vmalloc.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/pfn.h>
  26. #include <linux/kmemleak.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/tlbflush.h>
  30. /*** Page table manipulation functions ***/
  31. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  32. {
  33. pte_t *pte;
  34. pte = pte_offset_kernel(pmd, addr);
  35. do {
  36. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  37. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  38. } while (pte++, addr += PAGE_SIZE, addr != end);
  39. }
  40. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  41. {
  42. pmd_t *pmd;
  43. unsigned long next;
  44. pmd = pmd_offset(pud, addr);
  45. do {
  46. next = pmd_addr_end(addr, end);
  47. if (pmd_none_or_clear_bad(pmd))
  48. continue;
  49. vunmap_pte_range(pmd, addr, next);
  50. } while (pmd++, addr = next, addr != end);
  51. }
  52. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  53. {
  54. pud_t *pud;
  55. unsigned long next;
  56. pud = pud_offset(pgd, addr);
  57. do {
  58. next = pud_addr_end(addr, end);
  59. if (pud_none_or_clear_bad(pud))
  60. continue;
  61. vunmap_pmd_range(pud, addr, next);
  62. } while (pud++, addr = next, addr != end);
  63. }
  64. static void vunmap_page_range(unsigned long addr, unsigned long end)
  65. {
  66. pgd_t *pgd;
  67. unsigned long next;
  68. BUG_ON(addr >= end);
  69. pgd = pgd_offset_k(addr);
  70. do {
  71. next = pgd_addr_end(addr, end);
  72. if (pgd_none_or_clear_bad(pgd))
  73. continue;
  74. vunmap_pud_range(pgd, addr, next);
  75. } while (pgd++, addr = next, addr != end);
  76. }
  77. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  78. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  79. {
  80. pte_t *pte;
  81. /*
  82. * nr is a running index into the array which helps higher level
  83. * callers keep track of where we're up to.
  84. */
  85. pte = pte_alloc_kernel(pmd, addr);
  86. if (!pte)
  87. return -ENOMEM;
  88. do {
  89. struct page *page = pages[*nr];
  90. if (WARN_ON(!pte_none(*pte)))
  91. return -EBUSY;
  92. if (WARN_ON(!page))
  93. return -ENOMEM;
  94. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  95. (*nr)++;
  96. } while (pte++, addr += PAGE_SIZE, addr != end);
  97. return 0;
  98. }
  99. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  100. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  101. {
  102. pmd_t *pmd;
  103. unsigned long next;
  104. pmd = pmd_alloc(&init_mm, pud, addr);
  105. if (!pmd)
  106. return -ENOMEM;
  107. do {
  108. next = pmd_addr_end(addr, end);
  109. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  110. return -ENOMEM;
  111. } while (pmd++, addr = next, addr != end);
  112. return 0;
  113. }
  114. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  115. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  116. {
  117. pud_t *pud;
  118. unsigned long next;
  119. pud = pud_alloc(&init_mm, pgd, addr);
  120. if (!pud)
  121. return -ENOMEM;
  122. do {
  123. next = pud_addr_end(addr, end);
  124. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  125. return -ENOMEM;
  126. } while (pud++, addr = next, addr != end);
  127. return 0;
  128. }
  129. /*
  130. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  131. * will have pfns corresponding to the "pages" array.
  132. *
  133. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  134. */
  135. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  136. pgprot_t prot, struct page **pages)
  137. {
  138. pgd_t *pgd;
  139. unsigned long next;
  140. unsigned long addr = start;
  141. int err = 0;
  142. int nr = 0;
  143. BUG_ON(addr >= end);
  144. pgd = pgd_offset_k(addr);
  145. do {
  146. next = pgd_addr_end(addr, end);
  147. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  148. if (err)
  149. break;
  150. } while (pgd++, addr = next, addr != end);
  151. if (unlikely(err))
  152. return err;
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. static inline int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static struct rb_root vmap_area_root = RB_ROOT;
  231. static LIST_HEAD(vmap_area_list);
  232. static struct vmap_area *__find_vmap_area(unsigned long addr)
  233. {
  234. struct rb_node *n = vmap_area_root.rb_node;
  235. while (n) {
  236. struct vmap_area *va;
  237. va = rb_entry(n, struct vmap_area, rb_node);
  238. if (addr < va->va_start)
  239. n = n->rb_left;
  240. else if (addr > va->va_start)
  241. n = n->rb_right;
  242. else
  243. return va;
  244. }
  245. return NULL;
  246. }
  247. static void __insert_vmap_area(struct vmap_area *va)
  248. {
  249. struct rb_node **p = &vmap_area_root.rb_node;
  250. struct rb_node *parent = NULL;
  251. struct rb_node *tmp;
  252. while (*p) {
  253. struct vmap_area *tmp;
  254. parent = *p;
  255. tmp = rb_entry(parent, struct vmap_area, rb_node);
  256. if (va->va_start < tmp->va_end)
  257. p = &(*p)->rb_left;
  258. else if (va->va_end > tmp->va_start)
  259. p = &(*p)->rb_right;
  260. else
  261. BUG();
  262. }
  263. rb_link_node(&va->rb_node, parent, p);
  264. rb_insert_color(&va->rb_node, &vmap_area_root);
  265. /* address-sort this list so it is usable like the vmlist */
  266. tmp = rb_prev(&va->rb_node);
  267. if (tmp) {
  268. struct vmap_area *prev;
  269. prev = rb_entry(tmp, struct vmap_area, rb_node);
  270. list_add_rcu(&va->list, &prev->list);
  271. } else
  272. list_add_rcu(&va->list, &vmap_area_list);
  273. }
  274. static void purge_vmap_area_lazy(void);
  275. /*
  276. * Allocate a region of KVA of the specified size and alignment, within the
  277. * vstart and vend.
  278. */
  279. static struct vmap_area *alloc_vmap_area(unsigned long size,
  280. unsigned long align,
  281. unsigned long vstart, unsigned long vend,
  282. int node, gfp_t gfp_mask)
  283. {
  284. struct vmap_area *va;
  285. struct rb_node *n;
  286. unsigned long addr;
  287. int purged = 0;
  288. BUG_ON(!size);
  289. BUG_ON(size & ~PAGE_MASK);
  290. va = kmalloc_node(sizeof(struct vmap_area),
  291. gfp_mask & GFP_RECLAIM_MASK, node);
  292. if (unlikely(!va))
  293. return ERR_PTR(-ENOMEM);
  294. retry:
  295. addr = ALIGN(vstart, align);
  296. spin_lock(&vmap_area_lock);
  297. if (addr + size - 1 < addr)
  298. goto overflow;
  299. /* XXX: could have a last_hole cache */
  300. n = vmap_area_root.rb_node;
  301. if (n) {
  302. struct vmap_area *first = NULL;
  303. do {
  304. struct vmap_area *tmp;
  305. tmp = rb_entry(n, struct vmap_area, rb_node);
  306. if (tmp->va_end >= addr) {
  307. if (!first && tmp->va_start < addr + size)
  308. first = tmp;
  309. n = n->rb_left;
  310. } else {
  311. first = tmp;
  312. n = n->rb_right;
  313. }
  314. } while (n);
  315. if (!first)
  316. goto found;
  317. if (first->va_end < addr) {
  318. n = rb_next(&first->rb_node);
  319. if (n)
  320. first = rb_entry(n, struct vmap_area, rb_node);
  321. else
  322. goto found;
  323. }
  324. while (addr + size > first->va_start && addr + size <= vend) {
  325. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  326. if (addr + size - 1 < addr)
  327. goto overflow;
  328. n = rb_next(&first->rb_node);
  329. if (n)
  330. first = rb_entry(n, struct vmap_area, rb_node);
  331. else
  332. goto found;
  333. }
  334. }
  335. found:
  336. if (addr + size > vend) {
  337. overflow:
  338. spin_unlock(&vmap_area_lock);
  339. if (!purged) {
  340. purge_vmap_area_lazy();
  341. purged = 1;
  342. goto retry;
  343. }
  344. if (printk_ratelimit())
  345. printk(KERN_WARNING
  346. "vmap allocation for size %lu failed: "
  347. "use vmalloc=<size> to increase size.\n", size);
  348. kfree(va);
  349. return ERR_PTR(-EBUSY);
  350. }
  351. BUG_ON(addr & (align-1));
  352. va->va_start = addr;
  353. va->va_end = addr + size;
  354. va->flags = 0;
  355. __insert_vmap_area(va);
  356. spin_unlock(&vmap_area_lock);
  357. return va;
  358. }
  359. static void rcu_free_va(struct rcu_head *head)
  360. {
  361. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  362. kfree(va);
  363. }
  364. static void __free_vmap_area(struct vmap_area *va)
  365. {
  366. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  367. rb_erase(&va->rb_node, &vmap_area_root);
  368. RB_CLEAR_NODE(&va->rb_node);
  369. list_del_rcu(&va->list);
  370. call_rcu(&va->rcu_head, rcu_free_va);
  371. }
  372. /*
  373. * Free a region of KVA allocated by alloc_vmap_area
  374. */
  375. static void free_vmap_area(struct vmap_area *va)
  376. {
  377. spin_lock(&vmap_area_lock);
  378. __free_vmap_area(va);
  379. spin_unlock(&vmap_area_lock);
  380. }
  381. /*
  382. * Clear the pagetable entries of a given vmap_area
  383. */
  384. static void unmap_vmap_area(struct vmap_area *va)
  385. {
  386. vunmap_page_range(va->va_start, va->va_end);
  387. }
  388. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  389. {
  390. /*
  391. * Unmap page tables and force a TLB flush immediately if
  392. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  393. * bugs similarly to those in linear kernel virtual address
  394. * space after a page has been freed.
  395. *
  396. * All the lazy freeing logic is still retained, in order to
  397. * minimise intrusiveness of this debugging feature.
  398. *
  399. * This is going to be *slow* (linear kernel virtual address
  400. * debugging doesn't do a broadcast TLB flush so it is a lot
  401. * faster).
  402. */
  403. #ifdef CONFIG_DEBUG_PAGEALLOC
  404. vunmap_page_range(start, end);
  405. flush_tlb_kernel_range(start, end);
  406. #endif
  407. }
  408. /*
  409. * lazy_max_pages is the maximum amount of virtual address space we gather up
  410. * before attempting to purge with a TLB flush.
  411. *
  412. * There is a tradeoff here: a larger number will cover more kernel page tables
  413. * and take slightly longer to purge, but it will linearly reduce the number of
  414. * global TLB flushes that must be performed. It would seem natural to scale
  415. * this number up linearly with the number of CPUs (because vmapping activity
  416. * could also scale linearly with the number of CPUs), however it is likely
  417. * that in practice, workloads might be constrained in other ways that mean
  418. * vmap activity will not scale linearly with CPUs. Also, I want to be
  419. * conservative and not introduce a big latency on huge systems, so go with
  420. * a less aggressive log scale. It will still be an improvement over the old
  421. * code, and it will be simple to change the scale factor if we find that it
  422. * becomes a problem on bigger systems.
  423. */
  424. static unsigned long lazy_max_pages(void)
  425. {
  426. unsigned int log;
  427. log = fls(num_online_cpus());
  428. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  429. }
  430. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  431. /*
  432. * Purges all lazily-freed vmap areas.
  433. *
  434. * If sync is 0 then don't purge if there is already a purge in progress.
  435. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  436. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  437. * their own TLB flushing).
  438. * Returns with *start = min(*start, lowest purged address)
  439. * *end = max(*end, highest purged address)
  440. */
  441. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  442. int sync, int force_flush)
  443. {
  444. static DEFINE_SPINLOCK(purge_lock);
  445. LIST_HEAD(valist);
  446. struct vmap_area *va;
  447. struct vmap_area *n_va;
  448. int nr = 0;
  449. /*
  450. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  451. * should not expect such behaviour. This just simplifies locking for
  452. * the case that isn't actually used at the moment anyway.
  453. */
  454. if (!sync && !force_flush) {
  455. if (!spin_trylock(&purge_lock))
  456. return;
  457. } else
  458. spin_lock(&purge_lock);
  459. rcu_read_lock();
  460. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  461. if (va->flags & VM_LAZY_FREE) {
  462. if (va->va_start < *start)
  463. *start = va->va_start;
  464. if (va->va_end > *end)
  465. *end = va->va_end;
  466. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  467. unmap_vmap_area(va);
  468. list_add_tail(&va->purge_list, &valist);
  469. va->flags |= VM_LAZY_FREEING;
  470. va->flags &= ~VM_LAZY_FREE;
  471. }
  472. }
  473. rcu_read_unlock();
  474. if (nr) {
  475. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  476. atomic_sub(nr, &vmap_lazy_nr);
  477. }
  478. if (nr || force_flush)
  479. flush_tlb_kernel_range(*start, *end);
  480. if (nr) {
  481. spin_lock(&vmap_area_lock);
  482. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  483. __free_vmap_area(va);
  484. spin_unlock(&vmap_area_lock);
  485. }
  486. spin_unlock(&purge_lock);
  487. }
  488. /*
  489. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  490. * is already purging.
  491. */
  492. static void try_purge_vmap_area_lazy(void)
  493. {
  494. unsigned long start = ULONG_MAX, end = 0;
  495. __purge_vmap_area_lazy(&start, &end, 0, 0);
  496. }
  497. /*
  498. * Kick off a purge of the outstanding lazy areas.
  499. */
  500. static void purge_vmap_area_lazy(void)
  501. {
  502. unsigned long start = ULONG_MAX, end = 0;
  503. __purge_vmap_area_lazy(&start, &end, 1, 0);
  504. }
  505. /*
  506. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  507. * called for the correct range previously.
  508. */
  509. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  510. {
  511. va->flags |= VM_LAZY_FREE;
  512. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  513. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  514. try_purge_vmap_area_lazy();
  515. }
  516. /*
  517. * Free and unmap a vmap area
  518. */
  519. static void free_unmap_vmap_area(struct vmap_area *va)
  520. {
  521. flush_cache_vunmap(va->va_start, va->va_end);
  522. free_unmap_vmap_area_noflush(va);
  523. }
  524. static struct vmap_area *find_vmap_area(unsigned long addr)
  525. {
  526. struct vmap_area *va;
  527. spin_lock(&vmap_area_lock);
  528. va = __find_vmap_area(addr);
  529. spin_unlock(&vmap_area_lock);
  530. return va;
  531. }
  532. static void free_unmap_vmap_area_addr(unsigned long addr)
  533. {
  534. struct vmap_area *va;
  535. va = find_vmap_area(addr);
  536. BUG_ON(!va);
  537. free_unmap_vmap_area(va);
  538. }
  539. /*** Per cpu kva allocator ***/
  540. /*
  541. * vmap space is limited especially on 32 bit architectures. Ensure there is
  542. * room for at least 16 percpu vmap blocks per CPU.
  543. */
  544. /*
  545. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  546. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  547. * instead (we just need a rough idea)
  548. */
  549. #if BITS_PER_LONG == 32
  550. #define VMALLOC_SPACE (128UL*1024*1024)
  551. #else
  552. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  553. #endif
  554. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  555. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  556. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  557. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  558. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  559. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  560. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  561. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  562. VMALLOC_PAGES / NR_CPUS / 16))
  563. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  564. static bool vmap_initialized __read_mostly = false;
  565. struct vmap_block_queue {
  566. spinlock_t lock;
  567. struct list_head free;
  568. struct list_head dirty;
  569. unsigned int nr_dirty;
  570. };
  571. struct vmap_block {
  572. spinlock_t lock;
  573. struct vmap_area *va;
  574. struct vmap_block_queue *vbq;
  575. unsigned long free, dirty;
  576. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  577. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  578. union {
  579. struct list_head free_list;
  580. struct rcu_head rcu_head;
  581. };
  582. };
  583. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  584. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  585. /*
  586. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  587. * in the free path. Could get rid of this if we change the API to return a
  588. * "cookie" from alloc, to be passed to free. But no big deal yet.
  589. */
  590. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  591. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  592. /*
  593. * We should probably have a fallback mechanism to allocate virtual memory
  594. * out of partially filled vmap blocks. However vmap block sizing should be
  595. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  596. * big problem.
  597. */
  598. static unsigned long addr_to_vb_idx(unsigned long addr)
  599. {
  600. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  601. addr /= VMAP_BLOCK_SIZE;
  602. return addr;
  603. }
  604. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  605. {
  606. struct vmap_block_queue *vbq;
  607. struct vmap_block *vb;
  608. struct vmap_area *va;
  609. unsigned long vb_idx;
  610. int node, err;
  611. node = numa_node_id();
  612. vb = kmalloc_node(sizeof(struct vmap_block),
  613. gfp_mask & GFP_RECLAIM_MASK, node);
  614. if (unlikely(!vb))
  615. return ERR_PTR(-ENOMEM);
  616. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  617. VMALLOC_START, VMALLOC_END,
  618. node, gfp_mask);
  619. if (unlikely(IS_ERR(va))) {
  620. kfree(vb);
  621. return ERR_PTR(PTR_ERR(va));
  622. }
  623. err = radix_tree_preload(gfp_mask);
  624. if (unlikely(err)) {
  625. kfree(vb);
  626. free_vmap_area(va);
  627. return ERR_PTR(err);
  628. }
  629. spin_lock_init(&vb->lock);
  630. vb->va = va;
  631. vb->free = VMAP_BBMAP_BITS;
  632. vb->dirty = 0;
  633. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  634. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  635. INIT_LIST_HEAD(&vb->free_list);
  636. vb_idx = addr_to_vb_idx(va->va_start);
  637. spin_lock(&vmap_block_tree_lock);
  638. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  639. spin_unlock(&vmap_block_tree_lock);
  640. BUG_ON(err);
  641. radix_tree_preload_end();
  642. vbq = &get_cpu_var(vmap_block_queue);
  643. vb->vbq = vbq;
  644. spin_lock(&vbq->lock);
  645. list_add(&vb->free_list, &vbq->free);
  646. spin_unlock(&vbq->lock);
  647. put_cpu_var(vmap_cpu_blocks);
  648. return vb;
  649. }
  650. static void rcu_free_vb(struct rcu_head *head)
  651. {
  652. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  653. kfree(vb);
  654. }
  655. static void free_vmap_block(struct vmap_block *vb)
  656. {
  657. struct vmap_block *tmp;
  658. unsigned long vb_idx;
  659. BUG_ON(!list_empty(&vb->free_list));
  660. vb_idx = addr_to_vb_idx(vb->va->va_start);
  661. spin_lock(&vmap_block_tree_lock);
  662. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  663. spin_unlock(&vmap_block_tree_lock);
  664. BUG_ON(tmp != vb);
  665. free_unmap_vmap_area_noflush(vb->va);
  666. call_rcu(&vb->rcu_head, rcu_free_vb);
  667. }
  668. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  669. {
  670. struct vmap_block_queue *vbq;
  671. struct vmap_block *vb;
  672. unsigned long addr = 0;
  673. unsigned int order;
  674. BUG_ON(size & ~PAGE_MASK);
  675. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  676. order = get_order(size);
  677. again:
  678. rcu_read_lock();
  679. vbq = &get_cpu_var(vmap_block_queue);
  680. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  681. int i;
  682. spin_lock(&vb->lock);
  683. i = bitmap_find_free_region(vb->alloc_map,
  684. VMAP_BBMAP_BITS, order);
  685. if (i >= 0) {
  686. addr = vb->va->va_start + (i << PAGE_SHIFT);
  687. BUG_ON(addr_to_vb_idx(addr) !=
  688. addr_to_vb_idx(vb->va->va_start));
  689. vb->free -= 1UL << order;
  690. if (vb->free == 0) {
  691. spin_lock(&vbq->lock);
  692. list_del_init(&vb->free_list);
  693. spin_unlock(&vbq->lock);
  694. }
  695. spin_unlock(&vb->lock);
  696. break;
  697. }
  698. spin_unlock(&vb->lock);
  699. }
  700. put_cpu_var(vmap_cpu_blocks);
  701. rcu_read_unlock();
  702. if (!addr) {
  703. vb = new_vmap_block(gfp_mask);
  704. if (IS_ERR(vb))
  705. return vb;
  706. goto again;
  707. }
  708. return (void *)addr;
  709. }
  710. static void vb_free(const void *addr, unsigned long size)
  711. {
  712. unsigned long offset;
  713. unsigned long vb_idx;
  714. unsigned int order;
  715. struct vmap_block *vb;
  716. BUG_ON(size & ~PAGE_MASK);
  717. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  718. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  719. order = get_order(size);
  720. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  721. vb_idx = addr_to_vb_idx((unsigned long)addr);
  722. rcu_read_lock();
  723. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  724. rcu_read_unlock();
  725. BUG_ON(!vb);
  726. spin_lock(&vb->lock);
  727. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  728. vb->dirty += 1UL << order;
  729. if (vb->dirty == VMAP_BBMAP_BITS) {
  730. BUG_ON(vb->free || !list_empty(&vb->free_list));
  731. spin_unlock(&vb->lock);
  732. free_vmap_block(vb);
  733. } else
  734. spin_unlock(&vb->lock);
  735. }
  736. /**
  737. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  738. *
  739. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  740. * to amortize TLB flushing overheads. What this means is that any page you
  741. * have now, may, in a former life, have been mapped into kernel virtual
  742. * address by the vmap layer and so there might be some CPUs with TLB entries
  743. * still referencing that page (additional to the regular 1:1 kernel mapping).
  744. *
  745. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  746. * be sure that none of the pages we have control over will have any aliases
  747. * from the vmap layer.
  748. */
  749. void vm_unmap_aliases(void)
  750. {
  751. unsigned long start = ULONG_MAX, end = 0;
  752. int cpu;
  753. int flush = 0;
  754. if (unlikely(!vmap_initialized))
  755. return;
  756. for_each_possible_cpu(cpu) {
  757. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  758. struct vmap_block *vb;
  759. rcu_read_lock();
  760. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  761. int i;
  762. spin_lock(&vb->lock);
  763. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  764. while (i < VMAP_BBMAP_BITS) {
  765. unsigned long s, e;
  766. int j;
  767. j = find_next_zero_bit(vb->dirty_map,
  768. VMAP_BBMAP_BITS, i);
  769. s = vb->va->va_start + (i << PAGE_SHIFT);
  770. e = vb->va->va_start + (j << PAGE_SHIFT);
  771. vunmap_page_range(s, e);
  772. flush = 1;
  773. if (s < start)
  774. start = s;
  775. if (e > end)
  776. end = e;
  777. i = j;
  778. i = find_next_bit(vb->dirty_map,
  779. VMAP_BBMAP_BITS, i);
  780. }
  781. spin_unlock(&vb->lock);
  782. }
  783. rcu_read_unlock();
  784. }
  785. __purge_vmap_area_lazy(&start, &end, 1, flush);
  786. }
  787. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  788. /**
  789. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  790. * @mem: the pointer returned by vm_map_ram
  791. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  792. */
  793. void vm_unmap_ram(const void *mem, unsigned int count)
  794. {
  795. unsigned long size = count << PAGE_SHIFT;
  796. unsigned long addr = (unsigned long)mem;
  797. BUG_ON(!addr);
  798. BUG_ON(addr < VMALLOC_START);
  799. BUG_ON(addr > VMALLOC_END);
  800. BUG_ON(addr & (PAGE_SIZE-1));
  801. debug_check_no_locks_freed(mem, size);
  802. vmap_debug_free_range(addr, addr+size);
  803. if (likely(count <= VMAP_MAX_ALLOC))
  804. vb_free(mem, size);
  805. else
  806. free_unmap_vmap_area_addr(addr);
  807. }
  808. EXPORT_SYMBOL(vm_unmap_ram);
  809. /**
  810. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  811. * @pages: an array of pointers to the pages to be mapped
  812. * @count: number of pages
  813. * @node: prefer to allocate data structures on this node
  814. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  815. *
  816. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  817. */
  818. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  819. {
  820. unsigned long size = count << PAGE_SHIFT;
  821. unsigned long addr;
  822. void *mem;
  823. if (likely(count <= VMAP_MAX_ALLOC)) {
  824. mem = vb_alloc(size, GFP_KERNEL);
  825. if (IS_ERR(mem))
  826. return NULL;
  827. addr = (unsigned long)mem;
  828. } else {
  829. struct vmap_area *va;
  830. va = alloc_vmap_area(size, PAGE_SIZE,
  831. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  832. if (IS_ERR(va))
  833. return NULL;
  834. addr = va->va_start;
  835. mem = (void *)addr;
  836. }
  837. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  838. vm_unmap_ram(mem, count);
  839. return NULL;
  840. }
  841. return mem;
  842. }
  843. EXPORT_SYMBOL(vm_map_ram);
  844. /**
  845. * vm_area_register_early - register vmap area early during boot
  846. * @vm: vm_struct to register
  847. * @align: requested alignment
  848. *
  849. * This function is used to register kernel vm area before
  850. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  851. * proper values on entry and other fields should be zero. On return,
  852. * vm->addr contains the allocated address.
  853. *
  854. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  855. */
  856. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  857. {
  858. static size_t vm_init_off __initdata;
  859. unsigned long addr;
  860. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  861. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  862. vm->addr = (void *)addr;
  863. vm->next = vmlist;
  864. vmlist = vm;
  865. }
  866. void __init vmalloc_init(void)
  867. {
  868. struct vmap_area *va;
  869. struct vm_struct *tmp;
  870. int i;
  871. for_each_possible_cpu(i) {
  872. struct vmap_block_queue *vbq;
  873. vbq = &per_cpu(vmap_block_queue, i);
  874. spin_lock_init(&vbq->lock);
  875. INIT_LIST_HEAD(&vbq->free);
  876. INIT_LIST_HEAD(&vbq->dirty);
  877. vbq->nr_dirty = 0;
  878. }
  879. /* Import existing vmlist entries. */
  880. for (tmp = vmlist; tmp; tmp = tmp->next) {
  881. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  882. va->flags = tmp->flags | VM_VM_AREA;
  883. va->va_start = (unsigned long)tmp->addr;
  884. va->va_end = va->va_start + tmp->size;
  885. __insert_vmap_area(va);
  886. }
  887. vmap_initialized = true;
  888. }
  889. /**
  890. * map_kernel_range_noflush - map kernel VM area with the specified pages
  891. * @addr: start of the VM area to map
  892. * @size: size of the VM area to map
  893. * @prot: page protection flags to use
  894. * @pages: pages to map
  895. *
  896. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  897. * specify should have been allocated using get_vm_area() and its
  898. * friends.
  899. *
  900. * NOTE:
  901. * This function does NOT do any cache flushing. The caller is
  902. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  903. * before calling this function.
  904. *
  905. * RETURNS:
  906. * The number of pages mapped on success, -errno on failure.
  907. */
  908. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  909. pgprot_t prot, struct page **pages)
  910. {
  911. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  912. }
  913. /**
  914. * unmap_kernel_range_noflush - unmap kernel VM area
  915. * @addr: start of the VM area to unmap
  916. * @size: size of the VM area to unmap
  917. *
  918. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  919. * specify should have been allocated using get_vm_area() and its
  920. * friends.
  921. *
  922. * NOTE:
  923. * This function does NOT do any cache flushing. The caller is
  924. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  925. * before calling this function and flush_tlb_kernel_range() after.
  926. */
  927. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  928. {
  929. vunmap_page_range(addr, addr + size);
  930. }
  931. /**
  932. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  933. * @addr: start of the VM area to unmap
  934. * @size: size of the VM area to unmap
  935. *
  936. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  937. * the unmapping and tlb after.
  938. */
  939. void unmap_kernel_range(unsigned long addr, unsigned long size)
  940. {
  941. unsigned long end = addr + size;
  942. flush_cache_vunmap(addr, end);
  943. vunmap_page_range(addr, end);
  944. flush_tlb_kernel_range(addr, end);
  945. }
  946. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  947. {
  948. unsigned long addr = (unsigned long)area->addr;
  949. unsigned long end = addr + area->size - PAGE_SIZE;
  950. int err;
  951. err = vmap_page_range(addr, end, prot, *pages);
  952. if (err > 0) {
  953. *pages += err;
  954. err = 0;
  955. }
  956. return err;
  957. }
  958. EXPORT_SYMBOL_GPL(map_vm_area);
  959. /*** Old vmalloc interfaces ***/
  960. DEFINE_RWLOCK(vmlist_lock);
  961. struct vm_struct *vmlist;
  962. static struct vm_struct *__get_vm_area_node(unsigned long size,
  963. unsigned long flags, unsigned long start, unsigned long end,
  964. int node, gfp_t gfp_mask, void *caller)
  965. {
  966. static struct vmap_area *va;
  967. struct vm_struct *area;
  968. struct vm_struct *tmp, **p;
  969. unsigned long align = 1;
  970. BUG_ON(in_interrupt());
  971. if (flags & VM_IOREMAP) {
  972. int bit = fls(size);
  973. if (bit > IOREMAP_MAX_ORDER)
  974. bit = IOREMAP_MAX_ORDER;
  975. else if (bit < PAGE_SHIFT)
  976. bit = PAGE_SHIFT;
  977. align = 1ul << bit;
  978. }
  979. size = PAGE_ALIGN(size);
  980. if (unlikely(!size))
  981. return NULL;
  982. area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  983. if (unlikely(!area))
  984. return NULL;
  985. /*
  986. * We always allocate a guard page.
  987. */
  988. size += PAGE_SIZE;
  989. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  990. if (IS_ERR(va)) {
  991. kfree(area);
  992. return NULL;
  993. }
  994. area->flags = flags;
  995. area->addr = (void *)va->va_start;
  996. area->size = size;
  997. area->pages = NULL;
  998. area->nr_pages = 0;
  999. area->phys_addr = 0;
  1000. area->caller = caller;
  1001. va->private = area;
  1002. va->flags |= VM_VM_AREA;
  1003. write_lock(&vmlist_lock);
  1004. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1005. if (tmp->addr >= area->addr)
  1006. break;
  1007. }
  1008. area->next = *p;
  1009. *p = area;
  1010. write_unlock(&vmlist_lock);
  1011. return area;
  1012. }
  1013. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1014. unsigned long start, unsigned long end)
  1015. {
  1016. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1017. __builtin_return_address(0));
  1018. }
  1019. EXPORT_SYMBOL_GPL(__get_vm_area);
  1020. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1021. unsigned long start, unsigned long end,
  1022. void *caller)
  1023. {
  1024. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1025. caller);
  1026. }
  1027. /**
  1028. * get_vm_area - reserve a contiguous kernel virtual area
  1029. * @size: size of the area
  1030. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1031. *
  1032. * Search an area of @size in the kernel virtual mapping area,
  1033. * and reserved it for out purposes. Returns the area descriptor
  1034. * on success or %NULL on failure.
  1035. */
  1036. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1037. {
  1038. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1039. -1, GFP_KERNEL, __builtin_return_address(0));
  1040. }
  1041. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1042. void *caller)
  1043. {
  1044. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1045. -1, GFP_KERNEL, caller);
  1046. }
  1047. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1048. int node, gfp_t gfp_mask)
  1049. {
  1050. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  1051. gfp_mask, __builtin_return_address(0));
  1052. }
  1053. static struct vm_struct *find_vm_area(const void *addr)
  1054. {
  1055. struct vmap_area *va;
  1056. va = find_vmap_area((unsigned long)addr);
  1057. if (va && va->flags & VM_VM_AREA)
  1058. return va->private;
  1059. return NULL;
  1060. }
  1061. /**
  1062. * remove_vm_area - find and remove a continuous kernel virtual area
  1063. * @addr: base address
  1064. *
  1065. * Search for the kernel VM area starting at @addr, and remove it.
  1066. * This function returns the found VM area, but using it is NOT safe
  1067. * on SMP machines, except for its size or flags.
  1068. */
  1069. struct vm_struct *remove_vm_area(const void *addr)
  1070. {
  1071. struct vmap_area *va;
  1072. va = find_vmap_area((unsigned long)addr);
  1073. if (va && va->flags & VM_VM_AREA) {
  1074. struct vm_struct *vm = va->private;
  1075. struct vm_struct *tmp, **p;
  1076. vmap_debug_free_range(va->va_start, va->va_end);
  1077. free_unmap_vmap_area(va);
  1078. vm->size -= PAGE_SIZE;
  1079. write_lock(&vmlist_lock);
  1080. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1081. ;
  1082. *p = tmp->next;
  1083. write_unlock(&vmlist_lock);
  1084. return vm;
  1085. }
  1086. return NULL;
  1087. }
  1088. static void __vunmap(const void *addr, int deallocate_pages)
  1089. {
  1090. struct vm_struct *area;
  1091. if (!addr)
  1092. return;
  1093. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1094. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1095. return;
  1096. }
  1097. area = remove_vm_area(addr);
  1098. if (unlikely(!area)) {
  1099. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1100. addr);
  1101. return;
  1102. }
  1103. debug_check_no_locks_freed(addr, area->size);
  1104. debug_check_no_obj_freed(addr, area->size);
  1105. if (deallocate_pages) {
  1106. int i;
  1107. for (i = 0; i < area->nr_pages; i++) {
  1108. struct page *page = area->pages[i];
  1109. BUG_ON(!page);
  1110. __free_page(page);
  1111. }
  1112. if (area->flags & VM_VPAGES)
  1113. vfree(area->pages);
  1114. else
  1115. kfree(area->pages);
  1116. }
  1117. kfree(area);
  1118. return;
  1119. }
  1120. /**
  1121. * vfree - release memory allocated by vmalloc()
  1122. * @addr: memory base address
  1123. *
  1124. * Free the virtually continuous memory area starting at @addr, as
  1125. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1126. * NULL, no operation is performed.
  1127. *
  1128. * Must not be called in interrupt context.
  1129. */
  1130. void vfree(const void *addr)
  1131. {
  1132. BUG_ON(in_interrupt());
  1133. kmemleak_free(addr);
  1134. __vunmap(addr, 1);
  1135. }
  1136. EXPORT_SYMBOL(vfree);
  1137. /**
  1138. * vunmap - release virtual mapping obtained by vmap()
  1139. * @addr: memory base address
  1140. *
  1141. * Free the virtually contiguous memory area starting at @addr,
  1142. * which was created from the page array passed to vmap().
  1143. *
  1144. * Must not be called in interrupt context.
  1145. */
  1146. void vunmap(const void *addr)
  1147. {
  1148. BUG_ON(in_interrupt());
  1149. might_sleep();
  1150. __vunmap(addr, 0);
  1151. }
  1152. EXPORT_SYMBOL(vunmap);
  1153. /**
  1154. * vmap - map an array of pages into virtually contiguous space
  1155. * @pages: array of page pointers
  1156. * @count: number of pages to map
  1157. * @flags: vm_area->flags
  1158. * @prot: page protection for the mapping
  1159. *
  1160. * Maps @count pages from @pages into contiguous kernel virtual
  1161. * space.
  1162. */
  1163. void *vmap(struct page **pages, unsigned int count,
  1164. unsigned long flags, pgprot_t prot)
  1165. {
  1166. struct vm_struct *area;
  1167. might_sleep();
  1168. if (count > num_physpages)
  1169. return NULL;
  1170. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1171. __builtin_return_address(0));
  1172. if (!area)
  1173. return NULL;
  1174. if (map_vm_area(area, prot, &pages)) {
  1175. vunmap(area->addr);
  1176. return NULL;
  1177. }
  1178. return area->addr;
  1179. }
  1180. EXPORT_SYMBOL(vmap);
  1181. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1182. int node, void *caller);
  1183. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1184. pgprot_t prot, int node, void *caller)
  1185. {
  1186. struct page **pages;
  1187. unsigned int nr_pages, array_size, i;
  1188. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1189. array_size = (nr_pages * sizeof(struct page *));
  1190. area->nr_pages = nr_pages;
  1191. /* Please note that the recursion is strictly bounded. */
  1192. if (array_size > PAGE_SIZE) {
  1193. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1194. PAGE_KERNEL, node, caller);
  1195. area->flags |= VM_VPAGES;
  1196. } else {
  1197. pages = kmalloc_node(array_size,
  1198. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1199. node);
  1200. }
  1201. area->pages = pages;
  1202. area->caller = caller;
  1203. if (!area->pages) {
  1204. remove_vm_area(area->addr);
  1205. kfree(area);
  1206. return NULL;
  1207. }
  1208. for (i = 0; i < area->nr_pages; i++) {
  1209. struct page *page;
  1210. if (node < 0)
  1211. page = alloc_page(gfp_mask);
  1212. else
  1213. page = alloc_pages_node(node, gfp_mask, 0);
  1214. if (unlikely(!page)) {
  1215. /* Successfully allocated i pages, free them in __vunmap() */
  1216. area->nr_pages = i;
  1217. goto fail;
  1218. }
  1219. area->pages[i] = page;
  1220. }
  1221. if (map_vm_area(area, prot, &pages))
  1222. goto fail;
  1223. return area->addr;
  1224. fail:
  1225. vfree(area->addr);
  1226. return NULL;
  1227. }
  1228. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1229. {
  1230. void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
  1231. __builtin_return_address(0));
  1232. /*
  1233. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1234. * structures allocated in the __get_vm_area_node() function contain
  1235. * references to the virtual address of the vmalloc'ed block.
  1236. */
  1237. kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
  1238. return addr;
  1239. }
  1240. /**
  1241. * __vmalloc_node - allocate virtually contiguous memory
  1242. * @size: allocation size
  1243. * @gfp_mask: flags for the page level allocator
  1244. * @prot: protection mask for the allocated pages
  1245. * @node: node to use for allocation or -1
  1246. * @caller: caller's return address
  1247. *
  1248. * Allocate enough pages to cover @size from the page level
  1249. * allocator with @gfp_mask flags. Map them into contiguous
  1250. * kernel virtual space, using a pagetable protection of @prot.
  1251. */
  1252. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1253. int node, void *caller)
  1254. {
  1255. struct vm_struct *area;
  1256. void *addr;
  1257. unsigned long real_size = size;
  1258. size = PAGE_ALIGN(size);
  1259. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  1260. return NULL;
  1261. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1262. node, gfp_mask, caller);
  1263. if (!area)
  1264. return NULL;
  1265. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1266. /*
  1267. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1268. * structures allocated in the __get_vm_area_node() function contain
  1269. * references to the virtual address of the vmalloc'ed block.
  1270. */
  1271. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1272. return addr;
  1273. }
  1274. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1275. {
  1276. return __vmalloc_node(size, gfp_mask, prot, -1,
  1277. __builtin_return_address(0));
  1278. }
  1279. EXPORT_SYMBOL(__vmalloc);
  1280. /**
  1281. * vmalloc - allocate virtually contiguous memory
  1282. * @size: allocation size
  1283. * Allocate enough pages to cover @size from the page level
  1284. * allocator and map them into contiguous kernel virtual space.
  1285. *
  1286. * For tight control over page level allocator and protection flags
  1287. * use __vmalloc() instead.
  1288. */
  1289. void *vmalloc(unsigned long size)
  1290. {
  1291. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1292. -1, __builtin_return_address(0));
  1293. }
  1294. EXPORT_SYMBOL(vmalloc);
  1295. /**
  1296. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1297. * @size: allocation size
  1298. *
  1299. * The resulting memory area is zeroed so it can be mapped to userspace
  1300. * without leaking data.
  1301. */
  1302. void *vmalloc_user(unsigned long size)
  1303. {
  1304. struct vm_struct *area;
  1305. void *ret;
  1306. ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1307. PAGE_KERNEL, -1, __builtin_return_address(0));
  1308. if (ret) {
  1309. area = find_vm_area(ret);
  1310. area->flags |= VM_USERMAP;
  1311. }
  1312. return ret;
  1313. }
  1314. EXPORT_SYMBOL(vmalloc_user);
  1315. /**
  1316. * vmalloc_node - allocate memory on a specific node
  1317. * @size: allocation size
  1318. * @node: numa node
  1319. *
  1320. * Allocate enough pages to cover @size from the page level
  1321. * allocator and map them into contiguous kernel virtual space.
  1322. *
  1323. * For tight control over page level allocator and protection flags
  1324. * use __vmalloc() instead.
  1325. */
  1326. void *vmalloc_node(unsigned long size, int node)
  1327. {
  1328. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1329. node, __builtin_return_address(0));
  1330. }
  1331. EXPORT_SYMBOL(vmalloc_node);
  1332. #ifndef PAGE_KERNEL_EXEC
  1333. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1334. #endif
  1335. /**
  1336. * vmalloc_exec - allocate virtually contiguous, executable memory
  1337. * @size: allocation size
  1338. *
  1339. * Kernel-internal function to allocate enough pages to cover @size
  1340. * the page level allocator and map them into contiguous and
  1341. * executable kernel virtual space.
  1342. *
  1343. * For tight control over page level allocator and protection flags
  1344. * use __vmalloc() instead.
  1345. */
  1346. void *vmalloc_exec(unsigned long size)
  1347. {
  1348. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1349. -1, __builtin_return_address(0));
  1350. }
  1351. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1352. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1353. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1354. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1355. #else
  1356. #define GFP_VMALLOC32 GFP_KERNEL
  1357. #endif
  1358. /**
  1359. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1360. * @size: allocation size
  1361. *
  1362. * Allocate enough 32bit PA addressable pages to cover @size from the
  1363. * page level allocator and map them into contiguous kernel virtual space.
  1364. */
  1365. void *vmalloc_32(unsigned long size)
  1366. {
  1367. return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
  1368. -1, __builtin_return_address(0));
  1369. }
  1370. EXPORT_SYMBOL(vmalloc_32);
  1371. /**
  1372. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1373. * @size: allocation size
  1374. *
  1375. * The resulting memory area is 32bit addressable and zeroed so it can be
  1376. * mapped to userspace without leaking data.
  1377. */
  1378. void *vmalloc_32_user(unsigned long size)
  1379. {
  1380. struct vm_struct *area;
  1381. void *ret;
  1382. ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1383. -1, __builtin_return_address(0));
  1384. if (ret) {
  1385. area = find_vm_area(ret);
  1386. area->flags |= VM_USERMAP;
  1387. }
  1388. return ret;
  1389. }
  1390. EXPORT_SYMBOL(vmalloc_32_user);
  1391. long vread(char *buf, char *addr, unsigned long count)
  1392. {
  1393. struct vm_struct *tmp;
  1394. char *vaddr, *buf_start = buf;
  1395. unsigned long n;
  1396. /* Don't allow overflow */
  1397. if ((unsigned long) addr + count < count)
  1398. count = -(unsigned long) addr;
  1399. read_lock(&vmlist_lock);
  1400. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1401. vaddr = (char *) tmp->addr;
  1402. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1403. continue;
  1404. while (addr < vaddr) {
  1405. if (count == 0)
  1406. goto finished;
  1407. *buf = '\0';
  1408. buf++;
  1409. addr++;
  1410. count--;
  1411. }
  1412. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1413. do {
  1414. if (count == 0)
  1415. goto finished;
  1416. *buf = *addr;
  1417. buf++;
  1418. addr++;
  1419. count--;
  1420. } while (--n > 0);
  1421. }
  1422. finished:
  1423. read_unlock(&vmlist_lock);
  1424. return buf - buf_start;
  1425. }
  1426. long vwrite(char *buf, char *addr, unsigned long count)
  1427. {
  1428. struct vm_struct *tmp;
  1429. char *vaddr, *buf_start = buf;
  1430. unsigned long n;
  1431. /* Don't allow overflow */
  1432. if ((unsigned long) addr + count < count)
  1433. count = -(unsigned long) addr;
  1434. read_lock(&vmlist_lock);
  1435. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1436. vaddr = (char *) tmp->addr;
  1437. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1438. continue;
  1439. while (addr < vaddr) {
  1440. if (count == 0)
  1441. goto finished;
  1442. buf++;
  1443. addr++;
  1444. count--;
  1445. }
  1446. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1447. do {
  1448. if (count == 0)
  1449. goto finished;
  1450. *addr = *buf;
  1451. buf++;
  1452. addr++;
  1453. count--;
  1454. } while (--n > 0);
  1455. }
  1456. finished:
  1457. read_unlock(&vmlist_lock);
  1458. return buf - buf_start;
  1459. }
  1460. /**
  1461. * remap_vmalloc_range - map vmalloc pages to userspace
  1462. * @vma: vma to cover (map full range of vma)
  1463. * @addr: vmalloc memory
  1464. * @pgoff: number of pages into addr before first page to map
  1465. *
  1466. * Returns: 0 for success, -Exxx on failure
  1467. *
  1468. * This function checks that addr is a valid vmalloc'ed area, and
  1469. * that it is big enough to cover the vma. Will return failure if
  1470. * that criteria isn't met.
  1471. *
  1472. * Similar to remap_pfn_range() (see mm/memory.c)
  1473. */
  1474. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1475. unsigned long pgoff)
  1476. {
  1477. struct vm_struct *area;
  1478. unsigned long uaddr = vma->vm_start;
  1479. unsigned long usize = vma->vm_end - vma->vm_start;
  1480. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1481. return -EINVAL;
  1482. area = find_vm_area(addr);
  1483. if (!area)
  1484. return -EINVAL;
  1485. if (!(area->flags & VM_USERMAP))
  1486. return -EINVAL;
  1487. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1488. return -EINVAL;
  1489. addr += pgoff << PAGE_SHIFT;
  1490. do {
  1491. struct page *page = vmalloc_to_page(addr);
  1492. int ret;
  1493. ret = vm_insert_page(vma, uaddr, page);
  1494. if (ret)
  1495. return ret;
  1496. uaddr += PAGE_SIZE;
  1497. addr += PAGE_SIZE;
  1498. usize -= PAGE_SIZE;
  1499. } while (usize > 0);
  1500. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1501. vma->vm_flags |= VM_RESERVED;
  1502. return 0;
  1503. }
  1504. EXPORT_SYMBOL(remap_vmalloc_range);
  1505. /*
  1506. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1507. * have one.
  1508. */
  1509. void __attribute__((weak)) vmalloc_sync_all(void)
  1510. {
  1511. }
  1512. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1513. {
  1514. /* apply_to_page_range() does all the hard work. */
  1515. return 0;
  1516. }
  1517. /**
  1518. * alloc_vm_area - allocate a range of kernel address space
  1519. * @size: size of the area
  1520. *
  1521. * Returns: NULL on failure, vm_struct on success
  1522. *
  1523. * This function reserves a range of kernel address space, and
  1524. * allocates pagetables to map that range. No actual mappings
  1525. * are created. If the kernel address space is not shared
  1526. * between processes, it syncs the pagetable across all
  1527. * processes.
  1528. */
  1529. struct vm_struct *alloc_vm_area(size_t size)
  1530. {
  1531. struct vm_struct *area;
  1532. area = get_vm_area_caller(size, VM_IOREMAP,
  1533. __builtin_return_address(0));
  1534. if (area == NULL)
  1535. return NULL;
  1536. /*
  1537. * This ensures that page tables are constructed for this region
  1538. * of kernel virtual address space and mapped into init_mm.
  1539. */
  1540. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1541. area->size, f, NULL)) {
  1542. free_vm_area(area);
  1543. return NULL;
  1544. }
  1545. /* Make sure the pagetables are constructed in process kernel
  1546. mappings */
  1547. vmalloc_sync_all();
  1548. return area;
  1549. }
  1550. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1551. void free_vm_area(struct vm_struct *area)
  1552. {
  1553. struct vm_struct *ret;
  1554. ret = remove_vm_area(area->addr);
  1555. BUG_ON(ret != area);
  1556. kfree(area);
  1557. }
  1558. EXPORT_SYMBOL_GPL(free_vm_area);
  1559. #ifdef CONFIG_PROC_FS
  1560. static void *s_start(struct seq_file *m, loff_t *pos)
  1561. {
  1562. loff_t n = *pos;
  1563. struct vm_struct *v;
  1564. read_lock(&vmlist_lock);
  1565. v = vmlist;
  1566. while (n > 0 && v) {
  1567. n--;
  1568. v = v->next;
  1569. }
  1570. if (!n)
  1571. return v;
  1572. return NULL;
  1573. }
  1574. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1575. {
  1576. struct vm_struct *v = p;
  1577. ++*pos;
  1578. return v->next;
  1579. }
  1580. static void s_stop(struct seq_file *m, void *p)
  1581. {
  1582. read_unlock(&vmlist_lock);
  1583. }
  1584. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1585. {
  1586. if (NUMA_BUILD) {
  1587. unsigned int nr, *counters = m->private;
  1588. if (!counters)
  1589. return;
  1590. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1591. for (nr = 0; nr < v->nr_pages; nr++)
  1592. counters[page_to_nid(v->pages[nr])]++;
  1593. for_each_node_state(nr, N_HIGH_MEMORY)
  1594. if (counters[nr])
  1595. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1596. }
  1597. }
  1598. static int s_show(struct seq_file *m, void *p)
  1599. {
  1600. struct vm_struct *v = p;
  1601. seq_printf(m, "0x%p-0x%p %7ld",
  1602. v->addr, v->addr + v->size, v->size);
  1603. if (v->caller) {
  1604. char buff[KSYM_SYMBOL_LEN];
  1605. seq_putc(m, ' ');
  1606. sprint_symbol(buff, (unsigned long)v->caller);
  1607. seq_puts(m, buff);
  1608. }
  1609. if (v->nr_pages)
  1610. seq_printf(m, " pages=%d", v->nr_pages);
  1611. if (v->phys_addr)
  1612. seq_printf(m, " phys=%lx", v->phys_addr);
  1613. if (v->flags & VM_IOREMAP)
  1614. seq_printf(m, " ioremap");
  1615. if (v->flags & VM_ALLOC)
  1616. seq_printf(m, " vmalloc");
  1617. if (v->flags & VM_MAP)
  1618. seq_printf(m, " vmap");
  1619. if (v->flags & VM_USERMAP)
  1620. seq_printf(m, " user");
  1621. if (v->flags & VM_VPAGES)
  1622. seq_printf(m, " vpages");
  1623. show_numa_info(m, v);
  1624. seq_putc(m, '\n');
  1625. return 0;
  1626. }
  1627. static const struct seq_operations vmalloc_op = {
  1628. .start = s_start,
  1629. .next = s_next,
  1630. .stop = s_stop,
  1631. .show = s_show,
  1632. };
  1633. static int vmalloc_open(struct inode *inode, struct file *file)
  1634. {
  1635. unsigned int *ptr = NULL;
  1636. int ret;
  1637. if (NUMA_BUILD)
  1638. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  1639. ret = seq_open(file, &vmalloc_op);
  1640. if (!ret) {
  1641. struct seq_file *m = file->private_data;
  1642. m->private = ptr;
  1643. } else
  1644. kfree(ptr);
  1645. return ret;
  1646. }
  1647. static const struct file_operations proc_vmalloc_operations = {
  1648. .open = vmalloc_open,
  1649. .read = seq_read,
  1650. .llseek = seq_lseek,
  1651. .release = seq_release_private,
  1652. };
  1653. static int __init proc_vmalloc_init(void)
  1654. {
  1655. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  1656. return 0;
  1657. }
  1658. module_init(proc_vmalloc_init);
  1659. #endif