sock.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <asm/uaccess.h>
  113. #include <asm/system.h>
  114. #include <linux/netdevice.h>
  115. #include <net/protocol.h>
  116. #include <linux/skbuff.h>
  117. #include <net/net_namespace.h>
  118. #include <net/request_sock.h>
  119. #include <net/sock.h>
  120. #include <linux/net_tstamp.h>
  121. #include <net/xfrm.h>
  122. #include <linux/ipsec.h>
  123. #include <linux/filter.h>
  124. #ifdef CONFIG_INET
  125. #include <net/tcp.h>
  126. #endif
  127. /*
  128. * Each address family might have different locking rules, so we have
  129. * one slock key per address family:
  130. */
  131. static struct lock_class_key af_family_keys[AF_MAX];
  132. static struct lock_class_key af_family_slock_keys[AF_MAX];
  133. /*
  134. * Make lock validator output more readable. (we pre-construct these
  135. * strings build-time, so that runtime initialization of socket
  136. * locks is fast):
  137. */
  138. static const char *af_family_key_strings[AF_MAX+1] = {
  139. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  140. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  141. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  142. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  143. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  144. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  145. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  146. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  147. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  148. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  149. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  150. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  151. "sk_lock-AF_IEEE802154",
  152. "sk_lock-AF_MAX"
  153. };
  154. static const char *af_family_slock_key_strings[AF_MAX+1] = {
  155. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  156. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  157. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  158. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  159. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  160. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  161. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  162. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  163. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  164. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  165. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  166. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  167. "slock-AF_IEEE802154",
  168. "slock-AF_MAX"
  169. };
  170. static const char *af_family_clock_key_strings[AF_MAX+1] = {
  171. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  172. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  173. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  174. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  175. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  176. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  177. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  178. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  179. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  180. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  181. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  182. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  183. "clock-AF_IEEE802154",
  184. "clock-AF_MAX"
  185. };
  186. /*
  187. * sk_callback_lock locking rules are per-address-family,
  188. * so split the lock classes by using a per-AF key:
  189. */
  190. static struct lock_class_key af_callback_keys[AF_MAX];
  191. /* Take into consideration the size of the struct sk_buff overhead in the
  192. * determination of these values, since that is non-constant across
  193. * platforms. This makes socket queueing behavior and performance
  194. * not depend upon such differences.
  195. */
  196. #define _SK_MEM_PACKETS 256
  197. #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
  198. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  199. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  200. /* Run time adjustable parameters. */
  201. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  202. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  203. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  204. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  205. /* Maximal space eaten by iovec or ancilliary data plus some space */
  206. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  207. EXPORT_SYMBOL(sysctl_optmem_max);
  208. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  209. {
  210. struct timeval tv;
  211. if (optlen < sizeof(tv))
  212. return -EINVAL;
  213. if (copy_from_user(&tv, optval, sizeof(tv)))
  214. return -EFAULT;
  215. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  216. return -EDOM;
  217. if (tv.tv_sec < 0) {
  218. static int warned __read_mostly;
  219. *timeo_p = 0;
  220. if (warned < 10 && net_ratelimit()) {
  221. warned++;
  222. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  223. "tries to set negative timeout\n",
  224. current->comm, task_pid_nr(current));
  225. }
  226. return 0;
  227. }
  228. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  229. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  230. return 0;
  231. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  232. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  233. return 0;
  234. }
  235. static void sock_warn_obsolete_bsdism(const char *name)
  236. {
  237. static int warned;
  238. static char warncomm[TASK_COMM_LEN];
  239. if (strcmp(warncomm, current->comm) && warned < 5) {
  240. strcpy(warncomm, current->comm);
  241. printk(KERN_WARNING "process `%s' is using obsolete "
  242. "%s SO_BSDCOMPAT\n", warncomm, name);
  243. warned++;
  244. }
  245. }
  246. static void sock_disable_timestamp(struct sock *sk, int flag)
  247. {
  248. if (sock_flag(sk, flag)) {
  249. sock_reset_flag(sk, flag);
  250. if (!sock_flag(sk, SOCK_TIMESTAMP) &&
  251. !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
  252. net_disable_timestamp();
  253. }
  254. }
  255. }
  256. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  257. {
  258. int err = 0;
  259. int skb_len;
  260. /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
  261. number of warnings when compiling with -W --ANK
  262. */
  263. if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
  264. (unsigned)sk->sk_rcvbuf) {
  265. err = -ENOMEM;
  266. goto out;
  267. }
  268. err = sk_filter(sk, skb);
  269. if (err)
  270. goto out;
  271. if (!sk_rmem_schedule(sk, skb->truesize)) {
  272. err = -ENOBUFS;
  273. goto out;
  274. }
  275. skb->dev = NULL;
  276. skb_set_owner_r(skb, sk);
  277. /* Cache the SKB length before we tack it onto the receive
  278. * queue. Once it is added it no longer belongs to us and
  279. * may be freed by other threads of control pulling packets
  280. * from the queue.
  281. */
  282. skb_len = skb->len;
  283. skb_queue_tail(&sk->sk_receive_queue, skb);
  284. if (!sock_flag(sk, SOCK_DEAD))
  285. sk->sk_data_ready(sk, skb_len);
  286. out:
  287. return err;
  288. }
  289. EXPORT_SYMBOL(sock_queue_rcv_skb);
  290. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  291. {
  292. int rc = NET_RX_SUCCESS;
  293. if (sk_filter(sk, skb))
  294. goto discard_and_relse;
  295. skb->dev = NULL;
  296. if (nested)
  297. bh_lock_sock_nested(sk);
  298. else
  299. bh_lock_sock(sk);
  300. if (!sock_owned_by_user(sk)) {
  301. /*
  302. * trylock + unlock semantics:
  303. */
  304. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  305. rc = sk_backlog_rcv(sk, skb);
  306. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  307. } else
  308. sk_add_backlog(sk, skb);
  309. bh_unlock_sock(sk);
  310. out:
  311. sock_put(sk);
  312. return rc;
  313. discard_and_relse:
  314. kfree_skb(skb);
  315. goto out;
  316. }
  317. EXPORT_SYMBOL(sk_receive_skb);
  318. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  319. {
  320. struct dst_entry *dst = sk->sk_dst_cache;
  321. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  322. sk->sk_dst_cache = NULL;
  323. dst_release(dst);
  324. return NULL;
  325. }
  326. return dst;
  327. }
  328. EXPORT_SYMBOL(__sk_dst_check);
  329. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  330. {
  331. struct dst_entry *dst = sk_dst_get(sk);
  332. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  333. sk_dst_reset(sk);
  334. dst_release(dst);
  335. return NULL;
  336. }
  337. return dst;
  338. }
  339. EXPORT_SYMBOL(sk_dst_check);
  340. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  341. {
  342. int ret = -ENOPROTOOPT;
  343. #ifdef CONFIG_NETDEVICES
  344. struct net *net = sock_net(sk);
  345. char devname[IFNAMSIZ];
  346. int index;
  347. /* Sorry... */
  348. ret = -EPERM;
  349. if (!capable(CAP_NET_RAW))
  350. goto out;
  351. ret = -EINVAL;
  352. if (optlen < 0)
  353. goto out;
  354. /* Bind this socket to a particular device like "eth0",
  355. * as specified in the passed interface name. If the
  356. * name is "" or the option length is zero the socket
  357. * is not bound.
  358. */
  359. if (optlen > IFNAMSIZ - 1)
  360. optlen = IFNAMSIZ - 1;
  361. memset(devname, 0, sizeof(devname));
  362. ret = -EFAULT;
  363. if (copy_from_user(devname, optval, optlen))
  364. goto out;
  365. if (devname[0] == '\0') {
  366. index = 0;
  367. } else {
  368. struct net_device *dev = dev_get_by_name(net, devname);
  369. ret = -ENODEV;
  370. if (!dev)
  371. goto out;
  372. index = dev->ifindex;
  373. dev_put(dev);
  374. }
  375. lock_sock(sk);
  376. sk->sk_bound_dev_if = index;
  377. sk_dst_reset(sk);
  378. release_sock(sk);
  379. ret = 0;
  380. out:
  381. #endif
  382. return ret;
  383. }
  384. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  385. {
  386. if (valbool)
  387. sock_set_flag(sk, bit);
  388. else
  389. sock_reset_flag(sk, bit);
  390. }
  391. /*
  392. * This is meant for all protocols to use and covers goings on
  393. * at the socket level. Everything here is generic.
  394. */
  395. int sock_setsockopt(struct socket *sock, int level, int optname,
  396. char __user *optval, int optlen)
  397. {
  398. struct sock *sk = sock->sk;
  399. int val;
  400. int valbool;
  401. struct linger ling;
  402. int ret = 0;
  403. /*
  404. * Options without arguments
  405. */
  406. if (optname == SO_BINDTODEVICE)
  407. return sock_bindtodevice(sk, optval, optlen);
  408. if (optlen < sizeof(int))
  409. return -EINVAL;
  410. if (get_user(val, (int __user *)optval))
  411. return -EFAULT;
  412. valbool = val ? 1 : 0;
  413. lock_sock(sk);
  414. switch (optname) {
  415. case SO_DEBUG:
  416. if (val && !capable(CAP_NET_ADMIN))
  417. ret = -EACCES;
  418. else
  419. sock_valbool_flag(sk, SOCK_DBG, valbool);
  420. break;
  421. case SO_REUSEADDR:
  422. sk->sk_reuse = valbool;
  423. break;
  424. case SO_TYPE:
  425. case SO_ERROR:
  426. ret = -ENOPROTOOPT;
  427. break;
  428. case SO_DONTROUTE:
  429. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  430. break;
  431. case SO_BROADCAST:
  432. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  433. break;
  434. case SO_SNDBUF:
  435. /* Don't error on this BSD doesn't and if you think
  436. about it this is right. Otherwise apps have to
  437. play 'guess the biggest size' games. RCVBUF/SNDBUF
  438. are treated in BSD as hints */
  439. if (val > sysctl_wmem_max)
  440. val = sysctl_wmem_max;
  441. set_sndbuf:
  442. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  443. if ((val * 2) < SOCK_MIN_SNDBUF)
  444. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  445. else
  446. sk->sk_sndbuf = val * 2;
  447. /*
  448. * Wake up sending tasks if we
  449. * upped the value.
  450. */
  451. sk->sk_write_space(sk);
  452. break;
  453. case SO_SNDBUFFORCE:
  454. if (!capable(CAP_NET_ADMIN)) {
  455. ret = -EPERM;
  456. break;
  457. }
  458. goto set_sndbuf;
  459. case SO_RCVBUF:
  460. /* Don't error on this BSD doesn't and if you think
  461. about it this is right. Otherwise apps have to
  462. play 'guess the biggest size' games. RCVBUF/SNDBUF
  463. are treated in BSD as hints */
  464. if (val > sysctl_rmem_max)
  465. val = sysctl_rmem_max;
  466. set_rcvbuf:
  467. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  468. /*
  469. * We double it on the way in to account for
  470. * "struct sk_buff" etc. overhead. Applications
  471. * assume that the SO_RCVBUF setting they make will
  472. * allow that much actual data to be received on that
  473. * socket.
  474. *
  475. * Applications are unaware that "struct sk_buff" and
  476. * other overheads allocate from the receive buffer
  477. * during socket buffer allocation.
  478. *
  479. * And after considering the possible alternatives,
  480. * returning the value we actually used in getsockopt
  481. * is the most desirable behavior.
  482. */
  483. if ((val * 2) < SOCK_MIN_RCVBUF)
  484. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  485. else
  486. sk->sk_rcvbuf = val * 2;
  487. break;
  488. case SO_RCVBUFFORCE:
  489. if (!capable(CAP_NET_ADMIN)) {
  490. ret = -EPERM;
  491. break;
  492. }
  493. goto set_rcvbuf;
  494. case SO_KEEPALIVE:
  495. #ifdef CONFIG_INET
  496. if (sk->sk_protocol == IPPROTO_TCP)
  497. tcp_set_keepalive(sk, valbool);
  498. #endif
  499. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  500. break;
  501. case SO_OOBINLINE:
  502. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  503. break;
  504. case SO_NO_CHECK:
  505. sk->sk_no_check = valbool;
  506. break;
  507. case SO_PRIORITY:
  508. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  509. sk->sk_priority = val;
  510. else
  511. ret = -EPERM;
  512. break;
  513. case SO_LINGER:
  514. if (optlen < sizeof(ling)) {
  515. ret = -EINVAL; /* 1003.1g */
  516. break;
  517. }
  518. if (copy_from_user(&ling, optval, sizeof(ling))) {
  519. ret = -EFAULT;
  520. break;
  521. }
  522. if (!ling.l_onoff)
  523. sock_reset_flag(sk, SOCK_LINGER);
  524. else {
  525. #if (BITS_PER_LONG == 32)
  526. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  527. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  528. else
  529. #endif
  530. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  531. sock_set_flag(sk, SOCK_LINGER);
  532. }
  533. break;
  534. case SO_BSDCOMPAT:
  535. sock_warn_obsolete_bsdism("setsockopt");
  536. break;
  537. case SO_PASSCRED:
  538. if (valbool)
  539. set_bit(SOCK_PASSCRED, &sock->flags);
  540. else
  541. clear_bit(SOCK_PASSCRED, &sock->flags);
  542. break;
  543. case SO_TIMESTAMP:
  544. case SO_TIMESTAMPNS:
  545. if (valbool) {
  546. if (optname == SO_TIMESTAMP)
  547. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  548. else
  549. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  550. sock_set_flag(sk, SOCK_RCVTSTAMP);
  551. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  552. } else {
  553. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  554. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  555. }
  556. break;
  557. case SO_TIMESTAMPING:
  558. if (val & ~SOF_TIMESTAMPING_MASK) {
  559. ret = -EINVAL;
  560. break;
  561. }
  562. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  563. val & SOF_TIMESTAMPING_TX_HARDWARE);
  564. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  565. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  566. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  567. val & SOF_TIMESTAMPING_RX_HARDWARE);
  568. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  569. sock_enable_timestamp(sk,
  570. SOCK_TIMESTAMPING_RX_SOFTWARE);
  571. else
  572. sock_disable_timestamp(sk,
  573. SOCK_TIMESTAMPING_RX_SOFTWARE);
  574. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  575. val & SOF_TIMESTAMPING_SOFTWARE);
  576. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  577. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  578. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  579. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  580. break;
  581. case SO_RCVLOWAT:
  582. if (val < 0)
  583. val = INT_MAX;
  584. sk->sk_rcvlowat = val ? : 1;
  585. break;
  586. case SO_RCVTIMEO:
  587. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  588. break;
  589. case SO_SNDTIMEO:
  590. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  591. break;
  592. case SO_ATTACH_FILTER:
  593. ret = -EINVAL;
  594. if (optlen == sizeof(struct sock_fprog)) {
  595. struct sock_fprog fprog;
  596. ret = -EFAULT;
  597. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  598. break;
  599. ret = sk_attach_filter(&fprog, sk);
  600. }
  601. break;
  602. case SO_DETACH_FILTER:
  603. ret = sk_detach_filter(sk);
  604. break;
  605. case SO_PASSSEC:
  606. if (valbool)
  607. set_bit(SOCK_PASSSEC, &sock->flags);
  608. else
  609. clear_bit(SOCK_PASSSEC, &sock->flags);
  610. break;
  611. case SO_MARK:
  612. if (!capable(CAP_NET_ADMIN))
  613. ret = -EPERM;
  614. else
  615. sk->sk_mark = val;
  616. break;
  617. /* We implement the SO_SNDLOWAT etc to
  618. not be settable (1003.1g 5.3) */
  619. default:
  620. ret = -ENOPROTOOPT;
  621. break;
  622. }
  623. release_sock(sk);
  624. return ret;
  625. }
  626. EXPORT_SYMBOL(sock_setsockopt);
  627. int sock_getsockopt(struct socket *sock, int level, int optname,
  628. char __user *optval, int __user *optlen)
  629. {
  630. struct sock *sk = sock->sk;
  631. union {
  632. int val;
  633. struct linger ling;
  634. struct timeval tm;
  635. } v;
  636. unsigned int lv = sizeof(int);
  637. int len;
  638. if (get_user(len, optlen))
  639. return -EFAULT;
  640. if (len < 0)
  641. return -EINVAL;
  642. memset(&v, 0, sizeof(v));
  643. switch (optname) {
  644. case SO_DEBUG:
  645. v.val = sock_flag(sk, SOCK_DBG);
  646. break;
  647. case SO_DONTROUTE:
  648. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  649. break;
  650. case SO_BROADCAST:
  651. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  652. break;
  653. case SO_SNDBUF:
  654. v.val = sk->sk_sndbuf;
  655. break;
  656. case SO_RCVBUF:
  657. v.val = sk->sk_rcvbuf;
  658. break;
  659. case SO_REUSEADDR:
  660. v.val = sk->sk_reuse;
  661. break;
  662. case SO_KEEPALIVE:
  663. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  664. break;
  665. case SO_TYPE:
  666. v.val = sk->sk_type;
  667. break;
  668. case SO_ERROR:
  669. v.val = -sock_error(sk);
  670. if (v.val == 0)
  671. v.val = xchg(&sk->sk_err_soft, 0);
  672. break;
  673. case SO_OOBINLINE:
  674. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  675. break;
  676. case SO_NO_CHECK:
  677. v.val = sk->sk_no_check;
  678. break;
  679. case SO_PRIORITY:
  680. v.val = sk->sk_priority;
  681. break;
  682. case SO_LINGER:
  683. lv = sizeof(v.ling);
  684. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  685. v.ling.l_linger = sk->sk_lingertime / HZ;
  686. break;
  687. case SO_BSDCOMPAT:
  688. sock_warn_obsolete_bsdism("getsockopt");
  689. break;
  690. case SO_TIMESTAMP:
  691. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  692. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  693. break;
  694. case SO_TIMESTAMPNS:
  695. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  696. break;
  697. case SO_TIMESTAMPING:
  698. v.val = 0;
  699. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  700. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  701. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  702. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  703. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  704. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  705. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  706. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  707. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  708. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  709. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  710. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  711. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  712. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  713. break;
  714. case SO_RCVTIMEO:
  715. lv = sizeof(struct timeval);
  716. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  717. v.tm.tv_sec = 0;
  718. v.tm.tv_usec = 0;
  719. } else {
  720. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  721. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  722. }
  723. break;
  724. case SO_SNDTIMEO:
  725. lv = sizeof(struct timeval);
  726. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  727. v.tm.tv_sec = 0;
  728. v.tm.tv_usec = 0;
  729. } else {
  730. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  731. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  732. }
  733. break;
  734. case SO_RCVLOWAT:
  735. v.val = sk->sk_rcvlowat;
  736. break;
  737. case SO_SNDLOWAT:
  738. v.val = 1;
  739. break;
  740. case SO_PASSCRED:
  741. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  742. break;
  743. case SO_PEERCRED:
  744. if (len > sizeof(sk->sk_peercred))
  745. len = sizeof(sk->sk_peercred);
  746. if (copy_to_user(optval, &sk->sk_peercred, len))
  747. return -EFAULT;
  748. goto lenout;
  749. case SO_PEERNAME:
  750. {
  751. char address[128];
  752. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  753. return -ENOTCONN;
  754. if (lv < len)
  755. return -EINVAL;
  756. if (copy_to_user(optval, address, len))
  757. return -EFAULT;
  758. goto lenout;
  759. }
  760. /* Dubious BSD thing... Probably nobody even uses it, but
  761. * the UNIX standard wants it for whatever reason... -DaveM
  762. */
  763. case SO_ACCEPTCONN:
  764. v.val = sk->sk_state == TCP_LISTEN;
  765. break;
  766. case SO_PASSSEC:
  767. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  768. break;
  769. case SO_PEERSEC:
  770. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  771. case SO_MARK:
  772. v.val = sk->sk_mark;
  773. break;
  774. default:
  775. return -ENOPROTOOPT;
  776. }
  777. if (len > lv)
  778. len = lv;
  779. if (copy_to_user(optval, &v, len))
  780. return -EFAULT;
  781. lenout:
  782. if (put_user(len, optlen))
  783. return -EFAULT;
  784. return 0;
  785. }
  786. /*
  787. * Initialize an sk_lock.
  788. *
  789. * (We also register the sk_lock with the lock validator.)
  790. */
  791. static inline void sock_lock_init(struct sock *sk)
  792. {
  793. sock_lock_init_class_and_name(sk,
  794. af_family_slock_key_strings[sk->sk_family],
  795. af_family_slock_keys + sk->sk_family,
  796. af_family_key_strings[sk->sk_family],
  797. af_family_keys + sk->sk_family);
  798. }
  799. /*
  800. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  801. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  802. */
  803. static void sock_copy(struct sock *nsk, const struct sock *osk)
  804. {
  805. #ifdef CONFIG_SECURITY_NETWORK
  806. void *sptr = nsk->sk_security;
  807. #endif
  808. BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
  809. sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
  810. memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
  811. osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
  812. #ifdef CONFIG_SECURITY_NETWORK
  813. nsk->sk_security = sptr;
  814. security_sk_clone(osk, nsk);
  815. #endif
  816. }
  817. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  818. int family)
  819. {
  820. struct sock *sk;
  821. struct kmem_cache *slab;
  822. slab = prot->slab;
  823. if (slab != NULL) {
  824. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  825. if (!sk)
  826. return sk;
  827. if (priority & __GFP_ZERO) {
  828. /*
  829. * caches using SLAB_DESTROY_BY_RCU should let
  830. * sk_node.next un-modified. Special care is taken
  831. * when initializing object to zero.
  832. */
  833. if (offsetof(struct sock, sk_node.next) != 0)
  834. memset(sk, 0, offsetof(struct sock, sk_node.next));
  835. memset(&sk->sk_node.pprev, 0,
  836. prot->obj_size - offsetof(struct sock,
  837. sk_node.pprev));
  838. }
  839. }
  840. else
  841. sk = kmalloc(prot->obj_size, priority);
  842. if (sk != NULL) {
  843. kmemcheck_annotate_bitfield(sk, flags);
  844. if (security_sk_alloc(sk, family, priority))
  845. goto out_free;
  846. if (!try_module_get(prot->owner))
  847. goto out_free_sec;
  848. }
  849. return sk;
  850. out_free_sec:
  851. security_sk_free(sk);
  852. out_free:
  853. if (slab != NULL)
  854. kmem_cache_free(slab, sk);
  855. else
  856. kfree(sk);
  857. return NULL;
  858. }
  859. static void sk_prot_free(struct proto *prot, struct sock *sk)
  860. {
  861. struct kmem_cache *slab;
  862. struct module *owner;
  863. owner = prot->owner;
  864. slab = prot->slab;
  865. security_sk_free(sk);
  866. if (slab != NULL)
  867. kmem_cache_free(slab, sk);
  868. else
  869. kfree(sk);
  870. module_put(owner);
  871. }
  872. /**
  873. * sk_alloc - All socket objects are allocated here
  874. * @net: the applicable net namespace
  875. * @family: protocol family
  876. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  877. * @prot: struct proto associated with this new sock instance
  878. */
  879. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  880. struct proto *prot)
  881. {
  882. struct sock *sk;
  883. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  884. if (sk) {
  885. sk->sk_family = family;
  886. /*
  887. * See comment in struct sock definition to understand
  888. * why we need sk_prot_creator -acme
  889. */
  890. sk->sk_prot = sk->sk_prot_creator = prot;
  891. sock_lock_init(sk);
  892. sock_net_set(sk, get_net(net));
  893. }
  894. return sk;
  895. }
  896. EXPORT_SYMBOL(sk_alloc);
  897. static void __sk_free(struct sock *sk)
  898. {
  899. struct sk_filter *filter;
  900. if (sk->sk_destruct)
  901. sk->sk_destruct(sk);
  902. filter = rcu_dereference(sk->sk_filter);
  903. if (filter) {
  904. sk_filter_uncharge(sk, filter);
  905. rcu_assign_pointer(sk->sk_filter, NULL);
  906. }
  907. sock_disable_timestamp(sk, SOCK_TIMESTAMP);
  908. sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
  909. if (atomic_read(&sk->sk_omem_alloc))
  910. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  911. __func__, atomic_read(&sk->sk_omem_alloc));
  912. put_net(sock_net(sk));
  913. sk_prot_free(sk->sk_prot_creator, sk);
  914. }
  915. void sk_free(struct sock *sk)
  916. {
  917. /*
  918. * We substract one from sk_wmem_alloc and can know if
  919. * some packets are still in some tx queue.
  920. * If not null, sock_wfree() will call __sk_free(sk) later
  921. */
  922. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  923. __sk_free(sk);
  924. }
  925. EXPORT_SYMBOL(sk_free);
  926. /*
  927. * Last sock_put should drop referrence to sk->sk_net. It has already
  928. * been dropped in sk_change_net. Taking referrence to stopping namespace
  929. * is not an option.
  930. * Take referrence to a socket to remove it from hash _alive_ and after that
  931. * destroy it in the context of init_net.
  932. */
  933. void sk_release_kernel(struct sock *sk)
  934. {
  935. if (sk == NULL || sk->sk_socket == NULL)
  936. return;
  937. sock_hold(sk);
  938. sock_release(sk->sk_socket);
  939. release_net(sock_net(sk));
  940. sock_net_set(sk, get_net(&init_net));
  941. sock_put(sk);
  942. }
  943. EXPORT_SYMBOL(sk_release_kernel);
  944. struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
  945. {
  946. struct sock *newsk;
  947. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  948. if (newsk != NULL) {
  949. struct sk_filter *filter;
  950. sock_copy(newsk, sk);
  951. /* SANITY */
  952. get_net(sock_net(newsk));
  953. sk_node_init(&newsk->sk_node);
  954. sock_lock_init(newsk);
  955. bh_lock_sock(newsk);
  956. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  957. atomic_set(&newsk->sk_rmem_alloc, 0);
  958. /*
  959. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  960. */
  961. atomic_set(&newsk->sk_wmem_alloc, 1);
  962. atomic_set(&newsk->sk_omem_alloc, 0);
  963. skb_queue_head_init(&newsk->sk_receive_queue);
  964. skb_queue_head_init(&newsk->sk_write_queue);
  965. #ifdef CONFIG_NET_DMA
  966. skb_queue_head_init(&newsk->sk_async_wait_queue);
  967. #endif
  968. rwlock_init(&newsk->sk_dst_lock);
  969. rwlock_init(&newsk->sk_callback_lock);
  970. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  971. af_callback_keys + newsk->sk_family,
  972. af_family_clock_key_strings[newsk->sk_family]);
  973. newsk->sk_dst_cache = NULL;
  974. newsk->sk_wmem_queued = 0;
  975. newsk->sk_forward_alloc = 0;
  976. newsk->sk_send_head = NULL;
  977. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  978. sock_reset_flag(newsk, SOCK_DONE);
  979. skb_queue_head_init(&newsk->sk_error_queue);
  980. filter = newsk->sk_filter;
  981. if (filter != NULL)
  982. sk_filter_charge(newsk, filter);
  983. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  984. /* It is still raw copy of parent, so invalidate
  985. * destructor and make plain sk_free() */
  986. newsk->sk_destruct = NULL;
  987. sk_free(newsk);
  988. newsk = NULL;
  989. goto out;
  990. }
  991. newsk->sk_err = 0;
  992. newsk->sk_priority = 0;
  993. /*
  994. * Before updating sk_refcnt, we must commit prior changes to memory
  995. * (Documentation/RCU/rculist_nulls.txt for details)
  996. */
  997. smp_wmb();
  998. atomic_set(&newsk->sk_refcnt, 2);
  999. /*
  1000. * Increment the counter in the same struct proto as the master
  1001. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1002. * is the same as sk->sk_prot->socks, as this field was copied
  1003. * with memcpy).
  1004. *
  1005. * This _changes_ the previous behaviour, where
  1006. * tcp_create_openreq_child always was incrementing the
  1007. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1008. * to be taken into account in all callers. -acme
  1009. */
  1010. sk_refcnt_debug_inc(newsk);
  1011. sk_set_socket(newsk, NULL);
  1012. newsk->sk_sleep = NULL;
  1013. if (newsk->sk_prot->sockets_allocated)
  1014. percpu_counter_inc(newsk->sk_prot->sockets_allocated);
  1015. }
  1016. out:
  1017. return newsk;
  1018. }
  1019. EXPORT_SYMBOL_GPL(sk_clone);
  1020. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1021. {
  1022. __sk_dst_set(sk, dst);
  1023. sk->sk_route_caps = dst->dev->features;
  1024. if (sk->sk_route_caps & NETIF_F_GSO)
  1025. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1026. if (sk_can_gso(sk)) {
  1027. if (dst->header_len) {
  1028. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1029. } else {
  1030. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1031. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1032. }
  1033. }
  1034. }
  1035. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1036. void __init sk_init(void)
  1037. {
  1038. if (num_physpages <= 4096) {
  1039. sysctl_wmem_max = 32767;
  1040. sysctl_rmem_max = 32767;
  1041. sysctl_wmem_default = 32767;
  1042. sysctl_rmem_default = 32767;
  1043. } else if (num_physpages >= 131072) {
  1044. sysctl_wmem_max = 131071;
  1045. sysctl_rmem_max = 131071;
  1046. }
  1047. }
  1048. /*
  1049. * Simple resource managers for sockets.
  1050. */
  1051. /*
  1052. * Write buffer destructor automatically called from kfree_skb.
  1053. */
  1054. void sock_wfree(struct sk_buff *skb)
  1055. {
  1056. struct sock *sk = skb->sk;
  1057. int res;
  1058. /* In case it might be waiting for more memory. */
  1059. res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
  1060. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
  1061. sk->sk_write_space(sk);
  1062. /*
  1063. * if sk_wmem_alloc reached 0, we are last user and should
  1064. * free this sock, as sk_free() call could not do it.
  1065. */
  1066. if (res == 0)
  1067. __sk_free(sk);
  1068. }
  1069. EXPORT_SYMBOL(sock_wfree);
  1070. /*
  1071. * Read buffer destructor automatically called from kfree_skb.
  1072. */
  1073. void sock_rfree(struct sk_buff *skb)
  1074. {
  1075. struct sock *sk = skb->sk;
  1076. atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
  1077. sk_mem_uncharge(skb->sk, skb->truesize);
  1078. }
  1079. EXPORT_SYMBOL(sock_rfree);
  1080. int sock_i_uid(struct sock *sk)
  1081. {
  1082. int uid;
  1083. read_lock(&sk->sk_callback_lock);
  1084. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1085. read_unlock(&sk->sk_callback_lock);
  1086. return uid;
  1087. }
  1088. EXPORT_SYMBOL(sock_i_uid);
  1089. unsigned long sock_i_ino(struct sock *sk)
  1090. {
  1091. unsigned long ino;
  1092. read_lock(&sk->sk_callback_lock);
  1093. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1094. read_unlock(&sk->sk_callback_lock);
  1095. return ino;
  1096. }
  1097. EXPORT_SYMBOL(sock_i_ino);
  1098. /*
  1099. * Allocate a skb from the socket's send buffer.
  1100. */
  1101. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1102. gfp_t priority)
  1103. {
  1104. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1105. struct sk_buff *skb = alloc_skb(size, priority);
  1106. if (skb) {
  1107. skb_set_owner_w(skb, sk);
  1108. return skb;
  1109. }
  1110. }
  1111. return NULL;
  1112. }
  1113. EXPORT_SYMBOL(sock_wmalloc);
  1114. /*
  1115. * Allocate a skb from the socket's receive buffer.
  1116. */
  1117. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1118. gfp_t priority)
  1119. {
  1120. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1121. struct sk_buff *skb = alloc_skb(size, priority);
  1122. if (skb) {
  1123. skb_set_owner_r(skb, sk);
  1124. return skb;
  1125. }
  1126. }
  1127. return NULL;
  1128. }
  1129. /*
  1130. * Allocate a memory block from the socket's option memory buffer.
  1131. */
  1132. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1133. {
  1134. if ((unsigned)size <= sysctl_optmem_max &&
  1135. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1136. void *mem;
  1137. /* First do the add, to avoid the race if kmalloc
  1138. * might sleep.
  1139. */
  1140. atomic_add(size, &sk->sk_omem_alloc);
  1141. mem = kmalloc(size, priority);
  1142. if (mem)
  1143. return mem;
  1144. atomic_sub(size, &sk->sk_omem_alloc);
  1145. }
  1146. return NULL;
  1147. }
  1148. EXPORT_SYMBOL(sock_kmalloc);
  1149. /*
  1150. * Free an option memory block.
  1151. */
  1152. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1153. {
  1154. kfree(mem);
  1155. atomic_sub(size, &sk->sk_omem_alloc);
  1156. }
  1157. EXPORT_SYMBOL(sock_kfree_s);
  1158. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1159. I think, these locks should be removed for datagram sockets.
  1160. */
  1161. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1162. {
  1163. DEFINE_WAIT(wait);
  1164. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1165. for (;;) {
  1166. if (!timeo)
  1167. break;
  1168. if (signal_pending(current))
  1169. break;
  1170. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1171. prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
  1172. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1173. break;
  1174. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1175. break;
  1176. if (sk->sk_err)
  1177. break;
  1178. timeo = schedule_timeout(timeo);
  1179. }
  1180. finish_wait(sk->sk_sleep, &wait);
  1181. return timeo;
  1182. }
  1183. /*
  1184. * Generic send/receive buffer handlers
  1185. */
  1186. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1187. unsigned long data_len, int noblock,
  1188. int *errcode)
  1189. {
  1190. struct sk_buff *skb;
  1191. gfp_t gfp_mask;
  1192. long timeo;
  1193. int err;
  1194. gfp_mask = sk->sk_allocation;
  1195. if (gfp_mask & __GFP_WAIT)
  1196. gfp_mask |= __GFP_REPEAT;
  1197. timeo = sock_sndtimeo(sk, noblock);
  1198. while (1) {
  1199. err = sock_error(sk);
  1200. if (err != 0)
  1201. goto failure;
  1202. err = -EPIPE;
  1203. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1204. goto failure;
  1205. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1206. skb = alloc_skb(header_len, gfp_mask);
  1207. if (skb) {
  1208. int npages;
  1209. int i;
  1210. /* No pages, we're done... */
  1211. if (!data_len)
  1212. break;
  1213. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1214. skb->truesize += data_len;
  1215. skb_shinfo(skb)->nr_frags = npages;
  1216. for (i = 0; i < npages; i++) {
  1217. struct page *page;
  1218. skb_frag_t *frag;
  1219. page = alloc_pages(sk->sk_allocation, 0);
  1220. if (!page) {
  1221. err = -ENOBUFS;
  1222. skb_shinfo(skb)->nr_frags = i;
  1223. kfree_skb(skb);
  1224. goto failure;
  1225. }
  1226. frag = &skb_shinfo(skb)->frags[i];
  1227. frag->page = page;
  1228. frag->page_offset = 0;
  1229. frag->size = (data_len >= PAGE_SIZE ?
  1230. PAGE_SIZE :
  1231. data_len);
  1232. data_len -= PAGE_SIZE;
  1233. }
  1234. /* Full success... */
  1235. break;
  1236. }
  1237. err = -ENOBUFS;
  1238. goto failure;
  1239. }
  1240. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1241. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1242. err = -EAGAIN;
  1243. if (!timeo)
  1244. goto failure;
  1245. if (signal_pending(current))
  1246. goto interrupted;
  1247. timeo = sock_wait_for_wmem(sk, timeo);
  1248. }
  1249. skb_set_owner_w(skb, sk);
  1250. return skb;
  1251. interrupted:
  1252. err = sock_intr_errno(timeo);
  1253. failure:
  1254. *errcode = err;
  1255. return NULL;
  1256. }
  1257. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1258. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1259. int noblock, int *errcode)
  1260. {
  1261. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1262. }
  1263. EXPORT_SYMBOL(sock_alloc_send_skb);
  1264. static void __lock_sock(struct sock *sk)
  1265. {
  1266. DEFINE_WAIT(wait);
  1267. for (;;) {
  1268. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1269. TASK_UNINTERRUPTIBLE);
  1270. spin_unlock_bh(&sk->sk_lock.slock);
  1271. schedule();
  1272. spin_lock_bh(&sk->sk_lock.slock);
  1273. if (!sock_owned_by_user(sk))
  1274. break;
  1275. }
  1276. finish_wait(&sk->sk_lock.wq, &wait);
  1277. }
  1278. static void __release_sock(struct sock *sk)
  1279. {
  1280. struct sk_buff *skb = sk->sk_backlog.head;
  1281. do {
  1282. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1283. bh_unlock_sock(sk);
  1284. do {
  1285. struct sk_buff *next = skb->next;
  1286. skb->next = NULL;
  1287. sk_backlog_rcv(sk, skb);
  1288. /*
  1289. * We are in process context here with softirqs
  1290. * disabled, use cond_resched_softirq() to preempt.
  1291. * This is safe to do because we've taken the backlog
  1292. * queue private:
  1293. */
  1294. cond_resched_softirq();
  1295. skb = next;
  1296. } while (skb != NULL);
  1297. bh_lock_sock(sk);
  1298. } while ((skb = sk->sk_backlog.head) != NULL);
  1299. }
  1300. /**
  1301. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1302. * @sk: sock to wait on
  1303. * @timeo: for how long
  1304. *
  1305. * Now socket state including sk->sk_err is changed only under lock,
  1306. * hence we may omit checks after joining wait queue.
  1307. * We check receive queue before schedule() only as optimization;
  1308. * it is very likely that release_sock() added new data.
  1309. */
  1310. int sk_wait_data(struct sock *sk, long *timeo)
  1311. {
  1312. int rc;
  1313. DEFINE_WAIT(wait);
  1314. prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
  1315. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1316. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1317. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1318. finish_wait(sk->sk_sleep, &wait);
  1319. return rc;
  1320. }
  1321. EXPORT_SYMBOL(sk_wait_data);
  1322. /**
  1323. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1324. * @sk: socket
  1325. * @size: memory size to allocate
  1326. * @kind: allocation type
  1327. *
  1328. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1329. * rmem allocation. This function assumes that protocols which have
  1330. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1331. */
  1332. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1333. {
  1334. struct proto *prot = sk->sk_prot;
  1335. int amt = sk_mem_pages(size);
  1336. int allocated;
  1337. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1338. allocated = atomic_add_return(amt, prot->memory_allocated);
  1339. /* Under limit. */
  1340. if (allocated <= prot->sysctl_mem[0]) {
  1341. if (prot->memory_pressure && *prot->memory_pressure)
  1342. *prot->memory_pressure = 0;
  1343. return 1;
  1344. }
  1345. /* Under pressure. */
  1346. if (allocated > prot->sysctl_mem[1])
  1347. if (prot->enter_memory_pressure)
  1348. prot->enter_memory_pressure(sk);
  1349. /* Over hard limit. */
  1350. if (allocated > prot->sysctl_mem[2])
  1351. goto suppress_allocation;
  1352. /* guarantee minimum buffer size under pressure */
  1353. if (kind == SK_MEM_RECV) {
  1354. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1355. return 1;
  1356. } else { /* SK_MEM_SEND */
  1357. if (sk->sk_type == SOCK_STREAM) {
  1358. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1359. return 1;
  1360. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1361. prot->sysctl_wmem[0])
  1362. return 1;
  1363. }
  1364. if (prot->memory_pressure) {
  1365. int alloc;
  1366. if (!*prot->memory_pressure)
  1367. return 1;
  1368. alloc = percpu_counter_read_positive(prot->sockets_allocated);
  1369. if (prot->sysctl_mem[2] > alloc *
  1370. sk_mem_pages(sk->sk_wmem_queued +
  1371. atomic_read(&sk->sk_rmem_alloc) +
  1372. sk->sk_forward_alloc))
  1373. return 1;
  1374. }
  1375. suppress_allocation:
  1376. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1377. sk_stream_moderate_sndbuf(sk);
  1378. /* Fail only if socket is _under_ its sndbuf.
  1379. * In this case we cannot block, so that we have to fail.
  1380. */
  1381. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1382. return 1;
  1383. }
  1384. /* Alas. Undo changes. */
  1385. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1386. atomic_sub(amt, prot->memory_allocated);
  1387. return 0;
  1388. }
  1389. EXPORT_SYMBOL(__sk_mem_schedule);
  1390. /**
  1391. * __sk_reclaim - reclaim memory_allocated
  1392. * @sk: socket
  1393. */
  1394. void __sk_mem_reclaim(struct sock *sk)
  1395. {
  1396. struct proto *prot = sk->sk_prot;
  1397. atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
  1398. prot->memory_allocated);
  1399. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1400. if (prot->memory_pressure && *prot->memory_pressure &&
  1401. (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
  1402. *prot->memory_pressure = 0;
  1403. }
  1404. EXPORT_SYMBOL(__sk_mem_reclaim);
  1405. /*
  1406. * Set of default routines for initialising struct proto_ops when
  1407. * the protocol does not support a particular function. In certain
  1408. * cases where it makes no sense for a protocol to have a "do nothing"
  1409. * function, some default processing is provided.
  1410. */
  1411. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1412. {
  1413. return -EOPNOTSUPP;
  1414. }
  1415. EXPORT_SYMBOL(sock_no_bind);
  1416. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1417. int len, int flags)
  1418. {
  1419. return -EOPNOTSUPP;
  1420. }
  1421. EXPORT_SYMBOL(sock_no_connect);
  1422. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1423. {
  1424. return -EOPNOTSUPP;
  1425. }
  1426. EXPORT_SYMBOL(sock_no_socketpair);
  1427. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1428. {
  1429. return -EOPNOTSUPP;
  1430. }
  1431. EXPORT_SYMBOL(sock_no_accept);
  1432. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1433. int *len, int peer)
  1434. {
  1435. return -EOPNOTSUPP;
  1436. }
  1437. EXPORT_SYMBOL(sock_no_getname);
  1438. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1439. {
  1440. return 0;
  1441. }
  1442. EXPORT_SYMBOL(sock_no_poll);
  1443. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1444. {
  1445. return -EOPNOTSUPP;
  1446. }
  1447. EXPORT_SYMBOL(sock_no_ioctl);
  1448. int sock_no_listen(struct socket *sock, int backlog)
  1449. {
  1450. return -EOPNOTSUPP;
  1451. }
  1452. EXPORT_SYMBOL(sock_no_listen);
  1453. int sock_no_shutdown(struct socket *sock, int how)
  1454. {
  1455. return -EOPNOTSUPP;
  1456. }
  1457. EXPORT_SYMBOL(sock_no_shutdown);
  1458. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1459. char __user *optval, int optlen)
  1460. {
  1461. return -EOPNOTSUPP;
  1462. }
  1463. EXPORT_SYMBOL(sock_no_setsockopt);
  1464. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1465. char __user *optval, int __user *optlen)
  1466. {
  1467. return -EOPNOTSUPP;
  1468. }
  1469. EXPORT_SYMBOL(sock_no_getsockopt);
  1470. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1471. size_t len)
  1472. {
  1473. return -EOPNOTSUPP;
  1474. }
  1475. EXPORT_SYMBOL(sock_no_sendmsg);
  1476. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1477. size_t len, int flags)
  1478. {
  1479. return -EOPNOTSUPP;
  1480. }
  1481. EXPORT_SYMBOL(sock_no_recvmsg);
  1482. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1483. {
  1484. /* Mirror missing mmap method error code */
  1485. return -ENODEV;
  1486. }
  1487. EXPORT_SYMBOL(sock_no_mmap);
  1488. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1489. {
  1490. ssize_t res;
  1491. struct msghdr msg = {.msg_flags = flags};
  1492. struct kvec iov;
  1493. char *kaddr = kmap(page);
  1494. iov.iov_base = kaddr + offset;
  1495. iov.iov_len = size;
  1496. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1497. kunmap(page);
  1498. return res;
  1499. }
  1500. EXPORT_SYMBOL(sock_no_sendpage);
  1501. /*
  1502. * Default Socket Callbacks
  1503. */
  1504. static void sock_def_wakeup(struct sock *sk)
  1505. {
  1506. read_lock(&sk->sk_callback_lock);
  1507. if (sk_has_sleeper(sk))
  1508. wake_up_interruptible_all(sk->sk_sleep);
  1509. read_unlock(&sk->sk_callback_lock);
  1510. }
  1511. static void sock_def_error_report(struct sock *sk)
  1512. {
  1513. read_lock(&sk->sk_callback_lock);
  1514. if (sk_has_sleeper(sk))
  1515. wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
  1516. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1517. read_unlock(&sk->sk_callback_lock);
  1518. }
  1519. static void sock_def_readable(struct sock *sk, int len)
  1520. {
  1521. read_lock(&sk->sk_callback_lock);
  1522. if (sk_has_sleeper(sk))
  1523. wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
  1524. POLLRDNORM | POLLRDBAND);
  1525. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1526. read_unlock(&sk->sk_callback_lock);
  1527. }
  1528. static void sock_def_write_space(struct sock *sk)
  1529. {
  1530. read_lock(&sk->sk_callback_lock);
  1531. /* Do not wake up a writer until he can make "significant"
  1532. * progress. --DaveM
  1533. */
  1534. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1535. if (sk_has_sleeper(sk))
  1536. wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
  1537. POLLWRNORM | POLLWRBAND);
  1538. /* Should agree with poll, otherwise some programs break */
  1539. if (sock_writeable(sk))
  1540. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1541. }
  1542. read_unlock(&sk->sk_callback_lock);
  1543. }
  1544. static void sock_def_destruct(struct sock *sk)
  1545. {
  1546. kfree(sk->sk_protinfo);
  1547. }
  1548. void sk_send_sigurg(struct sock *sk)
  1549. {
  1550. if (sk->sk_socket && sk->sk_socket->file)
  1551. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1552. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1553. }
  1554. EXPORT_SYMBOL(sk_send_sigurg);
  1555. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1556. unsigned long expires)
  1557. {
  1558. if (!mod_timer(timer, expires))
  1559. sock_hold(sk);
  1560. }
  1561. EXPORT_SYMBOL(sk_reset_timer);
  1562. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1563. {
  1564. if (timer_pending(timer) && del_timer(timer))
  1565. __sock_put(sk);
  1566. }
  1567. EXPORT_SYMBOL(sk_stop_timer);
  1568. void sock_init_data(struct socket *sock, struct sock *sk)
  1569. {
  1570. skb_queue_head_init(&sk->sk_receive_queue);
  1571. skb_queue_head_init(&sk->sk_write_queue);
  1572. skb_queue_head_init(&sk->sk_error_queue);
  1573. #ifdef CONFIG_NET_DMA
  1574. skb_queue_head_init(&sk->sk_async_wait_queue);
  1575. #endif
  1576. sk->sk_send_head = NULL;
  1577. init_timer(&sk->sk_timer);
  1578. sk->sk_allocation = GFP_KERNEL;
  1579. sk->sk_rcvbuf = sysctl_rmem_default;
  1580. sk->sk_sndbuf = sysctl_wmem_default;
  1581. sk->sk_state = TCP_CLOSE;
  1582. sk_set_socket(sk, sock);
  1583. sock_set_flag(sk, SOCK_ZAPPED);
  1584. if (sock) {
  1585. sk->sk_type = sock->type;
  1586. sk->sk_sleep = &sock->wait;
  1587. sock->sk = sk;
  1588. } else
  1589. sk->sk_sleep = NULL;
  1590. rwlock_init(&sk->sk_dst_lock);
  1591. rwlock_init(&sk->sk_callback_lock);
  1592. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1593. af_callback_keys + sk->sk_family,
  1594. af_family_clock_key_strings[sk->sk_family]);
  1595. sk->sk_state_change = sock_def_wakeup;
  1596. sk->sk_data_ready = sock_def_readable;
  1597. sk->sk_write_space = sock_def_write_space;
  1598. sk->sk_error_report = sock_def_error_report;
  1599. sk->sk_destruct = sock_def_destruct;
  1600. sk->sk_sndmsg_page = NULL;
  1601. sk->sk_sndmsg_off = 0;
  1602. sk->sk_peercred.pid = 0;
  1603. sk->sk_peercred.uid = -1;
  1604. sk->sk_peercred.gid = -1;
  1605. sk->sk_write_pending = 0;
  1606. sk->sk_rcvlowat = 1;
  1607. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1608. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1609. sk->sk_stamp = ktime_set(-1L, 0);
  1610. /*
  1611. * Before updating sk_refcnt, we must commit prior changes to memory
  1612. * (Documentation/RCU/rculist_nulls.txt for details)
  1613. */
  1614. smp_wmb();
  1615. atomic_set(&sk->sk_refcnt, 1);
  1616. atomic_set(&sk->sk_wmem_alloc, 1);
  1617. atomic_set(&sk->sk_drops, 0);
  1618. }
  1619. EXPORT_SYMBOL(sock_init_data);
  1620. void lock_sock_nested(struct sock *sk, int subclass)
  1621. {
  1622. might_sleep();
  1623. spin_lock_bh(&sk->sk_lock.slock);
  1624. if (sk->sk_lock.owned)
  1625. __lock_sock(sk);
  1626. sk->sk_lock.owned = 1;
  1627. spin_unlock(&sk->sk_lock.slock);
  1628. /*
  1629. * The sk_lock has mutex_lock() semantics here:
  1630. */
  1631. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1632. local_bh_enable();
  1633. }
  1634. EXPORT_SYMBOL(lock_sock_nested);
  1635. void release_sock(struct sock *sk)
  1636. {
  1637. /*
  1638. * The sk_lock has mutex_unlock() semantics:
  1639. */
  1640. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1641. spin_lock_bh(&sk->sk_lock.slock);
  1642. if (sk->sk_backlog.tail)
  1643. __release_sock(sk);
  1644. sk->sk_lock.owned = 0;
  1645. if (waitqueue_active(&sk->sk_lock.wq))
  1646. wake_up(&sk->sk_lock.wq);
  1647. spin_unlock_bh(&sk->sk_lock.slock);
  1648. }
  1649. EXPORT_SYMBOL(release_sock);
  1650. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1651. {
  1652. struct timeval tv;
  1653. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1654. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1655. tv = ktime_to_timeval(sk->sk_stamp);
  1656. if (tv.tv_sec == -1)
  1657. return -ENOENT;
  1658. if (tv.tv_sec == 0) {
  1659. sk->sk_stamp = ktime_get_real();
  1660. tv = ktime_to_timeval(sk->sk_stamp);
  1661. }
  1662. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1663. }
  1664. EXPORT_SYMBOL(sock_get_timestamp);
  1665. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1666. {
  1667. struct timespec ts;
  1668. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1669. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1670. ts = ktime_to_timespec(sk->sk_stamp);
  1671. if (ts.tv_sec == -1)
  1672. return -ENOENT;
  1673. if (ts.tv_sec == 0) {
  1674. sk->sk_stamp = ktime_get_real();
  1675. ts = ktime_to_timespec(sk->sk_stamp);
  1676. }
  1677. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1678. }
  1679. EXPORT_SYMBOL(sock_get_timestampns);
  1680. void sock_enable_timestamp(struct sock *sk, int flag)
  1681. {
  1682. if (!sock_flag(sk, flag)) {
  1683. sock_set_flag(sk, flag);
  1684. /*
  1685. * we just set one of the two flags which require net
  1686. * time stamping, but time stamping might have been on
  1687. * already because of the other one
  1688. */
  1689. if (!sock_flag(sk,
  1690. flag == SOCK_TIMESTAMP ?
  1691. SOCK_TIMESTAMPING_RX_SOFTWARE :
  1692. SOCK_TIMESTAMP))
  1693. net_enable_timestamp();
  1694. }
  1695. }
  1696. /*
  1697. * Get a socket option on an socket.
  1698. *
  1699. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1700. * asynchronous errors should be reported by getsockopt. We assume
  1701. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1702. */
  1703. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1704. char __user *optval, int __user *optlen)
  1705. {
  1706. struct sock *sk = sock->sk;
  1707. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1708. }
  1709. EXPORT_SYMBOL(sock_common_getsockopt);
  1710. #ifdef CONFIG_COMPAT
  1711. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1712. char __user *optval, int __user *optlen)
  1713. {
  1714. struct sock *sk = sock->sk;
  1715. if (sk->sk_prot->compat_getsockopt != NULL)
  1716. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1717. optval, optlen);
  1718. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1719. }
  1720. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1721. #endif
  1722. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1723. struct msghdr *msg, size_t size, int flags)
  1724. {
  1725. struct sock *sk = sock->sk;
  1726. int addr_len = 0;
  1727. int err;
  1728. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1729. flags & ~MSG_DONTWAIT, &addr_len);
  1730. if (err >= 0)
  1731. msg->msg_namelen = addr_len;
  1732. return err;
  1733. }
  1734. EXPORT_SYMBOL(sock_common_recvmsg);
  1735. /*
  1736. * Set socket options on an inet socket.
  1737. */
  1738. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1739. char __user *optval, int optlen)
  1740. {
  1741. struct sock *sk = sock->sk;
  1742. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1743. }
  1744. EXPORT_SYMBOL(sock_common_setsockopt);
  1745. #ifdef CONFIG_COMPAT
  1746. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1747. char __user *optval, int optlen)
  1748. {
  1749. struct sock *sk = sock->sk;
  1750. if (sk->sk_prot->compat_setsockopt != NULL)
  1751. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1752. optval, optlen);
  1753. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1754. }
  1755. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1756. #endif
  1757. void sk_common_release(struct sock *sk)
  1758. {
  1759. if (sk->sk_prot->destroy)
  1760. sk->sk_prot->destroy(sk);
  1761. /*
  1762. * Observation: when sock_common_release is called, processes have
  1763. * no access to socket. But net still has.
  1764. * Step one, detach it from networking:
  1765. *
  1766. * A. Remove from hash tables.
  1767. */
  1768. sk->sk_prot->unhash(sk);
  1769. /*
  1770. * In this point socket cannot receive new packets, but it is possible
  1771. * that some packets are in flight because some CPU runs receiver and
  1772. * did hash table lookup before we unhashed socket. They will achieve
  1773. * receive queue and will be purged by socket destructor.
  1774. *
  1775. * Also we still have packets pending on receive queue and probably,
  1776. * our own packets waiting in device queues. sock_destroy will drain
  1777. * receive queue, but transmitted packets will delay socket destruction
  1778. * until the last reference will be released.
  1779. */
  1780. sock_orphan(sk);
  1781. xfrm_sk_free_policy(sk);
  1782. sk_refcnt_debug_release(sk);
  1783. sock_put(sk);
  1784. }
  1785. EXPORT_SYMBOL(sk_common_release);
  1786. static DEFINE_RWLOCK(proto_list_lock);
  1787. static LIST_HEAD(proto_list);
  1788. #ifdef CONFIG_PROC_FS
  1789. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  1790. struct prot_inuse {
  1791. int val[PROTO_INUSE_NR];
  1792. };
  1793. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  1794. #ifdef CONFIG_NET_NS
  1795. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1796. {
  1797. int cpu = smp_processor_id();
  1798. per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
  1799. }
  1800. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1801. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1802. {
  1803. int cpu, idx = prot->inuse_idx;
  1804. int res = 0;
  1805. for_each_possible_cpu(cpu)
  1806. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  1807. return res >= 0 ? res : 0;
  1808. }
  1809. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  1810. static int sock_inuse_init_net(struct net *net)
  1811. {
  1812. net->core.inuse = alloc_percpu(struct prot_inuse);
  1813. return net->core.inuse ? 0 : -ENOMEM;
  1814. }
  1815. static void sock_inuse_exit_net(struct net *net)
  1816. {
  1817. free_percpu(net->core.inuse);
  1818. }
  1819. static struct pernet_operations net_inuse_ops = {
  1820. .init = sock_inuse_init_net,
  1821. .exit = sock_inuse_exit_net,
  1822. };
  1823. static __init int net_inuse_init(void)
  1824. {
  1825. if (register_pernet_subsys(&net_inuse_ops))
  1826. panic("Cannot initialize net inuse counters");
  1827. return 0;
  1828. }
  1829. core_initcall(net_inuse_init);
  1830. #else
  1831. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  1832. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1833. {
  1834. __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
  1835. }
  1836. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1837. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1838. {
  1839. int cpu, idx = prot->inuse_idx;
  1840. int res = 0;
  1841. for_each_possible_cpu(cpu)
  1842. res += per_cpu(prot_inuse, cpu).val[idx];
  1843. return res >= 0 ? res : 0;
  1844. }
  1845. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  1846. #endif
  1847. static void assign_proto_idx(struct proto *prot)
  1848. {
  1849. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  1850. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  1851. printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
  1852. return;
  1853. }
  1854. set_bit(prot->inuse_idx, proto_inuse_idx);
  1855. }
  1856. static void release_proto_idx(struct proto *prot)
  1857. {
  1858. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  1859. clear_bit(prot->inuse_idx, proto_inuse_idx);
  1860. }
  1861. #else
  1862. static inline void assign_proto_idx(struct proto *prot)
  1863. {
  1864. }
  1865. static inline void release_proto_idx(struct proto *prot)
  1866. {
  1867. }
  1868. #endif
  1869. int proto_register(struct proto *prot, int alloc_slab)
  1870. {
  1871. if (alloc_slab) {
  1872. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  1873. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  1874. NULL);
  1875. if (prot->slab == NULL) {
  1876. printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
  1877. prot->name);
  1878. goto out;
  1879. }
  1880. if (prot->rsk_prot != NULL) {
  1881. static const char mask[] = "request_sock_%s";
  1882. prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
  1883. if (prot->rsk_prot->slab_name == NULL)
  1884. goto out_free_sock_slab;
  1885. sprintf(prot->rsk_prot->slab_name, mask, prot->name);
  1886. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  1887. prot->rsk_prot->obj_size, 0,
  1888. SLAB_HWCACHE_ALIGN, NULL);
  1889. if (prot->rsk_prot->slab == NULL) {
  1890. printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
  1891. prot->name);
  1892. goto out_free_request_sock_slab_name;
  1893. }
  1894. }
  1895. if (prot->twsk_prot != NULL) {
  1896. static const char mask[] = "tw_sock_%s";
  1897. prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
  1898. if (prot->twsk_prot->twsk_slab_name == NULL)
  1899. goto out_free_request_sock_slab;
  1900. sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
  1901. prot->twsk_prot->twsk_slab =
  1902. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  1903. prot->twsk_prot->twsk_obj_size,
  1904. 0,
  1905. SLAB_HWCACHE_ALIGN |
  1906. prot->slab_flags,
  1907. NULL);
  1908. if (prot->twsk_prot->twsk_slab == NULL)
  1909. goto out_free_timewait_sock_slab_name;
  1910. }
  1911. }
  1912. write_lock(&proto_list_lock);
  1913. list_add(&prot->node, &proto_list);
  1914. assign_proto_idx(prot);
  1915. write_unlock(&proto_list_lock);
  1916. return 0;
  1917. out_free_timewait_sock_slab_name:
  1918. kfree(prot->twsk_prot->twsk_slab_name);
  1919. out_free_request_sock_slab:
  1920. if (prot->rsk_prot && prot->rsk_prot->slab) {
  1921. kmem_cache_destroy(prot->rsk_prot->slab);
  1922. prot->rsk_prot->slab = NULL;
  1923. }
  1924. out_free_request_sock_slab_name:
  1925. kfree(prot->rsk_prot->slab_name);
  1926. out_free_sock_slab:
  1927. kmem_cache_destroy(prot->slab);
  1928. prot->slab = NULL;
  1929. out:
  1930. return -ENOBUFS;
  1931. }
  1932. EXPORT_SYMBOL(proto_register);
  1933. void proto_unregister(struct proto *prot)
  1934. {
  1935. write_lock(&proto_list_lock);
  1936. release_proto_idx(prot);
  1937. list_del(&prot->node);
  1938. write_unlock(&proto_list_lock);
  1939. if (prot->slab != NULL) {
  1940. kmem_cache_destroy(prot->slab);
  1941. prot->slab = NULL;
  1942. }
  1943. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  1944. kmem_cache_destroy(prot->rsk_prot->slab);
  1945. kfree(prot->rsk_prot->slab_name);
  1946. prot->rsk_prot->slab = NULL;
  1947. }
  1948. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  1949. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  1950. kfree(prot->twsk_prot->twsk_slab_name);
  1951. prot->twsk_prot->twsk_slab = NULL;
  1952. }
  1953. }
  1954. EXPORT_SYMBOL(proto_unregister);
  1955. #ifdef CONFIG_PROC_FS
  1956. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  1957. __acquires(proto_list_lock)
  1958. {
  1959. read_lock(&proto_list_lock);
  1960. return seq_list_start_head(&proto_list, *pos);
  1961. }
  1962. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1963. {
  1964. return seq_list_next(v, &proto_list, pos);
  1965. }
  1966. static void proto_seq_stop(struct seq_file *seq, void *v)
  1967. __releases(proto_list_lock)
  1968. {
  1969. read_unlock(&proto_list_lock);
  1970. }
  1971. static char proto_method_implemented(const void *method)
  1972. {
  1973. return method == NULL ? 'n' : 'y';
  1974. }
  1975. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  1976. {
  1977. seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
  1978. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  1979. proto->name,
  1980. proto->obj_size,
  1981. sock_prot_inuse_get(seq_file_net(seq), proto),
  1982. proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
  1983. proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
  1984. proto->max_header,
  1985. proto->slab == NULL ? "no" : "yes",
  1986. module_name(proto->owner),
  1987. proto_method_implemented(proto->close),
  1988. proto_method_implemented(proto->connect),
  1989. proto_method_implemented(proto->disconnect),
  1990. proto_method_implemented(proto->accept),
  1991. proto_method_implemented(proto->ioctl),
  1992. proto_method_implemented(proto->init),
  1993. proto_method_implemented(proto->destroy),
  1994. proto_method_implemented(proto->shutdown),
  1995. proto_method_implemented(proto->setsockopt),
  1996. proto_method_implemented(proto->getsockopt),
  1997. proto_method_implemented(proto->sendmsg),
  1998. proto_method_implemented(proto->recvmsg),
  1999. proto_method_implemented(proto->sendpage),
  2000. proto_method_implemented(proto->bind),
  2001. proto_method_implemented(proto->backlog_rcv),
  2002. proto_method_implemented(proto->hash),
  2003. proto_method_implemented(proto->unhash),
  2004. proto_method_implemented(proto->get_port),
  2005. proto_method_implemented(proto->enter_memory_pressure));
  2006. }
  2007. static int proto_seq_show(struct seq_file *seq, void *v)
  2008. {
  2009. if (v == &proto_list)
  2010. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2011. "protocol",
  2012. "size",
  2013. "sockets",
  2014. "memory",
  2015. "press",
  2016. "maxhdr",
  2017. "slab",
  2018. "module",
  2019. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2020. else
  2021. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2022. return 0;
  2023. }
  2024. static const struct seq_operations proto_seq_ops = {
  2025. .start = proto_seq_start,
  2026. .next = proto_seq_next,
  2027. .stop = proto_seq_stop,
  2028. .show = proto_seq_show,
  2029. };
  2030. static int proto_seq_open(struct inode *inode, struct file *file)
  2031. {
  2032. return seq_open_net(inode, file, &proto_seq_ops,
  2033. sizeof(struct seq_net_private));
  2034. }
  2035. static const struct file_operations proto_seq_fops = {
  2036. .owner = THIS_MODULE,
  2037. .open = proto_seq_open,
  2038. .read = seq_read,
  2039. .llseek = seq_lseek,
  2040. .release = seq_release_net,
  2041. };
  2042. static __net_init int proto_init_net(struct net *net)
  2043. {
  2044. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2045. return -ENOMEM;
  2046. return 0;
  2047. }
  2048. static __net_exit void proto_exit_net(struct net *net)
  2049. {
  2050. proc_net_remove(net, "protocols");
  2051. }
  2052. static __net_initdata struct pernet_operations proto_net_ops = {
  2053. .init = proto_init_net,
  2054. .exit = proto_exit_net,
  2055. };
  2056. static int __init proto_init(void)
  2057. {
  2058. return register_pernet_subsys(&proto_net_ops);
  2059. }
  2060. subsys_initcall(proto_init);
  2061. #endif /* PROC_FS */