ip_fragment.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP fragmentation functionality.
  7. *
  8. * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
  9. * Alan Cox <alan@lxorguk.ukuu.org.uk>
  10. *
  11. * Fixes:
  12. * Alan Cox : Split from ip.c , see ip_input.c for history.
  13. * David S. Miller : Begin massive cleanup...
  14. * Andi Kleen : Add sysctls.
  15. * xxxx : Overlapfrag bug.
  16. * Ultima : ip_expire() kernel panic.
  17. * Bill Hawes : Frag accounting and evictor fixes.
  18. * John McDonald : 0 length frag bug.
  19. * Alexey Kuznetsov: SMP races, threading, cleanup.
  20. * Patrick McHardy : LRU queue of frag heads for evictor.
  21. */
  22. #include <linux/compiler.h>
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/mm.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/list.h>
  29. #include <linux/ip.h>
  30. #include <linux/icmp.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/jhash.h>
  33. #include <linux/random.h>
  34. #include <net/sock.h>
  35. #include <net/ip.h>
  36. #include <net/icmp.h>
  37. #include <net/checksum.h>
  38. #include <net/inetpeer.h>
  39. #include <net/inet_frag.h>
  40. #include <linux/tcp.h>
  41. #include <linux/udp.h>
  42. #include <linux/inet.h>
  43. #include <linux/netfilter_ipv4.h>
  44. /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
  45. * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
  46. * as well. Or notify me, at least. --ANK
  47. */
  48. static int sysctl_ipfrag_max_dist __read_mostly = 64;
  49. struct ipfrag_skb_cb
  50. {
  51. struct inet_skb_parm h;
  52. int offset;
  53. };
  54. #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
  55. /* Describe an entry in the "incomplete datagrams" queue. */
  56. struct ipq {
  57. struct inet_frag_queue q;
  58. u32 user;
  59. __be32 saddr;
  60. __be32 daddr;
  61. __be16 id;
  62. u8 protocol;
  63. int iif;
  64. unsigned int rid;
  65. struct inet_peer *peer;
  66. };
  67. static struct inet_frags ip4_frags;
  68. int ip_frag_nqueues(struct net *net)
  69. {
  70. return net->ipv4.frags.nqueues;
  71. }
  72. int ip_frag_mem(struct net *net)
  73. {
  74. return atomic_read(&net->ipv4.frags.mem);
  75. }
  76. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  77. struct net_device *dev);
  78. struct ip4_create_arg {
  79. struct iphdr *iph;
  80. u32 user;
  81. };
  82. static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
  83. {
  84. return jhash_3words((__force u32)id << 16 | prot,
  85. (__force u32)saddr, (__force u32)daddr,
  86. ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
  87. }
  88. static unsigned int ip4_hashfn(struct inet_frag_queue *q)
  89. {
  90. struct ipq *ipq;
  91. ipq = container_of(q, struct ipq, q);
  92. return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
  93. }
  94. static int ip4_frag_match(struct inet_frag_queue *q, void *a)
  95. {
  96. struct ipq *qp;
  97. struct ip4_create_arg *arg = a;
  98. qp = container_of(q, struct ipq, q);
  99. return (qp->id == arg->iph->id &&
  100. qp->saddr == arg->iph->saddr &&
  101. qp->daddr == arg->iph->daddr &&
  102. qp->protocol == arg->iph->protocol &&
  103. qp->user == arg->user);
  104. }
  105. /* Memory Tracking Functions. */
  106. static __inline__ void frag_kfree_skb(struct netns_frags *nf,
  107. struct sk_buff *skb, int *work)
  108. {
  109. if (work)
  110. *work -= skb->truesize;
  111. atomic_sub(skb->truesize, &nf->mem);
  112. kfree_skb(skb);
  113. }
  114. static void ip4_frag_init(struct inet_frag_queue *q, void *a)
  115. {
  116. struct ipq *qp = container_of(q, struct ipq, q);
  117. struct ip4_create_arg *arg = a;
  118. qp->protocol = arg->iph->protocol;
  119. qp->id = arg->iph->id;
  120. qp->saddr = arg->iph->saddr;
  121. qp->daddr = arg->iph->daddr;
  122. qp->user = arg->user;
  123. qp->peer = sysctl_ipfrag_max_dist ?
  124. inet_getpeer(arg->iph->saddr, 1) : NULL;
  125. }
  126. static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
  127. {
  128. struct ipq *qp;
  129. qp = container_of(q, struct ipq, q);
  130. if (qp->peer)
  131. inet_putpeer(qp->peer);
  132. }
  133. /* Destruction primitives. */
  134. static __inline__ void ipq_put(struct ipq *ipq)
  135. {
  136. inet_frag_put(&ipq->q, &ip4_frags);
  137. }
  138. /* Kill ipq entry. It is not destroyed immediately,
  139. * because caller (and someone more) holds reference count.
  140. */
  141. static void ipq_kill(struct ipq *ipq)
  142. {
  143. inet_frag_kill(&ipq->q, &ip4_frags);
  144. }
  145. /* Memory limiting on fragments. Evictor trashes the oldest
  146. * fragment queue until we are back under the threshold.
  147. */
  148. static void ip_evictor(struct net *net)
  149. {
  150. int evicted;
  151. evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
  152. if (evicted)
  153. IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
  154. }
  155. /*
  156. * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
  157. */
  158. static void ip_expire(unsigned long arg)
  159. {
  160. struct ipq *qp;
  161. struct net *net;
  162. qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
  163. net = container_of(qp->q.net, struct net, ipv4.frags);
  164. spin_lock(&qp->q.lock);
  165. if (qp->q.last_in & INET_FRAG_COMPLETE)
  166. goto out;
  167. ipq_kill(qp);
  168. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
  169. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  170. if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
  171. struct sk_buff *head = qp->q.fragments;
  172. /* Send an ICMP "Fragment Reassembly Timeout" message. */
  173. if ((head->dev = dev_get_by_index(net, qp->iif)) != NULL) {
  174. icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
  175. dev_put(head->dev);
  176. }
  177. }
  178. out:
  179. spin_unlock(&qp->q.lock);
  180. ipq_put(qp);
  181. }
  182. /* Find the correct entry in the "incomplete datagrams" queue for
  183. * this IP datagram, and create new one, if nothing is found.
  184. */
  185. static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
  186. {
  187. struct inet_frag_queue *q;
  188. struct ip4_create_arg arg;
  189. unsigned int hash;
  190. arg.iph = iph;
  191. arg.user = user;
  192. read_lock(&ip4_frags.lock);
  193. hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
  194. q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
  195. if (q == NULL)
  196. goto out_nomem;
  197. return container_of(q, struct ipq, q);
  198. out_nomem:
  199. LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
  200. return NULL;
  201. }
  202. /* Is the fragment too far ahead to be part of ipq? */
  203. static inline int ip_frag_too_far(struct ipq *qp)
  204. {
  205. struct inet_peer *peer = qp->peer;
  206. unsigned int max = sysctl_ipfrag_max_dist;
  207. unsigned int start, end;
  208. int rc;
  209. if (!peer || !max)
  210. return 0;
  211. start = qp->rid;
  212. end = atomic_inc_return(&peer->rid);
  213. qp->rid = end;
  214. rc = qp->q.fragments && (end - start) > max;
  215. if (rc) {
  216. struct net *net;
  217. net = container_of(qp->q.net, struct net, ipv4.frags);
  218. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  219. }
  220. return rc;
  221. }
  222. static int ip_frag_reinit(struct ipq *qp)
  223. {
  224. struct sk_buff *fp;
  225. if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
  226. atomic_inc(&qp->q.refcnt);
  227. return -ETIMEDOUT;
  228. }
  229. fp = qp->q.fragments;
  230. do {
  231. struct sk_buff *xp = fp->next;
  232. frag_kfree_skb(qp->q.net, fp, NULL);
  233. fp = xp;
  234. } while (fp);
  235. qp->q.last_in = 0;
  236. qp->q.len = 0;
  237. qp->q.meat = 0;
  238. qp->q.fragments = NULL;
  239. qp->iif = 0;
  240. return 0;
  241. }
  242. /* Add new segment to existing queue. */
  243. static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
  244. {
  245. struct sk_buff *prev, *next;
  246. struct net_device *dev;
  247. int flags, offset;
  248. int ihl, end;
  249. int err = -ENOENT;
  250. if (qp->q.last_in & INET_FRAG_COMPLETE)
  251. goto err;
  252. if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
  253. unlikely(ip_frag_too_far(qp)) &&
  254. unlikely(err = ip_frag_reinit(qp))) {
  255. ipq_kill(qp);
  256. goto err;
  257. }
  258. offset = ntohs(ip_hdr(skb)->frag_off);
  259. flags = offset & ~IP_OFFSET;
  260. offset &= IP_OFFSET;
  261. offset <<= 3; /* offset is in 8-byte chunks */
  262. ihl = ip_hdrlen(skb);
  263. /* Determine the position of this fragment. */
  264. end = offset + skb->len - ihl;
  265. err = -EINVAL;
  266. /* Is this the final fragment? */
  267. if ((flags & IP_MF) == 0) {
  268. /* If we already have some bits beyond end
  269. * or have different end, the segment is corrrupted.
  270. */
  271. if (end < qp->q.len ||
  272. ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
  273. goto err;
  274. qp->q.last_in |= INET_FRAG_LAST_IN;
  275. qp->q.len = end;
  276. } else {
  277. if (end&7) {
  278. end &= ~7;
  279. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  280. skb->ip_summed = CHECKSUM_NONE;
  281. }
  282. if (end > qp->q.len) {
  283. /* Some bits beyond end -> corruption. */
  284. if (qp->q.last_in & INET_FRAG_LAST_IN)
  285. goto err;
  286. qp->q.len = end;
  287. }
  288. }
  289. if (end == offset)
  290. goto err;
  291. err = -ENOMEM;
  292. if (pskb_pull(skb, ihl) == NULL)
  293. goto err;
  294. err = pskb_trim_rcsum(skb, end - offset);
  295. if (err)
  296. goto err;
  297. /* Find out which fragments are in front and at the back of us
  298. * in the chain of fragments so far. We must know where to put
  299. * this fragment, right?
  300. */
  301. prev = NULL;
  302. for (next = qp->q.fragments; next != NULL; next = next->next) {
  303. if (FRAG_CB(next)->offset >= offset)
  304. break; /* bingo! */
  305. prev = next;
  306. }
  307. /* We found where to put this one. Check for overlap with
  308. * preceding fragment, and, if needed, align things so that
  309. * any overlaps are eliminated.
  310. */
  311. if (prev) {
  312. int i = (FRAG_CB(prev)->offset + prev->len) - offset;
  313. if (i > 0) {
  314. offset += i;
  315. err = -EINVAL;
  316. if (end <= offset)
  317. goto err;
  318. err = -ENOMEM;
  319. if (!pskb_pull(skb, i))
  320. goto err;
  321. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  322. skb->ip_summed = CHECKSUM_NONE;
  323. }
  324. }
  325. err = -ENOMEM;
  326. while (next && FRAG_CB(next)->offset < end) {
  327. int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
  328. if (i < next->len) {
  329. /* Eat head of the next overlapped fragment
  330. * and leave the loop. The next ones cannot overlap.
  331. */
  332. if (!pskb_pull(next, i))
  333. goto err;
  334. FRAG_CB(next)->offset += i;
  335. qp->q.meat -= i;
  336. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  337. next->ip_summed = CHECKSUM_NONE;
  338. break;
  339. } else {
  340. struct sk_buff *free_it = next;
  341. /* Old fragment is completely overridden with
  342. * new one drop it.
  343. */
  344. next = next->next;
  345. if (prev)
  346. prev->next = next;
  347. else
  348. qp->q.fragments = next;
  349. qp->q.meat -= free_it->len;
  350. frag_kfree_skb(qp->q.net, free_it, NULL);
  351. }
  352. }
  353. FRAG_CB(skb)->offset = offset;
  354. /* Insert this fragment in the chain of fragments. */
  355. skb->next = next;
  356. if (prev)
  357. prev->next = skb;
  358. else
  359. qp->q.fragments = skb;
  360. dev = skb->dev;
  361. if (dev) {
  362. qp->iif = dev->ifindex;
  363. skb->dev = NULL;
  364. }
  365. qp->q.stamp = skb->tstamp;
  366. qp->q.meat += skb->len;
  367. atomic_add(skb->truesize, &qp->q.net->mem);
  368. if (offset == 0)
  369. qp->q.last_in |= INET_FRAG_FIRST_IN;
  370. if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
  371. qp->q.meat == qp->q.len)
  372. return ip_frag_reasm(qp, prev, dev);
  373. write_lock(&ip4_frags.lock);
  374. list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
  375. write_unlock(&ip4_frags.lock);
  376. return -EINPROGRESS;
  377. err:
  378. kfree_skb(skb);
  379. return err;
  380. }
  381. /* Build a new IP datagram from all its fragments. */
  382. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  383. struct net_device *dev)
  384. {
  385. struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
  386. struct iphdr *iph;
  387. struct sk_buff *fp, *head = qp->q.fragments;
  388. int len;
  389. int ihlen;
  390. int err;
  391. ipq_kill(qp);
  392. /* Make the one we just received the head. */
  393. if (prev) {
  394. head = prev->next;
  395. fp = skb_clone(head, GFP_ATOMIC);
  396. if (!fp)
  397. goto out_nomem;
  398. fp->next = head->next;
  399. prev->next = fp;
  400. skb_morph(head, qp->q.fragments);
  401. head->next = qp->q.fragments->next;
  402. kfree_skb(qp->q.fragments);
  403. qp->q.fragments = head;
  404. }
  405. WARN_ON(head == NULL);
  406. WARN_ON(FRAG_CB(head)->offset != 0);
  407. /* Allocate a new buffer for the datagram. */
  408. ihlen = ip_hdrlen(head);
  409. len = ihlen + qp->q.len;
  410. err = -E2BIG;
  411. if (len > 65535)
  412. goto out_oversize;
  413. /* Head of list must not be cloned. */
  414. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  415. goto out_nomem;
  416. /* If the first fragment is fragmented itself, we split
  417. * it to two chunks: the first with data and paged part
  418. * and the second, holding only fragments. */
  419. if (skb_has_frags(head)) {
  420. struct sk_buff *clone;
  421. int i, plen = 0;
  422. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  423. goto out_nomem;
  424. clone->next = head->next;
  425. head->next = clone;
  426. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  427. skb_frag_list_init(head);
  428. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  429. plen += skb_shinfo(head)->frags[i].size;
  430. clone->len = clone->data_len = head->data_len - plen;
  431. head->data_len -= clone->len;
  432. head->len -= clone->len;
  433. clone->csum = 0;
  434. clone->ip_summed = head->ip_summed;
  435. atomic_add(clone->truesize, &qp->q.net->mem);
  436. }
  437. skb_shinfo(head)->frag_list = head->next;
  438. skb_push(head, head->data - skb_network_header(head));
  439. atomic_sub(head->truesize, &qp->q.net->mem);
  440. for (fp=head->next; fp; fp = fp->next) {
  441. head->data_len += fp->len;
  442. head->len += fp->len;
  443. if (head->ip_summed != fp->ip_summed)
  444. head->ip_summed = CHECKSUM_NONE;
  445. else if (head->ip_summed == CHECKSUM_COMPLETE)
  446. head->csum = csum_add(head->csum, fp->csum);
  447. head->truesize += fp->truesize;
  448. atomic_sub(fp->truesize, &qp->q.net->mem);
  449. }
  450. head->next = NULL;
  451. head->dev = dev;
  452. head->tstamp = qp->q.stamp;
  453. iph = ip_hdr(head);
  454. iph->frag_off = 0;
  455. iph->tot_len = htons(len);
  456. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
  457. qp->q.fragments = NULL;
  458. return 0;
  459. out_nomem:
  460. LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
  461. "queue %p\n", qp);
  462. err = -ENOMEM;
  463. goto out_fail;
  464. out_oversize:
  465. if (net_ratelimit())
  466. printk(KERN_INFO "Oversized IP packet from %pI4.\n",
  467. &qp->saddr);
  468. out_fail:
  469. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_REASMFAILS);
  470. return err;
  471. }
  472. /* Process an incoming IP datagram fragment. */
  473. int ip_defrag(struct sk_buff *skb, u32 user)
  474. {
  475. struct ipq *qp;
  476. struct net *net;
  477. net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
  478. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
  479. /* Start by cleaning up the memory. */
  480. if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
  481. ip_evictor(net);
  482. /* Lookup (or create) queue header */
  483. if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
  484. int ret;
  485. spin_lock(&qp->q.lock);
  486. ret = ip_frag_queue(qp, skb);
  487. spin_unlock(&qp->q.lock);
  488. ipq_put(qp);
  489. return ret;
  490. }
  491. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  492. kfree_skb(skb);
  493. return -ENOMEM;
  494. }
  495. #ifdef CONFIG_SYSCTL
  496. static int zero;
  497. static struct ctl_table ip4_frags_ns_ctl_table[] = {
  498. {
  499. .ctl_name = NET_IPV4_IPFRAG_HIGH_THRESH,
  500. .procname = "ipfrag_high_thresh",
  501. .data = &init_net.ipv4.frags.high_thresh,
  502. .maxlen = sizeof(int),
  503. .mode = 0644,
  504. .proc_handler = proc_dointvec
  505. },
  506. {
  507. .ctl_name = NET_IPV4_IPFRAG_LOW_THRESH,
  508. .procname = "ipfrag_low_thresh",
  509. .data = &init_net.ipv4.frags.low_thresh,
  510. .maxlen = sizeof(int),
  511. .mode = 0644,
  512. .proc_handler = proc_dointvec
  513. },
  514. {
  515. .ctl_name = NET_IPV4_IPFRAG_TIME,
  516. .procname = "ipfrag_time",
  517. .data = &init_net.ipv4.frags.timeout,
  518. .maxlen = sizeof(int),
  519. .mode = 0644,
  520. .proc_handler = proc_dointvec_jiffies,
  521. .strategy = sysctl_jiffies
  522. },
  523. { }
  524. };
  525. static struct ctl_table ip4_frags_ctl_table[] = {
  526. {
  527. .ctl_name = NET_IPV4_IPFRAG_SECRET_INTERVAL,
  528. .procname = "ipfrag_secret_interval",
  529. .data = &ip4_frags.secret_interval,
  530. .maxlen = sizeof(int),
  531. .mode = 0644,
  532. .proc_handler = proc_dointvec_jiffies,
  533. .strategy = sysctl_jiffies
  534. },
  535. {
  536. .procname = "ipfrag_max_dist",
  537. .data = &sysctl_ipfrag_max_dist,
  538. .maxlen = sizeof(int),
  539. .mode = 0644,
  540. .proc_handler = proc_dointvec_minmax,
  541. .extra1 = &zero
  542. },
  543. { }
  544. };
  545. static int ip4_frags_ns_ctl_register(struct net *net)
  546. {
  547. struct ctl_table *table;
  548. struct ctl_table_header *hdr;
  549. table = ip4_frags_ns_ctl_table;
  550. if (net != &init_net) {
  551. table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
  552. if (table == NULL)
  553. goto err_alloc;
  554. table[0].data = &net->ipv4.frags.high_thresh;
  555. table[1].data = &net->ipv4.frags.low_thresh;
  556. table[2].data = &net->ipv4.frags.timeout;
  557. }
  558. hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
  559. if (hdr == NULL)
  560. goto err_reg;
  561. net->ipv4.frags_hdr = hdr;
  562. return 0;
  563. err_reg:
  564. if (net != &init_net)
  565. kfree(table);
  566. err_alloc:
  567. return -ENOMEM;
  568. }
  569. static void ip4_frags_ns_ctl_unregister(struct net *net)
  570. {
  571. struct ctl_table *table;
  572. table = net->ipv4.frags_hdr->ctl_table_arg;
  573. unregister_net_sysctl_table(net->ipv4.frags_hdr);
  574. kfree(table);
  575. }
  576. static void ip4_frags_ctl_register(void)
  577. {
  578. register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
  579. }
  580. #else
  581. static inline int ip4_frags_ns_ctl_register(struct net *net)
  582. {
  583. return 0;
  584. }
  585. static inline void ip4_frags_ns_ctl_unregister(struct net *net)
  586. {
  587. }
  588. static inline void ip4_frags_ctl_register(void)
  589. {
  590. }
  591. #endif
  592. static int ipv4_frags_init_net(struct net *net)
  593. {
  594. /*
  595. * Fragment cache limits. We will commit 256K at one time. Should we
  596. * cross that limit we will prune down to 192K. This should cope with
  597. * even the most extreme cases without allowing an attacker to
  598. * measurably harm machine performance.
  599. */
  600. net->ipv4.frags.high_thresh = 256 * 1024;
  601. net->ipv4.frags.low_thresh = 192 * 1024;
  602. /*
  603. * Important NOTE! Fragment queue must be destroyed before MSL expires.
  604. * RFC791 is wrong proposing to prolongate timer each fragment arrival
  605. * by TTL.
  606. */
  607. net->ipv4.frags.timeout = IP_FRAG_TIME;
  608. inet_frags_init_net(&net->ipv4.frags);
  609. return ip4_frags_ns_ctl_register(net);
  610. }
  611. static void ipv4_frags_exit_net(struct net *net)
  612. {
  613. ip4_frags_ns_ctl_unregister(net);
  614. inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
  615. }
  616. static struct pernet_operations ip4_frags_ops = {
  617. .init = ipv4_frags_init_net,
  618. .exit = ipv4_frags_exit_net,
  619. };
  620. void __init ipfrag_init(void)
  621. {
  622. ip4_frags_ctl_register();
  623. register_pernet_subsys(&ip4_frags_ops);
  624. ip4_frags.hashfn = ip4_hashfn;
  625. ip4_frags.constructor = ip4_frag_init;
  626. ip4_frags.destructor = ip4_frag_free;
  627. ip4_frags.skb_free = NULL;
  628. ip4_frags.qsize = sizeof(struct ipq);
  629. ip4_frags.match = ip4_frag_match;
  630. ip4_frags.frag_expire = ip_expire;
  631. ip4_frags.secret_interval = 10 * 60 * HZ;
  632. inet_frags_init(&ip4_frags);
  633. }
  634. EXPORT_SYMBOL(ip_defrag);