. tp->lost_out -= acked_pcount;
  2805. tp->packets_out -= acked_pcount;
  2806. pkts_acked += acked_pcount;
  2807. /* Initial outgoing SYN's get put onto the write_queue
  2808. * just like anything else we transmit. It is not
  2809. * true data, and if we misinform our callers that
  2810. * this ACK acks real data, we will erroneously exit
  2811. * connection startup slow start one packet too
  2812. * quickly. This is severely frowned upon behavior.
  2813. */
  2814. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2815. flag |= FLAG_DATA_ACKED;
  2816. } else {
  2817. flag |= FLAG_SYN_ACKED;
  2818. tp->retrans_stamp = 0;
  2819. }
  2820. if (!fully_acked)
  2821. break;
  2822. tcp_unlink_write_queue(skb, sk);
  2823. sk_wmem_free_skb(sk, skb);
  2824. tp->scoreboard_skb_hint = NULL;
  2825. if (skb == tp->retransmit_skb_hint)
  2826. tp->retransmit_skb_hint = NULL;
  2827. if (skb == tp->lost_skb_hint)
  2828. tp->lost_skb_hint = NULL;
  2829. }
  2830. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2831. tp->snd_up = tp->snd_una;
  2832. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2833. flag |= FLAG_SACK_RENEGING;
  2834. if (flag & FLAG_ACKED) {
  2835. const struct tcp_congestion_ops *ca_ops
  2836. = inet_csk(sk)->icsk_ca_ops;
  2837. if (unlikely(icsk->icsk_mtup.probe_size &&
  2838. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2839. tcp_mtup_probe_success(sk);
  2840. }
  2841. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2842. tcp_rearm_rto(sk);
  2843. if (tcp_is_reno(tp)) {
  2844. tcp_remove_reno_sacks(sk, pkts_acked);
  2845. } else {
  2846. int delta;
  2847. /* Non-retransmitted hole got filled? That's reordering */
  2848. if (reord < prior_fackets)
  2849. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2850. delta = tcp_is_fack(tp) ? pkts_acked :
  2851. prior_sacked - tp->sacked_out;
  2852. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2853. }
  2854. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2855. if (ca_ops->pkts_acked) {
  2856. s32 rtt_us = -1;
  2857. /* Is the ACK triggering packet unambiguous? */
  2858. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2859. /* High resolution needed and available? */
  2860. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2861. !ktime_equal(last_ackt,
  2862. net_invalid_timestamp()))
  2863. rtt_us = ktime_us_delta(ktime_get_real(),
  2864. last_ackt);
  2865. else if (ca_seq_rtt > 0)
  2866. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2867. }
  2868. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2869. }
  2870. }
  2871. #if FASTRETRANS_DEBUG > 0
  2872. WARN_ON((int)tp->sacked_out < 0);
  2873. WARN_ON((int)tp->lost_out < 0);
  2874. WARN_ON((int)tp->retrans_out < 0);
  2875. if (!tp->packets_out && tcp_is_sack(tp)) {
  2876. icsk = inet_csk(sk);
  2877. if (tp->lost_out) {
  2878. printk(KERN_DEBUG "Leak l=%u %d\n",
  2879. tp->lost_out, icsk->icsk_ca_state);
  2880. tp->lost_out = 0;
  2881. }
  2882. if (tp->sacked_out) {
  2883. printk(KERN_DEBUG "Leak s=%u %d\n",
  2884. tp->sacked_out, icsk->icsk_ca_state);
  2885. tp->sacked_out = 0;
  2886. }
  2887. if (tp->retrans_out) {
  2888. printk(KERN_DEBUG "Leak r=%u %d\n",
  2889. tp->retrans_out, icsk->icsk_ca_state);
  2890. tp->retrans_out = 0;
  2891. }
  2892. }
  2893. #endif
  2894. return flag;
  2895. }
  2896. static void tcp_ack_probe(struct sock *sk)
  2897. {
  2898. const struct tcp_sock *tp = tcp_sk(sk);
  2899. struct inet_connection_sock *icsk = inet_csk(sk);
  2900. /* Was it a usable window open? */
  2901. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2902. icsk->icsk_backoff = 0;
  2903. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2904. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2905. * This function is not for random using!
  2906. */
  2907. } else {
  2908. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2909. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2910. TCP_RTO_MAX);
  2911. }
  2912. }
  2913. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2914. {
  2915. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2916. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2917. }
  2918. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2919. {
  2920. const struct tcp_sock *tp = tcp_sk(sk);
  2921. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2922. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2923. }
  2924. /* Check that window update is acceptable.
  2925. * The function assumes that snd_una<=ack<=snd_next.
  2926. */
  2927. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2928. const u32 ack, const u32 ack_seq,
  2929. const u32 nwin)
  2930. {
  2931. return (after(ack, tp->snd_una) ||
  2932. after(ack_seq, tp->snd_wl1) ||
  2933. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2934. }
  2935. /* Update our send window.
  2936. *
  2937. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2938. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2939. */
  2940. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2941. u32 ack_seq)
  2942. {
  2943. struct tcp_sock *tp = tcp_sk(sk);
  2944. int flag = 0;
  2945. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2946. if (likely(!tcp_hdr(skb)->syn))
  2947. nwin <<= tp->rx_opt.snd_wscale;
  2948. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2949. flag |= FLAG_WIN_UPDATE;
  2950. tcp_update_wl(tp, ack_seq);
  2951. if (tp->snd_wnd != nwin) {
  2952. tp->snd_wnd = nwin;
  2953. /* Note, it is the only place, where
  2954. * fast path is recovered for sending TCP.
  2955. */
  2956. tp->pred_flags = 0;
  2957. tcp_fast_path_check(sk);
  2958. if (nwin > tp->max_window) {
  2959. tp->max_window = nwin;
  2960. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2961. }
  2962. }
  2963. }
  2964. tp->snd_una = ack;
  2965. return flag;
  2966. }
  2967. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2968. * continue in congestion avoidance.
  2969. */
  2970. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2971. {
  2972. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2973. tp->snd_cwnd_cnt = 0;
  2974. tp->bytes_acked = 0;
  2975. TCP_ECN_queue_cwr(tp);
  2976. tcp_moderate_cwnd(tp);
  2977. }
  2978. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2979. * rate halving and continue in congestion avoidance.
  2980. */
  2981. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2982. {
  2983. tcp_enter_cwr(sk, 0);
  2984. }
  2985. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2986. {
  2987. if (flag & FLAG_ECE)
  2988. tcp_ratehalving_spur_to_response(sk);
  2989. else
  2990. tcp_undo_cwr(sk, 1);
  2991. }
  2992. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2993. *
  2994. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2995. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2996. * window (but not to or beyond highest sequence sent before RTO):
  2997. * On First ACK, send two new segments out.
  2998. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2999. * algorithm is not part of the F-RTO detection algorithm
  3000. * given in RFC4138 but can be selected separately).
  3001. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3002. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3003. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3004. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3005. *
  3006. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3007. * original window even after we transmit two new data segments.
  3008. *
  3009. * SACK version:
  3010. * on first step, wait until first cumulative ACK arrives, then move to
  3011. * the second step. In second step, the next ACK decides.
  3012. *
  3013. * F-RTO is implemented (mainly) in four functions:
  3014. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3015. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3016. * called when tcp_use_frto() showed green light
  3017. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3018. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3019. * to prove that the RTO is indeed spurious. It transfers the control
  3020. * from F-RTO to the conventional RTO recovery
  3021. */
  3022. static int tcp_process_frto(struct sock *sk, int flag)
  3023. {
  3024. struct tcp_sock *tp = tcp_sk(sk);
  3025. tcp_verify_left_out(tp);
  3026. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3027. if (flag & FLAG_DATA_ACKED)
  3028. inet_csk(sk)->icsk_retransmits = 0;
  3029. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3030. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3031. tp->undo_marker = 0;
  3032. if (!before(tp->snd_una, tp->frto_highmark)) {
  3033. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3034. return 1;
  3035. }
  3036. if (!tcp_is_sackfrto(tp)) {
  3037. /* RFC4138 shortcoming in step 2; should also have case c):
  3038. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3039. * data, winupdate
  3040. */
  3041. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3042. return 1;
  3043. if (!(flag & FLAG_DATA_ACKED)) {
  3044. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3045. flag);
  3046. return 1;
  3047. }
  3048. } else {
  3049. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3050. /* Prevent sending of new data. */
  3051. tp->snd_cwnd = min(tp->snd_cwnd,
  3052. tcp_packets_in_flight(tp));
  3053. return 1;
  3054. }
  3055. if ((tp->frto_counter >= 2) &&
  3056. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3057. ((flag & FLAG_DATA_SACKED) &&
  3058. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3059. /* RFC4138 shortcoming (see comment above) */
  3060. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3061. (flag & FLAG_NOT_DUP))
  3062. return 1;
  3063. tcp_enter_frto_loss(sk, 3, flag);
  3064. return 1;
  3065. }
  3066. }
  3067. if (tp->frto_counter == 1) {
  3068. /* tcp_may_send_now needs to see updated state */
  3069. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3070. tp->frto_counter = 2;
  3071. if (!tcp_may_send_now(sk))
  3072. tcp_enter_frto_loss(sk, 2, flag);
  3073. return 1;
  3074. } else {
  3075. switch (sysctl_tcp_frto_response) {
  3076. case 2:
  3077. tcp_undo_spur_to_response(sk, flag);
  3078. break;
  3079. case 1:
  3080. tcp_conservative_spur_to_response(tp);
  3081. break;
  3082. default:
  3083. tcp_ratehalving_spur_to_response(sk);
  3084. break;
  3085. }
  3086. tp->frto_counter = 0;
  3087. tp->undo_marker = 0;
  3088. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3089. }
  3090. return 0;
  3091. }
  3092. /* This routine deals with incoming acks, but not outgoing ones. */
  3093. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  3094. {
  3095. struct inet_connection_sock *icsk = inet_csk(sk);
  3096. struct tcp_sock *tp = tcp_sk(sk);
  3097. u32 prior_snd_una = tp->snd_una;
  3098. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3099. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3100. u32 prior_in_flight;
  3101. u32 prior_fackets;
  3102. int prior_packets;
  3103. int frto_cwnd = 0;
  3104. /* If the ack is older than previous acks
  3105. * then we can probably ignore it.
  3106. */
  3107. if (before(ack, prior_snd_una))
  3108. goto old_ack;
  3109. /* If the ack includes data we haven't sent yet, discard
  3110. * this segment (RFC793 Section 3.9).
  3111. */
  3112. if (after(ack, tp->snd_nxt))
  3113. goto invalid_ack;
  3114. if (after(ack, prior_snd_una))
  3115. flag |= FLAG_SND_UNA_ADVANCED;
  3116. if (sysctl_tcp_abc) {
  3117. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3118. tp->bytes_acked += ack - prior_snd_una;
  3119. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3120. /* we assume just one segment left network */
  3121. tp->bytes_acked += min(ack - prior_snd_una,
  3122. tp->mss_cache);
  3123. }
  3124. prior_fackets = tp->fackets_out;
  3125. prior_in_flight = tcp_packets_in_flight(tp);
  3126. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3127. /* Window is constant, pure forward advance.
  3128. * No more checks are required.
  3129. * Note, we use the fact that SND.UNA>=SND.WL2.
  3130. */
  3131. tcp_update_wl(tp, ack_seq);
  3132. tp->snd_una = ack;
  3133. flag |= FLAG_WIN_UPDATE;
  3134. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3135. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3136. } else {
  3137. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3138. flag |= FLAG_DATA;
  3139. else
  3140. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3141. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3142. if (TCP_SKB_CB(skb)->sacked)
  3143. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3144. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3145. flag |= FLAG_ECE;
  3146. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3147. }
  3148. /* We passed data and got it acked, remove any soft error
  3149. * log. Something worked...
  3150. */
  3151. sk->sk_err_soft = 0;
  3152. icsk->icsk_probes_out = 0;
  3153. tp->rcv_tstamp = tcp_time_stamp;
  3154. prior_packets = tp->packets_out;
  3155. if (!prior_packets)
  3156. goto no_queue;
  3157. /* See if we can take anything off of the retransmit queue. */
  3158. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3159. if (tp->frto_counter)
  3160. frto_cwnd = tcp_process_frto(sk, flag);
  3161. /* Guarantee sacktag reordering detection against wrap-arounds */
  3162. if (before(tp->frto_highmark, tp->snd_una))
  3163. tp->frto_highmark = 0;
  3164. if (tcp_ack_is_dubious(sk, flag)) {
  3165. /* Advance CWND, if state allows this. */
  3166. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3167. tcp_may_raise_cwnd(sk, flag))
  3168. tcp_cong_avoid(sk, ack, prior_in_flight);
  3169. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  3170. flag);
  3171. } else {
  3172. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3173. tcp_cong_avoid(sk, ack, prior_in_flight);
  3174. }
  3175. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3176. dst_confirm(sk->sk_dst_cache);
  3177. return 1;
  3178. no_queue:
  3179. /* If this ack opens up a zero window, clear backoff. It was
  3180. * being used to time the probes, and is probably far higher than
  3181. * it needs to be for normal retransmission.
  3182. */
  3183. if (tcp_send_head(sk))
  3184. tcp_ack_probe(sk);
  3185. return 1;
  3186. invalid_ack:
  3187. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3188. return -1;
  3189. old_ack:
  3190. if (TCP_SKB_CB(skb)->sacked) {
  3191. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3192. if (icsk->icsk_ca_state == TCP_CA_Open)
  3193. tcp_try_keep_open(sk);
  3194. }
  3195. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3196. return 0;
  3197. }
  3198. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3199. * But, this can also be called on packets in the established flow when
  3200. * the fast version below fails.
  3201. */
  3202. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3203. int estab)
  3204. {
  3205. unsigned char *ptr;
  3206. struct tcphdr *th = tcp_hdr(skb);
  3207. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3208. ptr = (unsigned char *)(th + 1);
  3209. opt_rx->saw_tstamp = 0;
  3210. while (length > 0) {
  3211. int opcode = *ptr++;
  3212. int opsize;
  3213. switch (opcode) {
  3214. case TCPOPT_EOL:
  3215. return;
  3216. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3217. length--;
  3218. continue;
  3219. default:
  3220. opsize = *ptr++;
  3221. if (opsize < 2) /* "silly options" */
  3222. return;
  3223. if (opsize > length)
  3224. return; /* don't parse partial options */
  3225. switch (opcode) {
  3226. case TCPOPT_MSS:
  3227. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3228. u16 in_mss = get_unaligned_be16(ptr);
  3229. if (in_mss) {
  3230. if (opt_rx->user_mss &&
  3231. opt_rx->user_mss < in_mss)
  3232. in_mss = opt_rx->user_mss;
  3233. opt_rx->mss_clamp = in_mss;
  3234. }
  3235. }
  3236. break;
  3237. case TCPOPT_WINDOW:
  3238. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3239. !estab && sysctl_tcp_window_scaling) {
  3240. __u8 snd_wscale = *(__u8 *)ptr;
  3241. opt_rx->wscale_ok = 1;
  3242. if (snd_wscale > 14) {
  3243. if (net_ratelimit())
  3244. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3245. "scaling value %d >14 received.\n",
  3246. snd_wscale);
  3247. snd_wscale = 14;
  3248. }
  3249. opt_rx->snd_wscale = snd_wscale;
  3250. }
  3251. break;
  3252. case TCPOPT_TIMESTAMP:
  3253. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3254. ((estab && opt_rx->tstamp_ok) ||
  3255. (!estab && sysctl_tcp_timestamps))) {
  3256. opt_rx->saw_tstamp = 1;
  3257. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3258. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3259. }
  3260. break;
  3261. case TCPOPT_SACK_PERM:
  3262. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3263. !estab && sysctl_tcp_sack) {
  3264. opt_rx->sack_ok = 1;
  3265. tcp_sack_reset(opt_rx);
  3266. }
  3267. break;
  3268. case TCPOPT_SACK:
  3269. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3270. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3271. opt_rx->sack_ok) {
  3272. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3273. }
  3274. break;
  3275. #ifdef CONFIG_TCP_MD5SIG
  3276. case TCPOPT_MD5SIG:
  3277. /*
  3278. * The MD5 Hash has already been
  3279. * checked (see tcp_v{4,6}_do_rcv()).
  3280. */
  3281. break;
  3282. #endif
  3283. }
  3284. ptr += opsize-2;
  3285. length -= opsize;
  3286. }
  3287. }
  3288. }
  3289. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  3290. {
  3291. __be32 *ptr = (__be32 *)(th + 1);
  3292. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3293. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3294. tp->rx_opt.saw_tstamp = 1;
  3295. ++ptr;
  3296. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3297. ++ptr;
  3298. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3299. return 1;
  3300. }
  3301. return 0;
  3302. }
  3303. /* Fast parse options. This hopes to only see timestamps.
  3304. * If it is wrong it falls back on tcp_parse_options().
  3305. */
  3306. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3307. struct tcp_sock *tp)
  3308. {
  3309. if (th->doff == sizeof(struct tcphdr) >> 2) {
  3310. tp->rx_opt.saw_tstamp = 0;
  3311. return 0;
  3312. } else if (tp->rx_opt.tstamp_ok &&
  3313. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  3314. if (tcp_parse_aligned_timestamp(tp, th))
  3315. return 1;
  3316. }
  3317. tcp_parse_options(skb, &tp->rx_opt, 1);
  3318. return 1;
  3319. }
  3320. #ifdef CONFIG_TCP_MD5SIG
  3321. /*
  3322. * Parse MD5 Signature option
  3323. */
  3324. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3325. {
  3326. int length = (th->doff << 2) - sizeof (*th);
  3327. u8 *ptr = (u8*)(th + 1);
  3328. /* If the TCP option is too short, we can short cut */
  3329. if (length < TCPOLEN_MD5SIG)
  3330. return NULL;
  3331. while (length > 0) {
  3332. int opcode = *ptr++;
  3333. int opsize;
  3334. switch(opcode) {
  3335. case TCPOPT_EOL:
  3336. return NULL;
  3337. case TCPOPT_NOP:
  3338. length--;
  3339. continue;
  3340. default:
  3341. opsize = *ptr++;
  3342. if (opsize < 2 || opsize > length)
  3343. return NULL;
  3344. if (opcode == TCPOPT_MD5SIG)
  3345. return ptr;
  3346. }
  3347. ptr += opsize - 2;
  3348. length -= opsize;
  3349. }
  3350. return NULL;
  3351. }
  3352. #endif
  3353. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3354. {
  3355. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3356. tp->rx_opt.ts_recent_stamp = get_seconds();
  3357. }
  3358. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3359. {
  3360. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3361. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3362. * extra check below makes sure this can only happen
  3363. * for pure ACK frames. -DaveM
  3364. *
  3365. * Not only, also it occurs for expired timestamps.
  3366. */
  3367. if (tcp_paws_check(&tp->rx_opt, 0))
  3368. tcp_store_ts_recent(tp);
  3369. }
  3370. }
  3371. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3372. *
  3373. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3374. * it can pass through stack. So, the following predicate verifies that
  3375. * this segment is not used for anything but congestion avoidance or
  3376. * fast retransmit. Moreover, we even are able to eliminate most of such
  3377. * second order effects, if we apply some small "replay" window (~RTO)
  3378. * to timestamp space.
  3379. *
  3380. * All these measures still do not guarantee that we reject wrapped ACKs
  3381. * on networks with high bandwidth, when sequence space is recycled fastly,
  3382. * but it guarantees that such events will be very rare and do not affect
  3383. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3384. * buggy extension.
  3385. *
  3386. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3387. * states that events when retransmit arrives after original data are rare.
  3388. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3389. * the biggest problem on large power networks even with minor reordering.
  3390. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3391. * up to bandwidth of 18Gigabit/sec. 8) ]
  3392. */
  3393. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3394. {
  3395. struct tcp_sock *tp = tcp_sk(sk);
  3396. struct tcphdr *th = tcp_hdr(skb);
  3397. u32 seq = TCP_SKB_CB(skb)->seq;
  3398. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3399. return (/* 1. Pure ACK with correct sequence number. */
  3400. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3401. /* 2. ... and duplicate ACK. */
  3402. ack == tp->snd_una &&
  3403. /* 3. ... and does not update window. */
  3404. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3405. /* 4. ... and sits in replay window. */
  3406. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3407. }
  3408. static inline int tcp_paws_discard(const struct sock *sk,
  3409. const struct sk_buff *skb)
  3410. {
  3411. const struct tcp_sock *tp = tcp_sk(sk);
  3412. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3413. !tcp_disordered_ack(sk, skb);
  3414. }
  3415. /* Check segment sequence number for validity.
  3416. *
  3417. * Segment controls are considered valid, if the segment
  3418. * fits to the window after truncation to the window. Acceptability
  3419. * of data (and SYN, FIN, of course) is checked separately.
  3420. * See tcp_data_queue(), for example.
  3421. *
  3422. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3423. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3424. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3425. * (borrowed from freebsd)
  3426. */
  3427. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3428. {
  3429. return !before(end_seq, tp->rcv_wup) &&
  3430. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3431. }
  3432. /* When we get a reset we do this. */
  3433. static void tcp_reset(struct sock *sk)
  3434. {
  3435. /* We want the right error as BSD sees it (and indeed as we do). */
  3436. switch (sk->sk_state) {
  3437. case TCP_SYN_SENT:
  3438. sk->sk_err = ECONNREFUSED;
  3439. break;
  3440. case TCP_CLOSE_WAIT:
  3441. sk->sk_err = EPIPE;
  3442. break;
  3443. case TCP_CLOSE:
  3444. return;
  3445. default:
  3446. sk->sk_err = ECONNRESET;
  3447. }
  3448. if (!sock_flag(sk, SOCK_DEAD))
  3449. sk->sk_error_report(sk);
  3450. tcp_done(sk);
  3451. }
  3452. /*
  3453. * Process the FIN bit. This now behaves as it is supposed to work
  3454. * and the FIN takes effect when it is validly part of sequence
  3455. * space. Not before when we get holes.
  3456. *
  3457. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3458. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3459. * TIME-WAIT)
  3460. *
  3461. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3462. * close and we go into CLOSING (and later onto TIME-WAIT)
  3463. *
  3464. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3465. */
  3466. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3467. {
  3468. struct tcp_sock *tp = tcp_sk(sk);
  3469. inet_csk_schedule_ack(sk);
  3470. sk->sk_shutdown |= RCV_SHUTDOWN;
  3471. sock_set_flag(sk, SOCK_DONE);
  3472. switch (sk->sk_state) {
  3473. case TCP_SYN_RECV:
  3474. case TCP_ESTABLISHED:
  3475. /* Move to CLOSE_WAIT */
  3476. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3477. inet_csk(sk)->icsk_ack.pingpong = 1;
  3478. break;
  3479. case TCP_CLOSE_WAIT:
  3480. case TCP_CLOSING:
  3481. /* Received a retransmission of the FIN, do
  3482. * nothing.
  3483. */
  3484. break;
  3485. case TCP_LAST_ACK:
  3486. /* RFC793: Remain in the LAST-ACK state. */
  3487. break;
  3488. case TCP_FIN_WAIT1:
  3489. /* This case occurs when a simultaneous close
  3490. * happens, we must ack the received FIN and
  3491. * enter the CLOSING state.
  3492. */
  3493. tcp_send_ack(sk);
  3494. tcp_set_state(sk, TCP_CLOSING);
  3495. break;
  3496. case TCP_FIN_WAIT2:
  3497. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3498. tcp_send_ack(sk);
  3499. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3500. break;
  3501. default:
  3502. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3503. * cases we should never reach this piece of code.
  3504. */
  3505. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3506. __func__, sk->sk_state);
  3507. break;
  3508. }
  3509. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3510. * Probably, we should reset in this case. For now drop them.
  3511. */
  3512. __skb_queue_purge(&tp->out_of_order_queue);
  3513. if (tcp_is_sack(tp))
  3514. tcp_sack_reset(&tp->rx_opt);
  3515. sk_mem_reclaim(sk);
  3516. if (!sock_flag(sk, SOCK_DEAD)) {
  3517. sk->sk_state_change(sk);
  3518. /* Do not send POLL_HUP for half duplex close. */
  3519. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3520. sk->sk_state == TCP_CLOSE)
  3521. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3522. else
  3523. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3524. }
  3525. }
  3526. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3527. u32 end_seq)
  3528. {
  3529. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3530. if (before(seq, sp->start_seq))
  3531. sp->start_seq = seq;
  3532. if (after(end_seq, sp->end_seq))
  3533. sp->end_seq = end_seq;
  3534. return 1;
  3535. }
  3536. return 0;
  3537. }
  3538. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3539. {
  3540. struct tcp_sock *tp = tcp_sk(sk);
  3541. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3542. int mib_idx;
  3543. if (before(seq, tp->rcv_nxt))
  3544. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3545. else
  3546. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3547. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3548. tp->rx_opt.dsack = 1;
  3549. tp->duplicate_sack[0].start_seq = seq;
  3550. tp->duplicate_sack[0].end_seq = end_seq;
  3551. }
  3552. }
  3553. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3554. {
  3555. struct tcp_sock *tp = tcp_sk(sk);
  3556. if (!tp->rx_opt.dsack)
  3557. tcp_dsack_set(sk, seq, end_seq);
  3558. else
  3559. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3560. }
  3561. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3562. {
  3563. struct tcp_sock *tp = tcp_sk(sk);
  3564. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3565. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3566. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3567. tcp_enter_quickack_mode(sk);
  3568. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3569. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3570. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3571. end_seq = tp->rcv_nxt;
  3572. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3573. }
  3574. }
  3575. tcp_send_ack(sk);
  3576. }
  3577. /* These routines update the SACK block as out-of-order packets arrive or
  3578. * in-order packets close up the sequence space.
  3579. */
  3580. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3581. {
  3582. int this_sack;
  3583. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3584. struct tcp_sack_block *swalk = sp + 1;
  3585. /* See if the recent change to the first SACK eats into
  3586. * or hits the sequence space of other SACK blocks, if so coalesce.
  3587. */
  3588. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3589. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3590. int i;
  3591. /* Zap SWALK, by moving every further SACK up by one slot.
  3592. * Decrease num_sacks.
  3593. */
  3594. tp->rx_opt.num_sacks--;
  3595. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3596. sp[i] = sp[i + 1];
  3597. continue;
  3598. }
  3599. this_sack++, swalk++;
  3600. }
  3601. }
  3602. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3603. {
  3604. struct tcp_sock *tp = tcp_sk(sk);
  3605. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3606. int cur_sacks = tp->rx_opt.num_sacks;
  3607. int this_sack;
  3608. if (!cur_sacks)
  3609. goto new_sack;
  3610. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3611. if (tcp_sack_extend(sp, seq, end_seq)) {
  3612. /* Rotate this_sack to the first one. */
  3613. for (; this_sack > 0; this_sack--, sp--)
  3614. swap(*sp, *(sp - 1));
  3615. if (cur_sacks > 1)
  3616. tcp_sack_maybe_coalesce(tp);
  3617. return;
  3618. }
  3619. }
  3620. /* Could not find an adjacent existing SACK, build a new one,
  3621. * put it at the front, and shift everyone else down. We
  3622. * always know there is at least one SACK present already here.
  3623. *
  3624. * If the sack array is full, forget about the last one.
  3625. */
  3626. if (this_sack >= TCP_NUM_SACKS) {
  3627. this_sack--;
  3628. tp->rx_opt.num_sacks--;
  3629. sp--;
  3630. }
  3631. for (; this_sack > 0; this_sack--, sp--)
  3632. *sp = *(sp - 1);
  3633. new_sack:
  3634. /* Build the new head SACK, and we're done. */
  3635. sp->start_seq = seq;
  3636. sp->end_seq = end_seq;
  3637. tp->rx_opt.num_sacks++;
  3638. }
  3639. /* RCV.NXT advances, some SACKs should be eaten. */
  3640. static void tcp_sack_remove(struct tcp_sock *tp)
  3641. {
  3642. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3643. int num_sacks = tp->rx_opt.num_sacks;
  3644. int this_sack;
  3645. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3646. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3647. tp->rx_opt.num_sacks = 0;
  3648. return;
  3649. }
  3650. for (this_sack = 0; this_sack < num_sacks;) {
  3651. /* Check if the start of the sack is covered by RCV.NXT. */
  3652. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3653. int i;
  3654. /* RCV.NXT must cover all the block! */
  3655. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3656. /* Zap this SACK, by moving forward any other SACKS. */
  3657. for (i=this_sack+1; i < num_sacks; i++)
  3658. tp->selective_acks[i-1] = tp->selective_acks[i];
  3659. num_sacks--;
  3660. continue;
  3661. }
  3662. this_sack++;
  3663. sp++;
  3664. }
  3665. tp->rx_opt.num_sacks = num_sacks;
  3666. }
  3667. /* This one checks to see if we can put data from the
  3668. * out_of_order queue into the receive_queue.
  3669. */
  3670. static void tcp_ofo_queue(struct sock *sk)
  3671. {
  3672. struct tcp_sock *tp = tcp_sk(sk);
  3673. __u32 dsack_high = tp->rcv_nxt;
  3674. struct sk_buff *skb;
  3675. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3676. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3677. break;
  3678. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3679. __u32 dsack = dsack_high;
  3680. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3681. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3682. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3683. }
  3684. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3685. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3686. __skb_unlink(skb, &tp->out_of_order_queue);
  3687. __kfree_skb(skb);
  3688. continue;
  3689. }
  3690. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3691. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3692. TCP_SKB_CB(skb)->end_seq);
  3693. __skb_unlink(skb, &tp->out_of_order_queue);
  3694. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3695. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3696. if (tcp_hdr(skb)->fin)
  3697. tcp_fin(skb, sk, tcp_hdr(skb));
  3698. }
  3699. }
  3700. static int tcp_prune_ofo_queue(struct sock *sk);
  3701. static int tcp_prune_queue(struct sock *sk);
  3702. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3703. {
  3704. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3705. !sk_rmem_schedule(sk, size)) {
  3706. if (tcp_prune_queue(sk) < 0)
  3707. return -1;
  3708. if (!sk_rmem_schedule(sk, size)) {
  3709. if (!tcp_prune_ofo_queue(sk))
  3710. return -1;
  3711. if (!sk_rmem_schedule(sk, size))
  3712. return -1;
  3713. }
  3714. }
  3715. return 0;
  3716. }
  3717. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3718. {
  3719. struct tcphdr *th = tcp_hdr(skb);
  3720. struct tcp_sock *tp = tcp_sk(sk);
  3721. int eaten = -1;
  3722. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3723. goto drop;
  3724. __skb_pull(skb, th->doff * 4);
  3725. TCP_ECN_accept_cwr(tp, skb);
  3726. tp->rx_opt.dsack = 0;
  3727. /* Queue data for delivery to the user.
  3728. * Packets in sequence go to the receive queue.
  3729. * Out of sequence packets to the out_of_order_queue.
  3730. */
  3731. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3732. if (tcp_receive_window(tp) == 0)
  3733. goto out_of_window;
  3734. /* Ok. In sequence. In window. */
  3735. if (tp->ucopy.task == current &&
  3736. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3737. sock_owned_by_user(sk) && !tp->urg_data) {
  3738. int chunk = min_t(unsigned int, skb->len,
  3739. tp->ucopy.len);
  3740. __set_current_state(TASK_RUNNING);
  3741. local_bh_enable();
  3742. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3743. tp->ucopy.len -= chunk;
  3744. tp->copied_seq += chunk;
  3745. eaten = (chunk == skb->len && !th->fin);
  3746. tcp_rcv_space_adjust(sk);
  3747. }
  3748. local_bh_disable();
  3749. }
  3750. if (eaten <= 0) {
  3751. queue_and_out:
  3752. if (eaten < 0 &&
  3753. tcp_try_rmem_schedule(sk, skb->truesize))
  3754. goto drop;
  3755. skb_set_owner_r(skb, sk);
  3756. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3757. }
  3758. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3759. if (skb->len)
  3760. tcp_event_data_recv(sk, skb);
  3761. if (th->fin)
  3762. tcp_fin(skb, sk, th);
  3763. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3764. tcp_ofo_queue(sk);
  3765. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3766. * gap in queue is filled.
  3767. */
  3768. if (skb_queue_empty(&tp->out_of_order_queue))
  3769. inet_csk(sk)->icsk_ack.pingpong = 0;
  3770. }
  3771. if (tp->rx_opt.num_sacks)
  3772. tcp_sack_remove(tp);
  3773. tcp_fast_path_check(sk);
  3774. if (eaten > 0)
  3775. __kfree_skb(skb);
  3776. else if (!sock_flag(sk, SOCK_DEAD))
  3777. sk->sk_data_ready(sk, 0);
  3778. return;
  3779. }
  3780. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3781. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3782. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3783. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3784. out_of_window:
  3785. tcp_enter_quickack_mode(sk);
  3786. inet_csk_schedule_ack(sk);
  3787. drop:
  3788. __kfree_skb(skb);
  3789. return;
  3790. }
  3791. /* Out of window. F.e. zero window probe. */
  3792. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3793. goto out_of_window;
  3794. tcp_enter_quickack_mode(sk);
  3795. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3796. /* Partial packet, seq < rcv_next < end_seq */
  3797. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3798. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3799. TCP_SKB_CB(skb)->end_seq);
  3800. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3801. /* If window is closed, drop tail of packet. But after
  3802. * remembering D-SACK for its head made in previous line.
  3803. */
  3804. if (!tcp_receive_window(tp))
  3805. goto out_of_window;
  3806. goto queue_and_out;
  3807. }
  3808. TCP_ECN_check_ce(tp, skb);
  3809. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3810. goto drop;
  3811. /* Disable header prediction. */
  3812. tp->pred_flags = 0;
  3813. inet_csk_schedule_ack(sk);
  3814. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3815. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3816. skb_set_owner_r(skb, sk);
  3817. if (!skb_peek(&tp->out_of_order_queue)) {
  3818. /* Initial out of order segment, build 1 SACK. */
  3819. if (tcp_is_sack(tp)) {
  3820. tp->rx_opt.num_sacks = 1;
  3821. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3822. tp->selective_acks[0].end_seq =
  3823. TCP_SKB_CB(skb)->end_seq;
  3824. }
  3825. __skb_queue_head(&tp->out_of_order_queue, skb);
  3826. } else {
  3827. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3828. u32 seq = TCP_SKB_CB(skb)->seq;
  3829. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3830. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3831. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3832. if (!tp->rx_opt.num_sacks ||
  3833. tp->selective_acks[0].end_seq != seq)
  3834. goto add_sack;
  3835. /* Common case: data arrive in order after hole. */
  3836. tp->selective_acks[0].end_seq = end_seq;
  3837. return;
  3838. }
  3839. /* Find place to insert this segment. */
  3840. while (1) {
  3841. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3842. break;
  3843. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3844. skb1 = NULL;
  3845. break;
  3846. }
  3847. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3848. }
  3849. /* Do skb overlap to previous one? */
  3850. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3851. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3852. /* All the bits are present. Drop. */
  3853. __kfree_skb(skb);
  3854. tcp_dsack_set(sk, seq, end_seq);
  3855. goto add_sack;
  3856. }
  3857. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3858. /* Partial overlap. */
  3859. tcp_dsack_set(sk, seq,
  3860. TCP_SKB_CB(skb1)->end_seq);
  3861. } else {
  3862. if (skb_queue_is_first(&tp->out_of_order_queue,
  3863. skb1))
  3864. skb1 = NULL;
  3865. else
  3866. skb1 = skb_queue_prev(
  3867. &tp->out_of_order_queue,
  3868. skb1);
  3869. }
  3870. }
  3871. if (!skb1)
  3872. __skb_queue_head(&tp->out_of_order_queue, skb);
  3873. else
  3874. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3875. /* And clean segments covered by new one as whole. */
  3876. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3877. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3878. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3879. break;
  3880. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3881. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3882. end_seq);
  3883. break;
  3884. }
  3885. __skb_unlink(skb1, &tp->out_of_order_queue);
  3886. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3887. TCP_SKB_CB(skb1)->end_seq);
  3888. __kfree_skb(skb1);
  3889. }
  3890. add_sack:
  3891. if (tcp_is_sack(tp))
  3892. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3893. }
  3894. }
  3895. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3896. struct sk_buff_head *list)
  3897. {
  3898. struct sk_buff *next = NULL;
  3899. if (!skb_queue_is_last(list, skb))
  3900. next = skb_queue_next(list, skb);
  3901. __skb_unlink(skb, list);
  3902. __kfree_skb(skb);
  3903. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3904. return next;
  3905. }
  3906. /* Collapse contiguous sequence of skbs head..tail with
  3907. * sequence numbers start..end.
  3908. *
  3909. * If tail is NULL, this means until the end of the list.
  3910. *
  3911. * Segments with FIN/SYN are not collapsed (only because this
  3912. * simplifies code)
  3913. */
  3914. static void
  3915. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3916. struct sk_buff *head, struct sk_buff *tail,
  3917. u32 start, u32 end)
  3918. {
  3919. struct sk_buff *skb, *n;
  3920. bool end_of_skbs;
  3921. /* First, check that queue is collapsible and find
  3922. * the point where collapsing can be useful. */
  3923. skb = head;
  3924. restart:
  3925. end_of_skbs = true;
  3926. skb_queue_walk_from_safe(list, skb, n) {
  3927. if (skb == tail)
  3928. break;
  3929. /* No new bits? It is possible on ofo queue. */
  3930. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3931. skb = tcp_collapse_one(sk, skb, list);
  3932. if (!skb)
  3933. break;
  3934. goto restart;
  3935. }
  3936. /* The first skb to collapse is:
  3937. * - not SYN/FIN and
  3938. * - bloated or contains data before "start" or
  3939. * overlaps to the next one.
  3940. */
  3941. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3942. (tcp_win_from_space(skb->truesize) > skb->len ||
  3943. before(TCP_SKB_CB(skb)->seq, start))) {
  3944. end_of_skbs = false;
  3945. break;
  3946. }
  3947. if (!skb_queue_is_last(list, skb)) {
  3948. struct sk_buff *next = skb_queue_next(list, skb);
  3949. if (next != tail &&
  3950. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3951. end_of_skbs = false;
  3952. break;
  3953. }
  3954. }
  3955. /* Decided to skip this, advance start seq. */
  3956. start = TCP_SKB_CB(skb)->end_seq;
  3957. }
  3958. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3959. return;
  3960. while (before(start, end)) {
  3961. struct sk_buff *nskb;
  3962. unsigned int header = skb_headroom(skb);
  3963. int copy = SKB_MAX_ORDER(header, 0);
  3964. /* Too big header? This can happen with IPv6. */
  3965. if (copy < 0)
  3966. return;
  3967. if (end - start < copy)
  3968. copy = end - start;
  3969. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3970. if (!nskb)
  3971. return;
  3972. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3973. skb_set_network_header(nskb, (skb_network_header(skb) -
  3974. skb->head));
  3975. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3976. skb->head));
  3977. skb_reserve(nskb, header);
  3978. memcpy(nskb->head, skb->head, header);
  3979. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3980. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3981. __skb_queue_before(list, skb, nskb);
  3982. skb_set_owner_r(nskb, sk);
  3983. /* Copy data, releasing collapsed skbs. */
  3984. while (copy > 0) {
  3985. int offset = start - TCP_SKB_CB(skb)->seq;
  3986. int size = TCP_SKB_CB(skb)->end_seq - start;
  3987. BUG_ON(offset < 0);
  3988. if (size > 0) {
  3989. size = min(copy, size);
  3990. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3991. BUG();
  3992. TCP_SKB_CB(nskb)->end_seq += size;
  3993. copy -= size;
  3994. start += size;
  3995. }
  3996. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3997. skb = tcp_collapse_one(sk, skb, list);
  3998. if (!skb ||
  3999. skb == tail ||
  4000. tcp_hdr(skb)->syn ||
  4001. tcp_hdr(skb)->fin)
  4002. return;
  4003. }
  4004. }
  4005. }
  4006. }
  4007. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4008. * and tcp_collapse() them until all the queue is collapsed.
  4009. */
  4010. static void tcp_collapse_ofo_queue(struct sock *sk)
  4011. {
  4012. struct tcp_sock *tp = tcp_sk(sk);
  4013. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4014. struct sk_buff *head;
  4015. u32 start, end;
  4016. if (skb == NULL)
  4017. return;
  4018. start = TCP_SKB_CB(skb)->seq;
  4019. end = TCP_SKB_CB(skb)->end_seq;
  4020. head = skb;
  4021. for (;;) {
  4022. struct sk_buff *next = NULL;
  4023. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4024. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4025. skb = next;
  4026. /* Segment is terminated when we see gap or when
  4027. * we are at the end of all the queue. */
  4028. if (!skb ||
  4029. after(TCP_SKB_CB(skb)->seq, end) ||
  4030. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4031. tcp_collapse(sk, &tp->out_of_order_queue,
  4032. head, skb, start, end);
  4033. head = skb;
  4034. if (!skb)
  4035. break;
  4036. /* Start new segment */
  4037. start = TCP_SKB_CB(skb)->seq;
  4038. end = TCP_SKB_CB(skb)->end_seq;
  4039. } else {
  4040. if (before(TCP_SKB_CB(skb)->seq, start))
  4041. start = TCP_SKB_CB(skb)->seq;
  4042. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4043. end = TCP_SKB_CB(skb)->end_seq;
  4044. }
  4045. }
  4046. }
  4047. /*
  4048. * Purge the out-of-order queue.
  4049. * Return true if queue was pruned.
  4050. */
  4051. static int tcp_prune_ofo_queue(struct sock *sk)
  4052. {
  4053. struct tcp_sock *tp = tcp_sk(sk);
  4054. int res = 0;
  4055. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4056. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4057. __skb_queue_purge(&tp->out_of_order_queue);
  4058. /* Reset SACK state. A conforming SACK implementation will
  4059. * do the same at a timeout based retransmit. When a connection
  4060. * is in a sad state like this, we care only about integrity
  4061. * of the connection not performance.
  4062. */
  4063. if (tp->rx_opt.sack_ok)
  4064. tcp_sack_reset(&tp->rx_opt);
  4065. sk_mem_reclaim(sk);
  4066. res = 1;
  4067. }
  4068. return res;
  4069. }
  4070. /* Reduce allocated memory if we can, trying to get
  4071. * the socket within its memory limits again.
  4072. *
  4073. * Return less than zero if we should start dropping frames
  4074. * until the socket owning process reads some of the data
  4075. * to stabilize the situation.
  4076. */
  4077. static int tcp_prune_queue(struct sock *sk)
  4078. {
  4079. struct tcp_sock *tp = tcp_sk(sk);
  4080. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4081. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4082. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4083. tcp_clamp_window(sk);
  4084. else if (tcp_memory_pressure)
  4085. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4086. tcp_collapse_ofo_queue(sk);
  4087. if (!skb_queue_empty(&sk->sk_receive_queue))
  4088. tcp_collapse(sk, &sk->sk_receive_queue,
  4089. skb_peek(&sk->sk_receive_queue),
  4090. NULL,
  4091. tp->copied_seq, tp->rcv_nxt);
  4092. sk_mem_reclaim(sk);
  4093. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4094. return 0;
  4095. /* Collapsing did not help, destructive actions follow.
  4096. * This must not ever occur. */
  4097. tcp_prune_ofo_queue(sk);
  4098. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4099. return 0;
  4100. /* If we are really being abused, tell the caller to silently
  4101. * drop receive data on the floor. It will get retransmitted
  4102. * and hopefully then we'll have sufficient space.
  4103. */
  4104. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4105. /* Massive buffer overcommit. */
  4106. tp->pred_flags = 0;
  4107. return -1;
  4108. }
  4109. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4110. * As additional protections, we do not touch cwnd in retransmission phases,
  4111. * and if application hit its sndbuf limit recently.
  4112. */
  4113. void tcp_cwnd_application_limited(struct sock *sk)
  4114. {
  4115. struct tcp_sock *tp = tcp_sk(sk);
  4116. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4117. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4118. /* Limited by application or receiver window. */
  4119. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4120. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4121. if (win_used < tp->snd_cwnd) {
  4122. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4123. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4124. }
  4125. tp->snd_cwnd_used = 0;
  4126. }
  4127. tp->snd_cwnd_stamp = tcp_time_stamp;
  4128. }
  4129. static int tcp_should_expand_sndbuf(struct sock *sk)
  4130. {
  4131. struct tcp_sock *tp = tcp_sk(sk);
  4132. /* If the user specified a specific send buffer setting, do
  4133. * not modify it.
  4134. */
  4135. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4136. return 0;
  4137. /* If we are under global TCP memory pressure, do not expand. */
  4138. if (tcp_memory_pressure)
  4139. return 0;
  4140. /* If we are under soft global TCP memory pressure, do not expand. */
  4141. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  4142. return 0;
  4143. /* If we filled the congestion window, do not expand. */
  4144. if (tp->packets_out >= tp->snd_cwnd)
  4145. return 0;
  4146. return 1;
  4147. }
  4148. /* When incoming ACK allowed to free some skb from write_queue,
  4149. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4150. * on the exit from tcp input handler.
  4151. *
  4152. * PROBLEM: sndbuf expansion does not work well with largesend.
  4153. */
  4154. static void tcp_new_space(struct sock *sk)
  4155. {
  4156. struct tcp_sock *tp = tcp_sk(sk);
  4157. if (tcp_should_expand_sndbuf(sk)) {
  4158. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  4159. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  4160. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4161. tp->reordering + 1);
  4162. sndmem *= 2 * demanded;
  4163. if (sndmem > sk->sk_sndbuf)
  4164. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4165. tp->snd_cwnd_stamp = tcp_time_stamp;
  4166. }
  4167. sk->sk_write_space(sk);
  4168. }
  4169. static void tcp_check_space(struct sock *sk)
  4170. {
  4171. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4172. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4173. if (sk->sk_socket &&
  4174. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4175. tcp_new_space(sk);
  4176. }
  4177. }
  4178. static inline void tcp_data_snd_check(struct sock *sk)
  4179. {
  4180. tcp_push_pending_frames(sk);
  4181. tcp_check_space(sk);
  4182. }
  4183. /*
  4184. * Check if sending an ack is needed.
  4185. */
  4186. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. /* More than one full frame received... */
  4190. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  4191. /* ... and right edge of window advances far enough.
  4192. * (tcp_recvmsg() will send ACK otherwise). Or...
  4193. */
  4194. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4195. /* We ACK each frame or... */
  4196. tcp_in_quickack_mode(sk) ||
  4197. /* We have out of order data. */
  4198. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4199. /* Then ack it now */
  4200. tcp_send_ack(sk);
  4201. } else {
  4202. /* Else, send delayed ack. */
  4203. tcp_send_delayed_ack(sk);
  4204. }
  4205. }
  4206. static inline void tcp_ack_snd_check(struct sock *sk)
  4207. {
  4208. if (!inet_csk_ack_scheduled(sk)) {
  4209. /* We sent a data segment already. */
  4210. return;
  4211. }
  4212. __tcp_ack_snd_check(sk, 1);
  4213. }
  4214. /*
  4215. * This routine is only called when we have urgent data
  4216. * signaled. Its the 'slow' part of tcp_urg. It could be
  4217. * moved inline now as tcp_urg is only called from one
  4218. * place. We handle URGent data wrong. We have to - as
  4219. * BSD still doesn't use the correction from RFC961.
  4220. * For 1003.1g we should support a new option TCP_STDURG to permit
  4221. * either form (or just set the sysctl tcp_stdurg).
  4222. */
  4223. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  4224. {
  4225. struct tcp_sock *tp = tcp_sk(sk);
  4226. u32 ptr = ntohs(th->urg_ptr);
  4227. if (ptr && !sysctl_tcp_stdurg)
  4228. ptr--;
  4229. ptr += ntohl(th->seq);
  4230. /* Ignore urgent data that we've already seen and read. */
  4231. if (after(tp->copied_seq, ptr))
  4232. return;
  4233. /* Do not replay urg ptr.
  4234. *
  4235. * NOTE: interesting situation not covered by specs.
  4236. * Misbehaving sender may send urg ptr, pointing to segment,
  4237. * which we already have in ofo queue. We are not able to fetch
  4238. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4239. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4240. * situations. But it is worth to think about possibility of some
  4241. * DoSes using some hypothetical application level deadlock.
  4242. */
  4243. if (before(ptr, tp->rcv_nxt))
  4244. return;
  4245. /* Do we already have a newer (or duplicate) urgent pointer? */
  4246. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4247. return;
  4248. /* Tell the world about our new urgent pointer. */
  4249. sk_send_sigurg(sk);
  4250. /* We may be adding urgent data when the last byte read was
  4251. * urgent. To do this requires some care. We cannot just ignore
  4252. * tp->copied_seq since we would read the last urgent byte again
  4253. * as data, nor can we alter copied_seq until this data arrives
  4254. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4255. *
  4256. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4257. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4258. * and expect that both A and B disappear from stream. This is _wrong_.
  4259. * Though this happens in BSD with high probability, this is occasional.
  4260. * Any application relying on this is buggy. Note also, that fix "works"
  4261. * only in this artificial test. Insert some normal data between A and B and we will
  4262. * decline of BSD again. Verdict: it is better to remove to trap
  4263. * buggy users.
  4264. */
  4265. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4266. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4267. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4268. tp->copied_seq++;
  4269. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4270. __skb_unlink(skb, &sk->sk_receive_queue);
  4271. __kfree_skb(skb);
  4272. }
  4273. }
  4274. tp->urg_data = TCP_URG_NOTYET;
  4275. tp->urg_seq = ptr;
  4276. /* Disable header prediction. */
  4277. tp->pred_flags = 0;
  4278. }
  4279. /* This is the 'fast' part of urgent handling. */
  4280. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  4281. {
  4282. struct tcp_sock *tp = tcp_sk(sk);
  4283. /* Check if we get a new urgent pointer - normally not. */
  4284. if (th->urg)
  4285. tcp_check_urg(sk, th);
  4286. /* Do we wait for any urgent data? - normally not... */
  4287. if (tp->urg_data == TCP_URG_NOTYET) {
  4288. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4289. th->syn;
  4290. /* Is the urgent pointer pointing into this packet? */
  4291. if (ptr < skb->len) {
  4292. u8 tmp;
  4293. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4294. BUG();
  4295. tp->urg_data = TCP_URG_VALID | tmp;
  4296. if (!sock_flag(sk, SOCK_DEAD))
  4297. sk->sk_data_ready(sk, 0);
  4298. }
  4299. }
  4300. }
  4301. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4302. {
  4303. struct tcp_sock *tp = tcp_sk(sk);
  4304. int chunk = skb->len - hlen;
  4305. int err;
  4306. local_bh_enable();
  4307. if (skb_csum_unnecessary(skb))
  4308. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4309. else
  4310. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4311. tp->ucopy.iov);
  4312. if (!err) {
  4313. tp->ucopy.len -= chunk;
  4314. tp->copied_seq += chunk;
  4315. tcp_rcv_space_adjust(sk);
  4316. }
  4317. local_bh_disable();
  4318. return err;
  4319. }
  4320. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4321. struct sk_buff *skb)
  4322. {
  4323. __sum16 result;
  4324. if (sock_owned_by_user(sk)) {
  4325. local_bh_enable();
  4326. result = __tcp_checksum_complete(skb);
  4327. local_bh_disable();
  4328. } else {
  4329. result = __tcp_checksum_complete(skb);
  4330. }
  4331. return result;
  4332. }
  4333. static inline int tcp_checksum_complete_user(struct sock *sk,
  4334. struct sk_buff *skb)
  4335. {
  4336. return !skb_csum_unnecessary(skb) &&
  4337. __tcp_checksum_complete_user(sk, skb);
  4338. }
  4339. #ifdef CONFIG_NET_DMA
  4340. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4341. int hlen)
  4342. {
  4343. struct tcp_sock *tp = tcp_sk(sk);
  4344. int chunk = skb->len - hlen;
  4345. int dma_cookie;
  4346. int copied_early = 0;
  4347. if (tp->ucopy.wakeup)
  4348. return 0;
  4349. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4350. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4351. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4352. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4353. skb, hlen,
  4354. tp->ucopy.iov, chunk,
  4355. tp->ucopy.pinned_list);
  4356. if (dma_cookie < 0)
  4357. goto out;
  4358. tp->ucopy.dma_cookie = dma_cookie;
  4359. copied_early = 1;
  4360. tp->ucopy.len -= chunk;
  4361. tp->copied_seq += chunk;
  4362. tcp_rcv_space_adjust(sk);
  4363. if ((tp->ucopy.len == 0) ||
  4364. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4365. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4366. tp->ucopy.wakeup = 1;
  4367. sk->sk_data_ready(sk, 0);
  4368. }
  4369. } else if (chunk > 0) {
  4370. tp->ucopy.wakeup = 1;
  4371. sk->sk_data_ready(sk, 0);
  4372. }
  4373. out:
  4374. return copied_early;
  4375. }
  4376. #endif /* CONFIG_NET_DMA */
  4377. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4378. * play significant role here.
  4379. */
  4380. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4381. struct tcphdr *th, int syn_inerr)
  4382. {
  4383. struct tcp_sock *tp = tcp_sk(sk);
  4384. /* RFC1323: H1. Apply PAWS check first. */
  4385. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4386. tcp_paws_discard(sk, skb)) {
  4387. if (!th->rst) {
  4388. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4389. tcp_send_dupack(sk, skb);
  4390. goto discard;
  4391. }
  4392. /* Reset is accepted even if it did not pass PAWS. */
  4393. }
  4394. /* Step 1: check sequence number */
  4395. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4396. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4397. * (RST) segments are validated by checking their SEQ-fields."
  4398. * And page 69: "If an incoming segment is not acceptable,
  4399. * an acknowledgment should be sent in reply (unless the RST
  4400. * bit is set, if so drop the segment and return)".
  4401. */
  4402. if (!th->rst)
  4403. tcp_send_dupack(sk, skb);
  4404. goto discard;
  4405. }
  4406. /* Step 2: check RST bit */
  4407. if (th->rst) {
  4408. tcp_reset(sk);
  4409. goto discard;
  4410. }
  4411. /* ts_recent update must be made after we are sure that the packet
  4412. * is in window.
  4413. */
  4414. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4415. /* step 3: check security and precedence [ignored] */
  4416. /* step 4: Check for a SYN in window. */
  4417. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4418. if (syn_inerr)
  4419. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4420. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4421. tcp_reset(sk);
  4422. return -1;
  4423. }
  4424. return 1;
  4425. discard:
  4426. __kfree_skb(skb);
  4427. return 0;
  4428. }
  4429. /*
  4430. * TCP receive function for the ESTABLISHED state.
  4431. *
  4432. * It is split into a fast path and a slow path. The fast path is
  4433. * disabled when:
  4434. * - A zero window was announced from us - zero window probing
  4435. * is only handled properly in the slow path.
  4436. * - Out of order segments arrived.
  4437. * - Urgent data is expected.
  4438. * - There is no buffer space left
  4439. * - Unexpected TCP flags/window values/header lengths are received
  4440. * (detected by checking the TCP header against pred_flags)
  4441. * - Data is sent in both directions. Fast path only supports pure senders
  4442. * or pure receivers (this means either the sequence number or the ack
  4443. * value must stay constant)
  4444. * - Unexpected TCP option.
  4445. *
  4446. * When these conditions are not satisfied it drops into a standard
  4447. * receive procedure patterned after RFC793 to handle all cases.
  4448. * The first three cases are guaranteed by proper pred_flags setting,
  4449. * the rest is checked inline. Fast processing is turned on in
  4450. * tcp_data_queue when everything is OK.
  4451. */
  4452. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4453. struct tcphdr *th, unsigned len)
  4454. {
  4455. struct tcp_sock *tp = tcp_sk(sk);
  4456. int res;
  4457. /*
  4458. * Header prediction.
  4459. * The code loosely follows the one in the famous
  4460. * "30 instruction TCP receive" Van Jacobson mail.
  4461. *
  4462. * Van's trick is to deposit buffers into socket queue
  4463. * on a device interrupt, to call tcp_recv function
  4464. * on the receive process context and checksum and copy
  4465. * the buffer to user space. smart...
  4466. *
  4467. * Our current scheme is not silly either but we take the
  4468. * extra cost of the net_bh soft interrupt processing...
  4469. * We do checksum and copy also but from device to kernel.
  4470. */
  4471. tp->rx_opt.saw_tstamp = 0;
  4472. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4473. * if header_prediction is to be made
  4474. * 'S' will always be tp->tcp_header_len >> 2
  4475. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4476. * turn it off (when there are holes in the receive
  4477. * space for instance)
  4478. * PSH flag is ignored.
  4479. */
  4480. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4481. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4482. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4483. int tcp_header_len = tp->tcp_header_len;
  4484. /* Timestamp header prediction: tcp_header_len
  4485. * is automatically equal to th->doff*4 due to pred_flags
  4486. * match.
  4487. */
  4488. /* Check timestamp */
  4489. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4490. /* No? Slow path! */
  4491. if (!tcp_parse_aligned_timestamp(tp, th))
  4492. goto slow_path;
  4493. /* If PAWS failed, check it more carefully in slow path */
  4494. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4495. goto slow_path;
  4496. /* DO NOT update ts_recent here, if checksum fails
  4497. * and timestamp was corrupted part, it will result
  4498. * in a hung connection since we will drop all
  4499. * future packets due to the PAWS test.
  4500. */
  4501. }
  4502. if (len <= tcp_header_len) {
  4503. /* Bulk data transfer: sender */
  4504. if (len == tcp_header_len) {
  4505. /* Predicted packet is in window by definition.
  4506. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4507. * Hence, check seq<=rcv_wup reduces to:
  4508. */
  4509. if (tcp_header_len ==
  4510. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4511. tp->rcv_nxt == tp->rcv_wup)
  4512. tcp_store_ts_recent(tp);
  4513. /* We know that such packets are checksummed
  4514. * on entry.
  4515. */
  4516. tcp_ack(sk, skb, 0);
  4517. __kfree_skb(skb);
  4518. tcp_data_snd_check(sk);
  4519. return 0;
  4520. } else { /* Header too small */
  4521. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4522. goto discard;
  4523. }
  4524. } else {
  4525. int eaten = 0;
  4526. int copied_early = 0;
  4527. if (tp->copied_seq == tp->rcv_nxt &&
  4528. len - tcp_header_len <= tp->ucopy.len) {
  4529. #ifdef CONFIG_NET_DMA
  4530. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4531. copied_early = 1;
  4532. eaten = 1;
  4533. }
  4534. #endif
  4535. if (tp->ucopy.task == current &&
  4536. sock_owned_by_user(sk) && !copied_early) {
  4537. __set_current_state(TASK_RUNNING);
  4538. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4539. eaten = 1;
  4540. }
  4541. if (eaten) {
  4542. /* Predicted packet is in window by definition.
  4543. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4544. * Hence, check seq<=rcv_wup reduces to:
  4545. */
  4546. if (tcp_header_len ==
  4547. (sizeof(struct tcphdr) +
  4548. TCPOLEN_TSTAMP_ALIGNED) &&
  4549. tp->rcv_nxt == tp->rcv_wup)
  4550. tcp_store_ts_recent(tp);
  4551. tcp_rcv_rtt_measure_ts(sk, skb);
  4552. __skb_pull(skb, tcp_header_len);
  4553. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4554. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4555. }
  4556. if (copied_early)
  4557. tcp_cleanup_rbuf(sk, skb->len);
  4558. }
  4559. if (!eaten) {
  4560. if (tcp_checksum_complete_user(sk, skb))
  4561. goto csum_error;
  4562. /* Predicted packet is in window by definition.
  4563. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4564. * Hence, check seq<=rcv_wup reduces to:
  4565. */
  4566. if (tcp_header_len ==
  4567. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4568. tp->rcv_nxt == tp->rcv_wup)
  4569. tcp_store_ts_recent(tp);
  4570. tcp_rcv_rtt_measure_ts(sk, skb);
  4571. if ((int)skb->truesize > sk->sk_forward_alloc)
  4572. goto step5;
  4573. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4574. /* Bulk data transfer: receiver */
  4575. __skb_pull(skb, tcp_header_len);
  4576. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4577. skb_set_owner_r(skb, sk);
  4578. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4579. }
  4580. tcp_event_data_recv(sk, skb);
  4581. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4582. /* Well, only one small jumplet in fast path... */
  4583. tcp_ack(sk, skb, FLAG_DATA);
  4584. tcp_data_snd_check(sk);
  4585. if (!inet_csk_ack_scheduled(sk))
  4586. goto no_ack;
  4587. }
  4588. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4589. __tcp_ack_snd_check(sk, 0);
  4590. no_ack:
  4591. #ifdef CONFIG_NET_DMA
  4592. if (copied_early)
  4593. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4594. else
  4595. #endif
  4596. if (eaten)
  4597. __kfree_skb(skb);
  4598. else
  4599. sk->sk_data_ready(sk, 0);
  4600. return 0;
  4601. }
  4602. }
  4603. slow_path:
  4604. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4605. goto csum_error;
  4606. /*
  4607. * Standard slow path.
  4608. */
  4609. res = tcp_validate_incoming(sk, skb, th, 1);
  4610. if (res <= 0)
  4611. return -res;
  4612. step5:
  4613. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4614. goto discard;
  4615. tcp_rcv_rtt_measure_ts(sk, skb);
  4616. /* Process urgent data. */
  4617. tcp_urg(sk, skb, th);
  4618. /* step 7: process the segment text */
  4619. tcp_data_queue(sk, skb);
  4620. tcp_data_snd_check(sk);
  4621. tcp_ack_snd_check(sk);
  4622. return 0;
  4623. csum_error:
  4624. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4625. discard:
  4626. __kfree_skb(skb);
  4627. return 0;
  4628. }
  4629. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4630. struct tcphdr *th, unsigned len)
  4631. {
  4632. struct tcp_sock *tp = tcp_sk(sk);
  4633. struct inet_connection_sock *icsk = inet_csk(sk);
  4634. int saved_clamp = tp->rx_opt.mss_clamp;
  4635. tcp_parse_options(skb, &tp->rx_opt, 0);
  4636. if (th->ack) {
  4637. /* rfc793:
  4638. * "If the state is SYN-SENT then
  4639. * first check the ACK bit
  4640. * If the ACK bit is set
  4641. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4642. * a reset (unless the RST bit is set, if so drop
  4643. * the segment and return)"
  4644. *
  4645. * We do not send data with SYN, so that RFC-correct
  4646. * test reduces to:
  4647. */
  4648. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4649. goto reset_and_undo;
  4650. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4651. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4652. tcp_time_stamp)) {
  4653. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4654. goto reset_and_undo;
  4655. }
  4656. /* Now ACK is acceptable.
  4657. *
  4658. * "If the RST bit is set
  4659. * If the ACK was acceptable then signal the user "error:
  4660. * connection reset", drop the segment, enter CLOSED state,
  4661. * delete TCB, and return."
  4662. */
  4663. if (th->rst) {
  4664. tcp_reset(sk);
  4665. goto discard;
  4666. }
  4667. /* rfc793:
  4668. * "fifth, if neither of the SYN or RST bits is set then
  4669. * drop the segment and return."
  4670. *
  4671. * See note below!
  4672. * --ANK(990513)
  4673. */
  4674. if (!th->syn)
  4675. goto discard_and_undo;
  4676. /* rfc793:
  4677. * "If the SYN bit is on ...
  4678. * are acceptable then ...
  4679. * (our SYN has been ACKed), change the connection
  4680. * state to ESTABLISHED..."
  4681. */
  4682. TCP_ECN_rcv_synack(tp, th);
  4683. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4684. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4685. /* Ok.. it's good. Set up sequence numbers and
  4686. * move to established.
  4687. */
  4688. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4689. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4690. /* RFC1323: The window in SYN & SYN/ACK segments is
  4691. * never scaled.
  4692. */
  4693. tp->snd_wnd = ntohs(th->window);
  4694. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4695. if (!tp->rx_opt.wscale_ok) {
  4696. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4697. tp->window_clamp = min(tp->window_clamp, 65535U);
  4698. }
  4699. if (tp->rx_opt.saw_tstamp) {
  4700. tp->rx_opt.tstamp_ok = 1;
  4701. tp->tcp_header_len =
  4702. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4703. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4704. tcp_store_ts_recent(tp);
  4705. } else {
  4706. tp->tcp_header_len = sizeof(struct tcphdr);
  4707. }
  4708. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4709. tcp_enable_fack(tp);
  4710. tcp_mtup_init(sk);
  4711. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4712. tcp_initialize_rcv_mss(sk);
  4713. /* Remember, tcp_poll() does not lock socket!
  4714. * Change state from SYN-SENT only after copied_seq
  4715. * is initialized. */
  4716. tp->copied_seq = tp->rcv_nxt;
  4717. smp_mb();
  4718. tcp_set_state(sk, TCP_ESTABLISHED);
  4719. security_inet_conn_established(sk, skb);
  4720. /* Make sure socket is routed, for correct metrics. */
  4721. icsk->icsk_af_ops->rebuild_header(sk);
  4722. tcp_init_metrics(sk);
  4723. tcp_init_congestion_control(sk);
  4724. /* Prevent spurious tcp_cwnd_restart() on first data
  4725. * packet.
  4726. */
  4727. tp->lsndtime = tcp_time_stamp;
  4728. tcp_init_buffer_space(sk);
  4729. if (sock_flag(sk, SOCK_KEEPOPEN))
  4730. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4731. if (!tp->rx_opt.snd_wscale)
  4732. __tcp_fast_path_on(tp, tp->snd_wnd);
  4733. else
  4734. tp->pred_flags = 0;
  4735. if (!sock_flag(sk, SOCK_DEAD)) {
  4736. sk->sk_state_change(sk);
  4737. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4738. }
  4739. if (sk->sk_write_pending ||
  4740. icsk->icsk_accept_queue.rskq_defer_accept ||
  4741. icsk->icsk_ack.pingpong) {
  4742. /* Save one ACK. Data will be ready after
  4743. * several ticks, if write_pending is set.
  4744. *
  4745. * It may be deleted, but with this feature tcpdumps
  4746. * look so _wonderfully_ clever, that I was not able
  4747. * to stand against the temptation 8) --ANK
  4748. */
  4749. inet_csk_schedule_ack(sk);
  4750. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4751. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4752. tcp_incr_quickack(sk);
  4753. tcp_enter_quickack_mode(sk);
  4754. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4755. TCP_DELACK_MAX, TCP_RTO_MAX);
  4756. discard:
  4757. __kfree_skb(skb);
  4758. return 0;
  4759. } else {
  4760. tcp_send_ack(sk);
  4761. }
  4762. return -1;
  4763. }
  4764. /* No ACK in the segment */
  4765. if (th->rst) {
  4766. /* rfc793:
  4767. * "If the RST bit is set
  4768. *
  4769. * Otherwise (no ACK) drop the segment and return."
  4770. */
  4771. goto discard_and_undo;
  4772. }
  4773. /* PAWS check. */
  4774. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4775. tcp_paws_reject(&tp->rx_opt, 0))
  4776. goto discard_and_undo;
  4777. if (th->syn) {
  4778. /* We see SYN without ACK. It is attempt of
  4779. * simultaneous connect with crossed SYNs.
  4780. * Particularly, it can be connect to self.
  4781. */
  4782. tcp_set_state(sk, TCP_SYN_RECV);
  4783. if (tp->rx_opt.saw_tstamp) {
  4784. tp->rx_opt.tstamp_ok = 1;
  4785. tcp_store_ts_recent(tp);
  4786. tp->tcp_header_len =
  4787. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4788. } else {
  4789. tp->tcp_header_len = sizeof(struct tcphdr);
  4790. }
  4791. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4792. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4793. /* RFC1323: The window in SYN & SYN/ACK segments is
  4794. * never scaled.
  4795. */
  4796. tp->snd_wnd = ntohs(th->window);
  4797. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4798. tp->max_window = tp->snd_wnd;
  4799. TCP_ECN_rcv_syn(tp, th);
  4800. tcp_mtup_init(sk);
  4801. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4802. tcp_initialize_rcv_mss(sk);
  4803. tcp_send_synack(sk);
  4804. #if 0
  4805. /* Note, we could accept data and URG from this segment.
  4806. * There are no obstacles to make this.
  4807. *
  4808. * However, if we ignore data in ACKless segments sometimes,
  4809. * we have no reasons to accept it sometimes.
  4810. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4811. * is not flawless. So, discard packet for sanity.
  4812. * Uncomment this return to process the data.
  4813. */
  4814. return -1;
  4815. #else
  4816. goto discard;
  4817. #endif
  4818. }
  4819. /* "fifth, if neither of the SYN or RST bits is set then
  4820. * drop the segment and return."
  4821. */
  4822. discard_and_undo:
  4823. tcp_clear_options(&tp->rx_opt);
  4824. tp->rx_opt.mss_clamp = saved_clamp;
  4825. goto discard;
  4826. reset_and_undo:
  4827. tcp_clear_options(&tp->rx_opt);
  4828. tp->rx_opt.mss_clamp = saved_clamp;
  4829. return 1;
  4830. }
  4831. /*
  4832. * This function implements the receiving procedure of RFC 793 for
  4833. * all states except ESTABLISHED and TIME_WAIT.
  4834. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4835. * address independent.
  4836. */
  4837. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4838. struct tcphdr *th, unsigned len)
  4839. {
  4840. struct tcp_sock *tp = tcp_sk(sk);
  4841. struct inet_connection_sock *icsk = inet_csk(sk);
  4842. int queued = 0;
  4843. int res;
  4844. tp->rx_opt.saw_tstamp = 0;
  4845. switch (sk->sk_state) {
  4846. case TCP_CLOSE:
  4847. goto discard;
  4848. case TCP_LISTEN:
  4849. if (th->ack)
  4850. return 1;
  4851. if (th->rst)
  4852. goto discard;
  4853. if (th->syn) {
  4854. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4855. return 1;
  4856. /* Now we have several options: In theory there is
  4857. * nothing else in the frame. KA9Q has an option to
  4858. * send data with the syn, BSD accepts data with the
  4859. * syn up to the [to be] advertised window and
  4860. * Solaris 2.1 gives you a protocol error. For now
  4861. * we just ignore it, that fits the spec precisely
  4862. * and avoids incompatibilities. It would be nice in
  4863. * future to drop through and process the data.
  4864. *
  4865. * Now that TTCP is starting to be used we ought to
  4866. * queue this data.
  4867. * But, this leaves one open to an easy denial of
  4868. * service attack, and SYN cookies can't defend
  4869. * against this problem. So, we drop the data
  4870. * in the interest of security over speed unless
  4871. * it's still in use.
  4872. */
  4873. kfree_skb(skb);
  4874. return 0;
  4875. }
  4876. goto discard;
  4877. case TCP_SYN_SENT:
  4878. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4879. if (queued >= 0)
  4880. return queued;
  4881. /* Do step6 onward by hand. */
  4882. tcp_urg(sk, skb, th);
  4883. __kfree_skb(skb);
  4884. tcp_data_snd_check(sk);
  4885. return 0;
  4886. }
  4887. res = tcp_validate_incoming(sk, skb, th, 0);
  4888. if (res <= 0)
  4889. return -res;
  4890. /* step 5: check the ACK field */
  4891. if (th->ack) {
  4892. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  4893. switch (sk->sk_state) {
  4894. case TCP_SYN_RECV:
  4895. if (acceptable) {
  4896. tp->copied_seq = tp->rcv_nxt;
  4897. smp_mb();
  4898. tcp_set_state(sk, TCP_ESTABLISHED);
  4899. sk->sk_state_change(sk);
  4900. /* Note, that this wakeup is only for marginal
  4901. * crossed SYN case. Passively open sockets
  4902. * are not waked up, because sk->sk_sleep ==
  4903. * NULL and sk->sk_socket == NULL.
  4904. */
  4905. if (sk->sk_socket)
  4906. sk_wake_async(sk,
  4907. SOCK_WAKE_IO, POLL_OUT);
  4908. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4909. tp->snd_wnd = ntohs(th->window) <<
  4910. tp->rx_opt.snd_wscale;
  4911. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4912. /* tcp_ack considers this ACK as duplicate
  4913. * and does not calculate rtt.
  4914. * Fix it at least with timestamps.
  4915. */
  4916. if (tp->rx_opt.saw_tstamp &&
  4917. tp->rx_opt.rcv_tsecr && !tp->srtt)
  4918. tcp_ack_saw_tstamp(sk, 0);
  4919. if (tp->rx_opt.tstamp_ok)
  4920. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4921. /* Make sure socket is routed, for
  4922. * correct metrics.
  4923. */
  4924. icsk->icsk_af_ops->rebuild_header(sk);
  4925. tcp_init_metrics(sk);
  4926. tcp_init_congestion_control(sk);
  4927. /* Prevent spurious tcp_cwnd_restart() on
  4928. * first data packet.
  4929. */
  4930. tp->lsndtime = tcp_time_stamp;
  4931. tcp_mtup_init(sk);
  4932. tcp_initialize_rcv_mss(sk);
  4933. tcp_init_buffer_space(sk);
  4934. tcp_fast_path_on(tp);
  4935. } else {
  4936. return 1;
  4937. }
  4938. break;
  4939. case TCP_FIN_WAIT1:
  4940. if (tp->snd_una == tp->write_seq) {
  4941. tcp_set_state(sk, TCP_FIN_WAIT2);
  4942. sk->sk_shutdown |= SEND_SHUTDOWN;
  4943. dst_confirm(sk->sk_dst_cache);
  4944. if (!sock_flag(sk, SOCK_DEAD))
  4945. /* Wake up lingering close() */
  4946. sk->sk_state_change(sk);
  4947. else {
  4948. int tmo;
  4949. if (tp->linger2 < 0 ||
  4950. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4951. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4952. tcp_done(sk);
  4953. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4954. return 1;
  4955. }
  4956. tmo = tcp_fin_time(sk);
  4957. if (tmo > TCP_TIMEWAIT_LEN) {
  4958. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4959. } else if (th->fin || sock_owned_by_user(sk)) {
  4960. /* Bad case. We could lose such FIN otherwise.
  4961. * It is not a big problem, but it looks confusing
  4962. * and not so rare event. We still can lose it now,
  4963. * if it spins in bh_lock_sock(), but it is really
  4964. * marginal case.
  4965. */
  4966. inet_csk_reset_keepalive_timer(sk, tmo);
  4967. } else {
  4968. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4969. goto discard;
  4970. }
  4971. }
  4972. }
  4973. break;
  4974. case TCP_CLOSING:
  4975. if (tp->snd_una == tp->write_seq) {
  4976. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4977. goto discard;
  4978. }
  4979. break;
  4980. case TCP_LAST_ACK:
  4981. if (tp->snd_una == tp->write_seq) {
  4982. tcp_update_metrics(sk);
  4983. tcp_done(sk);
  4984. goto discard;
  4985. }
  4986. break;
  4987. }
  4988. } else
  4989. goto discard;
  4990. /* step 6: check the URG bit */
  4991. tcp_urg(sk, skb, th);
  4992. /* step 7: process the segment text */
  4993. switch (sk->sk_state) {
  4994. case TCP_CLOSE_WAIT:
  4995. case TCP_CLOSING:
  4996. case TCP_LAST_ACK:
  4997. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4998. break;
  4999. case TCP_FIN_WAIT1:
  5000. case TCP_FIN_WAIT2:
  5001. /* RFC 793 says to queue data in these states,
  5002. * RFC 1122 says we MUST send a reset.
  5003. * BSD 4.4 also does reset.
  5004. */
  5005. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5006. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5007. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5008. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5009. tcp_reset(sk);
  5010. return 1;
  5011. }
  5012. }
  5013. /* Fall through */
  5014. case TCP_ESTABLISHED:
  5015. tcp_data_queue(sk, skb);
  5016. queued = 1;
  5017. break;
  5018. }
  5019. /* tcp_data could move socket to TIME-WAIT */
  5020. if (sk->sk_state != TCP_CLOSE) {
  5021. tcp_data_snd_check(sk);
  5022. tcp_ack_snd_check(sk);
  5023. }
  5024. if (!queued) {
  5025. discard:
  5026. __kfree_skb(skb);
  5027. }
  5028. return 0;
  5029. }
  5030. EXPORT_SYMBOL(sysctl_tcp_ecn);
  5031. EXPORT_SYMBOL(sysctl_tcp_reordering);
  5032. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  5033. EXPORT_SYMBOL(tcp_parse_options);
  5034. #ifdef CONFIG_TCP_MD5SIG
  5035. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  5036. #endif
  5037. EXPORT_SYMBOL(tcp_rcv_established);
  5038. EXPORT_SYMBOL(tcp_rcv_state_process);
  5039. EXPORT_SYMBOL(tcp_initialize_rcv_mss);