slub.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #ifdef CONFIG_SLUB_DEBUG
  108. #define SLABDEBUG 1
  109. #else
  110. #define SLABDEBUG 0
  111. #endif
  112. /*
  113. * Issues still to be resolved:
  114. *
  115. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  116. *
  117. * - Variable sizing of the per node arrays
  118. */
  119. /* Enable to test recovery from slab corruption on boot */
  120. #undef SLUB_RESILIENCY_TEST
  121. /*
  122. * Mininum number of partial slabs. These will be left on the partial
  123. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  124. */
  125. #define MIN_PARTIAL 5
  126. /*
  127. * Maximum number of desirable partial slabs.
  128. * The existence of more partial slabs makes kmem_cache_shrink
  129. * sort the partial list by the number of objects in the.
  130. */
  131. #define MAX_PARTIAL 10
  132. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  133. SLAB_POISON | SLAB_STORE_USER)
  134. /*
  135. * Set of flags that will prevent slab merging
  136. */
  137. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  138. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
  139. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  140. SLAB_CACHE_DMA | SLAB_NOTRACK)
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  143. #endif
  144. #ifndef ARCH_SLAB_MINALIGN
  145. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  146. #endif
  147. #define OO_SHIFT 16
  148. #define OO_MASK ((1 << OO_SHIFT) - 1)
  149. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  150. /* Internal SLUB flags */
  151. #define __OBJECT_POISON 0x80000000 /* Poison object */
  152. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  153. static int kmem_size = sizeof(struct kmem_cache);
  154. #ifdef CONFIG_SMP
  155. static struct notifier_block slab_notifier;
  156. #endif
  157. static enum {
  158. DOWN, /* No slab functionality available */
  159. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  160. UP, /* Everything works but does not show up in sysfs */
  161. SYSFS /* Sysfs up */
  162. } slab_state = DOWN;
  163. /* A list of all slab caches on the system */
  164. static DECLARE_RWSEM(slub_lock);
  165. static LIST_HEAD(slab_caches);
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. struct track {
  170. unsigned long addr; /* Called from address */
  171. int cpu; /* Was running on cpu */
  172. int pid; /* Pid context */
  173. unsigned long when; /* When did the operation occur */
  174. };
  175. enum track_item { TRACK_ALLOC, TRACK_FREE };
  176. #ifdef CONFIG_SLUB_DEBUG
  177. static int sysfs_slab_add(struct kmem_cache *);
  178. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  179. static void sysfs_slab_remove(struct kmem_cache *);
  180. #else
  181. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  182. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  183. { return 0; }
  184. static inline void sysfs_slab_remove(struct kmem_cache *s)
  185. {
  186. kfree(s);
  187. }
  188. #endif
  189. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  190. {
  191. #ifdef CONFIG_SLUB_STATS
  192. c->stat[si]++;
  193. #endif
  194. }
  195. /********************************************************************
  196. * Core slab cache functions
  197. *******************************************************************/
  198. int slab_is_available(void)
  199. {
  200. return slab_state >= UP;
  201. }
  202. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  203. {
  204. #ifdef CONFIG_NUMA
  205. return s->node[node];
  206. #else
  207. return &s->local_node;
  208. #endif
  209. }
  210. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  211. {
  212. #ifdef CONFIG_SMP
  213. return s->cpu_slab[cpu];
  214. #else
  215. return &s->cpu_slab;
  216. #endif
  217. }
  218. /* Verify that a pointer has an address that is valid within a slab page */
  219. static inline int check_valid_pointer(struct kmem_cache *s,
  220. struct page *page, const void *object)
  221. {
  222. void *base;
  223. if (!object)
  224. return 1;
  225. base = page_address(page);
  226. if (object < base || object >= base + page->objects * s->size ||
  227. (object - base) % s->size) {
  228. return 0;
  229. }
  230. return 1;
  231. }
  232. /*
  233. * Slow version of get and set free pointer.
  234. *
  235. * This version requires touching the cache lines of kmem_cache which
  236. * we avoid to do in the fast alloc free paths. There we obtain the offset
  237. * from the page struct.
  238. */
  239. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  240. {
  241. return *(void **)(object + s->offset);
  242. }
  243. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  244. {
  245. *(void **)(object + s->offset) = fp;
  246. }
  247. /* Loop over all objects in a slab */
  248. #define for_each_object(__p, __s, __addr, __objects) \
  249. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  250. __p += (__s)->size)
  251. /* Scan freelist */
  252. #define for_each_free_object(__p, __s, __free) \
  253. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  254. /* Determine object index from a given position */
  255. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  256. {
  257. return (p - addr) / s->size;
  258. }
  259. static inline struct kmem_cache_order_objects oo_make(int order,
  260. unsigned long size)
  261. {
  262. struct kmem_cache_order_objects x = {
  263. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  264. };
  265. return x;
  266. }
  267. static inline int oo_order(struct kmem_cache_order_objects x)
  268. {
  269. return x.x >> OO_SHIFT;
  270. }
  271. static inline int oo_objects(struct kmem_cache_order_objects x)
  272. {
  273. return x.x & OO_MASK;
  274. }
  275. #ifdef CONFIG_SLUB_DEBUG
  276. /*
  277. * Debug settings:
  278. */
  279. #ifdef CONFIG_SLUB_DEBUG_ON
  280. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  281. #else
  282. static int slub_debug;
  283. #endif
  284. static char *slub_debug_slabs;
  285. /*
  286. * Object debugging
  287. */
  288. static void print_section(char *text, u8 *addr, unsigned int length)
  289. {
  290. int i, offset;
  291. int newline = 1;
  292. char ascii[17];
  293. ascii[16] = 0;
  294. for (i = 0; i < length; i++) {
  295. if (newline) {
  296. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  297. newline = 0;
  298. }
  299. printk(KERN_CONT " %02x", addr[i]);
  300. offset = i % 16;
  301. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  302. if (offset == 15) {
  303. printk(KERN_CONT " %s\n", ascii);
  304. newline = 1;
  305. }
  306. }
  307. if (!newline) {
  308. i %= 16;
  309. while (i < 16) {
  310. printk(KERN_CONT " ");
  311. ascii[i] = ' ';
  312. i++;
  313. }
  314. printk(KERN_CONT " %s\n", ascii);
  315. }
  316. }
  317. static struct track *get_track(struct kmem_cache *s, void *object,
  318. enum track_item alloc)
  319. {
  320. struct track *p;
  321. if (s->offset)
  322. p = object + s->offset + sizeof(void *);
  323. else
  324. p = object + s->inuse;
  325. return p + alloc;
  326. }
  327. static void set_track(struct kmem_cache *s, void *object,
  328. enum track_item alloc, unsigned long addr)
  329. {
  330. struct track *p = get_track(s, object, alloc);
  331. if (addr) {
  332. p->addr = addr;
  333. p->cpu = smp_processor_id();
  334. p->pid = current->pid;
  335. p->when = jiffies;
  336. } else
  337. memset(p, 0, sizeof(struct track));
  338. }
  339. static void init_tracking(struct kmem_cache *s, void *object)
  340. {
  341. if (!(s->flags & SLAB_STORE_USER))
  342. return;
  343. set_track(s, object, TRACK_FREE, 0UL);
  344. set_track(s, object, TRACK_ALLOC, 0UL);
  345. }
  346. static void print_track(const char *s, struct track *t)
  347. {
  348. if (!t->addr)
  349. return;
  350. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  351. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  352. }
  353. static void print_tracking(struct kmem_cache *s, void *object)
  354. {
  355. if (!(s->flags & SLAB_STORE_USER))
  356. return;
  357. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  358. print_track("Freed", get_track(s, object, TRACK_FREE));
  359. }
  360. static void print_page_info(struct page *page)
  361. {
  362. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  363. page, page->objects, page->inuse, page->freelist, page->flags);
  364. }
  365. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  366. {
  367. va_list args;
  368. char buf[100];
  369. va_start(args, fmt);
  370. vsnprintf(buf, sizeof(buf), fmt, args);
  371. va_end(args);
  372. printk(KERN_ERR "========================================"
  373. "=====================================\n");
  374. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  375. printk(KERN_ERR "----------------------------------------"
  376. "-------------------------------------\n\n");
  377. }
  378. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  379. {
  380. va_list args;
  381. char buf[100];
  382. va_start(args, fmt);
  383. vsnprintf(buf, sizeof(buf), fmt, args);
  384. va_end(args);
  385. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  386. }
  387. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  388. {
  389. unsigned int off; /* Offset of last byte */
  390. u8 *addr = page_address(page);
  391. print_tracking(s, p);
  392. print_page_info(page);
  393. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  394. p, p - addr, get_freepointer(s, p));
  395. if (p > addr + 16)
  396. print_section("Bytes b4", p - 16, 16);
  397. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  398. if (s->flags & SLAB_RED_ZONE)
  399. print_section("Redzone", p + s->objsize,
  400. s->inuse - s->objsize);
  401. if (s->offset)
  402. off = s->offset + sizeof(void *);
  403. else
  404. off = s->inuse;
  405. if (s->flags & SLAB_STORE_USER)
  406. off += 2 * sizeof(struct track);
  407. if (off != s->size)
  408. /* Beginning of the filler is the free pointer */
  409. print_section("Padding", p + off, s->size - off);
  410. dump_stack();
  411. }
  412. static void object_err(struct kmem_cache *s, struct page *page,
  413. u8 *object, char *reason)
  414. {
  415. slab_bug(s, "%s", reason);
  416. print_trailer(s, page, object);
  417. }
  418. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  419. {
  420. va_list args;
  421. char buf[100];
  422. va_start(args, fmt);
  423. vsnprintf(buf, sizeof(buf), fmt, args);
  424. va_end(args);
  425. slab_bug(s, "%s", buf);
  426. print_page_info(page);
  427. dump_stack();
  428. }
  429. static void init_object(struct kmem_cache *s, void *object, int active)
  430. {
  431. u8 *p = object;
  432. if (s->flags & __OBJECT_POISON) {
  433. memset(p, POISON_FREE, s->objsize - 1);
  434. p[s->objsize - 1] = POISON_END;
  435. }
  436. if (s->flags & SLAB_RED_ZONE)
  437. memset(p + s->objsize,
  438. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  439. s->inuse - s->objsize);
  440. }
  441. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  442. {
  443. while (bytes) {
  444. if (*start != (u8)value)
  445. return start;
  446. start++;
  447. bytes--;
  448. }
  449. return NULL;
  450. }
  451. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  452. void *from, void *to)
  453. {
  454. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  455. memset(from, data, to - from);
  456. }
  457. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  458. u8 *object, char *what,
  459. u8 *start, unsigned int value, unsigned int bytes)
  460. {
  461. u8 *fault;
  462. u8 *end;
  463. fault = check_bytes(start, value, bytes);
  464. if (!fault)
  465. return 1;
  466. end = start + bytes;
  467. while (end > fault && end[-1] == value)
  468. end--;
  469. slab_bug(s, "%s overwritten", what);
  470. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  471. fault, end - 1, fault[0], value);
  472. print_trailer(s, page, object);
  473. restore_bytes(s, what, value, fault, end);
  474. return 0;
  475. }
  476. /*
  477. * Object layout:
  478. *
  479. * object address
  480. * Bytes of the object to be managed.
  481. * If the freepointer may overlay the object then the free
  482. * pointer is the first word of the object.
  483. *
  484. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  485. * 0xa5 (POISON_END)
  486. *
  487. * object + s->objsize
  488. * Padding to reach word boundary. This is also used for Redzoning.
  489. * Padding is extended by another word if Redzoning is enabled and
  490. * objsize == inuse.
  491. *
  492. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  493. * 0xcc (RED_ACTIVE) for objects in use.
  494. *
  495. * object + s->inuse
  496. * Meta data starts here.
  497. *
  498. * A. Free pointer (if we cannot overwrite object on free)
  499. * B. Tracking data for SLAB_STORE_USER
  500. * C. Padding to reach required alignment boundary or at mininum
  501. * one word if debugging is on to be able to detect writes
  502. * before the word boundary.
  503. *
  504. * Padding is done using 0x5a (POISON_INUSE)
  505. *
  506. * object + s->size
  507. * Nothing is used beyond s->size.
  508. *
  509. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  510. * ignored. And therefore no slab options that rely on these boundaries
  511. * may be used with merged slabcaches.
  512. */
  513. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  514. {
  515. unsigned long off = s->inuse; /* The end of info */
  516. if (s->offset)
  517. /* Freepointer is placed after the object. */
  518. off += sizeof(void *);
  519. if (s->flags & SLAB_STORE_USER)
  520. /* We also have user information there */
  521. off += 2 * sizeof(struct track);
  522. if (s->size == off)
  523. return 1;
  524. return check_bytes_and_report(s, page, p, "Object padding",
  525. p + off, POISON_INUSE, s->size - off);
  526. }
  527. /* Check the pad bytes at the end of a slab page */
  528. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  529. {
  530. u8 *start;
  531. u8 *fault;
  532. u8 *end;
  533. int length;
  534. int remainder;
  535. if (!(s->flags & SLAB_POISON))
  536. return 1;
  537. start = page_address(page);
  538. length = (PAGE_SIZE << compound_order(page));
  539. end = start + length;
  540. remainder = length % s->size;
  541. if (!remainder)
  542. return 1;
  543. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  544. if (!fault)
  545. return 1;
  546. while (end > fault && end[-1] == POISON_INUSE)
  547. end--;
  548. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  549. print_section("Padding", end - remainder, remainder);
  550. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  551. return 0;
  552. }
  553. static int check_object(struct kmem_cache *s, struct page *page,
  554. void *object, int active)
  555. {
  556. u8 *p = object;
  557. u8 *endobject = object + s->objsize;
  558. if (s->flags & SLAB_RED_ZONE) {
  559. unsigned int red =
  560. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  561. if (!check_bytes_and_report(s, page, object, "Redzone",
  562. endobject, red, s->inuse - s->objsize))
  563. return 0;
  564. } else {
  565. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  566. check_bytes_and_report(s, page, p, "Alignment padding",
  567. endobject, POISON_INUSE, s->inuse - s->objsize);
  568. }
  569. }
  570. if (s->flags & SLAB_POISON) {
  571. if (!active && (s->flags & __OBJECT_POISON) &&
  572. (!check_bytes_and_report(s, page, p, "Poison", p,
  573. POISON_FREE, s->objsize - 1) ||
  574. !check_bytes_and_report(s, page, p, "Poison",
  575. p + s->objsize - 1, POISON_END, 1)))
  576. return 0;
  577. /*
  578. * check_pad_bytes cleans up on its own.
  579. */
  580. check_pad_bytes(s, page, p);
  581. }
  582. if (!s->offset && active)
  583. /*
  584. * Object and freepointer overlap. Cannot check
  585. * freepointer while object is allocated.
  586. */
  587. return 1;
  588. /* Check free pointer validity */
  589. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  590. object_err(s, page, p, "Freepointer corrupt");
  591. /*
  592. * No choice but to zap it and thus lose the remainder
  593. * of the free objects in this slab. May cause
  594. * another error because the object count is now wrong.
  595. */
  596. set_freepointer(s, p, NULL);
  597. return 0;
  598. }
  599. return 1;
  600. }
  601. static int check_slab(struct kmem_cache *s, struct page *page)
  602. {
  603. int maxobj;
  604. VM_BUG_ON(!irqs_disabled());
  605. if (!PageSlab(page)) {
  606. slab_err(s, page, "Not a valid slab page");
  607. return 0;
  608. }
  609. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  610. if (page->objects > maxobj) {
  611. slab_err(s, page, "objects %u > max %u",
  612. s->name, page->objects, maxobj);
  613. return 0;
  614. }
  615. if (page->inuse > page->objects) {
  616. slab_err(s, page, "inuse %u > max %u",
  617. s->name, page->inuse, page->objects);
  618. return 0;
  619. }
  620. /* Slab_pad_check fixes things up after itself */
  621. slab_pad_check(s, page);
  622. return 1;
  623. }
  624. /*
  625. * Determine if a certain object on a page is on the freelist. Must hold the
  626. * slab lock to guarantee that the chains are in a consistent state.
  627. */
  628. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  629. {
  630. int nr = 0;
  631. void *fp = page->freelist;
  632. void *object = NULL;
  633. unsigned long max_objects;
  634. while (fp && nr <= page->objects) {
  635. if (fp == search)
  636. return 1;
  637. if (!check_valid_pointer(s, page, fp)) {
  638. if (object) {
  639. object_err(s, page, object,
  640. "Freechain corrupt");
  641. set_freepointer(s, object, NULL);
  642. break;
  643. } else {
  644. slab_err(s, page, "Freepointer corrupt");
  645. page->freelist = NULL;
  646. page->inuse = page->objects;
  647. slab_fix(s, "Freelist cleared");
  648. return 0;
  649. }
  650. break;
  651. }
  652. object = fp;
  653. fp = get_freepointer(s, object);
  654. nr++;
  655. }
  656. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  657. if (max_objects > MAX_OBJS_PER_PAGE)
  658. max_objects = MAX_OBJS_PER_PAGE;
  659. if (page->objects != max_objects) {
  660. slab_err(s, page, "Wrong number of objects. Found %d but "
  661. "should be %d", page->objects, max_objects);
  662. page->objects = max_objects;
  663. slab_fix(s, "Number of objects adjusted.");
  664. }
  665. if (page->inuse != page->objects - nr) {
  666. slab_err(s, page, "Wrong object count. Counter is %d but "
  667. "counted were %d", page->inuse, page->objects - nr);
  668. page->inuse = page->objects - nr;
  669. slab_fix(s, "Object count adjusted.");
  670. }
  671. return search == NULL;
  672. }
  673. static void trace(struct kmem_cache *s, struct page *page, void *object,
  674. int alloc)
  675. {
  676. if (s->flags & SLAB_TRACE) {
  677. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  678. s->name,
  679. alloc ? "alloc" : "free",
  680. object, page->inuse,
  681. page->freelist);
  682. if (!alloc)
  683. print_section("Object", (void *)object, s->objsize);
  684. dump_stack();
  685. }
  686. }
  687. /*
  688. * Tracking of fully allocated slabs for debugging purposes.
  689. */
  690. static void add_full(struct kmem_cache_node *n, struct page *page)
  691. {
  692. spin_lock(&n->list_lock);
  693. list_add(&page->lru, &n->full);
  694. spin_unlock(&n->list_lock);
  695. }
  696. static void remove_full(struct kmem_cache *s, struct page *page)
  697. {
  698. struct kmem_cache_node *n;
  699. if (!(s->flags & SLAB_STORE_USER))
  700. return;
  701. n = get_node(s, page_to_nid(page));
  702. spin_lock(&n->list_lock);
  703. list_del(&page->lru);
  704. spin_unlock(&n->list_lock);
  705. }
  706. /* Tracking of the number of slabs for debugging purposes */
  707. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  708. {
  709. struct kmem_cache_node *n = get_node(s, node);
  710. return atomic_long_read(&n->nr_slabs);
  711. }
  712. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  713. {
  714. return atomic_long_read(&n->nr_slabs);
  715. }
  716. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  717. {
  718. struct kmem_cache_node *n = get_node(s, node);
  719. /*
  720. * May be called early in order to allocate a slab for the
  721. * kmem_cache_node structure. Solve the chicken-egg
  722. * dilemma by deferring the increment of the count during
  723. * bootstrap (see early_kmem_cache_node_alloc).
  724. */
  725. if (!NUMA_BUILD || n) {
  726. atomic_long_inc(&n->nr_slabs);
  727. atomic_long_add(objects, &n->total_objects);
  728. }
  729. }
  730. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  731. {
  732. struct kmem_cache_node *n = get_node(s, node);
  733. atomic_long_dec(&n->nr_slabs);
  734. atomic_long_sub(objects, &n->total_objects);
  735. }
  736. /* Object debug checks for alloc/free paths */
  737. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  738. void *object)
  739. {
  740. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  741. return;
  742. init_object(s, object, 0);
  743. init_tracking(s, object);
  744. }
  745. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  746. void *object, unsigned long addr)
  747. {
  748. if (!check_slab(s, page))
  749. goto bad;
  750. if (!on_freelist(s, page, object)) {
  751. object_err(s, page, object, "Object already allocated");
  752. goto bad;
  753. }
  754. if (!check_valid_pointer(s, page, object)) {
  755. object_err(s, page, object, "Freelist Pointer check fails");
  756. goto bad;
  757. }
  758. if (!check_object(s, page, object, 0))
  759. goto bad;
  760. /* Success perform special debug activities for allocs */
  761. if (s->flags & SLAB_STORE_USER)
  762. set_track(s, object, TRACK_ALLOC, addr);
  763. trace(s, page, object, 1);
  764. init_object(s, object, 1);
  765. return 1;
  766. bad:
  767. if (PageSlab(page)) {
  768. /*
  769. * If this is a slab page then lets do the best we can
  770. * to avoid issues in the future. Marking all objects
  771. * as used avoids touching the remaining objects.
  772. */
  773. slab_fix(s, "Marking all objects used");
  774. page->inuse = page->objects;
  775. page->freelist = NULL;
  776. }
  777. return 0;
  778. }
  779. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  780. void *object, unsigned long addr)
  781. {
  782. if (!check_slab(s, page))
  783. goto fail;
  784. if (!check_valid_pointer(s, page, object)) {
  785. slab_err(s, page, "Invalid object pointer 0x%p", object);
  786. goto fail;
  787. }
  788. if (on_freelist(s, page, object)) {
  789. object_err(s, page, object, "Object already free");
  790. goto fail;
  791. }
  792. if (!check_object(s, page, object, 1))
  793. return 0;
  794. if (unlikely(s != page->slab)) {
  795. if (!PageSlab(page)) {
  796. slab_err(s, page, "Attempt to free object(0x%p) "
  797. "outside of slab", object);
  798. } else if (!page->slab) {
  799. printk(KERN_ERR
  800. "SLUB <none>: no slab for object 0x%p.\n",
  801. object);
  802. dump_stack();
  803. } else
  804. object_err(s, page, object,
  805. "page slab pointer corrupt.");
  806. goto fail;
  807. }
  808. /* Special debug activities for freeing objects */
  809. if (!PageSlubFrozen(page) && !page->freelist)
  810. remove_full(s, page);
  811. if (s->flags & SLAB_STORE_USER)
  812. set_track(s, object, TRACK_FREE, addr);
  813. trace(s, page, object, 0);
  814. init_object(s, object, 0);
  815. return 1;
  816. fail:
  817. slab_fix(s, "Object at 0x%p not freed", object);
  818. return 0;
  819. }
  820. static int __init setup_slub_debug(char *str)
  821. {
  822. slub_debug = DEBUG_DEFAULT_FLAGS;
  823. if (*str++ != '=' || !*str)
  824. /*
  825. * No options specified. Switch on full debugging.
  826. */
  827. goto out;
  828. if (*str == ',')
  829. /*
  830. * No options but restriction on slabs. This means full
  831. * debugging for slabs matching a pattern.
  832. */
  833. goto check_slabs;
  834. slub_debug = 0;
  835. if (*str == '-')
  836. /*
  837. * Switch off all debugging measures.
  838. */
  839. goto out;
  840. /*
  841. * Determine which debug features should be switched on
  842. */
  843. for (; *str && *str != ','; str++) {
  844. switch (tolower(*str)) {
  845. case 'f':
  846. slub_debug |= SLAB_DEBUG_FREE;
  847. break;
  848. case 'z':
  849. slub_debug |= SLAB_RED_ZONE;
  850. break;
  851. case 'p':
  852. slub_debug |= SLAB_POISON;
  853. break;
  854. case 'u':
  855. slub_debug |= SLAB_STORE_USER;
  856. break;
  857. case 't':
  858. slub_debug |= SLAB_TRACE;
  859. break;
  860. default:
  861. printk(KERN_ERR "slub_debug option '%c' "
  862. "unknown. skipped\n", *str);
  863. }
  864. }
  865. check_slabs:
  866. if (*str == ',')
  867. slub_debug_slabs = str + 1;
  868. out:
  869. return 1;
  870. }
  871. __setup("slub_debug", setup_slub_debug);
  872. static unsigned long kmem_cache_flags(unsigned long objsize,
  873. unsigned long flags, const char *name,
  874. void (*ctor)(void *))
  875. {
  876. /*
  877. * Enable debugging if selected on the kernel commandline.
  878. */
  879. if (slub_debug && (!slub_debug_slabs ||
  880. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  881. flags |= slub_debug;
  882. return flags;
  883. }
  884. #else
  885. static inline void setup_object_debug(struct kmem_cache *s,
  886. struct page *page, void *object) {}
  887. static inline int alloc_debug_processing(struct kmem_cache *s,
  888. struct page *page, void *object, unsigned long addr) { return 0; }
  889. static inline int free_debug_processing(struct kmem_cache *s,
  890. struct page *page, void *object, unsigned long addr) { return 0; }
  891. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  892. { return 1; }
  893. static inline int check_object(struct kmem_cache *s, struct page *page,
  894. void *object, int active) { return 1; }
  895. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  896. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  897. unsigned long flags, const char *name,
  898. void (*ctor)(void *))
  899. {
  900. return flags;
  901. }
  902. #define slub_debug 0
  903. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  904. { return 0; }
  905. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  906. { return 0; }
  907. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  908. int objects) {}
  909. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  910. int objects) {}
  911. #endif
  912. /*
  913. * Slab allocation and freeing
  914. */
  915. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  916. struct kmem_cache_order_objects oo)
  917. {
  918. int order = oo_order(oo);
  919. flags |= __GFP_NOTRACK;
  920. if (node == -1)
  921. return alloc_pages(flags, order);
  922. else
  923. return alloc_pages_node(node, flags, order);
  924. }
  925. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  926. {
  927. struct page *page;
  928. struct kmem_cache_order_objects oo = s->oo;
  929. gfp_t alloc_gfp;
  930. flags |= s->allocflags;
  931. /*
  932. * Let the initial higher-order allocation fail under memory pressure
  933. * so we fall-back to the minimum order allocation.
  934. */
  935. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  936. page = alloc_slab_page(alloc_gfp, node, oo);
  937. if (unlikely(!page)) {
  938. oo = s->min;
  939. /*
  940. * Allocation may have failed due to fragmentation.
  941. * Try a lower order alloc if possible
  942. */
  943. page = alloc_slab_page(flags, node, oo);
  944. if (!page)
  945. return NULL;
  946. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  947. }
  948. if (kmemcheck_enabled
  949. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
  950. {
  951. int pages = 1 << oo_order(oo);
  952. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  953. /*
  954. * Objects from caches that have a constructor don't get
  955. * cleared when they're allocated, so we need to do it here.
  956. */
  957. if (s->ctor)
  958. kmemcheck_mark_uninitialized_pages(page, pages);
  959. else
  960. kmemcheck_mark_unallocated_pages(page, pages);
  961. }
  962. page->objects = oo_objects(oo);
  963. mod_zone_page_state(page_zone(page),
  964. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  965. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  966. 1 << oo_order(oo));
  967. return page;
  968. }
  969. static void setup_object(struct kmem_cache *s, struct page *page,
  970. void *object)
  971. {
  972. setup_object_debug(s, page, object);
  973. if (unlikely(s->ctor))
  974. s->ctor(object);
  975. }
  976. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  977. {
  978. struct page *page;
  979. void *start;
  980. void *last;
  981. void *p;
  982. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  983. page = allocate_slab(s,
  984. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  985. if (!page)
  986. goto out;
  987. inc_slabs_node(s, page_to_nid(page), page->objects);
  988. page->slab = s;
  989. page->flags |= 1 << PG_slab;
  990. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  991. SLAB_STORE_USER | SLAB_TRACE))
  992. __SetPageSlubDebug(page);
  993. start = page_address(page);
  994. if (unlikely(s->flags & SLAB_POISON))
  995. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  996. last = start;
  997. for_each_object(p, s, start, page->objects) {
  998. setup_object(s, page, last);
  999. set_freepointer(s, last, p);
  1000. last = p;
  1001. }
  1002. setup_object(s, page, last);
  1003. set_freepointer(s, last, NULL);
  1004. page->freelist = start;
  1005. page->inuse = 0;
  1006. out:
  1007. return page;
  1008. }
  1009. static void __free_slab(struct kmem_cache *s, struct page *page)
  1010. {
  1011. int order = compound_order(page);
  1012. int pages = 1 << order;
  1013. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1014. void *p;
  1015. slab_pad_check(s, page);
  1016. for_each_object(p, s, page_address(page),
  1017. page->objects)
  1018. check_object(s, page, p, 0);
  1019. __ClearPageSlubDebug(page);
  1020. }
  1021. kmemcheck_free_shadow(page, compound_order(page));
  1022. mod_zone_page_state(page_zone(page),
  1023. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1024. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1025. -pages);
  1026. __ClearPageSlab(page);
  1027. reset_page_mapcount(page);
  1028. if (current->reclaim_state)
  1029. current->reclaim_state->reclaimed_slab += pages;
  1030. __free_pages(page, order);
  1031. }
  1032. static void rcu_free_slab(struct rcu_head *h)
  1033. {
  1034. struct page *page;
  1035. page = container_of((struct list_head *)h, struct page, lru);
  1036. __free_slab(page->slab, page);
  1037. }
  1038. static void free_slab(struct kmem_cache *s, struct page *page)
  1039. {
  1040. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1041. /*
  1042. * RCU free overloads the RCU head over the LRU
  1043. */
  1044. struct rcu_head *head = (void *)&page->lru;
  1045. call_rcu(head, rcu_free_slab);
  1046. } else
  1047. __free_slab(s, page);
  1048. }
  1049. static void discard_slab(struct kmem_cache *s, struct page *page)
  1050. {
  1051. dec_slabs_node(s, page_to_nid(page), page->objects);
  1052. free_slab(s, page);
  1053. }
  1054. /*
  1055. * Per slab locking using the pagelock
  1056. */
  1057. static __always_inline void slab_lock(struct page *page)
  1058. {
  1059. bit_spin_lock(PG_locked, &page->flags);
  1060. }
  1061. static __always_inline void slab_unlock(struct page *page)
  1062. {
  1063. __bit_spin_unlock(PG_locked, &page->flags);
  1064. }
  1065. static __always_inline int slab_trylock(struct page *page)
  1066. {
  1067. int rc = 1;
  1068. rc = bit_spin_trylock(PG_locked, &page->flags);
  1069. return rc;
  1070. }
  1071. /*
  1072. * Management of partially allocated slabs
  1073. */
  1074. static void add_partial(struct kmem_cache_node *n,
  1075. struct page *page, int tail)
  1076. {
  1077. spin_lock(&n->list_lock);
  1078. n->nr_partial++;
  1079. if (tail)
  1080. list_add_tail(&page->lru, &n->partial);
  1081. else
  1082. list_add(&page->lru, &n->partial);
  1083. spin_unlock(&n->list_lock);
  1084. }
  1085. static void remove_partial(struct kmem_cache *s, struct page *page)
  1086. {
  1087. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1088. spin_lock(&n->list_lock);
  1089. list_del(&page->lru);
  1090. n->nr_partial--;
  1091. spin_unlock(&n->list_lock);
  1092. }
  1093. /*
  1094. * Lock slab and remove from the partial list.
  1095. *
  1096. * Must hold list_lock.
  1097. */
  1098. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1099. struct page *page)
  1100. {
  1101. if (slab_trylock(page)) {
  1102. list_del(&page->lru);
  1103. n->nr_partial--;
  1104. __SetPageSlubFrozen(page);
  1105. return 1;
  1106. }
  1107. return 0;
  1108. }
  1109. /*
  1110. * Try to allocate a partial slab from a specific node.
  1111. */
  1112. static struct page *get_partial_node(struct kmem_cache_node *n)
  1113. {
  1114. struct page *page;
  1115. /*
  1116. * Racy check. If we mistakenly see no partial slabs then we
  1117. * just allocate an empty slab. If we mistakenly try to get a
  1118. * partial slab and there is none available then get_partials()
  1119. * will return NULL.
  1120. */
  1121. if (!n || !n->nr_partial)
  1122. return NULL;
  1123. spin_lock(&n->list_lock);
  1124. list_for_each_entry(page, &n->partial, lru)
  1125. if (lock_and_freeze_slab(n, page))
  1126. goto out;
  1127. page = NULL;
  1128. out:
  1129. spin_unlock(&n->list_lock);
  1130. return page;
  1131. }
  1132. /*
  1133. * Get a page from somewhere. Search in increasing NUMA distances.
  1134. */
  1135. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1136. {
  1137. #ifdef CONFIG_NUMA
  1138. struct zonelist *zonelist;
  1139. struct zoneref *z;
  1140. struct zone *zone;
  1141. enum zone_type high_zoneidx = gfp_zone(flags);
  1142. struct page *page;
  1143. /*
  1144. * The defrag ratio allows a configuration of the tradeoffs between
  1145. * inter node defragmentation and node local allocations. A lower
  1146. * defrag_ratio increases the tendency to do local allocations
  1147. * instead of attempting to obtain partial slabs from other nodes.
  1148. *
  1149. * If the defrag_ratio is set to 0 then kmalloc() always
  1150. * returns node local objects. If the ratio is higher then kmalloc()
  1151. * may return off node objects because partial slabs are obtained
  1152. * from other nodes and filled up.
  1153. *
  1154. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1155. * defrag_ratio = 1000) then every (well almost) allocation will
  1156. * first attempt to defrag slab caches on other nodes. This means
  1157. * scanning over all nodes to look for partial slabs which may be
  1158. * expensive if we do it every time we are trying to find a slab
  1159. * with available objects.
  1160. */
  1161. if (!s->remote_node_defrag_ratio ||
  1162. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1163. return NULL;
  1164. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1165. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1166. struct kmem_cache_node *n;
  1167. n = get_node(s, zone_to_nid(zone));
  1168. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1169. n->nr_partial > s->min_partial) {
  1170. page = get_partial_node(n);
  1171. if (page)
  1172. return page;
  1173. }
  1174. }
  1175. #endif
  1176. return NULL;
  1177. }
  1178. /*
  1179. * Get a partial page, lock it and return it.
  1180. */
  1181. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1182. {
  1183. struct page *page;
  1184. int searchnode = (node == -1) ? numa_node_id() : node;
  1185. page = get_partial_node(get_node(s, searchnode));
  1186. if (page || (flags & __GFP_THISNODE))
  1187. return page;
  1188. return get_any_partial(s, flags);
  1189. }
  1190. /*
  1191. * Move a page back to the lists.
  1192. *
  1193. * Must be called with the slab lock held.
  1194. *
  1195. * On exit the slab lock will have been dropped.
  1196. */
  1197. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1198. {
  1199. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1200. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1201. __ClearPageSlubFrozen(page);
  1202. if (page->inuse) {
  1203. if (page->freelist) {
  1204. add_partial(n, page, tail);
  1205. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1206. } else {
  1207. stat(c, DEACTIVATE_FULL);
  1208. if (SLABDEBUG && PageSlubDebug(page) &&
  1209. (s->flags & SLAB_STORE_USER))
  1210. add_full(n, page);
  1211. }
  1212. slab_unlock(page);
  1213. } else {
  1214. stat(c, DEACTIVATE_EMPTY);
  1215. if (n->nr_partial < s->min_partial) {
  1216. /*
  1217. * Adding an empty slab to the partial slabs in order
  1218. * to avoid page allocator overhead. This slab needs
  1219. * to come after the other slabs with objects in
  1220. * so that the others get filled first. That way the
  1221. * size of the partial list stays small.
  1222. *
  1223. * kmem_cache_shrink can reclaim any empty slabs from
  1224. * the partial list.
  1225. */
  1226. add_partial(n, page, 1);
  1227. slab_unlock(page);
  1228. } else {
  1229. slab_unlock(page);
  1230. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1231. discard_slab(s, page);
  1232. }
  1233. }
  1234. }
  1235. /*
  1236. * Remove the cpu slab
  1237. */
  1238. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1239. {
  1240. struct page *page = c->page;
  1241. int tail = 1;
  1242. if (page->freelist)
  1243. stat(c, DEACTIVATE_REMOTE_FREES);
  1244. /*
  1245. * Merge cpu freelist into slab freelist. Typically we get here
  1246. * because both freelists are empty. So this is unlikely
  1247. * to occur.
  1248. */
  1249. while (unlikely(c->freelist)) {
  1250. void **object;
  1251. tail = 0; /* Hot objects. Put the slab first */
  1252. /* Retrieve object from cpu_freelist */
  1253. object = c->freelist;
  1254. c->freelist = c->freelist[c->offset];
  1255. /* And put onto the regular freelist */
  1256. object[c->offset] = page->freelist;
  1257. page->freelist = object;
  1258. page->inuse--;
  1259. }
  1260. c->page = NULL;
  1261. unfreeze_slab(s, page, tail);
  1262. }
  1263. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1264. {
  1265. stat(c, CPUSLAB_FLUSH);
  1266. slab_lock(c->page);
  1267. deactivate_slab(s, c);
  1268. }
  1269. /*
  1270. * Flush cpu slab.
  1271. *
  1272. * Called from IPI handler with interrupts disabled.
  1273. */
  1274. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1275. {
  1276. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1277. if (likely(c && c->page))
  1278. flush_slab(s, c);
  1279. }
  1280. static void flush_cpu_slab(void *d)
  1281. {
  1282. struct kmem_cache *s = d;
  1283. __flush_cpu_slab(s, smp_processor_id());
  1284. }
  1285. static void flush_all(struct kmem_cache *s)
  1286. {
  1287. on_each_cpu(flush_cpu_slab, s, 1);
  1288. }
  1289. /*
  1290. * Check if the objects in a per cpu structure fit numa
  1291. * locality expectations.
  1292. */
  1293. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1294. {
  1295. #ifdef CONFIG_NUMA
  1296. if (node != -1 && c->node != node)
  1297. return 0;
  1298. #endif
  1299. return 1;
  1300. }
  1301. static int count_free(struct page *page)
  1302. {
  1303. return page->objects - page->inuse;
  1304. }
  1305. static unsigned long count_partial(struct kmem_cache_node *n,
  1306. int (*get_count)(struct page *))
  1307. {
  1308. unsigned long flags;
  1309. unsigned long x = 0;
  1310. struct page *page;
  1311. spin_lock_irqsave(&n->list_lock, flags);
  1312. list_for_each_entry(page, &n->partial, lru)
  1313. x += get_count(page);
  1314. spin_unlock_irqrestore(&n->list_lock, flags);
  1315. return x;
  1316. }
  1317. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1318. {
  1319. #ifdef CONFIG_SLUB_DEBUG
  1320. return atomic_long_read(&n->total_objects);
  1321. #else
  1322. return 0;
  1323. #endif
  1324. }
  1325. static noinline void
  1326. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1327. {
  1328. int node;
  1329. printk(KERN_WARNING
  1330. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1331. nid, gfpflags);
  1332. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1333. "default order: %d, min order: %d\n", s->name, s->objsize,
  1334. s->size, oo_order(s->oo), oo_order(s->min));
  1335. for_each_online_node(node) {
  1336. struct kmem_cache_node *n = get_node(s, node);
  1337. unsigned long nr_slabs;
  1338. unsigned long nr_objs;
  1339. unsigned long nr_free;
  1340. if (!n)
  1341. continue;
  1342. nr_free = count_partial(n, count_free);
  1343. nr_slabs = node_nr_slabs(n);
  1344. nr_objs = node_nr_objs(n);
  1345. printk(KERN_WARNING
  1346. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1347. node, nr_slabs, nr_objs, nr_free);
  1348. }
  1349. }
  1350. /*
  1351. * Slow path. The lockless freelist is empty or we need to perform
  1352. * debugging duties.
  1353. *
  1354. * Interrupts are disabled.
  1355. *
  1356. * Processing is still very fast if new objects have been freed to the
  1357. * regular freelist. In that case we simply take over the regular freelist
  1358. * as the lockless freelist and zap the regular freelist.
  1359. *
  1360. * If that is not working then we fall back to the partial lists. We take the
  1361. * first element of the freelist as the object to allocate now and move the
  1362. * rest of the freelist to the lockless freelist.
  1363. *
  1364. * And if we were unable to get a new slab from the partial slab lists then
  1365. * we need to allocate a new slab. This is the slowest path since it involves
  1366. * a call to the page allocator and the setup of a new slab.
  1367. */
  1368. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1369. unsigned long addr, struct kmem_cache_cpu *c)
  1370. {
  1371. void **object;
  1372. struct page *new;
  1373. /* We handle __GFP_ZERO in the caller */
  1374. gfpflags &= ~__GFP_ZERO;
  1375. if (!c->page)
  1376. goto new_slab;
  1377. slab_lock(c->page);
  1378. if (unlikely(!node_match(c, node)))
  1379. goto another_slab;
  1380. stat(c, ALLOC_REFILL);
  1381. load_freelist:
  1382. object = c->page->freelist;
  1383. if (unlikely(!object))
  1384. goto another_slab;
  1385. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1386. goto debug;
  1387. c->freelist = object[c->offset];
  1388. c->page->inuse = c->page->objects;
  1389. c->page->freelist = NULL;
  1390. c->node = page_to_nid(c->page);
  1391. unlock_out:
  1392. slab_unlock(c->page);
  1393. stat(c, ALLOC_SLOWPATH);
  1394. return object;
  1395. another_slab:
  1396. deactivate_slab(s, c);
  1397. new_slab:
  1398. new = get_partial(s, gfpflags, node);
  1399. if (new) {
  1400. c->page = new;
  1401. stat(c, ALLOC_FROM_PARTIAL);
  1402. goto load_freelist;
  1403. }
  1404. if (gfpflags & __GFP_WAIT)
  1405. local_irq_enable();
  1406. new = new_slab(s, gfpflags, node);
  1407. if (gfpflags & __GFP_WAIT)
  1408. local_irq_disable();
  1409. if (new) {
  1410. c = get_cpu_slab(s, smp_processor_id());
  1411. stat(c, ALLOC_SLAB);
  1412. if (c->page)
  1413. flush_slab(s, c);
  1414. slab_lock(new);
  1415. __SetPageSlubFrozen(new);
  1416. c->page = new;
  1417. goto load_freelist;
  1418. }
  1419. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1420. slab_out_of_memory(s, gfpflags, node);
  1421. return NULL;
  1422. debug:
  1423. if (!alloc_debug_processing(s, c->page, object, addr))
  1424. goto another_slab;
  1425. c->page->inuse++;
  1426. c->page->freelist = object[c->offset];
  1427. c->node = -1;
  1428. goto unlock_out;
  1429. }
  1430. /*
  1431. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1432. * have the fastpath folded into their functions. So no function call
  1433. * overhead for requests that can be satisfied on the fastpath.
  1434. *
  1435. * The fastpath works by first checking if the lockless freelist can be used.
  1436. * If not then __slab_alloc is called for slow processing.
  1437. *
  1438. * Otherwise we can simply pick the next object from the lockless free list.
  1439. */
  1440. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1441. gfp_t gfpflags, int node, unsigned long addr)
  1442. {
  1443. void **object;
  1444. struct kmem_cache_cpu *c;
  1445. unsigned long flags;
  1446. unsigned int objsize;
  1447. gfpflags &= gfp_allowed_mask;
  1448. lockdep_trace_alloc(gfpflags);
  1449. might_sleep_if(gfpflags & __GFP_WAIT);
  1450. if (should_failslab(s->objsize, gfpflags))
  1451. return NULL;
  1452. local_irq_save(flags);
  1453. c = get_cpu_slab(s, smp_processor_id());
  1454. objsize = c->objsize;
  1455. if (unlikely(!c->freelist || !node_match(c, node)))
  1456. object = __slab_alloc(s, gfpflags, node, addr, c);
  1457. else {
  1458. object = c->freelist;
  1459. c->freelist = object[c->offset];
  1460. stat(c, ALLOC_FASTPATH);
  1461. }
  1462. local_irq_restore(flags);
  1463. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1464. memset(object, 0, objsize);
  1465. kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
  1466. kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
  1467. return object;
  1468. }
  1469. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1470. {
  1471. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1472. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1473. return ret;
  1474. }
  1475. EXPORT_SYMBOL(kmem_cache_alloc);
  1476. #ifdef CONFIG_KMEMTRACE
  1477. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1478. {
  1479. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1480. }
  1481. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1482. #endif
  1483. #ifdef CONFIG_NUMA
  1484. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1485. {
  1486. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1487. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1488. s->objsize, s->size, gfpflags, node);
  1489. return ret;
  1490. }
  1491. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1492. #endif
  1493. #ifdef CONFIG_KMEMTRACE
  1494. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1495. gfp_t gfpflags,
  1496. int node)
  1497. {
  1498. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1499. }
  1500. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1501. #endif
  1502. /*
  1503. * Slow patch handling. This may still be called frequently since objects
  1504. * have a longer lifetime than the cpu slabs in most processing loads.
  1505. *
  1506. * So we still attempt to reduce cache line usage. Just take the slab
  1507. * lock and free the item. If there is no additional partial page
  1508. * handling required then we can return immediately.
  1509. */
  1510. static void __slab_free(struct kmem_cache *s, struct page *page,
  1511. void *x, unsigned long addr, unsigned int offset)
  1512. {
  1513. void *prior;
  1514. void **object = (void *)x;
  1515. struct kmem_cache_cpu *c;
  1516. c = get_cpu_slab(s, raw_smp_processor_id());
  1517. stat(c, FREE_SLOWPATH);
  1518. slab_lock(page);
  1519. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1520. goto debug;
  1521. checks_ok:
  1522. prior = object[offset] = page->freelist;
  1523. page->freelist = object;
  1524. page->inuse--;
  1525. if (unlikely(PageSlubFrozen(page))) {
  1526. stat(c, FREE_FROZEN);
  1527. goto out_unlock;
  1528. }
  1529. if (unlikely(!page->inuse))
  1530. goto slab_empty;
  1531. /*
  1532. * Objects left in the slab. If it was not on the partial list before
  1533. * then add it.
  1534. */
  1535. if (unlikely(!prior)) {
  1536. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1537. stat(c, FREE_ADD_PARTIAL);
  1538. }
  1539. out_unlock:
  1540. slab_unlock(page);
  1541. return;
  1542. slab_empty:
  1543. if (prior) {
  1544. /*
  1545. * Slab still on the partial list.
  1546. */
  1547. remove_partial(s, page);
  1548. stat(c, FREE_REMOVE_PARTIAL);
  1549. }
  1550. slab_unlock(page);
  1551. stat(c, FREE_SLAB);
  1552. discard_slab(s, page);
  1553. return;
  1554. debug:
  1555. if (!free_debug_processing(s, page, x, addr))
  1556. goto out_unlock;
  1557. goto checks_ok;
  1558. }
  1559. /*
  1560. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1561. * can perform fastpath freeing without additional function calls.
  1562. *
  1563. * The fastpath is only possible if we are freeing to the current cpu slab
  1564. * of this processor. This typically the case if we have just allocated
  1565. * the item before.
  1566. *
  1567. * If fastpath is not possible then fall back to __slab_free where we deal
  1568. * with all sorts of special processing.
  1569. */
  1570. static __always_inline void slab_free(struct kmem_cache *s,
  1571. struct page *page, void *x, unsigned long addr)
  1572. {
  1573. void **object = (void *)x;
  1574. struct kmem_cache_cpu *c;
  1575. unsigned long flags;
  1576. kmemleak_free_recursive(x, s->flags);
  1577. local_irq_save(flags);
  1578. c = get_cpu_slab(s, smp_processor_id());
  1579. kmemcheck_slab_free(s, object, c->objsize);
  1580. debug_check_no_locks_freed(object, c->objsize);
  1581. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1582. debug_check_no_obj_freed(object, c->objsize);
  1583. if (likely(page == c->page && c->node >= 0)) {
  1584. object[c->offset] = c->freelist;
  1585. c->freelist = object;
  1586. stat(c, FREE_FASTPATH);
  1587. } else
  1588. __slab_free(s, page, x, addr, c->offset);
  1589. local_irq_restore(flags);
  1590. }
  1591. void kmem_cache_free(struct kmem_cache *s, void *x)
  1592. {
  1593. struct page *page;
  1594. page = virt_to_head_page(x);
  1595. slab_free(s, page, x, _RET_IP_);
  1596. trace_kmem_cache_free(_RET_IP_, x);
  1597. }
  1598. EXPORT_SYMBOL(kmem_cache_free);
  1599. /* Figure out on which slab page the object resides */
  1600. static struct page *get_object_page(const void *x)
  1601. {
  1602. struct page *page = virt_to_head_page(x);
  1603. if (!PageSlab(page))
  1604. return NULL;
  1605. return page;
  1606. }
  1607. /*
  1608. * Object placement in a slab is made very easy because we always start at
  1609. * offset 0. If we tune the size of the object to the alignment then we can
  1610. * get the required alignment by putting one properly sized object after
  1611. * another.
  1612. *
  1613. * Notice that the allocation order determines the sizes of the per cpu
  1614. * caches. Each processor has always one slab available for allocations.
  1615. * Increasing the allocation order reduces the number of times that slabs
  1616. * must be moved on and off the partial lists and is therefore a factor in
  1617. * locking overhead.
  1618. */
  1619. /*
  1620. * Mininum / Maximum order of slab pages. This influences locking overhead
  1621. * and slab fragmentation. A higher order reduces the number of partial slabs
  1622. * and increases the number of allocations possible without having to
  1623. * take the list_lock.
  1624. */
  1625. static int slub_min_order;
  1626. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1627. static int slub_min_objects;
  1628. /*
  1629. * Merge control. If this is set then no merging of slab caches will occur.
  1630. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1631. */
  1632. static int slub_nomerge;
  1633. /*
  1634. * Calculate the order of allocation given an slab object size.
  1635. *
  1636. * The order of allocation has significant impact on performance and other
  1637. * system components. Generally order 0 allocations should be preferred since
  1638. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1639. * be problematic to put into order 0 slabs because there may be too much
  1640. * unused space left. We go to a higher order if more than 1/16th of the slab
  1641. * would be wasted.
  1642. *
  1643. * In order to reach satisfactory performance we must ensure that a minimum
  1644. * number of objects is in one slab. Otherwise we may generate too much
  1645. * activity on the partial lists which requires taking the list_lock. This is
  1646. * less a concern for large slabs though which are rarely used.
  1647. *
  1648. * slub_max_order specifies the order where we begin to stop considering the
  1649. * number of objects in a slab as critical. If we reach slub_max_order then
  1650. * we try to keep the page order as low as possible. So we accept more waste
  1651. * of space in favor of a small page order.
  1652. *
  1653. * Higher order allocations also allow the placement of more objects in a
  1654. * slab and thereby reduce object handling overhead. If the user has
  1655. * requested a higher mininum order then we start with that one instead of
  1656. * the smallest order which will fit the object.
  1657. */
  1658. static inline int slab_order(int size, int min_objects,
  1659. int max_order, int fract_leftover)
  1660. {
  1661. int order;
  1662. int rem;
  1663. int min_order = slub_min_order;
  1664. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1665. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1666. for (order = max(min_order,
  1667. fls(min_objects * size - 1) - PAGE_SHIFT);
  1668. order <= max_order; order++) {
  1669. unsigned long slab_size = PAGE_SIZE << order;
  1670. if (slab_size < min_objects * size)
  1671. continue;
  1672. rem = slab_size % size;
  1673. if (rem <= slab_size / fract_leftover)
  1674. break;
  1675. }
  1676. return order;
  1677. }
  1678. static inline int calculate_order(int size)
  1679. {
  1680. int order;
  1681. int min_objects;
  1682. int fraction;
  1683. int max_objects;
  1684. /*
  1685. * Attempt to find best configuration for a slab. This
  1686. * works by first attempting to generate a layout with
  1687. * the best configuration and backing off gradually.
  1688. *
  1689. * First we reduce the acceptable waste in a slab. Then
  1690. * we reduce the minimum objects required in a slab.
  1691. */
  1692. min_objects = slub_min_objects;
  1693. if (!min_objects)
  1694. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1695. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1696. min_objects = min(min_objects, max_objects);
  1697. while (min_objects > 1) {
  1698. fraction = 16;
  1699. while (fraction >= 4) {
  1700. order = slab_order(size, min_objects,
  1701. slub_max_order, fraction);
  1702. if (order <= slub_max_order)
  1703. return order;
  1704. fraction /= 2;
  1705. }
  1706. min_objects --;
  1707. }
  1708. /*
  1709. * We were unable to place multiple objects in a slab. Now
  1710. * lets see if we can place a single object there.
  1711. */
  1712. order = slab_order(size, 1, slub_max_order, 1);
  1713. if (order <= slub_max_order)
  1714. return order;
  1715. /*
  1716. * Doh this slab cannot be placed using slub_max_order.
  1717. */
  1718. order = slab_order(size, 1, MAX_ORDER, 1);
  1719. if (order < MAX_ORDER)
  1720. return order;
  1721. return -ENOSYS;
  1722. }
  1723. /*
  1724. * Figure out what the alignment of the objects will be.
  1725. */
  1726. static unsigned long calculate_alignment(unsigned long flags,
  1727. unsigned long align, unsigned long size)
  1728. {
  1729. /*
  1730. * If the user wants hardware cache aligned objects then follow that
  1731. * suggestion if the object is sufficiently large.
  1732. *
  1733. * The hardware cache alignment cannot override the specified
  1734. * alignment though. If that is greater then use it.
  1735. */
  1736. if (flags & SLAB_HWCACHE_ALIGN) {
  1737. unsigned long ralign = cache_line_size();
  1738. while (size <= ralign / 2)
  1739. ralign /= 2;
  1740. align = max(align, ralign);
  1741. }
  1742. if (align < ARCH_SLAB_MINALIGN)
  1743. align = ARCH_SLAB_MINALIGN;
  1744. return ALIGN(align, sizeof(void *));
  1745. }
  1746. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1747. struct kmem_cache_cpu *c)
  1748. {
  1749. c->page = NULL;
  1750. c->freelist = NULL;
  1751. c->node = 0;
  1752. c->offset = s->offset / sizeof(void *);
  1753. c->objsize = s->objsize;
  1754. #ifdef CONFIG_SLUB_STATS
  1755. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1756. #endif
  1757. }
  1758. static void
  1759. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1760. {
  1761. n->nr_partial = 0;
  1762. spin_lock_init(&n->list_lock);
  1763. INIT_LIST_HEAD(&n->partial);
  1764. #ifdef CONFIG_SLUB_DEBUG
  1765. atomic_long_set(&n->nr_slabs, 0);
  1766. atomic_long_set(&n->total_objects, 0);
  1767. INIT_LIST_HEAD(&n->full);
  1768. #endif
  1769. }
  1770. #ifdef CONFIG_SMP
  1771. /*
  1772. * Per cpu array for per cpu structures.
  1773. *
  1774. * The per cpu array places all kmem_cache_cpu structures from one processor
  1775. * close together meaning that it becomes possible that multiple per cpu
  1776. * structures are contained in one cacheline. This may be particularly
  1777. * beneficial for the kmalloc caches.
  1778. *
  1779. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1780. * likely able to get per cpu structures for all caches from the array defined
  1781. * here. We must be able to cover all kmalloc caches during bootstrap.
  1782. *
  1783. * If the per cpu array is exhausted then fall back to kmalloc
  1784. * of individual cachelines. No sharing is possible then.
  1785. */
  1786. #define NR_KMEM_CACHE_CPU 100
  1787. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1788. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1789. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1790. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1791. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1792. int cpu, gfp_t flags)
  1793. {
  1794. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1795. if (c)
  1796. per_cpu(kmem_cache_cpu_free, cpu) =
  1797. (void *)c->freelist;
  1798. else {
  1799. /* Table overflow: So allocate ourselves */
  1800. c = kmalloc_node(
  1801. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1802. flags, cpu_to_node(cpu));
  1803. if (!c)
  1804. return NULL;
  1805. }
  1806. init_kmem_cache_cpu(s, c);
  1807. return c;
  1808. }
  1809. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1810. {
  1811. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1812. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1813. kfree(c);
  1814. return;
  1815. }
  1816. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1817. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1818. }
  1819. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1820. {
  1821. int cpu;
  1822. for_each_online_cpu(cpu) {
  1823. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1824. if (c) {
  1825. s->cpu_slab[cpu] = NULL;
  1826. free_kmem_cache_cpu(c, cpu);
  1827. }
  1828. }
  1829. }
  1830. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1831. {
  1832. int cpu;
  1833. for_each_online_cpu(cpu) {
  1834. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1835. if (c)
  1836. continue;
  1837. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1838. if (!c) {
  1839. free_kmem_cache_cpus(s);
  1840. return 0;
  1841. }
  1842. s->cpu_slab[cpu] = c;
  1843. }
  1844. return 1;
  1845. }
  1846. /*
  1847. * Initialize the per cpu array.
  1848. */
  1849. static void init_alloc_cpu_cpu(int cpu)
  1850. {
  1851. int i;
  1852. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1853. return;
  1854. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1855. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1856. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1857. }
  1858. static void __init init_alloc_cpu(void)
  1859. {
  1860. int cpu;
  1861. for_each_online_cpu(cpu)
  1862. init_alloc_cpu_cpu(cpu);
  1863. }
  1864. #else
  1865. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1866. static inline void init_alloc_cpu(void) {}
  1867. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1868. {
  1869. init_kmem_cache_cpu(s, &s->cpu_slab);
  1870. return 1;
  1871. }
  1872. #endif
  1873. #ifdef CONFIG_NUMA
  1874. /*
  1875. * No kmalloc_node yet so do it by hand. We know that this is the first
  1876. * slab on the node for this slabcache. There are no concurrent accesses
  1877. * possible.
  1878. *
  1879. * Note that this function only works on the kmalloc_node_cache
  1880. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1881. * memory on a fresh node that has no slab structures yet.
  1882. */
  1883. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1884. {
  1885. struct page *page;
  1886. struct kmem_cache_node *n;
  1887. unsigned long flags;
  1888. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1889. page = new_slab(kmalloc_caches, gfpflags, node);
  1890. BUG_ON(!page);
  1891. if (page_to_nid(page) != node) {
  1892. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1893. "node %d\n", node);
  1894. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1895. "in order to be able to continue\n");
  1896. }
  1897. n = page->freelist;
  1898. BUG_ON(!n);
  1899. page->freelist = get_freepointer(kmalloc_caches, n);
  1900. page->inuse++;
  1901. kmalloc_caches->node[node] = n;
  1902. #ifdef CONFIG_SLUB_DEBUG
  1903. init_object(kmalloc_caches, n, 1);
  1904. init_tracking(kmalloc_caches, n);
  1905. #endif
  1906. init_kmem_cache_node(n, kmalloc_caches);
  1907. inc_slabs_node(kmalloc_caches, node, page->objects);
  1908. /*
  1909. * lockdep requires consistent irq usage for each lock
  1910. * so even though there cannot be a race this early in
  1911. * the boot sequence, we still disable irqs.
  1912. */
  1913. local_irq_save(flags);
  1914. add_partial(n, page, 0);
  1915. local_irq_restore(flags);
  1916. }
  1917. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1918. {
  1919. int node;
  1920. for_each_node_state(node, N_NORMAL_MEMORY) {
  1921. struct kmem_cache_node *n = s->node[node];
  1922. if (n && n != &s->local_node)
  1923. kmem_cache_free(kmalloc_caches, n);
  1924. s->node[node] = NULL;
  1925. }
  1926. }
  1927. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1928. {
  1929. int node;
  1930. int local_node;
  1931. if (slab_state >= UP)
  1932. local_node = page_to_nid(virt_to_page(s));
  1933. else
  1934. local_node = 0;
  1935. for_each_node_state(node, N_NORMAL_MEMORY) {
  1936. struct kmem_cache_node *n;
  1937. if (local_node == node)
  1938. n = &s->local_node;
  1939. else {
  1940. if (slab_state == DOWN) {
  1941. early_kmem_cache_node_alloc(gfpflags, node);
  1942. continue;
  1943. }
  1944. n = kmem_cache_alloc_node(kmalloc_caches,
  1945. gfpflags, node);
  1946. if (!n) {
  1947. free_kmem_cache_nodes(s);
  1948. return 0;
  1949. }
  1950. }
  1951. s->node[node] = n;
  1952. init_kmem_cache_node(n, s);
  1953. }
  1954. return 1;
  1955. }
  1956. #else
  1957. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1958. {
  1959. }
  1960. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1961. {
  1962. init_kmem_cache_node(&s->local_node, s);
  1963. return 1;
  1964. }
  1965. #endif
  1966. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1967. {
  1968. if (min < MIN_PARTIAL)
  1969. min = MIN_PARTIAL;
  1970. else if (min > MAX_PARTIAL)
  1971. min = MAX_PARTIAL;
  1972. s->min_partial = min;
  1973. }
  1974. /*
  1975. * calculate_sizes() determines the order and the distribution of data within
  1976. * a slab object.
  1977. */
  1978. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1979. {
  1980. unsigned long flags = s->flags;
  1981. unsigned long size = s->objsize;
  1982. unsigned long align = s->align;
  1983. int order;
  1984. /*
  1985. * Round up object size to the next word boundary. We can only
  1986. * place the free pointer at word boundaries and this determines
  1987. * the possible location of the free pointer.
  1988. */
  1989. size = ALIGN(size, sizeof(void *));
  1990. #ifdef CONFIG_SLUB_DEBUG
  1991. /*
  1992. * Determine if we can poison the object itself. If the user of
  1993. * the slab may touch the object after free or before allocation
  1994. * then we should never poison the object itself.
  1995. */
  1996. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1997. !s->ctor)
  1998. s->flags |= __OBJECT_POISON;
  1999. else
  2000. s->flags &= ~__OBJECT_POISON;
  2001. /*
  2002. * If we are Redzoning then check if there is some space between the
  2003. * end of the object and the free pointer. If not then add an
  2004. * additional word to have some bytes to store Redzone information.
  2005. */
  2006. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2007. size += sizeof(void *);
  2008. #endif
  2009. /*
  2010. * With that we have determined the number of bytes in actual use
  2011. * by the object. This is the potential offset to the free pointer.
  2012. */
  2013. s->inuse = size;
  2014. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2015. s->ctor)) {
  2016. /*
  2017. * Relocate free pointer after the object if it is not
  2018. * permitted to overwrite the first word of the object on
  2019. * kmem_cache_free.
  2020. *
  2021. * This is the case if we do RCU, have a constructor or
  2022. * destructor or are poisoning the objects.
  2023. */
  2024. s->offset = size;
  2025. size += sizeof(void *);
  2026. }
  2027. #ifdef CONFIG_SLUB_DEBUG
  2028. if (flags & SLAB_STORE_USER)
  2029. /*
  2030. * Need to store information about allocs and frees after
  2031. * the object.
  2032. */
  2033. size += 2 * sizeof(struct track);
  2034. if (flags & SLAB_RED_ZONE)
  2035. /*
  2036. * Add some empty padding so that we can catch
  2037. * overwrites from earlier objects rather than let
  2038. * tracking information or the free pointer be
  2039. * corrupted if a user writes before the start
  2040. * of the object.
  2041. */
  2042. size += sizeof(void *);
  2043. #endif
  2044. /*
  2045. * Determine the alignment based on various parameters that the
  2046. * user specified and the dynamic determination of cache line size
  2047. * on bootup.
  2048. */
  2049. align = calculate_alignment(flags, align, s->objsize);
  2050. /*
  2051. * SLUB stores one object immediately after another beginning from
  2052. * offset 0. In order to align the objects we have to simply size
  2053. * each object to conform to the alignment.
  2054. */
  2055. size = ALIGN(size, align);
  2056. s->size = size;
  2057. if (forced_order >= 0)
  2058. order = forced_order;
  2059. else
  2060. order = calculate_order(size);
  2061. if (order < 0)
  2062. return 0;
  2063. s->allocflags = 0;
  2064. if (order)
  2065. s->allocflags |= __GFP_COMP;
  2066. if (s->flags & SLAB_CACHE_DMA)
  2067. s->allocflags |= SLUB_DMA;
  2068. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2069. s->allocflags |= __GFP_RECLAIMABLE;
  2070. /*
  2071. * Determine the number of objects per slab
  2072. */
  2073. s->oo = oo_make(order, size);
  2074. s->min = oo_make(get_order(size), size);
  2075. if (oo_objects(s->oo) > oo_objects(s->max))
  2076. s->max = s->oo;
  2077. return !!oo_objects(s->oo);
  2078. }
  2079. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  2080. const char *name, size_t size,
  2081. size_t align, unsigned long flags,
  2082. void (*ctor)(void *))
  2083. {
  2084. memset(s, 0, kmem_size);
  2085. s->name = name;
  2086. s->ctor = ctor;
  2087. s->objsize = size;
  2088. s->align = align;
  2089. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2090. if (!calculate_sizes(s, -1))
  2091. goto error;
  2092. /*
  2093. * The larger the object size is, the more pages we want on the partial
  2094. * list to avoid pounding the page allocator excessively.
  2095. */
  2096. set_min_partial(s, ilog2(s->size));
  2097. s->refcount = 1;
  2098. #ifdef CONFIG_NUMA
  2099. s->remote_node_defrag_ratio = 1000;
  2100. #endif
  2101. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2102. goto error;
  2103. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2104. return 1;
  2105. free_kmem_cache_nodes(s);
  2106. error:
  2107. if (flags & SLAB_PANIC)
  2108. panic("Cannot create slab %s size=%lu realsize=%u "
  2109. "order=%u offset=%u flags=%lx\n",
  2110. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2111. s->offset, flags);
  2112. return 0;
  2113. }
  2114. /*
  2115. * Check if a given pointer is valid
  2116. */
  2117. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2118. {
  2119. struct page *page;
  2120. page = get_object_page(object);
  2121. if (!page || s != page->slab)
  2122. /* No slab or wrong slab */
  2123. return 0;
  2124. if (!check_valid_pointer(s, page, object))
  2125. return 0;
  2126. /*
  2127. * We could also check if the object is on the slabs freelist.
  2128. * But this would be too expensive and it seems that the main
  2129. * purpose of kmem_ptr_valid() is to check if the object belongs
  2130. * to a certain slab.
  2131. */
  2132. return 1;
  2133. }
  2134. EXPORT_SYMBOL(kmem_ptr_validate);
  2135. /*
  2136. * Determine the size of a slab object
  2137. */
  2138. unsigned int kmem_cache_size(struct kmem_cache *s)
  2139. {
  2140. return s->objsize;
  2141. }
  2142. EXPORT_SYMBOL(kmem_cache_size);
  2143. const char *kmem_cache_name(struct kmem_cache *s)
  2144. {
  2145. return s->name;
  2146. }
  2147. EXPORT_SYMBOL(kmem_cache_name);
  2148. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2149. const char *text)
  2150. {
  2151. #ifdef CONFIG_SLUB_DEBUG
  2152. void *addr = page_address(page);
  2153. void *p;
  2154. DECLARE_BITMAP(map, page->objects);
  2155. bitmap_zero(map, page->objects);
  2156. slab_err(s, page, "%s", text);
  2157. slab_lock(page);
  2158. for_each_free_object(p, s, page->freelist)
  2159. set_bit(slab_index(p, s, addr), map);
  2160. for_each_object(p, s, addr, page->objects) {
  2161. if (!test_bit(slab_index(p, s, addr), map)) {
  2162. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2163. p, p - addr);
  2164. print_tracking(s, p);
  2165. }
  2166. }
  2167. slab_unlock(page);
  2168. #endif
  2169. }
  2170. /*
  2171. * Attempt to free all partial slabs on a node.
  2172. */
  2173. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2174. {
  2175. unsigned long flags;
  2176. struct page *page, *h;
  2177. spin_lock_irqsave(&n->list_lock, flags);
  2178. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2179. if (!page->inuse) {
  2180. list_del(&page->lru);
  2181. discard_slab(s, page);
  2182. n->nr_partial--;
  2183. } else {
  2184. list_slab_objects(s, page,
  2185. "Objects remaining on kmem_cache_close()");
  2186. }
  2187. }
  2188. spin_unlock_irqrestore(&n->list_lock, flags);
  2189. }
  2190. /*
  2191. * Release all resources used by a slab cache.
  2192. */
  2193. static inline int kmem_cache_close(struct kmem_cache *s)
  2194. {
  2195. int node;
  2196. flush_all(s);
  2197. /* Attempt to free all objects */
  2198. free_kmem_cache_cpus(s);
  2199. for_each_node_state(node, N_NORMAL_MEMORY) {
  2200. struct kmem_cache_node *n = get_node(s, node);
  2201. free_partial(s, n);
  2202. if (n->nr_partial || slabs_node(s, node))
  2203. return 1;
  2204. }
  2205. free_kmem_cache_nodes(s);
  2206. return 0;
  2207. }
  2208. /*
  2209. * Close a cache and release the kmem_cache structure
  2210. * (must be used for caches created using kmem_cache_create)
  2211. */
  2212. void kmem_cache_destroy(struct kmem_cache *s)
  2213. {
  2214. if (s->flags & SLAB_DESTROY_BY_RCU)
  2215. rcu_barrier();
  2216. down_write(&slub_lock);
  2217. s->refcount--;
  2218. if (!s->refcount) {
  2219. list_del(&s->list);
  2220. up_write(&slub_lock);
  2221. if (kmem_cache_close(s)) {
  2222. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2223. "still has objects.\n", s->name, __func__);
  2224. dump_stack();
  2225. }
  2226. sysfs_slab_remove(s);
  2227. } else
  2228. up_write(&slub_lock);
  2229. }
  2230. EXPORT_SYMBOL(kmem_cache_destroy);
  2231. /********************************************************************
  2232. * Kmalloc subsystem
  2233. *******************************************************************/
  2234. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2235. EXPORT_SYMBOL(kmalloc_caches);
  2236. static int __init setup_slub_min_order(char *str)
  2237. {
  2238. get_option(&str, &slub_min_order);
  2239. return 1;
  2240. }
  2241. __setup("slub_min_order=", setup_slub_min_order);
  2242. static int __init setup_slub_max_order(char *str)
  2243. {
  2244. get_option(&str, &slub_max_order);
  2245. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2246. return 1;
  2247. }
  2248. __setup("slub_max_order=", setup_slub_max_order);
  2249. static int __init setup_slub_min_objects(char *str)
  2250. {
  2251. get_option(&str, &slub_min_objects);
  2252. return 1;
  2253. }
  2254. __setup("slub_min_objects=", setup_slub_min_objects);
  2255. static int __init setup_slub_nomerge(char *str)
  2256. {
  2257. slub_nomerge = 1;
  2258. return 1;
  2259. }
  2260. __setup("slub_nomerge", setup_slub_nomerge);
  2261. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2262. const char *name, int size, gfp_t gfp_flags)
  2263. {
  2264. unsigned int flags = 0;
  2265. if (gfp_flags & SLUB_DMA)
  2266. flags = SLAB_CACHE_DMA;
  2267. /*
  2268. * This function is called with IRQs disabled during early-boot on
  2269. * single CPU so there's no need to take slub_lock here.
  2270. */
  2271. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2272. flags, NULL))
  2273. goto panic;
  2274. list_add(&s->list, &slab_caches);
  2275. if (sysfs_slab_add(s))
  2276. goto panic;
  2277. return s;
  2278. panic:
  2279. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2280. }
  2281. #ifdef CONFIG_ZONE_DMA
  2282. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2283. static void sysfs_add_func(struct work_struct *w)
  2284. {
  2285. struct kmem_cache *s;
  2286. down_write(&slub_lock);
  2287. list_for_each_entry(s, &slab_caches, list) {
  2288. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2289. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2290. sysfs_slab_add(s);
  2291. }
  2292. }
  2293. up_write(&slub_lock);
  2294. }
  2295. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2296. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2297. {
  2298. struct kmem_cache *s;
  2299. char *text;
  2300. size_t realsize;
  2301. unsigned long slabflags;
  2302. s = kmalloc_caches_dma[index];
  2303. if (s)
  2304. return s;
  2305. /* Dynamically create dma cache */
  2306. if (flags & __GFP_WAIT)
  2307. down_write(&slub_lock);
  2308. else {
  2309. if (!down_write_trylock(&slub_lock))
  2310. goto out;
  2311. }
  2312. if (kmalloc_caches_dma[index])
  2313. goto unlock_out;
  2314. realsize = kmalloc_caches[index].objsize;
  2315. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2316. (unsigned int)realsize);
  2317. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2318. /*
  2319. * Must defer sysfs creation to a workqueue because we don't know
  2320. * what context we are called from. Before sysfs comes up, we don't
  2321. * need to do anything because our sysfs initcall will start by
  2322. * adding all existing slabs to sysfs.
  2323. */
  2324. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2325. if (slab_state >= SYSFS)
  2326. slabflags |= __SYSFS_ADD_DEFERRED;
  2327. if (!s || !text || !kmem_cache_open(s, flags, text,
  2328. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2329. kfree(s);
  2330. kfree(text);
  2331. goto unlock_out;
  2332. }
  2333. list_add(&s->list, &slab_caches);
  2334. kmalloc_caches_dma[index] = s;
  2335. if (slab_state >= SYSFS)
  2336. schedule_work(&sysfs_add_work);
  2337. unlock_out:
  2338. up_write(&slub_lock);
  2339. out:
  2340. return kmalloc_caches_dma[index];
  2341. }
  2342. #endif
  2343. /*
  2344. * Conversion table for small slabs sizes / 8 to the index in the
  2345. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2346. * of two cache sizes there. The size of larger slabs can be determined using
  2347. * fls.
  2348. */
  2349. static s8 size_index[24] = {
  2350. 3, /* 8 */
  2351. 4, /* 16 */
  2352. 5, /* 24 */
  2353. 5, /* 32 */
  2354. 6, /* 40 */
  2355. 6, /* 48 */
  2356. 6, /* 56 */
  2357. 6, /* 64 */
  2358. 1, /* 72 */
  2359. 1, /* 80 */
  2360. 1, /* 88 */
  2361. 1, /* 96 */
  2362. 7, /* 104 */
  2363. 7, /* 112 */
  2364. 7, /* 120 */
  2365. 7, /* 128 */
  2366. 2, /* 136 */
  2367. 2, /* 144 */
  2368. 2, /* 152 */
  2369. 2, /* 160 */
  2370. 2, /* 168 */
  2371. 2, /* 176 */
  2372. 2, /* 184 */
  2373. 2 /* 192 */
  2374. };
  2375. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2376. {
  2377. int index;
  2378. if (size <= 192) {
  2379. if (!size)
  2380. return ZERO_SIZE_PTR;
  2381. index = size_index[(size - 1) / 8];
  2382. } else
  2383. index = fls(size - 1);
  2384. #ifdef CONFIG_ZONE_DMA
  2385. if (unlikely((flags & SLUB_DMA)))
  2386. return dma_kmalloc_cache(index, flags);
  2387. #endif
  2388. return &kmalloc_caches[index];
  2389. }
  2390. void *__kmalloc(size_t size, gfp_t flags)
  2391. {
  2392. struct kmem_cache *s;
  2393. void *ret;
  2394. if (unlikely(size > SLUB_MAX_SIZE))
  2395. return kmalloc_large(size, flags);
  2396. s = get_slab(size, flags);
  2397. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2398. return s;
  2399. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2400. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2401. return ret;
  2402. }
  2403. EXPORT_SYMBOL(__kmalloc);
  2404. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2405. {
  2406. struct page *page;
  2407. void *ptr = NULL;
  2408. flags |= __GFP_COMP | __GFP_NOTRACK;
  2409. page = alloc_pages_node(node, flags, get_order(size));
  2410. if (page)
  2411. ptr = page_address(page);
  2412. kmemleak_alloc(ptr, size, 1, flags);
  2413. return ptr;
  2414. }
  2415. #ifdef CONFIG_NUMA
  2416. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2417. {
  2418. struct kmem_cache *s;
  2419. void *ret;
  2420. if (unlikely(size > SLUB_MAX_SIZE)) {
  2421. ret = kmalloc_large_node(size, flags, node);
  2422. trace_kmalloc_node(_RET_IP_, ret,
  2423. size, PAGE_SIZE << get_order(size),
  2424. flags, node);
  2425. return ret;
  2426. }
  2427. s = get_slab(size, flags);
  2428. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2429. return s;
  2430. ret = slab_alloc(s, flags, node, _RET_IP_);
  2431. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2432. return ret;
  2433. }
  2434. EXPORT_SYMBOL(__kmalloc_node);
  2435. #endif
  2436. size_t ksize(const void *object)
  2437. {
  2438. struct page *page;
  2439. struct kmem_cache *s;
  2440. if (unlikely(object == ZERO_SIZE_PTR))
  2441. return 0;
  2442. page = virt_to_head_page(object);
  2443. if (unlikely(!PageSlab(page))) {
  2444. WARN_ON(!PageCompound(page));
  2445. return PAGE_SIZE << compound_order(page);
  2446. }
  2447. s = page->slab;
  2448. #ifdef CONFIG_SLUB_DEBUG
  2449. /*
  2450. * Debugging requires use of the padding between object
  2451. * and whatever may come after it.
  2452. */
  2453. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2454. return s->objsize;
  2455. #endif
  2456. /*
  2457. * If we have the need to store the freelist pointer
  2458. * back there or track user information then we can
  2459. * only use the space before that information.
  2460. */
  2461. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2462. return s->inuse;
  2463. /*
  2464. * Else we can use all the padding etc for the allocation
  2465. */
  2466. return s->size;
  2467. }
  2468. EXPORT_SYMBOL(ksize);
  2469. void kfree(const void *x)
  2470. {
  2471. struct page *page;
  2472. void *object = (void *)x;
  2473. trace_kfree(_RET_IP_, x);
  2474. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2475. return;
  2476. page = virt_to_head_page(x);
  2477. if (unlikely(!PageSlab(page))) {
  2478. BUG_ON(!PageCompound(page));
  2479. kmemleak_free(x);
  2480. put_page(page);
  2481. return;
  2482. }
  2483. slab_free(page->slab, page, object, _RET_IP_);
  2484. }
  2485. EXPORT_SYMBOL(kfree);
  2486. /*
  2487. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2488. * the remaining slabs by the number of items in use. The slabs with the
  2489. * most items in use come first. New allocations will then fill those up
  2490. * and thus they can be removed from the partial lists.
  2491. *
  2492. * The slabs with the least items are placed last. This results in them
  2493. * being allocated from last increasing the chance that the last objects
  2494. * are freed in them.
  2495. */
  2496. int kmem_cache_shrink(struct kmem_cache *s)
  2497. {
  2498. int node;
  2499. int i;
  2500. struct kmem_cache_node *n;
  2501. struct page *page;
  2502. struct page *t;
  2503. int objects = oo_objects(s->max);
  2504. struct list_head *slabs_by_inuse =
  2505. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2506. unsigned long flags;
  2507. if (!slabs_by_inuse)
  2508. return -ENOMEM;
  2509. flush_all(s);
  2510. for_each_node_state(node, N_NORMAL_MEMORY) {
  2511. n = get_node(s, node);
  2512. if (!n->nr_partial)
  2513. continue;
  2514. for (i = 0; i < objects; i++)
  2515. INIT_LIST_HEAD(slabs_by_inuse + i);
  2516. spin_lock_irqsave(&n->list_lock, flags);
  2517. /*
  2518. * Build lists indexed by the items in use in each slab.
  2519. *
  2520. * Note that concurrent frees may occur while we hold the
  2521. * list_lock. page->inuse here is the upper limit.
  2522. */
  2523. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2524. if (!page->inuse && slab_trylock(page)) {
  2525. /*
  2526. * Must hold slab lock here because slab_free
  2527. * may have freed the last object and be
  2528. * waiting to release the slab.
  2529. */
  2530. list_del(&page->lru);
  2531. n->nr_partial--;
  2532. slab_unlock(page);
  2533. discard_slab(s, page);
  2534. } else {
  2535. list_move(&page->lru,
  2536. slabs_by_inuse + page->inuse);
  2537. }
  2538. }
  2539. /*
  2540. * Rebuild the partial list with the slabs filled up most
  2541. * first and the least used slabs at the end.
  2542. */
  2543. for (i = objects - 1; i >= 0; i--)
  2544. list_splice(slabs_by_inuse + i, n->partial.prev);
  2545. spin_unlock_irqrestore(&n->list_lock, flags);
  2546. }
  2547. kfree(slabs_by_inuse);
  2548. return 0;
  2549. }
  2550. EXPORT_SYMBOL(kmem_cache_shrink);
  2551. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2552. static int slab_mem_going_offline_callback(void *arg)
  2553. {
  2554. struct kmem_cache *s;
  2555. down_read(&slub_lock);
  2556. list_for_each_entry(s, &slab_caches, list)
  2557. kmem_cache_shrink(s);
  2558. up_read(&slub_lock);
  2559. return 0;
  2560. }
  2561. static void slab_mem_offline_callback(void *arg)
  2562. {
  2563. struct kmem_cache_node *n;
  2564. struct kmem_cache *s;
  2565. struct memory_notify *marg = arg;
  2566. int offline_node;
  2567. offline_node = marg->status_change_nid;
  2568. /*
  2569. * If the node still has available memory. we need kmem_cache_node
  2570. * for it yet.
  2571. */
  2572. if (offline_node < 0)
  2573. return;
  2574. down_read(&slub_lock);
  2575. list_for_each_entry(s, &slab_caches, list) {
  2576. n = get_node(s, offline_node);
  2577. if (n) {
  2578. /*
  2579. * if n->nr_slabs > 0, slabs still exist on the node
  2580. * that is going down. We were unable to free them,
  2581. * and offline_pages() function shoudn't call this
  2582. * callback. So, we must fail.
  2583. */
  2584. BUG_ON(slabs_node(s, offline_node));
  2585. s->node[offline_node] = NULL;
  2586. kmem_cache_free(kmalloc_caches, n);
  2587. }
  2588. }
  2589. up_read(&slub_lock);
  2590. }
  2591. static int slab_mem_going_online_callback(void *arg)
  2592. {
  2593. struct kmem_cache_node *n;
  2594. struct kmem_cache *s;
  2595. struct memory_notify *marg = arg;
  2596. int nid = marg->status_change_nid;
  2597. int ret = 0;
  2598. /*
  2599. * If the node's memory is already available, then kmem_cache_node is
  2600. * already created. Nothing to do.
  2601. */
  2602. if (nid < 0)
  2603. return 0;
  2604. /*
  2605. * We are bringing a node online. No memory is available yet. We must
  2606. * allocate a kmem_cache_node structure in order to bring the node
  2607. * online.
  2608. */
  2609. down_read(&slub_lock);
  2610. list_for_each_entry(s, &slab_caches, list) {
  2611. /*
  2612. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2613. * since memory is not yet available from the node that
  2614. * is brought up.
  2615. */
  2616. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2617. if (!n) {
  2618. ret = -ENOMEM;
  2619. goto out;
  2620. }
  2621. init_kmem_cache_node(n, s);
  2622. s->node[nid] = n;
  2623. }
  2624. out:
  2625. up_read(&slub_lock);
  2626. return ret;
  2627. }
  2628. static int slab_memory_callback(struct notifier_block *self,
  2629. unsigned long action, void *arg)
  2630. {
  2631. int ret = 0;
  2632. switch (action) {
  2633. case MEM_GOING_ONLINE:
  2634. ret = slab_mem_going_online_callback(arg);
  2635. break;
  2636. case MEM_GOING_OFFLINE:
  2637. ret = slab_mem_going_offline_callback(arg);
  2638. break;
  2639. case MEM_OFFLINE:
  2640. case MEM_CANCEL_ONLINE:
  2641. slab_mem_offline_callback(arg);
  2642. break;
  2643. case MEM_ONLINE:
  2644. case MEM_CANCEL_OFFLINE:
  2645. break;
  2646. }
  2647. if (ret)
  2648. ret = notifier_from_errno(ret);
  2649. else
  2650. ret = NOTIFY_OK;
  2651. return ret;
  2652. }
  2653. #endif /* CONFIG_MEMORY_HOTPLUG */
  2654. /********************************************************************
  2655. * Basic setup of slabs
  2656. *******************************************************************/
  2657. void __init kmem_cache_init(void)
  2658. {
  2659. int i;
  2660. int caches = 0;
  2661. init_alloc_cpu();
  2662. #ifdef CONFIG_NUMA
  2663. /*
  2664. * Must first have the slab cache available for the allocations of the
  2665. * struct kmem_cache_node's. There is special bootstrap code in
  2666. * kmem_cache_open for slab_state == DOWN.
  2667. */
  2668. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2669. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2670. kmalloc_caches[0].refcount = -1;
  2671. caches++;
  2672. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2673. #endif
  2674. /* Able to allocate the per node structures */
  2675. slab_state = PARTIAL;
  2676. /* Caches that are not of the two-to-the-power-of size */
  2677. if (KMALLOC_MIN_SIZE <= 64) {
  2678. create_kmalloc_cache(&kmalloc_caches[1],
  2679. "kmalloc-96", 96, GFP_NOWAIT);
  2680. caches++;
  2681. create_kmalloc_cache(&kmalloc_caches[2],
  2682. "kmalloc-192", 192, GFP_NOWAIT);
  2683. caches++;
  2684. }
  2685. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2686. create_kmalloc_cache(&kmalloc_caches[i],
  2687. "kmalloc", 1 << i, GFP_NOWAIT);
  2688. caches++;
  2689. }
  2690. /*
  2691. * Patch up the size_index table if we have strange large alignment
  2692. * requirements for the kmalloc array. This is only the case for
  2693. * MIPS it seems. The standard arches will not generate any code here.
  2694. *
  2695. * Largest permitted alignment is 256 bytes due to the way we
  2696. * handle the index determination for the smaller caches.
  2697. *
  2698. * Make sure that nothing crazy happens if someone starts tinkering
  2699. * around with ARCH_KMALLOC_MINALIGN
  2700. */
  2701. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2702. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2703. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2704. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2705. if (KMALLOC_MIN_SIZE == 128) {
  2706. /*
  2707. * The 192 byte sized cache is not used if the alignment
  2708. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2709. * instead.
  2710. */
  2711. for (i = 128 + 8; i <= 192; i += 8)
  2712. size_index[(i - 1) / 8] = 8;
  2713. }
  2714. slab_state = UP;
  2715. /* Provide the correct kmalloc names now that the caches are up */
  2716. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2717. kmalloc_caches[i]. name =
  2718. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2719. #ifdef CONFIG_SMP
  2720. register_cpu_notifier(&slab_notifier);
  2721. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2722. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2723. #else
  2724. kmem_size = sizeof(struct kmem_cache);
  2725. #endif
  2726. printk(KERN_INFO
  2727. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2728. " CPUs=%d, Nodes=%d\n",
  2729. caches, cache_line_size(),
  2730. slub_min_order, slub_max_order, slub_min_objects,
  2731. nr_cpu_ids, nr_node_ids);
  2732. }
  2733. void __init kmem_cache_init_late(void)
  2734. {
  2735. }
  2736. /*
  2737. * Find a mergeable slab cache
  2738. */
  2739. static int slab_unmergeable(struct kmem_cache *s)
  2740. {
  2741. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2742. return 1;
  2743. if (s->ctor)
  2744. return 1;
  2745. /*
  2746. * We may have set a slab to be unmergeable during bootstrap.
  2747. */
  2748. if (s->refcount < 0)
  2749. return 1;
  2750. return 0;
  2751. }
  2752. static struct kmem_cache *find_mergeable(size_t size,
  2753. size_t align, unsigned long flags, const char *name,
  2754. void (*ctor)(void *))
  2755. {
  2756. struct kmem_cache *s;
  2757. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2758. return NULL;
  2759. if (ctor)
  2760. return NULL;
  2761. size = ALIGN(size, sizeof(void *));
  2762. align = calculate_alignment(flags, align, size);
  2763. size = ALIGN(size, align);
  2764. flags = kmem_cache_flags(size, flags, name, NULL);
  2765. list_for_each_entry(s, &slab_caches, list) {
  2766. if (slab_unmergeable(s))
  2767. continue;
  2768. if (size > s->size)
  2769. continue;
  2770. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2771. continue;
  2772. /*
  2773. * Check if alignment is compatible.
  2774. * Courtesy of Adrian Drzewiecki
  2775. */
  2776. if ((s->size & ~(align - 1)) != s->size)
  2777. continue;
  2778. if (s->size - size >= sizeof(void *))
  2779. continue;
  2780. return s;
  2781. }
  2782. return NULL;
  2783. }
  2784. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2785. size_t align, unsigned long flags, void (*ctor)(void *))
  2786. {
  2787. struct kmem_cache *s;
  2788. down_write(&slub_lock);
  2789. s = find_mergeable(size, align, flags, name, ctor);
  2790. if (s) {
  2791. int cpu;
  2792. s->refcount++;
  2793. /*
  2794. * Adjust the object sizes so that we clear
  2795. * the complete object on kzalloc.
  2796. */
  2797. s->objsize = max(s->objsize, (int)size);
  2798. /*
  2799. * And then we need to update the object size in the
  2800. * per cpu structures
  2801. */
  2802. for_each_online_cpu(cpu)
  2803. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2804. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2805. up_write(&slub_lock);
  2806. if (sysfs_slab_alias(s, name)) {
  2807. down_write(&slub_lock);
  2808. s->refcount--;
  2809. up_write(&slub_lock);
  2810. goto err;
  2811. }
  2812. return s;
  2813. }
  2814. s = kmalloc(kmem_size, GFP_KERNEL);
  2815. if (s) {
  2816. if (kmem_cache_open(s, GFP_KERNEL, name,
  2817. size, align, flags, ctor)) {
  2818. list_add(&s->list, &slab_caches);
  2819. up_write(&slub_lock);
  2820. if (sysfs_slab_add(s)) {
  2821. down_write(&slub_lock);
  2822. list_del(&s->list);
  2823. up_write(&slub_lock);
  2824. kfree(s);
  2825. goto err;
  2826. }
  2827. return s;
  2828. }
  2829. kfree(s);
  2830. }
  2831. up_write(&slub_lock);
  2832. err:
  2833. if (flags & SLAB_PANIC)
  2834. panic("Cannot create slabcache %s\n", name);
  2835. else
  2836. s = NULL;
  2837. return s;
  2838. }
  2839. EXPORT_SYMBOL(kmem_cache_create);
  2840. #ifdef CONFIG_SMP
  2841. /*
  2842. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2843. * necessary.
  2844. */
  2845. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2846. unsigned long action, void *hcpu)
  2847. {
  2848. long cpu = (long)hcpu;
  2849. struct kmem_cache *s;
  2850. unsigned long flags;
  2851. switch (action) {
  2852. case CPU_UP_PREPARE:
  2853. case CPU_UP_PREPARE_FROZEN:
  2854. init_alloc_cpu_cpu(cpu);
  2855. down_read(&slub_lock);
  2856. list_for_each_entry(s, &slab_caches, list)
  2857. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2858. GFP_KERNEL);
  2859. up_read(&slub_lock);
  2860. break;
  2861. case CPU_UP_CANCELED:
  2862. case CPU_UP_CANCELED_FROZEN:
  2863. case CPU_DEAD:
  2864. case CPU_DEAD_FROZEN:
  2865. down_read(&slub_lock);
  2866. list_for_each_entry(s, &slab_caches, list) {
  2867. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2868. local_irq_save(flags);
  2869. __flush_cpu_slab(s, cpu);
  2870. local_irq_restore(flags);
  2871. free_kmem_cache_cpu(c, cpu);
  2872. s->cpu_slab[cpu] = NULL;
  2873. }
  2874. up_read(&slub_lock);
  2875. break;
  2876. default:
  2877. break;
  2878. }
  2879. return NOTIFY_OK;
  2880. }
  2881. static struct notifier_block __cpuinitdata slab_notifier = {
  2882. .notifier_call = slab_cpuup_callback
  2883. };
  2884. #endif
  2885. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2886. {
  2887. struct kmem_cache *s;
  2888. void *ret;
  2889. if (unlikely(size > SLUB_MAX_SIZE))
  2890. return kmalloc_large(size, gfpflags);
  2891. s = get_slab(size, gfpflags);
  2892. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2893. return s;
  2894. ret = slab_alloc(s, gfpflags, -1, caller);
  2895. /* Honor the call site pointer we recieved. */
  2896. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2897. return ret;
  2898. }
  2899. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2900. int node, unsigned long caller)
  2901. {
  2902. struct kmem_cache *s;
  2903. void *ret;
  2904. if (unlikely(size > SLUB_MAX_SIZE))
  2905. return kmalloc_large_node(size, gfpflags, node);
  2906. s = get_slab(size, gfpflags);
  2907. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2908. return s;
  2909. ret = slab_alloc(s, gfpflags, node, caller);
  2910. /* Honor the call site pointer we recieved. */
  2911. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2912. return ret;
  2913. }
  2914. #ifdef CONFIG_SLUB_DEBUG
  2915. static int count_inuse(struct page *page)
  2916. {
  2917. return page->inuse;
  2918. }
  2919. static int count_total(struct page *page)
  2920. {
  2921. return page->objects;
  2922. }
  2923. static int validate_slab(struct kmem_cache *s, struct page *page,
  2924. unsigned long *map)
  2925. {
  2926. void *p;
  2927. void *addr = page_address(page);
  2928. if (!check_slab(s, page) ||
  2929. !on_freelist(s, page, NULL))
  2930. return 0;
  2931. /* Now we know that a valid freelist exists */
  2932. bitmap_zero(map, page->objects);
  2933. for_each_free_object(p, s, page->freelist) {
  2934. set_bit(slab_index(p, s, addr), map);
  2935. if (!check_object(s, page, p, 0))
  2936. return 0;
  2937. }
  2938. for_each_object(p, s, addr, page->objects)
  2939. if (!test_bit(slab_index(p, s, addr), map))
  2940. if (!check_object(s, page, p, 1))
  2941. return 0;
  2942. return 1;
  2943. }
  2944. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2945. unsigned long *map)
  2946. {
  2947. if (slab_trylock(page)) {
  2948. validate_slab(s, page, map);
  2949. slab_unlock(page);
  2950. } else
  2951. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2952. s->name, page);
  2953. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2954. if (!PageSlubDebug(page))
  2955. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2956. "on slab 0x%p\n", s->name, page);
  2957. } else {
  2958. if (PageSlubDebug(page))
  2959. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2960. "slab 0x%p\n", s->name, page);
  2961. }
  2962. }
  2963. static int validate_slab_node(struct kmem_cache *s,
  2964. struct kmem_cache_node *n, unsigned long *map)
  2965. {
  2966. unsigned long count = 0;
  2967. struct page *page;
  2968. unsigned long flags;
  2969. spin_lock_irqsave(&n->list_lock, flags);
  2970. list_for_each_entry(page, &n->partial, lru) {
  2971. validate_slab_slab(s, page, map);
  2972. count++;
  2973. }
  2974. if (count != n->nr_partial)
  2975. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2976. "counter=%ld\n", s->name, count, n->nr_partial);
  2977. if (!(s->flags & SLAB_STORE_USER))
  2978. goto out;
  2979. list_for_each_entry(page, &n->full, lru) {
  2980. validate_slab_slab(s, page, map);
  2981. count++;
  2982. }
  2983. if (count != atomic_long_read(&n->nr_slabs))
  2984. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2985. "counter=%ld\n", s->name, count,
  2986. atomic_long_read(&n->nr_slabs));
  2987. out:
  2988. spin_unlock_irqrestore(&n->list_lock, flags);
  2989. return count;
  2990. }
  2991. static long validate_slab_cache(struct kmem_cache *s)
  2992. {
  2993. int node;
  2994. unsigned long count = 0;
  2995. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2996. sizeof(unsigned long), GFP_KERNEL);
  2997. if (!map)
  2998. return -ENOMEM;
  2999. flush_all(s);
  3000. for_each_node_state(node, N_NORMAL_MEMORY) {
  3001. struct kmem_cache_node *n = get_node(s, node);
  3002. count += validate_slab_node(s, n, map);
  3003. }
  3004. kfree(map);
  3005. return count;
  3006. }
  3007. #ifdef SLUB_RESILIENCY_TEST
  3008. static void resiliency_test(void)
  3009. {
  3010. u8 *p;
  3011. printk(KERN_ERR "SLUB resiliency testing\n");
  3012. printk(KERN_ERR "-----------------------\n");
  3013. printk(KERN_ERR "A. Corruption after allocation\n");
  3014. p = kzalloc(16, GFP_KERNEL);
  3015. p[16] = 0x12;
  3016. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3017. " 0x12->0x%p\n\n", p + 16);
  3018. validate_slab_cache(kmalloc_caches + 4);
  3019. /* Hmmm... The next two are dangerous */
  3020. p = kzalloc(32, GFP_KERNEL);
  3021. p[32 + sizeof(void *)] = 0x34;
  3022. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3023. " 0x34 -> -0x%p\n", p);
  3024. printk(KERN_ERR
  3025. "If allocated object is overwritten then not detectable\n\n");
  3026. validate_slab_cache(kmalloc_caches + 5);
  3027. p = kzalloc(64, GFP_KERNEL);
  3028. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3029. *p = 0x56;
  3030. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3031. p);
  3032. printk(KERN_ERR
  3033. "If allocated object is overwritten then not detectable\n\n");
  3034. validate_slab_cache(kmalloc_caches + 6);
  3035. printk(KERN_ERR "\nB. Corruption after free\n");
  3036. p = kzalloc(128, GFP_KERNEL);
  3037. kfree(p);
  3038. *p = 0x78;
  3039. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3040. validate_slab_cache(kmalloc_caches + 7);
  3041. p = kzalloc(256, GFP_KERNEL);
  3042. kfree(p);
  3043. p[50] = 0x9a;
  3044. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3045. p);
  3046. validate_slab_cache(kmalloc_caches + 8);
  3047. p = kzalloc(512, GFP_KERNEL);
  3048. kfree(p);
  3049. p[512] = 0xab;
  3050. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3051. validate_slab_cache(kmalloc_caches + 9);
  3052. }
  3053. #else
  3054. static void resiliency_test(void) {};
  3055. #endif
  3056. /*
  3057. * Generate lists of code addresses where slabcache objects are allocated
  3058. * and freed.
  3059. */
  3060. struct location {
  3061. unsigned long count;
  3062. unsigned long addr;
  3063. long long sum_time;
  3064. long min_time;
  3065. long max_time;
  3066. long min_pid;
  3067. long max_pid;
  3068. DECLARE_BITMAP(cpus, NR_CPUS);
  3069. nodemask_t nodes;
  3070. };
  3071. struct loc_track {
  3072. unsigned long max;
  3073. unsigned long count;
  3074. struct location *loc;
  3075. };
  3076. static void free_loc_track(struct loc_track *t)
  3077. {
  3078. if (t->max)
  3079. free_pages((unsigned long)t->loc,
  3080. get_order(sizeof(struct location) * t->max));
  3081. }
  3082. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3083. {
  3084. struct location *l;
  3085. int order;
  3086. order = get_order(sizeof(struct location) * max);
  3087. l = (void *)__get_free_pages(flags, order);
  3088. if (!l)
  3089. return 0;
  3090. if (t->count) {
  3091. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3092. free_loc_track(t);
  3093. }
  3094. t->max = max;
  3095. t->loc = l;
  3096. return 1;
  3097. }
  3098. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3099. const struct track *track)
  3100. {
  3101. long start, end, pos;
  3102. struct location *l;
  3103. unsigned long caddr;
  3104. unsigned long age = jiffies - track->when;
  3105. start = -1;
  3106. end = t->count;
  3107. for ( ; ; ) {
  3108. pos = start + (end - start + 1) / 2;
  3109. /*
  3110. * There is nothing at "end". If we end up there
  3111. * we need to add something to before end.
  3112. */
  3113. if (pos == end)
  3114. break;
  3115. caddr = t->loc[pos].addr;
  3116. if (track->addr == caddr) {
  3117. l = &t->loc[pos];
  3118. l->count++;
  3119. if (track->when) {
  3120. l->sum_time += age;
  3121. if (age < l->min_time)
  3122. l->min_time = age;
  3123. if (age > l->max_time)
  3124. l->max_time = age;
  3125. if (track->pid < l->min_pid)
  3126. l->min_pid = track->pid;
  3127. if (track->pid > l->max_pid)
  3128. l->max_pid = track->pid;
  3129. cpumask_set_cpu(track->cpu,
  3130. to_cpumask(l->cpus));
  3131. }
  3132. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3133. return 1;
  3134. }
  3135. if (track->addr < caddr)
  3136. end = pos;
  3137. else
  3138. start = pos;
  3139. }
  3140. /*
  3141. * Not found. Insert new tracking element.
  3142. */
  3143. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3144. return 0;
  3145. l = t->loc + pos;
  3146. if (pos < t->count)
  3147. memmove(l + 1, l,
  3148. (t->count - pos) * sizeof(struct location));
  3149. t->count++;
  3150. l->count = 1;
  3151. l->addr = track->addr;
  3152. l->sum_time = age;
  3153. l->min_time = age;
  3154. l->max_time = age;
  3155. l->min_pid = track->pid;
  3156. l->max_pid = track->pid;
  3157. cpumask_clear(to_cpumask(l->cpus));
  3158. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3159. nodes_clear(l->nodes);
  3160. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3161. return 1;
  3162. }
  3163. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3164. struct page *page, enum track_item alloc)
  3165. {
  3166. void *addr = page_address(page);
  3167. DECLARE_BITMAP(map, page->objects);
  3168. void *p;
  3169. bitmap_zero(map, page->objects);
  3170. for_each_free_object(p, s, page->freelist)
  3171. set_bit(slab_index(p, s, addr), map);
  3172. for_each_object(p, s, addr, page->objects)
  3173. if (!test_bit(slab_index(p, s, addr), map))
  3174. add_location(t, s, get_track(s, p, alloc));
  3175. }
  3176. static int list_locations(struct kmem_cache *s, char *buf,
  3177. enum track_item alloc)
  3178. {
  3179. int len = 0;
  3180. unsigned long i;
  3181. struct loc_track t = { 0, 0, NULL };
  3182. int node;
  3183. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3184. GFP_TEMPORARY))
  3185. return sprintf(buf, "Out of memory\n");
  3186. /* Push back cpu slabs */
  3187. flush_all(s);
  3188. for_each_node_state(node, N_NORMAL_MEMORY) {
  3189. struct kmem_cache_node *n = get_node(s, node);
  3190. unsigned long flags;
  3191. struct page *page;
  3192. if (!atomic_long_read(&n->nr_slabs))
  3193. continue;
  3194. spin_lock_irqsave(&n->list_lock, flags);
  3195. list_for_each_entry(page, &n->partial, lru)
  3196. process_slab(&t, s, page, alloc);
  3197. list_for_each_entry(page, &n->full, lru)
  3198. process_slab(&t, s, page, alloc);
  3199. spin_unlock_irqrestore(&n->list_lock, flags);
  3200. }
  3201. for (i = 0; i < t.count; i++) {
  3202. struct location *l = &t.loc[i];
  3203. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3204. break;
  3205. len += sprintf(buf + len, "%7ld ", l->count);
  3206. if (l->addr)
  3207. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3208. else
  3209. len += sprintf(buf + len, "<not-available>");
  3210. if (l->sum_time != l->min_time) {
  3211. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3212. l->min_time,
  3213. (long)div_u64(l->sum_time, l->count),
  3214. l->max_time);
  3215. } else
  3216. len += sprintf(buf + len, " age=%ld",
  3217. l->min_time);
  3218. if (l->min_pid != l->max_pid)
  3219. len += sprintf(buf + len, " pid=%ld-%ld",
  3220. l->min_pid, l->max_pid);
  3221. else
  3222. len += sprintf(buf + len, " pid=%ld",
  3223. l->min_pid);
  3224. if (num_online_cpus() > 1 &&
  3225. !cpumask_empty(to_cpumask(l->cpus)) &&
  3226. len < PAGE_SIZE - 60) {
  3227. len += sprintf(buf + len, " cpus=");
  3228. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3229. to_cpumask(l->cpus));
  3230. }
  3231. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3232. len < PAGE_SIZE - 60) {
  3233. len += sprintf(buf + len, " nodes=");
  3234. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3235. l->nodes);
  3236. }
  3237. len += sprintf(buf + len, "\n");
  3238. }
  3239. free_loc_track(&t);
  3240. if (!t.count)
  3241. len += sprintf(buf, "No data\n");
  3242. return len;
  3243. }
  3244. enum slab_stat_type {
  3245. SL_ALL, /* All slabs */
  3246. SL_PARTIAL, /* Only partially allocated slabs */
  3247. SL_CPU, /* Only slabs used for cpu caches */
  3248. SL_OBJECTS, /* Determine allocated objects not slabs */
  3249. SL_TOTAL /* Determine object capacity not slabs */
  3250. };
  3251. #define SO_ALL (1 << SL_ALL)
  3252. #define SO_PARTIAL (1 << SL_PARTIAL)
  3253. #define SO_CPU (1 << SL_CPU)
  3254. #define SO_OBJECTS (1 << SL_OBJECTS)
  3255. #define SO_TOTAL (1 << SL_TOTAL)
  3256. static ssize_t show_slab_objects(struct kmem_cache *s,
  3257. char *buf, unsigned long flags)
  3258. {
  3259. unsigned long total = 0;
  3260. int node;
  3261. int x;
  3262. unsigned long *nodes;
  3263. unsigned long *per_cpu;
  3264. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3265. if (!nodes)
  3266. return -ENOMEM;
  3267. per_cpu = nodes + nr_node_ids;
  3268. if (flags & SO_CPU) {
  3269. int cpu;
  3270. for_each_possible_cpu(cpu) {
  3271. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3272. if (!c || c->node < 0)
  3273. continue;
  3274. if (c->page) {
  3275. if (flags & SO_TOTAL)
  3276. x = c->page->objects;
  3277. else if (flags & SO_OBJECTS)
  3278. x = c->page->inuse;
  3279. else
  3280. x = 1;
  3281. total += x;
  3282. nodes[c->node] += x;
  3283. }
  3284. per_cpu[c->node]++;
  3285. }
  3286. }
  3287. if (flags & SO_ALL) {
  3288. for_each_node_state(node, N_NORMAL_MEMORY) {
  3289. struct kmem_cache_node *n = get_node(s, node);
  3290. if (flags & SO_TOTAL)
  3291. x = atomic_long_read(&n->total_objects);
  3292. else if (flags & SO_OBJECTS)
  3293. x = atomic_long_read(&n->total_objects) -
  3294. count_partial(n, count_free);
  3295. else
  3296. x = atomic_long_read(&n->nr_slabs);
  3297. total += x;
  3298. nodes[node] += x;
  3299. }
  3300. } else if (flags & SO_PARTIAL) {
  3301. for_each_node_state(node, N_NORMAL_MEMORY) {
  3302. struct kmem_cache_node *n = get_node(s, node);
  3303. if (flags & SO_TOTAL)
  3304. x = count_partial(n, count_total);
  3305. else if (flags & SO_OBJECTS)
  3306. x = count_partial(n, count_inuse);
  3307. else
  3308. x = n->nr_partial;
  3309. total += x;
  3310. nodes[node] += x;
  3311. }
  3312. }
  3313. x = sprintf(buf, "%lu", total);
  3314. #ifdef CONFIG_NUMA
  3315. for_each_node_state(node, N_NORMAL_MEMORY)
  3316. if (nodes[node])
  3317. x += sprintf(buf + x, " N%d=%lu",
  3318. node, nodes[node]);
  3319. #endif
  3320. kfree(nodes);
  3321. return x + sprintf(buf + x, "\n");
  3322. }
  3323. static int any_slab_objects(struct kmem_cache *s)
  3324. {
  3325. int node;
  3326. for_each_online_node(node) {
  3327. struct kmem_cache_node *n = get_node(s, node);
  3328. if (!n)
  3329. continue;
  3330. if (atomic_long_read(&n->total_objects))
  3331. return 1;
  3332. }
  3333. return 0;
  3334. }
  3335. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3336. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3337. struct slab_attribute {
  3338. struct attribute attr;
  3339. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3340. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3341. };
  3342. #define SLAB_ATTR_RO(_name) \
  3343. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3344. #define SLAB_ATTR(_name) \
  3345. static struct slab_attribute _name##_attr = \
  3346. __ATTR(_name, 0644, _name##_show, _name##_store)
  3347. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3348. {
  3349. return sprintf(buf, "%d\n", s->size);
  3350. }
  3351. SLAB_ATTR_RO(slab_size);
  3352. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3353. {
  3354. return sprintf(buf, "%d\n", s->align);
  3355. }
  3356. SLAB_ATTR_RO(align);
  3357. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3358. {
  3359. return sprintf(buf, "%d\n", s->objsize);
  3360. }
  3361. SLAB_ATTR_RO(object_size);
  3362. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3363. {
  3364. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3365. }
  3366. SLAB_ATTR_RO(objs_per_slab);
  3367. static ssize_t order_store(struct kmem_cache *s,
  3368. const char *buf, size_t length)
  3369. {
  3370. unsigned long order;
  3371. int err;
  3372. err = strict_strtoul(buf, 10, &order);
  3373. if (err)
  3374. return err;
  3375. if (order > slub_max_order || order < slub_min_order)
  3376. return -EINVAL;
  3377. calculate_sizes(s, order);
  3378. return length;
  3379. }
  3380. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3381. {
  3382. return sprintf(buf, "%d\n", oo_order(s->oo));
  3383. }
  3384. SLAB_ATTR(order);
  3385. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3386. {
  3387. return sprintf(buf, "%lu\n", s->min_partial);
  3388. }
  3389. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3390. size_t length)
  3391. {
  3392. unsigned long min;
  3393. int err;
  3394. err = strict_strtoul(buf, 10, &min);
  3395. if (err)
  3396. return err;
  3397. set_min_partial(s, min);
  3398. return length;
  3399. }
  3400. SLAB_ATTR(min_partial);
  3401. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3402. {
  3403. if (s->ctor) {
  3404. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3405. return n + sprintf(buf + n, "\n");
  3406. }
  3407. return 0;
  3408. }
  3409. SLAB_ATTR_RO(ctor);
  3410. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3411. {
  3412. return sprintf(buf, "%d\n", s->refcount - 1);
  3413. }
  3414. SLAB_ATTR_RO(aliases);
  3415. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3416. {
  3417. return show_slab_objects(s, buf, SO_ALL);
  3418. }
  3419. SLAB_ATTR_RO(slabs);
  3420. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3421. {
  3422. return show_slab_objects(s, buf, SO_PARTIAL);
  3423. }
  3424. SLAB_ATTR_RO(partial);
  3425. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3426. {
  3427. return show_slab_objects(s, buf, SO_CPU);
  3428. }
  3429. SLAB_ATTR_RO(cpu_slabs);
  3430. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3431. {
  3432. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3433. }
  3434. SLAB_ATTR_RO(objects);
  3435. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3436. {
  3437. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3438. }
  3439. SLAB_ATTR_RO(objects_partial);
  3440. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3441. {
  3442. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3443. }
  3444. SLAB_ATTR_RO(total_objects);
  3445. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3446. {
  3447. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3448. }
  3449. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3450. const char *buf, size_t length)
  3451. {
  3452. s->flags &= ~SLAB_DEBUG_FREE;
  3453. if (buf[0] == '1')
  3454. s->flags |= SLAB_DEBUG_FREE;
  3455. return length;
  3456. }
  3457. SLAB_ATTR(sanity_checks);
  3458. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3459. {
  3460. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3461. }
  3462. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3463. size_t length)
  3464. {
  3465. s->flags &= ~SLAB_TRACE;
  3466. if (buf[0] == '1')
  3467. s->flags |= SLAB_TRACE;
  3468. return length;
  3469. }
  3470. SLAB_ATTR(trace);
  3471. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3472. {
  3473. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3474. }
  3475. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3476. const char *buf, size_t length)
  3477. {
  3478. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3479. if (buf[0] == '1')
  3480. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3481. return length;
  3482. }
  3483. SLAB_ATTR(reclaim_account);
  3484. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3485. {
  3486. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3487. }
  3488. SLAB_ATTR_RO(hwcache_align);
  3489. #ifdef CONFIG_ZONE_DMA
  3490. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3491. {
  3492. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3493. }
  3494. SLAB_ATTR_RO(cache_dma);
  3495. #endif
  3496. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3497. {
  3498. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3499. }
  3500. SLAB_ATTR_RO(destroy_by_rcu);
  3501. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3502. {
  3503. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3504. }
  3505. static ssize_t red_zone_store(struct kmem_cache *s,
  3506. const char *buf, size_t length)
  3507. {
  3508. if (any_slab_objects(s))
  3509. return -EBUSY;
  3510. s->flags &= ~SLAB_RED_ZONE;
  3511. if (buf[0] == '1')
  3512. s->flags |= SLAB_RED_ZONE;
  3513. calculate_sizes(s, -1);
  3514. return length;
  3515. }
  3516. SLAB_ATTR(red_zone);
  3517. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3518. {
  3519. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3520. }
  3521. static ssize_t poison_store(struct kmem_cache *s,
  3522. const char *buf, size_t length)
  3523. {
  3524. if (any_slab_objects(s))
  3525. return -EBUSY;
  3526. s->flags &= ~SLAB_POISON;
  3527. if (buf[0] == '1')
  3528. s->flags |= SLAB_POISON;
  3529. calculate_sizes(s, -1);
  3530. return length;
  3531. }
  3532. SLAB_ATTR(poison);
  3533. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3534. {
  3535. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3536. }
  3537. static ssize_t store_user_store(struct kmem_cache *s,
  3538. const char *buf, size_t length)
  3539. {
  3540. if (any_slab_objects(s))
  3541. return -EBUSY;
  3542. s->flags &= ~SLAB_STORE_USER;
  3543. if (buf[0] == '1')
  3544. s->flags |= SLAB_STORE_USER;
  3545. calculate_sizes(s, -1);
  3546. return length;
  3547. }
  3548. SLAB_ATTR(store_user);
  3549. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3550. {
  3551. return 0;
  3552. }
  3553. static ssize_t validate_store(struct kmem_cache *s,
  3554. const char *buf, size_t length)
  3555. {
  3556. int ret = -EINVAL;
  3557. if (buf[0] == '1') {
  3558. ret = validate_slab_cache(s);
  3559. if (ret >= 0)
  3560. ret = length;
  3561. }
  3562. return ret;
  3563. }
  3564. SLAB_ATTR(validate);
  3565. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3566. {
  3567. return 0;
  3568. }
  3569. static ssize_t shrink_store(struct kmem_cache *s,
  3570. const char *buf, size_t length)
  3571. {
  3572. if (buf[0] == '1') {
  3573. int rc = kmem_cache_shrink(s);
  3574. if (rc)
  3575. return rc;
  3576. } else
  3577. return -EINVAL;
  3578. return length;
  3579. }
  3580. SLAB_ATTR(shrink);
  3581. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3582. {
  3583. if (!(s->flags & SLAB_STORE_USER))
  3584. return -ENOSYS;
  3585. return list_locations(s, buf, TRACK_ALLOC);
  3586. }
  3587. SLAB_ATTR_RO(alloc_calls);
  3588. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3589. {
  3590. if (!(s->flags & SLAB_STORE_USER))
  3591. return -ENOSYS;
  3592. return list_locations(s, buf, TRACK_FREE);
  3593. }
  3594. SLAB_ATTR_RO(free_calls);
  3595. #ifdef CONFIG_NUMA
  3596. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3597. {
  3598. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3599. }
  3600. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3601. const char *buf, size_t length)
  3602. {
  3603. unsigned long ratio;
  3604. int err;
  3605. err = strict_strtoul(buf, 10, &ratio);
  3606. if (err)
  3607. return err;
  3608. if (ratio <= 100)
  3609. s->remote_node_defrag_ratio = ratio * 10;
  3610. return length;
  3611. }
  3612. SLAB_ATTR(remote_node_defrag_ratio);
  3613. #endif
  3614. #ifdef CONFIG_SLUB_STATS
  3615. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3616. {
  3617. unsigned long sum = 0;
  3618. int cpu;
  3619. int len;
  3620. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3621. if (!data)
  3622. return -ENOMEM;
  3623. for_each_online_cpu(cpu) {
  3624. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3625. data[cpu] = x;
  3626. sum += x;
  3627. }
  3628. len = sprintf(buf, "%lu", sum);
  3629. #ifdef CONFIG_SMP
  3630. for_each_online_cpu(cpu) {
  3631. if (data[cpu] && len < PAGE_SIZE - 20)
  3632. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3633. }
  3634. #endif
  3635. kfree(data);
  3636. return len + sprintf(buf + len, "\n");
  3637. }
  3638. #define STAT_ATTR(si, text) \
  3639. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3640. { \
  3641. return show_stat(s, buf, si); \
  3642. } \
  3643. SLAB_ATTR_RO(text); \
  3644. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3645. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3646. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3647. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3648. STAT_ATTR(FREE_FROZEN, free_frozen);
  3649. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3650. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3651. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3652. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3653. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3654. STAT_ATTR(FREE_SLAB, free_slab);
  3655. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3656. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3657. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3658. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3659. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3660. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3661. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3662. #endif
  3663. static struct attribute *slab_attrs[] = {
  3664. &slab_size_attr.attr,
  3665. &object_size_attr.attr,
  3666. &objs_per_slab_attr.attr,
  3667. &order_attr.attr,
  3668. &min_partial_attr.attr,
  3669. &objects_attr.attr,
  3670. &objects_partial_attr.attr,
  3671. &total_objects_attr.attr,
  3672. &slabs_attr.attr,
  3673. &partial_attr.attr,
  3674. &cpu_slabs_attr.attr,
  3675. &ctor_attr.attr,
  3676. &aliases_attr.attr,
  3677. &align_attr.attr,
  3678. &sanity_checks_attr.attr,
  3679. &trace_attr.attr,
  3680. &hwcache_align_attr.attr,
  3681. &reclaim_account_attr.attr,
  3682. &destroy_by_rcu_attr.attr,
  3683. &red_zone_attr.attr,
  3684. &poison_attr.attr,
  3685. &store_user_attr.attr,
  3686. &validate_attr.attr,
  3687. &shrink_attr.attr,
  3688. &alloc_calls_attr.attr,
  3689. &free_calls_attr.attr,
  3690. #ifdef CONFIG_ZONE_DMA
  3691. &cache_dma_attr.attr,
  3692. #endif
  3693. #ifdef CONFIG_NUMA
  3694. &remote_node_defrag_ratio_attr.attr,
  3695. #endif
  3696. #ifdef CONFIG_SLUB_STATS
  3697. &alloc_fastpath_attr.attr,
  3698. &alloc_slowpath_attr.attr,
  3699. &free_fastpath_attr.attr,
  3700. &free_slowpath_attr.attr,
  3701. &free_frozen_attr.attr,
  3702. &free_add_partial_attr.attr,
  3703. &free_remove_partial_attr.attr,
  3704. &alloc_from_partial_attr.attr,
  3705. &alloc_slab_attr.attr,
  3706. &alloc_refill_attr.attr,
  3707. &free_slab_attr.attr,
  3708. &cpuslab_flush_attr.attr,
  3709. &deactivate_full_attr.attr,
  3710. &deactivate_empty_attr.attr,
  3711. &deactivate_to_head_attr.attr,
  3712. &deactivate_to_tail_attr.attr,
  3713. &deactivate_remote_frees_attr.attr,
  3714. &order_fallback_attr.attr,
  3715. #endif
  3716. NULL
  3717. };
  3718. static struct attribute_group slab_attr_group = {
  3719. .attrs = slab_attrs,
  3720. };
  3721. static ssize_t slab_attr_show(struct kobject *kobj,
  3722. struct attribute *attr,
  3723. char *buf)
  3724. {
  3725. struct slab_attribute *attribute;
  3726. struct kmem_cache *s;
  3727. int err;
  3728. attribute = to_slab_attr(attr);
  3729. s = to_slab(kobj);
  3730. if (!attribute->show)
  3731. return -EIO;
  3732. err = attribute->show(s, buf);
  3733. return err;
  3734. }
  3735. static ssize_t slab_attr_store(struct kobject *kobj,
  3736. struct attribute *attr,
  3737. const char *buf, size_t len)
  3738. {
  3739. struct slab_attribute *attribute;
  3740. struct kmem_cache *s;
  3741. int err;
  3742. attribute = to_slab_attr(attr);
  3743. s = to_slab(kobj);
  3744. if (!attribute->store)
  3745. return -EIO;
  3746. err = attribute->store(s, buf, len);
  3747. return err;
  3748. }
  3749. static void kmem_cache_release(struct kobject *kobj)
  3750. {
  3751. struct kmem_cache *s = to_slab(kobj);
  3752. kfree(s);
  3753. }
  3754. static struct sysfs_ops slab_sysfs_ops = {
  3755. .show = slab_attr_show,
  3756. .store = slab_attr_store,
  3757. };
  3758. static struct kobj_type slab_ktype = {
  3759. .sysfs_ops = &slab_sysfs_ops,
  3760. .release = kmem_cache_release
  3761. };
  3762. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3763. {
  3764. struct kobj_type *ktype = get_ktype(kobj);
  3765. if (ktype == &slab_ktype)
  3766. return 1;
  3767. return 0;
  3768. }
  3769. static struct kset_uevent_ops slab_uevent_ops = {
  3770. .filter = uevent_filter,
  3771. };
  3772. static struct kset *slab_kset;
  3773. #define ID_STR_LENGTH 64
  3774. /* Create a unique string id for a slab cache:
  3775. *
  3776. * Format :[flags-]size
  3777. */
  3778. static char *create_unique_id(struct kmem_cache *s)
  3779. {
  3780. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3781. char *p = name;
  3782. BUG_ON(!name);
  3783. *p++ = ':';
  3784. /*
  3785. * First flags affecting slabcache operations. We will only
  3786. * get here for aliasable slabs so we do not need to support
  3787. * too many flags. The flags here must cover all flags that
  3788. * are matched during merging to guarantee that the id is
  3789. * unique.
  3790. */
  3791. if (s->flags & SLAB_CACHE_DMA)
  3792. *p++ = 'd';
  3793. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3794. *p++ = 'a';
  3795. if (s->flags & SLAB_DEBUG_FREE)
  3796. *p++ = 'F';
  3797. if (!(s->flags & SLAB_NOTRACK))
  3798. *p++ = 't';
  3799. if (p != name + 1)
  3800. *p++ = '-';
  3801. p += sprintf(p, "%07d", s->size);
  3802. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3803. return name;
  3804. }
  3805. static int sysfs_slab_add(struct kmem_cache *s)
  3806. {
  3807. int err;
  3808. const char *name;
  3809. int unmergeable;
  3810. if (slab_state < SYSFS)
  3811. /* Defer until later */
  3812. return 0;
  3813. unmergeable = slab_unmergeable(s);
  3814. if (unmergeable) {
  3815. /*
  3816. * Slabcache can never be merged so we can use the name proper.
  3817. * This is typically the case for debug situations. In that
  3818. * case we can catch duplicate names easily.
  3819. */
  3820. sysfs_remove_link(&slab_kset->kobj, s->name);
  3821. name = s->name;
  3822. } else {
  3823. /*
  3824. * Create a unique name for the slab as a target
  3825. * for the symlinks.
  3826. */
  3827. name = create_unique_id(s);
  3828. }
  3829. s->kobj.kset = slab_kset;
  3830. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3831. if (err) {
  3832. kobject_put(&s->kobj);
  3833. return err;
  3834. }
  3835. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3836. if (err)
  3837. return err;
  3838. kobject_uevent(&s->kobj, KOBJ_ADD);
  3839. if (!unmergeable) {
  3840. /* Setup first alias */
  3841. sysfs_slab_alias(s, s->name);
  3842. kfree(name);
  3843. }
  3844. return 0;
  3845. }
  3846. static void sysfs_slab_remove(struct kmem_cache *s)
  3847. {
  3848. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3849. kobject_del(&s->kobj);
  3850. kobject_put(&s->kobj);
  3851. }
  3852. /*
  3853. * Need to buffer aliases during bootup until sysfs becomes
  3854. * available lest we lose that information.
  3855. */
  3856. struct saved_alias {
  3857. struct kmem_cache *s;
  3858. const char *name;
  3859. struct saved_alias *next;
  3860. };
  3861. static struct saved_alias *alias_list;
  3862. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3863. {
  3864. struct saved_alias *al;
  3865. if (slab_state == SYSFS) {
  3866. /*
  3867. * If we have a leftover link then remove it.
  3868. */
  3869. sysfs_remove_link(&slab_kset->kobj, name);
  3870. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3871. }
  3872. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3873. if (!al)
  3874. return -ENOMEM;
  3875. al->s = s;
  3876. al->name = name;
  3877. al->next = alias_list;
  3878. alias_list = al;
  3879. return 0;
  3880. }
  3881. static int __init slab_sysfs_init(void)
  3882. {
  3883. struct kmem_cache *s;
  3884. int err;
  3885. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3886. if (!slab_kset) {
  3887. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3888. return -ENOSYS;
  3889. }
  3890. slab_state = SYSFS;
  3891. list_for_each_entry(s, &slab_caches, list) {
  3892. err = sysfs_slab_add(s);
  3893. if (err)
  3894. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3895. " to sysfs\n", s->name);
  3896. }
  3897. while (alias_list) {
  3898. struct saved_alias *al = alias_list;
  3899. alias_list = alias_list->next;
  3900. err = sysfs_slab_alias(al->s, al->name);
  3901. if (err)
  3902. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3903. " %s to sysfs\n", s->name);
  3904. kfree(al);
  3905. }
  3906. resiliency_test();
  3907. return 0;
  3908. }
  3909. __initcall(slab_sysfs_init);
  3910. #endif
  3911. /*
  3912. * The /proc/slabinfo ABI
  3913. */
  3914. #ifdef CONFIG_SLABINFO
  3915. static void print_slabinfo_header(struct seq_file *m)
  3916. {
  3917. seq_puts(m, "slabinfo - version: 2.1\n");
  3918. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3919. "<objperslab> <pagesperslab>");
  3920. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3921. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3922. seq_putc(m, '\n');
  3923. }
  3924. static void *s_start(struct seq_file *m, loff_t *pos)
  3925. {
  3926. loff_t n = *pos;
  3927. down_read(&slub_lock);
  3928. if (!n)
  3929. print_slabinfo_header(m);
  3930. return seq_list_start(&slab_caches, *pos);
  3931. }
  3932. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3933. {
  3934. return seq_list_next(p, &slab_caches, pos);
  3935. }
  3936. static void s_stop(struct seq_file *m, void *p)
  3937. {
  3938. up_read(&slub_lock);
  3939. }
  3940. static int s_show(struct seq_file *m, void *p)
  3941. {
  3942. unsigned long nr_partials = 0;
  3943. unsigned long nr_slabs = 0;
  3944. unsigned long nr_inuse = 0;
  3945. unsigned long nr_objs = 0;
  3946. unsigned long nr_free = 0;
  3947. struct kmem_cache *s;
  3948. int node;
  3949. s = list_entry(p, struct kmem_cache, list);
  3950. for_each_online_node(node) {
  3951. struct kmem_cache_node *n = get_node(s, node);
  3952. if (!n)
  3953. continue;
  3954. nr_partials += n->nr_partial;
  3955. nr_slabs += atomic_long_read(&n->nr_slabs);
  3956. nr_objs += atomic_long_read(&n->total_objects);
  3957. nr_free += count_partial(n, count_free);
  3958. }
  3959. nr_inuse = nr_objs - nr_free;
  3960. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3961. nr_objs, s->size, oo_objects(s->oo),
  3962. (1 << oo_order(s->oo)));
  3963. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3964. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3965. 0UL);
  3966. seq_putc(m, '\n');
  3967. return 0;
  3968. }
  3969. static const struct seq_operations slabinfo_op = {
  3970. .start = s_start,
  3971. .next = s_next,
  3972. .stop = s_stop,
  3973. .show = s_show,
  3974. };
  3975. static int slabinfo_open(struct inode *inode, struct file *file)
  3976. {
  3977. return seq_open(file, &slabinfo_op);
  3978. }
  3979. static const struct file_operations proc_slabinfo_operations = {
  3980. .open = slabinfo_open,
  3981. .read = seq_read,
  3982. .llseek = seq_lseek,
  3983. .release = seq_release,
  3984. };
  3985. static int __init slab_proc_init(void)
  3986. {
  3987. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3988. return 0;
  3989. }
  3990. module_init(slab_proc_init);
  3991. #endif /* CONFIG_SLABINFO */