page_alloc.c 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <asm/tlbflush.h>
  51. #include <asm/div64.h>
  52. #include "internal.h"
  53. /*
  54. * Array of node states.
  55. */
  56. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  57. [N_POSSIBLE] = NODE_MASK_ALL,
  58. [N_ONLINE] = { { [0] = 1UL } },
  59. #ifndef CONFIG_NUMA
  60. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  61. #ifdef CONFIG_HIGHMEM
  62. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  63. #endif
  64. [N_CPU] = { { [0] = 1UL } },
  65. #endif /* NUMA */
  66. };
  67. EXPORT_SYMBOL(node_states);
  68. unsigned long totalram_pages __read_mostly;
  69. unsigned long totalreserve_pages __read_mostly;
  70. unsigned long highest_memmap_pfn __read_mostly;
  71. int percpu_pagelist_fraction;
  72. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  73. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  74. int pageblock_order __read_mostly;
  75. #endif
  76. static void __free_pages_ok(struct page *page, unsigned int order);
  77. /*
  78. * results with 256, 32 in the lowmem_reserve sysctl:
  79. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  80. * 1G machine -> (16M dma, 784M normal, 224M high)
  81. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  82. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  83. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  84. *
  85. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  86. * don't need any ZONE_NORMAL reservation
  87. */
  88. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  89. #ifdef CONFIG_ZONE_DMA
  90. 256,
  91. #endif
  92. #ifdef CONFIG_ZONE_DMA32
  93. 256,
  94. #endif
  95. #ifdef CONFIG_HIGHMEM
  96. 32,
  97. #endif
  98. 32,
  99. };
  100. EXPORT_SYMBOL(totalram_pages);
  101. static char * const zone_names[MAX_NR_ZONES] = {
  102. #ifdef CONFIG_ZONE_DMA
  103. "DMA",
  104. #endif
  105. #ifdef CONFIG_ZONE_DMA32
  106. "DMA32",
  107. #endif
  108. "Normal",
  109. #ifdef CONFIG_HIGHMEM
  110. "HighMem",
  111. #endif
  112. "Movable",
  113. };
  114. int min_free_kbytes = 1024;
  115. unsigned long __meminitdata nr_kernel_pages;
  116. unsigned long __meminitdata nr_all_pages;
  117. static unsigned long __meminitdata dma_reserve;
  118. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  119. /*
  120. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  121. * ranges of memory (RAM) that may be registered with add_active_range().
  122. * Ranges passed to add_active_range() will be merged if possible
  123. * so the number of times add_active_range() can be called is
  124. * related to the number of nodes and the number of holes
  125. */
  126. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  127. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  128. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  129. #else
  130. #if MAX_NUMNODES >= 32
  131. /* If there can be many nodes, allow up to 50 holes per node */
  132. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  133. #else
  134. /* By default, allow up to 256 distinct regions */
  135. #define MAX_ACTIVE_REGIONS 256
  136. #endif
  137. #endif
  138. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  139. static int __meminitdata nr_nodemap_entries;
  140. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  141. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  142. static unsigned long __initdata required_kernelcore;
  143. static unsigned long __initdata required_movablecore;
  144. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  145. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  146. int movable_zone;
  147. EXPORT_SYMBOL(movable_zone);
  148. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  149. #if MAX_NUMNODES > 1
  150. int nr_node_ids __read_mostly = MAX_NUMNODES;
  151. int nr_online_nodes __read_mostly = 1;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. EXPORT_SYMBOL(nr_online_nodes);
  154. #endif
  155. int page_group_by_mobility_disabled __read_mostly;
  156. static void set_pageblock_migratetype(struct page *page, int migratetype)
  157. {
  158. if (unlikely(page_group_by_mobility_disabled))
  159. migratetype = MIGRATE_UNMOVABLE;
  160. set_pageblock_flags_group(page, (unsigned long)migratetype,
  161. PB_migrate, PB_migrate_end);
  162. }
  163. bool oom_killer_disabled __read_mostly;
  164. #ifdef CONFIG_DEBUG_VM
  165. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  166. {
  167. int ret = 0;
  168. unsigned seq;
  169. unsigned long pfn = page_to_pfn(page);
  170. do {
  171. seq = zone_span_seqbegin(zone);
  172. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  173. ret = 1;
  174. else if (pfn < zone->zone_start_pfn)
  175. ret = 1;
  176. } while (zone_span_seqretry(zone, seq));
  177. return ret;
  178. }
  179. static int page_is_consistent(struct zone *zone, struct page *page)
  180. {
  181. if (!pfn_valid_within(page_to_pfn(page)))
  182. return 0;
  183. if (zone != page_zone(page))
  184. return 0;
  185. return 1;
  186. }
  187. /*
  188. * Temporary debugging check for pages not lying within a given zone.
  189. */
  190. static int bad_range(struct zone *zone, struct page *page)
  191. {
  192. if (page_outside_zone_boundaries(zone, page))
  193. return 1;
  194. if (!page_is_consistent(zone, page))
  195. return 1;
  196. return 0;
  197. }
  198. #else
  199. static inline int bad_range(struct zone *zone, struct page *page)
  200. {
  201. return 0;
  202. }
  203. #endif
  204. static void bad_page(struct page *page)
  205. {
  206. static unsigned long resume;
  207. static unsigned long nr_shown;
  208. static unsigned long nr_unshown;
  209. /*
  210. * Allow a burst of 60 reports, then keep quiet for that minute;
  211. * or allow a steady drip of one report per second.
  212. */
  213. if (nr_shown == 60) {
  214. if (time_before(jiffies, resume)) {
  215. nr_unshown++;
  216. goto out;
  217. }
  218. if (nr_unshown) {
  219. printk(KERN_ALERT
  220. "BUG: Bad page state: %lu messages suppressed\n",
  221. nr_unshown);
  222. nr_unshown = 0;
  223. }
  224. nr_shown = 0;
  225. }
  226. if (nr_shown++ == 0)
  227. resume = jiffies + 60 * HZ;
  228. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  229. current->comm, page_to_pfn(page));
  230. printk(KERN_ALERT
  231. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  232. page, (void *)page->flags, page_count(page),
  233. page_mapcount(page), page->mapping, page->index);
  234. dump_stack();
  235. out:
  236. /* Leave bad fields for debug, except PageBuddy could make trouble */
  237. __ClearPageBuddy(page);
  238. add_taint(TAINT_BAD_PAGE);
  239. }
  240. /*
  241. * Higher-order pages are called "compound pages". They are structured thusly:
  242. *
  243. * The first PAGE_SIZE page is called the "head page".
  244. *
  245. * The remaining PAGE_SIZE pages are called "tail pages".
  246. *
  247. * All pages have PG_compound set. All pages have their ->private pointing at
  248. * the head page (even the head page has this).
  249. *
  250. * The first tail page's ->lru.next holds the address of the compound page's
  251. * put_page() function. Its ->lru.prev holds the order of allocation.
  252. * This usage means that zero-order pages may not be compound.
  253. */
  254. static void free_compound_page(struct page *page)
  255. {
  256. __free_pages_ok(page, compound_order(page));
  257. }
  258. void prep_compound_page(struct page *page, unsigned long order)
  259. {
  260. int i;
  261. int nr_pages = 1 << order;
  262. set_compound_page_dtor(page, free_compound_page);
  263. set_compound_order(page, order);
  264. __SetPageHead(page);
  265. for (i = 1; i < nr_pages; i++) {
  266. struct page *p = page + i;
  267. __SetPageTail(p);
  268. p->first_page = page;
  269. }
  270. }
  271. static int destroy_compound_page(struct page *page, unsigned long order)
  272. {
  273. int i;
  274. int nr_pages = 1 << order;
  275. int bad = 0;
  276. if (unlikely(compound_order(page) != order) ||
  277. unlikely(!PageHead(page))) {
  278. bad_page(page);
  279. bad++;
  280. }
  281. __ClearPageHead(page);
  282. for (i = 1; i < nr_pages; i++) {
  283. struct page *p = page + i;
  284. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  285. bad_page(page);
  286. bad++;
  287. }
  288. __ClearPageTail(p);
  289. }
  290. return bad;
  291. }
  292. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  293. {
  294. int i;
  295. /*
  296. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  297. * and __GFP_HIGHMEM from hard or soft interrupt context.
  298. */
  299. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  300. for (i = 0; i < (1 << order); i++)
  301. clear_highpage(page + i);
  302. }
  303. static inline void set_page_order(struct page *page, int order)
  304. {
  305. set_page_private(page, order);
  306. __SetPageBuddy(page);
  307. }
  308. static inline void rmv_page_order(struct page *page)
  309. {
  310. __ClearPageBuddy(page);
  311. set_page_private(page, 0);
  312. }
  313. /*
  314. * Locate the struct page for both the matching buddy in our
  315. * pair (buddy1) and the combined O(n+1) page they form (page).
  316. *
  317. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  318. * the following equation:
  319. * B2 = B1 ^ (1 << O)
  320. * For example, if the starting buddy (buddy2) is #8 its order
  321. * 1 buddy is #10:
  322. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  323. *
  324. * 2) Any buddy B will have an order O+1 parent P which
  325. * satisfies the following equation:
  326. * P = B & ~(1 << O)
  327. *
  328. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  329. */
  330. static inline struct page *
  331. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  332. {
  333. unsigned long buddy_idx = page_idx ^ (1 << order);
  334. return page + (buddy_idx - page_idx);
  335. }
  336. static inline unsigned long
  337. __find_combined_index(unsigned long page_idx, unsigned int order)
  338. {
  339. return (page_idx & ~(1 << order));
  340. }
  341. /*
  342. * This function checks whether a page is free && is the buddy
  343. * we can do coalesce a page and its buddy if
  344. * (a) the buddy is not in a hole &&
  345. * (b) the buddy is in the buddy system &&
  346. * (c) a page and its buddy have the same order &&
  347. * (d) a page and its buddy are in the same zone.
  348. *
  349. * For recording whether a page is in the buddy system, we use PG_buddy.
  350. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  351. *
  352. * For recording page's order, we use page_private(page).
  353. */
  354. static inline int page_is_buddy(struct page *page, struct page *buddy,
  355. int order)
  356. {
  357. if (!pfn_valid_within(page_to_pfn(buddy)))
  358. return 0;
  359. if (page_zone_id(page) != page_zone_id(buddy))
  360. return 0;
  361. if (PageBuddy(buddy) && page_order(buddy) == order) {
  362. VM_BUG_ON(page_count(buddy) != 0);
  363. return 1;
  364. }
  365. return 0;
  366. }
  367. /*
  368. * Freeing function for a buddy system allocator.
  369. *
  370. * The concept of a buddy system is to maintain direct-mapped table
  371. * (containing bit values) for memory blocks of various "orders".
  372. * The bottom level table contains the map for the smallest allocatable
  373. * units of memory (here, pages), and each level above it describes
  374. * pairs of units from the levels below, hence, "buddies".
  375. * At a high level, all that happens here is marking the table entry
  376. * at the bottom level available, and propagating the changes upward
  377. * as necessary, plus some accounting needed to play nicely with other
  378. * parts of the VM system.
  379. * At each level, we keep a list of pages, which are heads of continuous
  380. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  381. * order is recorded in page_private(page) field.
  382. * So when we are allocating or freeing one, we can derive the state of the
  383. * other. That is, if we allocate a small block, and both were
  384. * free, the remainder of the region must be split into blocks.
  385. * If a block is freed, and its buddy is also free, then this
  386. * triggers coalescing into a block of larger size.
  387. *
  388. * -- wli
  389. */
  390. static inline void __free_one_page(struct page *page,
  391. struct zone *zone, unsigned int order,
  392. int migratetype)
  393. {
  394. unsigned long page_idx;
  395. if (unlikely(PageCompound(page)))
  396. if (unlikely(destroy_compound_page(page, order)))
  397. return;
  398. VM_BUG_ON(migratetype == -1);
  399. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  400. VM_BUG_ON(page_idx & ((1 << order) - 1));
  401. VM_BUG_ON(bad_range(zone, page));
  402. while (order < MAX_ORDER-1) {
  403. unsigned long combined_idx;
  404. struct page *buddy;
  405. buddy = __page_find_buddy(page, page_idx, order);
  406. if (!page_is_buddy(page, buddy, order))
  407. break;
  408. /* Our buddy is free, merge with it and move up one order. */
  409. list_del(&buddy->lru);
  410. zone->free_area[order].nr_free--;
  411. rmv_page_order(buddy);
  412. combined_idx = __find_combined_index(page_idx, order);
  413. page = page + (combined_idx - page_idx);
  414. page_idx = combined_idx;
  415. order++;
  416. }
  417. set_page_order(page, order);
  418. list_add(&page->lru,
  419. &zone->free_area[order].free_list[migratetype]);
  420. zone->free_area[order].nr_free++;
  421. }
  422. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  423. /*
  424. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  425. * Page should not be on lru, so no need to fix that up.
  426. * free_pages_check() will verify...
  427. */
  428. static inline void free_page_mlock(struct page *page)
  429. {
  430. __dec_zone_page_state(page, NR_MLOCK);
  431. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  432. }
  433. #else
  434. static void free_page_mlock(struct page *page) { }
  435. #endif
  436. static inline int free_pages_check(struct page *page)
  437. {
  438. if (unlikely(page_mapcount(page) |
  439. (page->mapping != NULL) |
  440. (atomic_read(&page->_count) != 0) |
  441. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  442. bad_page(page);
  443. return 1;
  444. }
  445. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  446. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  447. return 0;
  448. }
  449. /*
  450. * Frees a list of pages.
  451. * Assumes all pages on list are in same zone, and of same order.
  452. * count is the number of pages to free.
  453. *
  454. * If the zone was previously in an "all pages pinned" state then look to
  455. * see if this freeing clears that state.
  456. *
  457. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  458. * pinned" detection logic.
  459. */
  460. static void free_pages_bulk(struct zone *zone, int count,
  461. struct list_head *list, int order)
  462. {
  463. spin_lock(&zone->lock);
  464. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  465. zone->pages_scanned = 0;
  466. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  467. while (count--) {
  468. struct page *page;
  469. VM_BUG_ON(list_empty(list));
  470. page = list_entry(list->prev, struct page, lru);
  471. /* have to delete it as __free_one_page list manipulates */
  472. list_del(&page->lru);
  473. __free_one_page(page, zone, order, page_private(page));
  474. }
  475. spin_unlock(&zone->lock);
  476. }
  477. static void free_one_page(struct zone *zone, struct page *page, int order,
  478. int migratetype)
  479. {
  480. spin_lock(&zone->lock);
  481. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  482. zone->pages_scanned = 0;
  483. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  484. __free_one_page(page, zone, order, migratetype);
  485. spin_unlock(&zone->lock);
  486. }
  487. static void __free_pages_ok(struct page *page, unsigned int order)
  488. {
  489. unsigned long flags;
  490. int i;
  491. int bad = 0;
  492. int wasMlocked = TestClearPageMlocked(page);
  493. kmemcheck_free_shadow(page, order);
  494. for (i = 0 ; i < (1 << order) ; ++i)
  495. bad += free_pages_check(page + i);
  496. if (bad)
  497. return;
  498. if (!PageHighMem(page)) {
  499. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  500. debug_check_no_obj_freed(page_address(page),
  501. PAGE_SIZE << order);
  502. }
  503. arch_free_page(page, order);
  504. kernel_map_pages(page, 1 << order, 0);
  505. local_irq_save(flags);
  506. if (unlikely(wasMlocked))
  507. free_page_mlock(page);
  508. __count_vm_events(PGFREE, 1 << order);
  509. free_one_page(page_zone(page), page, order,
  510. get_pageblock_migratetype(page));
  511. local_irq_restore(flags);
  512. }
  513. /*
  514. * permit the bootmem allocator to evade page validation on high-order frees
  515. */
  516. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  517. {
  518. if (order == 0) {
  519. __ClearPageReserved(page);
  520. set_page_count(page, 0);
  521. set_page_refcounted(page);
  522. __free_page(page);
  523. } else {
  524. int loop;
  525. prefetchw(page);
  526. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  527. struct page *p = &page[loop];
  528. if (loop + 1 < BITS_PER_LONG)
  529. prefetchw(p + 1);
  530. __ClearPageReserved(p);
  531. set_page_count(p, 0);
  532. }
  533. set_page_refcounted(page);
  534. __free_pages(page, order);
  535. }
  536. }
  537. /*
  538. * The order of subdivision here is critical for the IO subsystem.
  539. * Please do not alter this order without good reasons and regression
  540. * testing. Specifically, as large blocks of memory are subdivided,
  541. * the order in which smaller blocks are delivered depends on the order
  542. * they're subdivided in this function. This is the primary factor
  543. * influencing the order in which pages are delivered to the IO
  544. * subsystem according to empirical testing, and this is also justified
  545. * by considering the behavior of a buddy system containing a single
  546. * large block of memory acted on by a series of small allocations.
  547. * This behavior is a critical factor in sglist merging's success.
  548. *
  549. * -- wli
  550. */
  551. static inline void expand(struct zone *zone, struct page *page,
  552. int low, int high, struct free_area *area,
  553. int migratetype)
  554. {
  555. unsigned long size = 1 << high;
  556. while (high > low) {
  557. area--;
  558. high--;
  559. size >>= 1;
  560. VM_BUG_ON(bad_range(zone, &page[size]));
  561. list_add(&page[size].lru, &area->free_list[migratetype]);
  562. area->nr_free++;
  563. set_page_order(&page[size], high);
  564. }
  565. }
  566. /*
  567. * This page is about to be returned from the page allocator
  568. */
  569. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  570. {
  571. if (unlikely(page_mapcount(page) |
  572. (page->mapping != NULL) |
  573. (atomic_read(&page->_count) != 0) |
  574. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  575. bad_page(page);
  576. return 1;
  577. }
  578. set_page_private(page, 0);
  579. set_page_refcounted(page);
  580. arch_alloc_page(page, order);
  581. kernel_map_pages(page, 1 << order, 1);
  582. if (gfp_flags & __GFP_ZERO)
  583. prep_zero_page(page, order, gfp_flags);
  584. if (order && (gfp_flags & __GFP_COMP))
  585. prep_compound_page(page, order);
  586. return 0;
  587. }
  588. /*
  589. * Go through the free lists for the given migratetype and remove
  590. * the smallest available page from the freelists
  591. */
  592. static inline
  593. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  594. int migratetype)
  595. {
  596. unsigned int current_order;
  597. struct free_area * area;
  598. struct page *page;
  599. /* Find a page of the appropriate size in the preferred list */
  600. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  601. area = &(zone->free_area[current_order]);
  602. if (list_empty(&area->free_list[migratetype]))
  603. continue;
  604. page = list_entry(area->free_list[migratetype].next,
  605. struct page, lru);
  606. list_del(&page->lru);
  607. rmv_page_order(page);
  608. area->nr_free--;
  609. expand(zone, page, order, current_order, area, migratetype);
  610. return page;
  611. }
  612. return NULL;
  613. }
  614. /*
  615. * This array describes the order lists are fallen back to when
  616. * the free lists for the desirable migrate type are depleted
  617. */
  618. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  619. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  620. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  621. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  622. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  623. };
  624. /*
  625. * Move the free pages in a range to the free lists of the requested type.
  626. * Note that start_page and end_pages are not aligned on a pageblock
  627. * boundary. If alignment is required, use move_freepages_block()
  628. */
  629. static int move_freepages(struct zone *zone,
  630. struct page *start_page, struct page *end_page,
  631. int migratetype)
  632. {
  633. struct page *page;
  634. unsigned long order;
  635. int pages_moved = 0;
  636. #ifndef CONFIG_HOLES_IN_ZONE
  637. /*
  638. * page_zone is not safe to call in this context when
  639. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  640. * anyway as we check zone boundaries in move_freepages_block().
  641. * Remove at a later date when no bug reports exist related to
  642. * grouping pages by mobility
  643. */
  644. BUG_ON(page_zone(start_page) != page_zone(end_page));
  645. #endif
  646. for (page = start_page; page <= end_page;) {
  647. /* Make sure we are not inadvertently changing nodes */
  648. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  649. if (!pfn_valid_within(page_to_pfn(page))) {
  650. page++;
  651. continue;
  652. }
  653. if (!PageBuddy(page)) {
  654. page++;
  655. continue;
  656. }
  657. order = page_order(page);
  658. list_del(&page->lru);
  659. list_add(&page->lru,
  660. &zone->free_area[order].free_list[migratetype]);
  661. page += 1 << order;
  662. pages_moved += 1 << order;
  663. }
  664. return pages_moved;
  665. }
  666. static int move_freepages_block(struct zone *zone, struct page *page,
  667. int migratetype)
  668. {
  669. unsigned long start_pfn, end_pfn;
  670. struct page *start_page, *end_page;
  671. start_pfn = page_to_pfn(page);
  672. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  673. start_page = pfn_to_page(start_pfn);
  674. end_page = start_page + pageblock_nr_pages - 1;
  675. end_pfn = start_pfn + pageblock_nr_pages - 1;
  676. /* Do not cross zone boundaries */
  677. if (start_pfn < zone->zone_start_pfn)
  678. start_page = page;
  679. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  680. return 0;
  681. return move_freepages(zone, start_page, end_page, migratetype);
  682. }
  683. /* Remove an element from the buddy allocator from the fallback list */
  684. static inline struct page *
  685. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  686. {
  687. struct free_area * area;
  688. int current_order;
  689. struct page *page;
  690. int migratetype, i;
  691. /* Find the largest possible block of pages in the other list */
  692. for (current_order = MAX_ORDER-1; current_order >= order;
  693. --current_order) {
  694. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  695. migratetype = fallbacks[start_migratetype][i];
  696. /* MIGRATE_RESERVE handled later if necessary */
  697. if (migratetype == MIGRATE_RESERVE)
  698. continue;
  699. area = &(zone->free_area[current_order]);
  700. if (list_empty(&area->free_list[migratetype]))
  701. continue;
  702. page = list_entry(area->free_list[migratetype].next,
  703. struct page, lru);
  704. area->nr_free--;
  705. /*
  706. * If breaking a large block of pages, move all free
  707. * pages to the preferred allocation list. If falling
  708. * back for a reclaimable kernel allocation, be more
  709. * agressive about taking ownership of free pages
  710. */
  711. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  712. start_migratetype == MIGRATE_RECLAIMABLE) {
  713. unsigned long pages;
  714. pages = move_freepages_block(zone, page,
  715. start_migratetype);
  716. /* Claim the whole block if over half of it is free */
  717. if (pages >= (1 << (pageblock_order-1)))
  718. set_pageblock_migratetype(page,
  719. start_migratetype);
  720. migratetype = start_migratetype;
  721. }
  722. /* Remove the page from the freelists */
  723. list_del(&page->lru);
  724. rmv_page_order(page);
  725. if (current_order == pageblock_order)
  726. set_pageblock_migratetype(page,
  727. start_migratetype);
  728. expand(zone, page, order, current_order, area, migratetype);
  729. return page;
  730. }
  731. }
  732. return NULL;
  733. }
  734. /*
  735. * Do the hard work of removing an element from the buddy allocator.
  736. * Call me with the zone->lock already held.
  737. */
  738. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  739. int migratetype)
  740. {
  741. struct page *page;
  742. retry_reserve:
  743. page = __rmqueue_smallest(zone, order, migratetype);
  744. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  745. page = __rmqueue_fallback(zone, order, migratetype);
  746. /*
  747. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  748. * is used because __rmqueue_smallest is an inline function
  749. * and we want just one call site
  750. */
  751. if (!page) {
  752. migratetype = MIGRATE_RESERVE;
  753. goto retry_reserve;
  754. }
  755. }
  756. return page;
  757. }
  758. /*
  759. * Obtain a specified number of elements from the buddy allocator, all under
  760. * a single hold of the lock, for efficiency. Add them to the supplied list.
  761. * Returns the number of new pages which were placed at *list.
  762. */
  763. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  764. unsigned long count, struct list_head *list,
  765. int migratetype)
  766. {
  767. int i;
  768. spin_lock(&zone->lock);
  769. for (i = 0; i < count; ++i) {
  770. struct page *page = __rmqueue(zone, order, migratetype);
  771. if (unlikely(page == NULL))
  772. break;
  773. /*
  774. * Split buddy pages returned by expand() are received here
  775. * in physical page order. The page is added to the callers and
  776. * list and the list head then moves forward. From the callers
  777. * perspective, the linked list is ordered by page number in
  778. * some conditions. This is useful for IO devices that can
  779. * merge IO requests if the physical pages are ordered
  780. * properly.
  781. */
  782. list_add(&page->lru, list);
  783. set_page_private(page, migratetype);
  784. list = &page->lru;
  785. }
  786. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  787. spin_unlock(&zone->lock);
  788. return i;
  789. }
  790. #ifdef CONFIG_NUMA
  791. /*
  792. * Called from the vmstat counter updater to drain pagesets of this
  793. * currently executing processor on remote nodes after they have
  794. * expired.
  795. *
  796. * Note that this function must be called with the thread pinned to
  797. * a single processor.
  798. */
  799. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  800. {
  801. unsigned long flags;
  802. int to_drain;
  803. local_irq_save(flags);
  804. if (pcp->count >= pcp->batch)
  805. to_drain = pcp->batch;
  806. else
  807. to_drain = pcp->count;
  808. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  809. pcp->count -= to_drain;
  810. local_irq_restore(flags);
  811. }
  812. #endif
  813. /*
  814. * Drain pages of the indicated processor.
  815. *
  816. * The processor must either be the current processor and the
  817. * thread pinned to the current processor or a processor that
  818. * is not online.
  819. */
  820. static void drain_pages(unsigned int cpu)
  821. {
  822. unsigned long flags;
  823. struct zone *zone;
  824. for_each_populated_zone(zone) {
  825. struct per_cpu_pageset *pset;
  826. struct per_cpu_pages *pcp;
  827. pset = zone_pcp(zone, cpu);
  828. pcp = &pset->pcp;
  829. local_irq_save(flags);
  830. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  831. pcp->count = 0;
  832. local_irq_restore(flags);
  833. }
  834. }
  835. /*
  836. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  837. */
  838. void drain_local_pages(void *arg)
  839. {
  840. drain_pages(smp_processor_id());
  841. }
  842. /*
  843. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  844. */
  845. void drain_all_pages(void)
  846. {
  847. on_each_cpu(drain_local_pages, NULL, 1);
  848. }
  849. #ifdef CONFIG_HIBERNATION
  850. void mark_free_pages(struct zone *zone)
  851. {
  852. unsigned long pfn, max_zone_pfn;
  853. unsigned long flags;
  854. int order, t;
  855. struct list_head *curr;
  856. if (!zone->spanned_pages)
  857. return;
  858. spin_lock_irqsave(&zone->lock, flags);
  859. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  860. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  861. if (pfn_valid(pfn)) {
  862. struct page *page = pfn_to_page(pfn);
  863. if (!swsusp_page_is_forbidden(page))
  864. swsusp_unset_page_free(page);
  865. }
  866. for_each_migratetype_order(order, t) {
  867. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  868. unsigned long i;
  869. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  870. for (i = 0; i < (1UL << order); i++)
  871. swsusp_set_page_free(pfn_to_page(pfn + i));
  872. }
  873. }
  874. spin_unlock_irqrestore(&zone->lock, flags);
  875. }
  876. #endif /* CONFIG_PM */
  877. /*
  878. * Free a 0-order page
  879. */
  880. static void free_hot_cold_page(struct page *page, int cold)
  881. {
  882. struct zone *zone = page_zone(page);
  883. struct per_cpu_pages *pcp;
  884. unsigned long flags;
  885. int wasMlocked = TestClearPageMlocked(page);
  886. kmemcheck_free_shadow(page, 0);
  887. if (PageAnon(page))
  888. page->mapping = NULL;
  889. if (free_pages_check(page))
  890. return;
  891. if (!PageHighMem(page)) {
  892. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  893. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  894. }
  895. arch_free_page(page, 0);
  896. kernel_map_pages(page, 1, 0);
  897. pcp = &zone_pcp(zone, get_cpu())->pcp;
  898. set_page_private(page, get_pageblock_migratetype(page));
  899. local_irq_save(flags);
  900. if (unlikely(wasMlocked))
  901. free_page_mlock(page);
  902. __count_vm_event(PGFREE);
  903. if (cold)
  904. list_add_tail(&page->lru, &pcp->list);
  905. else
  906. list_add(&page->lru, &pcp->list);
  907. pcp->count++;
  908. if (pcp->count >= pcp->high) {
  909. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  910. pcp->count -= pcp->batch;
  911. }
  912. local_irq_restore(flags);
  913. put_cpu();
  914. }
  915. void free_hot_page(struct page *page)
  916. {
  917. free_hot_cold_page(page, 0);
  918. }
  919. void free_cold_page(struct page *page)
  920. {
  921. free_hot_cold_page(page, 1);
  922. }
  923. /*
  924. * split_page takes a non-compound higher-order page, and splits it into
  925. * n (1<<order) sub-pages: page[0..n]
  926. * Each sub-page must be freed individually.
  927. *
  928. * Note: this is probably too low level an operation for use in drivers.
  929. * Please consult with lkml before using this in your driver.
  930. */
  931. void split_page(struct page *page, unsigned int order)
  932. {
  933. int i;
  934. VM_BUG_ON(PageCompound(page));
  935. VM_BUG_ON(!page_count(page));
  936. #ifdef CONFIG_KMEMCHECK
  937. /*
  938. * Split shadow pages too, because free(page[0]) would
  939. * otherwise free the whole shadow.
  940. */
  941. if (kmemcheck_page_is_tracked(page))
  942. split_page(virt_to_page(page[0].shadow), order);
  943. #endif
  944. for (i = 1; i < (1 << order); i++)
  945. set_page_refcounted(page + i);
  946. }
  947. /*
  948. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  949. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  950. * or two.
  951. */
  952. static inline
  953. struct page *buffered_rmqueue(struct zone *preferred_zone,
  954. struct zone *zone, int order, gfp_t gfp_flags,
  955. int migratetype)
  956. {
  957. unsigned long flags;
  958. struct page *page;
  959. int cold = !!(gfp_flags & __GFP_COLD);
  960. int cpu;
  961. again:
  962. cpu = get_cpu();
  963. if (likely(order == 0)) {
  964. struct per_cpu_pages *pcp;
  965. pcp = &zone_pcp(zone, cpu)->pcp;
  966. local_irq_save(flags);
  967. if (!pcp->count) {
  968. pcp->count = rmqueue_bulk(zone, 0,
  969. pcp->batch, &pcp->list, migratetype);
  970. if (unlikely(!pcp->count))
  971. goto failed;
  972. }
  973. /* Find a page of the appropriate migrate type */
  974. if (cold) {
  975. list_for_each_entry_reverse(page, &pcp->list, lru)
  976. if (page_private(page) == migratetype)
  977. break;
  978. } else {
  979. list_for_each_entry(page, &pcp->list, lru)
  980. if (page_private(page) == migratetype)
  981. break;
  982. }
  983. /* Allocate more to the pcp list if necessary */
  984. if (unlikely(&page->lru == &pcp->list)) {
  985. pcp->count += rmqueue_bulk(zone, 0,
  986. pcp->batch, &pcp->list, migratetype);
  987. page = list_entry(pcp->list.next, struct page, lru);
  988. }
  989. list_del(&page->lru);
  990. pcp->count--;
  991. } else {
  992. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  993. /*
  994. * __GFP_NOFAIL is not to be used in new code.
  995. *
  996. * All __GFP_NOFAIL callers should be fixed so that they
  997. * properly detect and handle allocation failures.
  998. *
  999. * We most definitely don't want callers attempting to
  1000. * allocate greater than order-1 page units with
  1001. * __GFP_NOFAIL.
  1002. */
  1003. WARN_ON_ONCE(order > 1);
  1004. }
  1005. spin_lock_irqsave(&zone->lock, flags);
  1006. page = __rmqueue(zone, order, migratetype);
  1007. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1008. spin_unlock(&zone->lock);
  1009. if (!page)
  1010. goto failed;
  1011. }
  1012. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1013. zone_statistics(preferred_zone, zone);
  1014. local_irq_restore(flags);
  1015. put_cpu();
  1016. VM_BUG_ON(bad_range(zone, page));
  1017. if (prep_new_page(page, order, gfp_flags))
  1018. goto again;
  1019. return page;
  1020. failed:
  1021. local_irq_restore(flags);
  1022. put_cpu();
  1023. return NULL;
  1024. }
  1025. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1026. #define ALLOC_WMARK_MIN WMARK_MIN
  1027. #define ALLOC_WMARK_LOW WMARK_LOW
  1028. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1029. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1030. /* Mask to get the watermark bits */
  1031. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1032. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1033. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1034. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1035. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1036. static struct fail_page_alloc_attr {
  1037. struct fault_attr attr;
  1038. u32 ignore_gfp_highmem;
  1039. u32 ignore_gfp_wait;
  1040. u32 min_order;
  1041. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1042. struct dentry *ignore_gfp_highmem_file;
  1043. struct dentry *ignore_gfp_wait_file;
  1044. struct dentry *min_order_file;
  1045. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1046. } fail_page_alloc = {
  1047. .attr = FAULT_ATTR_INITIALIZER,
  1048. .ignore_gfp_wait = 1,
  1049. .ignore_gfp_highmem = 1,
  1050. .min_order = 1,
  1051. };
  1052. static int __init setup_fail_page_alloc(char *str)
  1053. {
  1054. return setup_fault_attr(&fail_page_alloc.attr, str);
  1055. }
  1056. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1057. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1058. {
  1059. if (order < fail_page_alloc.min_order)
  1060. return 0;
  1061. if (gfp_mask & __GFP_NOFAIL)
  1062. return 0;
  1063. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1064. return 0;
  1065. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1066. return 0;
  1067. return should_fail(&fail_page_alloc.attr, 1 << order);
  1068. }
  1069. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1070. static int __init fail_page_alloc_debugfs(void)
  1071. {
  1072. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1073. struct dentry *dir;
  1074. int err;
  1075. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1076. "fail_page_alloc");
  1077. if (err)
  1078. return err;
  1079. dir = fail_page_alloc.attr.dentries.dir;
  1080. fail_page_alloc.ignore_gfp_wait_file =
  1081. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1082. &fail_page_alloc.ignore_gfp_wait);
  1083. fail_page_alloc.ignore_gfp_highmem_file =
  1084. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1085. &fail_page_alloc.ignore_gfp_highmem);
  1086. fail_page_alloc.min_order_file =
  1087. debugfs_create_u32("min-order", mode, dir,
  1088. &fail_page_alloc.min_order);
  1089. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1090. !fail_page_alloc.ignore_gfp_highmem_file ||
  1091. !fail_page_alloc.min_order_file) {
  1092. err = -ENOMEM;
  1093. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1094. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1095. debugfs_remove(fail_page_alloc.min_order_file);
  1096. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1097. }
  1098. return err;
  1099. }
  1100. late_initcall(fail_page_alloc_debugfs);
  1101. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1102. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1103. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1104. {
  1105. return 0;
  1106. }
  1107. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1108. /*
  1109. * Return 1 if free pages are above 'mark'. This takes into account the order
  1110. * of the allocation.
  1111. */
  1112. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1113. int classzone_idx, int alloc_flags)
  1114. {
  1115. /* free_pages my go negative - that's OK */
  1116. long min = mark;
  1117. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1118. int o;
  1119. if (alloc_flags & ALLOC_HIGH)
  1120. min -= min / 2;
  1121. if (alloc_flags & ALLOC_HARDER)
  1122. min -= min / 4;
  1123. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1124. return 0;
  1125. for (o = 0; o < order; o++) {
  1126. /* At the next order, this order's pages become unavailable */
  1127. free_pages -= z->free_area[o].nr_free << o;
  1128. /* Require fewer higher order pages to be free */
  1129. min >>= 1;
  1130. if (free_pages <= min)
  1131. return 0;
  1132. }
  1133. return 1;
  1134. }
  1135. #ifdef CONFIG_NUMA
  1136. /*
  1137. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1138. * skip over zones that are not allowed by the cpuset, or that have
  1139. * been recently (in last second) found to be nearly full. See further
  1140. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1141. * that have to skip over a lot of full or unallowed zones.
  1142. *
  1143. * If the zonelist cache is present in the passed in zonelist, then
  1144. * returns a pointer to the allowed node mask (either the current
  1145. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1146. *
  1147. * If the zonelist cache is not available for this zonelist, does
  1148. * nothing and returns NULL.
  1149. *
  1150. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1151. * a second since last zap'd) then we zap it out (clear its bits.)
  1152. *
  1153. * We hold off even calling zlc_setup, until after we've checked the
  1154. * first zone in the zonelist, on the theory that most allocations will
  1155. * be satisfied from that first zone, so best to examine that zone as
  1156. * quickly as we can.
  1157. */
  1158. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1159. {
  1160. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1161. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1162. zlc = zonelist->zlcache_ptr;
  1163. if (!zlc)
  1164. return NULL;
  1165. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1166. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1167. zlc->last_full_zap = jiffies;
  1168. }
  1169. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1170. &cpuset_current_mems_allowed :
  1171. &node_states[N_HIGH_MEMORY];
  1172. return allowednodes;
  1173. }
  1174. /*
  1175. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1176. * if it is worth looking at further for free memory:
  1177. * 1) Check that the zone isn't thought to be full (doesn't have its
  1178. * bit set in the zonelist_cache fullzones BITMAP).
  1179. * 2) Check that the zones node (obtained from the zonelist_cache
  1180. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1181. * Return true (non-zero) if zone is worth looking at further, or
  1182. * else return false (zero) if it is not.
  1183. *
  1184. * This check -ignores- the distinction between various watermarks,
  1185. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1186. * found to be full for any variation of these watermarks, it will
  1187. * be considered full for up to one second by all requests, unless
  1188. * we are so low on memory on all allowed nodes that we are forced
  1189. * into the second scan of the zonelist.
  1190. *
  1191. * In the second scan we ignore this zonelist cache and exactly
  1192. * apply the watermarks to all zones, even it is slower to do so.
  1193. * We are low on memory in the second scan, and should leave no stone
  1194. * unturned looking for a free page.
  1195. */
  1196. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1197. nodemask_t *allowednodes)
  1198. {
  1199. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1200. int i; /* index of *z in zonelist zones */
  1201. int n; /* node that zone *z is on */
  1202. zlc = zonelist->zlcache_ptr;
  1203. if (!zlc)
  1204. return 1;
  1205. i = z - zonelist->_zonerefs;
  1206. n = zlc->z_to_n[i];
  1207. /* This zone is worth trying if it is allowed but not full */
  1208. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1209. }
  1210. /*
  1211. * Given 'z' scanning a zonelist, set the corresponding bit in
  1212. * zlc->fullzones, so that subsequent attempts to allocate a page
  1213. * from that zone don't waste time re-examining it.
  1214. */
  1215. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1216. {
  1217. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1218. int i; /* index of *z in zonelist zones */
  1219. zlc = zonelist->zlcache_ptr;
  1220. if (!zlc)
  1221. return;
  1222. i = z - zonelist->_zonerefs;
  1223. set_bit(i, zlc->fullzones);
  1224. }
  1225. #else /* CONFIG_NUMA */
  1226. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1227. {
  1228. return NULL;
  1229. }
  1230. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1231. nodemask_t *allowednodes)
  1232. {
  1233. return 1;
  1234. }
  1235. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1236. {
  1237. }
  1238. #endif /* CONFIG_NUMA */
  1239. /*
  1240. * get_page_from_freelist goes through the zonelist trying to allocate
  1241. * a page.
  1242. */
  1243. static struct page *
  1244. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1245. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1246. struct zone *preferred_zone, int migratetype)
  1247. {
  1248. struct zoneref *z;
  1249. struct page *page = NULL;
  1250. int classzone_idx;
  1251. struct zone *zone;
  1252. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1253. int zlc_active = 0; /* set if using zonelist_cache */
  1254. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1255. classzone_idx = zone_idx(preferred_zone);
  1256. zonelist_scan:
  1257. /*
  1258. * Scan zonelist, looking for a zone with enough free.
  1259. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1260. */
  1261. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1262. high_zoneidx, nodemask) {
  1263. if (NUMA_BUILD && zlc_active &&
  1264. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1265. continue;
  1266. if ((alloc_flags & ALLOC_CPUSET) &&
  1267. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1268. goto try_next_zone;
  1269. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1270. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1271. unsigned long mark;
  1272. int ret;
  1273. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1274. if (zone_watermark_ok(zone, order, mark,
  1275. classzone_idx, alloc_flags))
  1276. goto try_this_zone;
  1277. if (zone_reclaim_mode == 0)
  1278. goto this_zone_full;
  1279. ret = zone_reclaim(zone, gfp_mask, order);
  1280. switch (ret) {
  1281. case ZONE_RECLAIM_NOSCAN:
  1282. /* did not scan */
  1283. goto try_next_zone;
  1284. case ZONE_RECLAIM_FULL:
  1285. /* scanned but unreclaimable */
  1286. goto this_zone_full;
  1287. default:
  1288. /* did we reclaim enough */
  1289. if (!zone_watermark_ok(zone, order, mark,
  1290. classzone_idx, alloc_flags))
  1291. goto this_zone_full;
  1292. }
  1293. }
  1294. try_this_zone:
  1295. page = buffered_rmqueue(preferred_zone, zone, order,
  1296. gfp_mask, migratetype);
  1297. if (page)
  1298. break;
  1299. this_zone_full:
  1300. if (NUMA_BUILD)
  1301. zlc_mark_zone_full(zonelist, z);
  1302. try_next_zone:
  1303. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1304. /*
  1305. * we do zlc_setup after the first zone is tried but only
  1306. * if there are multiple nodes make it worthwhile
  1307. */
  1308. allowednodes = zlc_setup(zonelist, alloc_flags);
  1309. zlc_active = 1;
  1310. did_zlc_setup = 1;
  1311. }
  1312. }
  1313. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1314. /* Disable zlc cache for second zonelist scan */
  1315. zlc_active = 0;
  1316. goto zonelist_scan;
  1317. }
  1318. return page;
  1319. }
  1320. static inline int
  1321. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1322. unsigned long pages_reclaimed)
  1323. {
  1324. /* Do not loop if specifically requested */
  1325. if (gfp_mask & __GFP_NORETRY)
  1326. return 0;
  1327. /*
  1328. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1329. * means __GFP_NOFAIL, but that may not be true in other
  1330. * implementations.
  1331. */
  1332. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1333. return 1;
  1334. /*
  1335. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1336. * specified, then we retry until we no longer reclaim any pages
  1337. * (above), or we've reclaimed an order of pages at least as
  1338. * large as the allocation's order. In both cases, if the
  1339. * allocation still fails, we stop retrying.
  1340. */
  1341. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1342. return 1;
  1343. /*
  1344. * Don't let big-order allocations loop unless the caller
  1345. * explicitly requests that.
  1346. */
  1347. if (gfp_mask & __GFP_NOFAIL)
  1348. return 1;
  1349. return 0;
  1350. }
  1351. static inline struct page *
  1352. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1353. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1354. nodemask_t *nodemask, struct zone *preferred_zone,
  1355. int migratetype)
  1356. {
  1357. struct page *page;
  1358. /* Acquire the OOM killer lock for the zones in zonelist */
  1359. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1360. schedule_timeout_uninterruptible(1);
  1361. return NULL;
  1362. }
  1363. /*
  1364. * Go through the zonelist yet one more time, keep very high watermark
  1365. * here, this is only to catch a parallel oom killing, we must fail if
  1366. * we're still under heavy pressure.
  1367. */
  1368. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1369. order, zonelist, high_zoneidx,
  1370. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1371. preferred_zone, migratetype);
  1372. if (page)
  1373. goto out;
  1374. /* The OOM killer will not help higher order allocs */
  1375. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
  1376. goto out;
  1377. /* Exhausted what can be done so it's blamo time */
  1378. out_of_memory(zonelist, gfp_mask, order);
  1379. out:
  1380. clear_zonelist_oom(zonelist, gfp_mask);
  1381. return page;
  1382. }
  1383. /* The really slow allocator path where we enter direct reclaim */
  1384. static inline struct page *
  1385. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1386. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1387. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1388. int migratetype, unsigned long *did_some_progress)
  1389. {
  1390. struct page *page = NULL;
  1391. struct reclaim_state reclaim_state;
  1392. struct task_struct *p = current;
  1393. cond_resched();
  1394. /* We now go into synchronous reclaim */
  1395. cpuset_memory_pressure_bump();
  1396. /*
  1397. * The task's cpuset might have expanded its set of allowable nodes
  1398. */
  1399. p->flags |= PF_MEMALLOC;
  1400. lockdep_set_current_reclaim_state(gfp_mask);
  1401. reclaim_state.reclaimed_slab = 0;
  1402. p->reclaim_state = &reclaim_state;
  1403. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1404. p->reclaim_state = NULL;
  1405. lockdep_clear_current_reclaim_state();
  1406. p->flags &= ~PF_MEMALLOC;
  1407. cond_resched();
  1408. if (order != 0)
  1409. drain_all_pages();
  1410. if (likely(*did_some_progress))
  1411. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1412. zonelist, high_zoneidx,
  1413. alloc_flags, preferred_zone,
  1414. migratetype);
  1415. return page;
  1416. }
  1417. /*
  1418. * This is called in the allocator slow-path if the allocation request is of
  1419. * sufficient urgency to ignore watermarks and take other desperate measures
  1420. */
  1421. static inline struct page *
  1422. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1423. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1424. nodemask_t *nodemask, struct zone *preferred_zone,
  1425. int migratetype)
  1426. {
  1427. struct page *page;
  1428. do {
  1429. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1430. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1431. preferred_zone, migratetype);
  1432. if (!page && gfp_mask & __GFP_NOFAIL)
  1433. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1434. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1435. return page;
  1436. }
  1437. static inline
  1438. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1439. enum zone_type high_zoneidx)
  1440. {
  1441. struct zoneref *z;
  1442. struct zone *zone;
  1443. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1444. wakeup_kswapd(zone, order);
  1445. }
  1446. static inline int
  1447. gfp_to_alloc_flags(gfp_t gfp_mask)
  1448. {
  1449. struct task_struct *p = current;
  1450. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1451. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1452. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1453. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1454. /*
  1455. * The caller may dip into page reserves a bit more if the caller
  1456. * cannot run direct reclaim, or if the caller has realtime scheduling
  1457. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1458. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1459. */
  1460. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1461. if (!wait) {
  1462. alloc_flags |= ALLOC_HARDER;
  1463. /*
  1464. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1465. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1466. */
  1467. alloc_flags &= ~ALLOC_CPUSET;
  1468. } else if (unlikely(rt_task(p)))
  1469. alloc_flags |= ALLOC_HARDER;
  1470. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1471. if (!in_interrupt() &&
  1472. ((p->flags & PF_MEMALLOC) ||
  1473. unlikely(test_thread_flag(TIF_MEMDIE))))
  1474. alloc_flags |= ALLOC_NO_WATERMARKS;
  1475. }
  1476. return alloc_flags;
  1477. }
  1478. static inline struct page *
  1479. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1480. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1481. nodemask_t *nodemask, struct zone *preferred_zone,
  1482. int migratetype)
  1483. {
  1484. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1485. struct page *page = NULL;
  1486. int alloc_flags;
  1487. unsigned long pages_reclaimed = 0;
  1488. unsigned long did_some_progress;
  1489. struct task_struct *p = current;
  1490. /*
  1491. * In the slowpath, we sanity check order to avoid ever trying to
  1492. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1493. * be using allocators in order of preference for an area that is
  1494. * too large.
  1495. */
  1496. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1497. return NULL;
  1498. /*
  1499. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1500. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1501. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1502. * using a larger set of nodes after it has established that the
  1503. * allowed per node queues are empty and that nodes are
  1504. * over allocated.
  1505. */
  1506. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1507. goto nopage;
  1508. wake_all_kswapd(order, zonelist, high_zoneidx);
  1509. /*
  1510. * OK, we're below the kswapd watermark and have kicked background
  1511. * reclaim. Now things get more complex, so set up alloc_flags according
  1512. * to how we want to proceed.
  1513. */
  1514. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1515. restart:
  1516. /* This is the last chance, in general, before the goto nopage. */
  1517. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1518. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1519. preferred_zone, migratetype);
  1520. if (page)
  1521. goto got_pg;
  1522. rebalance:
  1523. /* Allocate without watermarks if the context allows */
  1524. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1525. page = __alloc_pages_high_priority(gfp_mask, order,
  1526. zonelist, high_zoneidx, nodemask,
  1527. preferred_zone, migratetype);
  1528. if (page)
  1529. goto got_pg;
  1530. }
  1531. /* Atomic allocations - we can't balance anything */
  1532. if (!wait)
  1533. goto nopage;
  1534. /* Avoid recursion of direct reclaim */
  1535. if (p->flags & PF_MEMALLOC)
  1536. goto nopage;
  1537. /* Try direct reclaim and then allocating */
  1538. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1539. zonelist, high_zoneidx,
  1540. nodemask,
  1541. alloc_flags, preferred_zone,
  1542. migratetype, &did_some_progress);
  1543. if (page)
  1544. goto got_pg;
  1545. /*
  1546. * If we failed to make any progress reclaiming, then we are
  1547. * running out of options and have to consider going OOM
  1548. */
  1549. if (!did_some_progress) {
  1550. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1551. if (oom_killer_disabled)
  1552. goto nopage;
  1553. page = __alloc_pages_may_oom(gfp_mask, order,
  1554. zonelist, high_zoneidx,
  1555. nodemask, preferred_zone,
  1556. migratetype);
  1557. if (page)
  1558. goto got_pg;
  1559. /*
  1560. * The OOM killer does not trigger for high-order
  1561. * ~__GFP_NOFAIL allocations so if no progress is being
  1562. * made, there are no other options and retrying is
  1563. * unlikely to help.
  1564. */
  1565. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1566. !(gfp_mask & __GFP_NOFAIL))
  1567. goto nopage;
  1568. goto restart;
  1569. }
  1570. }
  1571. /* Check if we should retry the allocation */
  1572. pages_reclaimed += did_some_progress;
  1573. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1574. /* Wait for some write requests to complete then retry */
  1575. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1576. goto rebalance;
  1577. }
  1578. nopage:
  1579. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1580. printk(KERN_WARNING "%s: page allocation failure."
  1581. " order:%d, mode:0x%x\n",
  1582. p->comm, order, gfp_mask);
  1583. dump_stack();
  1584. show_mem();
  1585. }
  1586. return page;
  1587. got_pg:
  1588. if (kmemcheck_enabled)
  1589. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1590. return page;
  1591. }
  1592. /*
  1593. * This is the 'heart' of the zoned buddy allocator.
  1594. */
  1595. struct page *
  1596. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1597. struct zonelist *zonelist, nodemask_t *nodemask)
  1598. {
  1599. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1600. struct zone *preferred_zone;
  1601. struct page *page;
  1602. int migratetype = allocflags_to_migratetype(gfp_mask);
  1603. gfp_mask &= gfp_allowed_mask;
  1604. lockdep_trace_alloc(gfp_mask);
  1605. might_sleep_if(gfp_mask & __GFP_WAIT);
  1606. if (should_fail_alloc_page(gfp_mask, order))
  1607. return NULL;
  1608. /*
  1609. * Check the zones suitable for the gfp_mask contain at least one
  1610. * valid zone. It's possible to have an empty zonelist as a result
  1611. * of GFP_THISNODE and a memoryless node
  1612. */
  1613. if (unlikely(!zonelist->_zonerefs->zone))
  1614. return NULL;
  1615. /* The preferred zone is used for statistics later */
  1616. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1617. if (!preferred_zone)
  1618. return NULL;
  1619. /* First allocation attempt */
  1620. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1621. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1622. preferred_zone, migratetype);
  1623. if (unlikely(!page))
  1624. page = __alloc_pages_slowpath(gfp_mask, order,
  1625. zonelist, high_zoneidx, nodemask,
  1626. preferred_zone, migratetype);
  1627. return page;
  1628. }
  1629. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1630. /*
  1631. * Common helper functions.
  1632. */
  1633. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1634. {
  1635. struct page * page;
  1636. page = alloc_pages(gfp_mask, order);
  1637. if (!page)
  1638. return 0;
  1639. return (unsigned long) page_address(page);
  1640. }
  1641. EXPORT_SYMBOL(__get_free_pages);
  1642. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1643. {
  1644. struct page * page;
  1645. /*
  1646. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1647. * a highmem page
  1648. */
  1649. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1650. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1651. if (page)
  1652. return (unsigned long) page_address(page);
  1653. return 0;
  1654. }
  1655. EXPORT_SYMBOL(get_zeroed_page);
  1656. void __pagevec_free(struct pagevec *pvec)
  1657. {
  1658. int i = pagevec_count(pvec);
  1659. while (--i >= 0)
  1660. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1661. }
  1662. void __free_pages(struct page *page, unsigned int order)
  1663. {
  1664. if (put_page_testzero(page)) {
  1665. if (order == 0)
  1666. free_hot_page(page);
  1667. else
  1668. __free_pages_ok(page, order);
  1669. }
  1670. }
  1671. EXPORT_SYMBOL(__free_pages);
  1672. void free_pages(unsigned long addr, unsigned int order)
  1673. {
  1674. if (addr != 0) {
  1675. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1676. __free_pages(virt_to_page((void *)addr), order);
  1677. }
  1678. }
  1679. EXPORT_SYMBOL(free_pages);
  1680. /**
  1681. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1682. * @size: the number of bytes to allocate
  1683. * @gfp_mask: GFP flags for the allocation
  1684. *
  1685. * This function is similar to alloc_pages(), except that it allocates the
  1686. * minimum number of pages to satisfy the request. alloc_pages() can only
  1687. * allocate memory in power-of-two pages.
  1688. *
  1689. * This function is also limited by MAX_ORDER.
  1690. *
  1691. * Memory allocated by this function must be released by free_pages_exact().
  1692. */
  1693. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1694. {
  1695. unsigned int order = get_order(size);
  1696. unsigned long addr;
  1697. addr = __get_free_pages(gfp_mask, order);
  1698. if (addr) {
  1699. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1700. unsigned long used = addr + PAGE_ALIGN(size);
  1701. split_page(virt_to_page((void *)addr), order);
  1702. while (used < alloc_end) {
  1703. free_page(used);
  1704. used += PAGE_SIZE;
  1705. }
  1706. }
  1707. return (void *)addr;
  1708. }
  1709. EXPORT_SYMBOL(alloc_pages_exact);
  1710. /**
  1711. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1712. * @virt: the value returned by alloc_pages_exact.
  1713. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1714. *
  1715. * Release the memory allocated by a previous call to alloc_pages_exact.
  1716. */
  1717. void free_pages_exact(void *virt, size_t size)
  1718. {
  1719. unsigned long addr = (unsigned long)virt;
  1720. unsigned long end = addr + PAGE_ALIGN(size);
  1721. while (addr < end) {
  1722. free_page(addr);
  1723. addr += PAGE_SIZE;
  1724. }
  1725. }
  1726. EXPORT_SYMBOL(free_pages_exact);
  1727. static unsigned int nr_free_zone_pages(int offset)
  1728. {
  1729. struct zoneref *z;
  1730. struct zone *zone;
  1731. /* Just pick one node, since fallback list is circular */
  1732. unsigned int sum = 0;
  1733. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1734. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1735. unsigned long size = zone->present_pages;
  1736. unsigned long high = high_wmark_pages(zone);
  1737. if (size > high)
  1738. sum += size - high;
  1739. }
  1740. return sum;
  1741. }
  1742. /*
  1743. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1744. */
  1745. unsigned int nr_free_buffer_pages(void)
  1746. {
  1747. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1748. }
  1749. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1750. /*
  1751. * Amount of free RAM allocatable within all zones
  1752. */
  1753. unsigned int nr_free_pagecache_pages(void)
  1754. {
  1755. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1756. }
  1757. static inline void show_node(struct zone *zone)
  1758. {
  1759. if (NUMA_BUILD)
  1760. printk("Node %d ", zone_to_nid(zone));
  1761. }
  1762. void si_meminfo(struct sysinfo *val)
  1763. {
  1764. val->totalram = totalram_pages;
  1765. val->sharedram = 0;
  1766. val->freeram = global_page_state(NR_FREE_PAGES);
  1767. val->bufferram = nr_blockdev_pages();
  1768. val->totalhigh = totalhigh_pages;
  1769. val->freehigh = nr_free_highpages();
  1770. val->mem_unit = PAGE_SIZE;
  1771. }
  1772. EXPORT_SYMBOL(si_meminfo);
  1773. #ifdef CONFIG_NUMA
  1774. void si_meminfo_node(struct sysinfo *val, int nid)
  1775. {
  1776. pg_data_t *pgdat = NODE_DATA(nid);
  1777. val->totalram = pgdat->node_present_pages;
  1778. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1779. #ifdef CONFIG_HIGHMEM
  1780. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1781. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1782. NR_FREE_PAGES);
  1783. #else
  1784. val->totalhigh = 0;
  1785. val->freehigh = 0;
  1786. #endif
  1787. val->mem_unit = PAGE_SIZE;
  1788. }
  1789. #endif
  1790. #define K(x) ((x) << (PAGE_SHIFT-10))
  1791. /*
  1792. * Show free area list (used inside shift_scroll-lock stuff)
  1793. * We also calculate the percentage fragmentation. We do this by counting the
  1794. * memory on each free list with the exception of the first item on the list.
  1795. */
  1796. void show_free_areas(void)
  1797. {
  1798. int cpu;
  1799. struct zone *zone;
  1800. for_each_populated_zone(zone) {
  1801. show_node(zone);
  1802. printk("%s per-cpu:\n", zone->name);
  1803. for_each_online_cpu(cpu) {
  1804. struct per_cpu_pageset *pageset;
  1805. pageset = zone_pcp(zone, cpu);
  1806. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1807. cpu, pageset->pcp.high,
  1808. pageset->pcp.batch, pageset->pcp.count);
  1809. }
  1810. }
  1811. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1812. " inactive_file:%lu"
  1813. " unevictable:%lu"
  1814. " dirty:%lu writeback:%lu unstable:%lu\n"
  1815. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1816. global_page_state(NR_ACTIVE_ANON),
  1817. global_page_state(NR_ACTIVE_FILE),
  1818. global_page_state(NR_INACTIVE_ANON),
  1819. global_page_state(NR_INACTIVE_FILE),
  1820. global_page_state(NR_UNEVICTABLE),
  1821. global_page_state(NR_FILE_DIRTY),
  1822. global_page_state(NR_WRITEBACK),
  1823. global_page_state(NR_UNSTABLE_NFS),
  1824. global_page_state(NR_FREE_PAGES),
  1825. global_page_state(NR_SLAB_RECLAIMABLE) +
  1826. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1827. global_page_state(NR_FILE_MAPPED),
  1828. global_page_state(NR_PAGETABLE),
  1829. global_page_state(NR_BOUNCE));
  1830. for_each_populated_zone(zone) {
  1831. int i;
  1832. show_node(zone);
  1833. printk("%s"
  1834. " free:%lukB"
  1835. " min:%lukB"
  1836. " low:%lukB"
  1837. " high:%lukB"
  1838. " active_anon:%lukB"
  1839. " inactive_anon:%lukB"
  1840. " active_file:%lukB"
  1841. " inactive_file:%lukB"
  1842. " unevictable:%lukB"
  1843. " present:%lukB"
  1844. " pages_scanned:%lu"
  1845. " all_unreclaimable? %s"
  1846. "\n",
  1847. zone->name,
  1848. K(zone_page_state(zone, NR_FREE_PAGES)),
  1849. K(min_wmark_pages(zone)),
  1850. K(low_wmark_pages(zone)),
  1851. K(high_wmark_pages(zone)),
  1852. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1853. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1854. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1855. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1856. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1857. K(zone->present_pages),
  1858. zone->pages_scanned,
  1859. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1860. );
  1861. printk("lowmem_reserve[]:");
  1862. for (i = 0; i < MAX_NR_ZONES; i++)
  1863. printk(" %lu", zone->lowmem_reserve[i]);
  1864. printk("\n");
  1865. }
  1866. for_each_populated_zone(zone) {
  1867. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1868. show_node(zone);
  1869. printk("%s: ", zone->name);
  1870. spin_lock_irqsave(&zone->lock, flags);
  1871. for (order = 0; order < MAX_ORDER; order++) {
  1872. nr[order] = zone->free_area[order].nr_free;
  1873. total += nr[order] << order;
  1874. }
  1875. spin_unlock_irqrestore(&zone->lock, flags);
  1876. for (order = 0; order < MAX_ORDER; order++)
  1877. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1878. printk("= %lukB\n", K(total));
  1879. }
  1880. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1881. show_swap_cache_info();
  1882. }
  1883. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1884. {
  1885. zoneref->zone = zone;
  1886. zoneref->zone_idx = zone_idx(zone);
  1887. }
  1888. /*
  1889. * Builds allocation fallback zone lists.
  1890. *
  1891. * Add all populated zones of a node to the zonelist.
  1892. */
  1893. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1894. int nr_zones, enum zone_type zone_type)
  1895. {
  1896. struct zone *zone;
  1897. BUG_ON(zone_type >= MAX_NR_ZONES);
  1898. zone_type++;
  1899. do {
  1900. zone_type--;
  1901. zone = pgdat->node_zones + zone_type;
  1902. if (populated_zone(zone)) {
  1903. zoneref_set_zone(zone,
  1904. &zonelist->_zonerefs[nr_zones++]);
  1905. check_highest_zone(zone_type);
  1906. }
  1907. } while (zone_type);
  1908. return nr_zones;
  1909. }
  1910. /*
  1911. * zonelist_order:
  1912. * 0 = automatic detection of better ordering.
  1913. * 1 = order by ([node] distance, -zonetype)
  1914. * 2 = order by (-zonetype, [node] distance)
  1915. *
  1916. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1917. * the same zonelist. So only NUMA can configure this param.
  1918. */
  1919. #define ZONELIST_ORDER_DEFAULT 0
  1920. #define ZONELIST_ORDER_NODE 1
  1921. #define ZONELIST_ORDER_ZONE 2
  1922. /* zonelist order in the kernel.
  1923. * set_zonelist_order() will set this to NODE or ZONE.
  1924. */
  1925. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1926. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1927. #ifdef CONFIG_NUMA
  1928. /* The value user specified ....changed by config */
  1929. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1930. /* string for sysctl */
  1931. #define NUMA_ZONELIST_ORDER_LEN 16
  1932. char numa_zonelist_order[16] = "default";
  1933. /*
  1934. * interface for configure zonelist ordering.
  1935. * command line option "numa_zonelist_order"
  1936. * = "[dD]efault - default, automatic configuration.
  1937. * = "[nN]ode - order by node locality, then by zone within node
  1938. * = "[zZ]one - order by zone, then by locality within zone
  1939. */
  1940. static int __parse_numa_zonelist_order(char *s)
  1941. {
  1942. if (*s == 'd' || *s == 'D') {
  1943. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1944. } else if (*s == 'n' || *s == 'N') {
  1945. user_zonelist_order = ZONELIST_ORDER_NODE;
  1946. } else if (*s == 'z' || *s == 'Z') {
  1947. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1948. } else {
  1949. printk(KERN_WARNING
  1950. "Ignoring invalid numa_zonelist_order value: "
  1951. "%s\n", s);
  1952. return -EINVAL;
  1953. }
  1954. return 0;
  1955. }
  1956. static __init int setup_numa_zonelist_order(char *s)
  1957. {
  1958. if (s)
  1959. return __parse_numa_zonelist_order(s);
  1960. return 0;
  1961. }
  1962. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1963. /*
  1964. * sysctl handler for numa_zonelist_order
  1965. */
  1966. int numa_zonelist_order_handler(ctl_table *table, int write,
  1967. struct file *file, void __user *buffer, size_t *length,
  1968. loff_t *ppos)
  1969. {
  1970. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1971. int ret;
  1972. if (write)
  1973. strncpy(saved_string, (char*)table->data,
  1974. NUMA_ZONELIST_ORDER_LEN);
  1975. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1976. if (ret)
  1977. return ret;
  1978. if (write) {
  1979. int oldval = user_zonelist_order;
  1980. if (__parse_numa_zonelist_order((char*)table->data)) {
  1981. /*
  1982. * bogus value. restore saved string
  1983. */
  1984. strncpy((char*)table->data, saved_string,
  1985. NUMA_ZONELIST_ORDER_LEN);
  1986. user_zonelist_order = oldval;
  1987. } else if (oldval != user_zonelist_order)
  1988. build_all_zonelists();
  1989. }
  1990. return 0;
  1991. }
  1992. #define MAX_NODE_LOAD (nr_online_nodes)
  1993. static int node_load[MAX_NUMNODES];
  1994. /**
  1995. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1996. * @node: node whose fallback list we're appending
  1997. * @used_node_mask: nodemask_t of already used nodes
  1998. *
  1999. * We use a number of factors to determine which is the next node that should
  2000. * appear on a given node's fallback list. The node should not have appeared
  2001. * already in @node's fallback list, and it should be the next closest node
  2002. * according to the distance array (which contains arbitrary distance values
  2003. * from each node to each node in the system), and should also prefer nodes
  2004. * with no CPUs, since presumably they'll have very little allocation pressure
  2005. * on them otherwise.
  2006. * It returns -1 if no node is found.
  2007. */
  2008. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2009. {
  2010. int n, val;
  2011. int min_val = INT_MAX;
  2012. int best_node = -1;
  2013. const struct cpumask *tmp = cpumask_of_node(0);
  2014. /* Use the local node if we haven't already */
  2015. if (!node_isset(node, *used_node_mask)) {
  2016. node_set(node, *used_node_mask);
  2017. return node;
  2018. }
  2019. for_each_node_state(n, N_HIGH_MEMORY) {
  2020. /* Don't want a node to appear more than once */
  2021. if (node_isset(n, *used_node_mask))
  2022. continue;
  2023. /* Use the distance array to find the distance */
  2024. val = node_distance(node, n);
  2025. /* Penalize nodes under us ("prefer the next node") */
  2026. val += (n < node);
  2027. /* Give preference to headless and unused nodes */
  2028. tmp = cpumask_of_node(n);
  2029. if (!cpumask_empty(tmp))
  2030. val += PENALTY_FOR_NODE_WITH_CPUS;
  2031. /* Slight preference for less loaded node */
  2032. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2033. val += node_load[n];
  2034. if (val < min_val) {
  2035. min_val = val;
  2036. best_node = n;
  2037. }
  2038. }
  2039. if (best_node >= 0)
  2040. node_set(best_node, *used_node_mask);
  2041. return best_node;
  2042. }
  2043. /*
  2044. * Build zonelists ordered by node and zones within node.
  2045. * This results in maximum locality--normal zone overflows into local
  2046. * DMA zone, if any--but risks exhausting DMA zone.
  2047. */
  2048. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2049. {
  2050. int j;
  2051. struct zonelist *zonelist;
  2052. zonelist = &pgdat->node_zonelists[0];
  2053. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2054. ;
  2055. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2056. MAX_NR_ZONES - 1);
  2057. zonelist->_zonerefs[j].zone = NULL;
  2058. zonelist->_zonerefs[j].zone_idx = 0;
  2059. }
  2060. /*
  2061. * Build gfp_thisnode zonelists
  2062. */
  2063. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2064. {
  2065. int j;
  2066. struct zonelist *zonelist;
  2067. zonelist = &pgdat->node_zonelists[1];
  2068. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2069. zonelist->_zonerefs[j].zone = NULL;
  2070. zonelist->_zonerefs[j].zone_idx = 0;
  2071. }
  2072. /*
  2073. * Build zonelists ordered by zone and nodes within zones.
  2074. * This results in conserving DMA zone[s] until all Normal memory is
  2075. * exhausted, but results in overflowing to remote node while memory
  2076. * may still exist in local DMA zone.
  2077. */
  2078. static int node_order[MAX_NUMNODES];
  2079. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2080. {
  2081. int pos, j, node;
  2082. int zone_type; /* needs to be signed */
  2083. struct zone *z;
  2084. struct zonelist *zonelist;
  2085. zonelist = &pgdat->node_zonelists[0];
  2086. pos = 0;
  2087. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2088. for (j = 0; j < nr_nodes; j++) {
  2089. node = node_order[j];
  2090. z = &NODE_DATA(node)->node_zones[zone_type];
  2091. if (populated_zone(z)) {
  2092. zoneref_set_zone(z,
  2093. &zonelist->_zonerefs[pos++]);
  2094. check_highest_zone(zone_type);
  2095. }
  2096. }
  2097. }
  2098. zonelist->_zonerefs[pos].zone = NULL;
  2099. zonelist->_zonerefs[pos].zone_idx = 0;
  2100. }
  2101. static int default_zonelist_order(void)
  2102. {
  2103. int nid, zone_type;
  2104. unsigned long low_kmem_size,total_size;
  2105. struct zone *z;
  2106. int average_size;
  2107. /*
  2108. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2109. * If they are really small and used heavily, the system can fall
  2110. * into OOM very easily.
  2111. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2112. */
  2113. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2114. low_kmem_size = 0;
  2115. total_size = 0;
  2116. for_each_online_node(nid) {
  2117. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2118. z = &NODE_DATA(nid)->node_zones[zone_type];
  2119. if (populated_zone(z)) {
  2120. if (zone_type < ZONE_NORMAL)
  2121. low_kmem_size += z->present_pages;
  2122. total_size += z->present_pages;
  2123. }
  2124. }
  2125. }
  2126. if (!low_kmem_size || /* there are no DMA area. */
  2127. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2128. return ZONELIST_ORDER_NODE;
  2129. /*
  2130. * look into each node's config.
  2131. * If there is a node whose DMA/DMA32 memory is very big area on
  2132. * local memory, NODE_ORDER may be suitable.
  2133. */
  2134. average_size = total_size /
  2135. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2136. for_each_online_node(nid) {
  2137. low_kmem_size = 0;
  2138. total_size = 0;
  2139. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2140. z = &NODE_DATA(nid)->node_zones[zone_type];
  2141. if (populated_zone(z)) {
  2142. if (zone_type < ZONE_NORMAL)
  2143. low_kmem_size += z->present_pages;
  2144. total_size += z->present_pages;
  2145. }
  2146. }
  2147. if (low_kmem_size &&
  2148. total_size > average_size && /* ignore small node */
  2149. low_kmem_size > total_size * 70/100)
  2150. return ZONELIST_ORDER_NODE;
  2151. }
  2152. return ZONELIST_ORDER_ZONE;
  2153. }
  2154. static void set_zonelist_order(void)
  2155. {
  2156. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2157. current_zonelist_order = default_zonelist_order();
  2158. else
  2159. current_zonelist_order = user_zonelist_order;
  2160. }
  2161. static void build_zonelists(pg_data_t *pgdat)
  2162. {
  2163. int j, node, load;
  2164. enum zone_type i;
  2165. nodemask_t used_mask;
  2166. int local_node, prev_node;
  2167. struct zonelist *zonelist;
  2168. int order = current_zonelist_order;
  2169. /* initialize zonelists */
  2170. for (i = 0; i < MAX_ZONELISTS; i++) {
  2171. zonelist = pgdat->node_zonelists + i;
  2172. zonelist->_zonerefs[0].zone = NULL;
  2173. zonelist->_zonerefs[0].zone_idx = 0;
  2174. }
  2175. /* NUMA-aware ordering of nodes */
  2176. local_node = pgdat->node_id;
  2177. load = nr_online_nodes;
  2178. prev_node = local_node;
  2179. nodes_clear(used_mask);
  2180. memset(node_load, 0, sizeof(node_load));
  2181. memset(node_order, 0, sizeof(node_order));
  2182. j = 0;
  2183. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2184. int distance = node_distance(local_node, node);
  2185. /*
  2186. * If another node is sufficiently far away then it is better
  2187. * to reclaim pages in a zone before going off node.
  2188. */
  2189. if (distance > RECLAIM_DISTANCE)
  2190. zone_reclaim_mode = 1;
  2191. /*
  2192. * We don't want to pressure a particular node.
  2193. * So adding penalty to the first node in same
  2194. * distance group to make it round-robin.
  2195. */
  2196. if (distance != node_distance(local_node, prev_node))
  2197. node_load[node] = load;
  2198. prev_node = node;
  2199. load--;
  2200. if (order == ZONELIST_ORDER_NODE)
  2201. build_zonelists_in_node_order(pgdat, node);
  2202. else
  2203. node_order[j++] = node; /* remember order */
  2204. }
  2205. if (order == ZONELIST_ORDER_ZONE) {
  2206. /* calculate node order -- i.e., DMA last! */
  2207. build_zonelists_in_zone_order(pgdat, j);
  2208. }
  2209. build_thisnode_zonelists(pgdat);
  2210. }
  2211. /* Construct the zonelist performance cache - see further mmzone.h */
  2212. static void build_zonelist_cache(pg_data_t *pgdat)
  2213. {
  2214. struct zonelist *zonelist;
  2215. struct zonelist_cache *zlc;
  2216. struct zoneref *z;
  2217. zonelist = &pgdat->node_zonelists[0];
  2218. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2219. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2220. for (z = zonelist->_zonerefs; z->zone; z++)
  2221. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2222. }
  2223. #else /* CONFIG_NUMA */
  2224. static void set_zonelist_order(void)
  2225. {
  2226. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2227. }
  2228. static void build_zonelists(pg_data_t *pgdat)
  2229. {
  2230. int node, local_node;
  2231. enum zone_type j;
  2232. struct zonelist *zonelist;
  2233. local_node = pgdat->node_id;
  2234. zonelist = &pgdat->node_zonelists[0];
  2235. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2236. /*
  2237. * Now we build the zonelist so that it contains the zones
  2238. * of all the other nodes.
  2239. * We don't want to pressure a particular node, so when
  2240. * building the zones for node N, we make sure that the
  2241. * zones coming right after the local ones are those from
  2242. * node N+1 (modulo N)
  2243. */
  2244. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2245. if (!node_online(node))
  2246. continue;
  2247. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2248. MAX_NR_ZONES - 1);
  2249. }
  2250. for (node = 0; node < local_node; node++) {
  2251. if (!node_online(node))
  2252. continue;
  2253. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2254. MAX_NR_ZONES - 1);
  2255. }
  2256. zonelist->_zonerefs[j].zone = NULL;
  2257. zonelist->_zonerefs[j].zone_idx = 0;
  2258. }
  2259. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2260. static void build_zonelist_cache(pg_data_t *pgdat)
  2261. {
  2262. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2263. }
  2264. #endif /* CONFIG_NUMA */
  2265. /* return values int ....just for stop_machine() */
  2266. static int __build_all_zonelists(void *dummy)
  2267. {
  2268. int nid;
  2269. for_each_online_node(nid) {
  2270. pg_data_t *pgdat = NODE_DATA(nid);
  2271. build_zonelists(pgdat);
  2272. build_zonelist_cache(pgdat);
  2273. }
  2274. return 0;
  2275. }
  2276. void build_all_zonelists(void)
  2277. {
  2278. set_zonelist_order();
  2279. if (system_state == SYSTEM_BOOTING) {
  2280. __build_all_zonelists(NULL);
  2281. mminit_verify_zonelist();
  2282. cpuset_init_current_mems_allowed();
  2283. } else {
  2284. /* we have to stop all cpus to guarantee there is no user
  2285. of zonelist */
  2286. stop_machine(__build_all_zonelists, NULL, NULL);
  2287. /* cpuset refresh routine should be here */
  2288. }
  2289. vm_total_pages = nr_free_pagecache_pages();
  2290. /*
  2291. * Disable grouping by mobility if the number of pages in the
  2292. * system is too low to allow the mechanism to work. It would be
  2293. * more accurate, but expensive to check per-zone. This check is
  2294. * made on memory-hotadd so a system can start with mobility
  2295. * disabled and enable it later
  2296. */
  2297. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2298. page_group_by_mobility_disabled = 1;
  2299. else
  2300. page_group_by_mobility_disabled = 0;
  2301. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2302. "Total pages: %ld\n",
  2303. nr_online_nodes,
  2304. zonelist_order_name[current_zonelist_order],
  2305. page_group_by_mobility_disabled ? "off" : "on",
  2306. vm_total_pages);
  2307. #ifdef CONFIG_NUMA
  2308. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2309. #endif
  2310. }
  2311. /*
  2312. * Helper functions to size the waitqueue hash table.
  2313. * Essentially these want to choose hash table sizes sufficiently
  2314. * large so that collisions trying to wait on pages are rare.
  2315. * But in fact, the number of active page waitqueues on typical
  2316. * systems is ridiculously low, less than 200. So this is even
  2317. * conservative, even though it seems large.
  2318. *
  2319. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2320. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2321. */
  2322. #define PAGES_PER_WAITQUEUE 256
  2323. #ifndef CONFIG_MEMORY_HOTPLUG
  2324. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2325. {
  2326. unsigned long size = 1;
  2327. pages /= PAGES_PER_WAITQUEUE;
  2328. while (size < pages)
  2329. size <<= 1;
  2330. /*
  2331. * Once we have dozens or even hundreds of threads sleeping
  2332. * on IO we've got bigger problems than wait queue collision.
  2333. * Limit the size of the wait table to a reasonable size.
  2334. */
  2335. size = min(size, 4096UL);
  2336. return max(size, 4UL);
  2337. }
  2338. #else
  2339. /*
  2340. * A zone's size might be changed by hot-add, so it is not possible to determine
  2341. * a suitable size for its wait_table. So we use the maximum size now.
  2342. *
  2343. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2344. *
  2345. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2346. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2347. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2348. *
  2349. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2350. * or more by the traditional way. (See above). It equals:
  2351. *
  2352. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2353. * ia64(16K page size) : = ( 8G + 4M)byte.
  2354. * powerpc (64K page size) : = (32G +16M)byte.
  2355. */
  2356. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2357. {
  2358. return 4096UL;
  2359. }
  2360. #endif
  2361. /*
  2362. * This is an integer logarithm so that shifts can be used later
  2363. * to extract the more random high bits from the multiplicative
  2364. * hash function before the remainder is taken.
  2365. */
  2366. static inline unsigned long wait_table_bits(unsigned long size)
  2367. {
  2368. return ffz(~size);
  2369. }
  2370. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2371. /*
  2372. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2373. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2374. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2375. * higher will lead to a bigger reserve which will get freed as contiguous
  2376. * blocks as reclaim kicks in
  2377. */
  2378. static void setup_zone_migrate_reserve(struct zone *zone)
  2379. {
  2380. unsigned long start_pfn, pfn, end_pfn;
  2381. struct page *page;
  2382. unsigned long reserve, block_migratetype;
  2383. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2384. start_pfn = zone->zone_start_pfn;
  2385. end_pfn = start_pfn + zone->spanned_pages;
  2386. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2387. pageblock_order;
  2388. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2389. if (!pfn_valid(pfn))
  2390. continue;
  2391. page = pfn_to_page(pfn);
  2392. /* Watch out for overlapping nodes */
  2393. if (page_to_nid(page) != zone_to_nid(zone))
  2394. continue;
  2395. /* Blocks with reserved pages will never free, skip them. */
  2396. if (PageReserved(page))
  2397. continue;
  2398. block_migratetype = get_pageblock_migratetype(page);
  2399. /* If this block is reserved, account for it */
  2400. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2401. reserve--;
  2402. continue;
  2403. }
  2404. /* Suitable for reserving if this block is movable */
  2405. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2406. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2407. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2408. reserve--;
  2409. continue;
  2410. }
  2411. /*
  2412. * If the reserve is met and this is a previous reserved block,
  2413. * take it back
  2414. */
  2415. if (block_migratetype == MIGRATE_RESERVE) {
  2416. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2417. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2418. }
  2419. }
  2420. }
  2421. /*
  2422. * Initially all pages are reserved - free ones are freed
  2423. * up by free_all_bootmem() once the early boot process is
  2424. * done. Non-atomic initialization, single-pass.
  2425. */
  2426. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2427. unsigned long start_pfn, enum memmap_context context)
  2428. {
  2429. struct page *page;
  2430. unsigned long end_pfn = start_pfn + size;
  2431. unsigned long pfn;
  2432. struct zone *z;
  2433. if (highest_memmap_pfn < end_pfn - 1)
  2434. highest_memmap_pfn = end_pfn - 1;
  2435. z = &NODE_DATA(nid)->node_zones[zone];
  2436. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2437. /*
  2438. * There can be holes in boot-time mem_map[]s
  2439. * handed to this function. They do not
  2440. * exist on hotplugged memory.
  2441. */
  2442. if (context == MEMMAP_EARLY) {
  2443. if (!early_pfn_valid(pfn))
  2444. continue;
  2445. if (!early_pfn_in_nid(pfn, nid))
  2446. continue;
  2447. }
  2448. page = pfn_to_page(pfn);
  2449. set_page_links(page, zone, nid, pfn);
  2450. mminit_verify_page_links(page, zone, nid, pfn);
  2451. init_page_count(page);
  2452. reset_page_mapcount(page);
  2453. SetPageReserved(page);
  2454. /*
  2455. * Mark the block movable so that blocks are reserved for
  2456. * movable at startup. This will force kernel allocations
  2457. * to reserve their blocks rather than leaking throughout
  2458. * the address space during boot when many long-lived
  2459. * kernel allocations are made. Later some blocks near
  2460. * the start are marked MIGRATE_RESERVE by
  2461. * setup_zone_migrate_reserve()
  2462. *
  2463. * bitmap is created for zone's valid pfn range. but memmap
  2464. * can be created for invalid pages (for alignment)
  2465. * check here not to call set_pageblock_migratetype() against
  2466. * pfn out of zone.
  2467. */
  2468. if ((z->zone_start_pfn <= pfn)
  2469. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2470. && !(pfn & (pageblock_nr_pages - 1)))
  2471. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2472. INIT_LIST_HEAD(&page->lru);
  2473. #ifdef WANT_PAGE_VIRTUAL
  2474. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2475. if (!is_highmem_idx(zone))
  2476. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2477. #endif
  2478. }
  2479. }
  2480. static void __meminit zone_init_free_lists(struct zone *zone)
  2481. {
  2482. int order, t;
  2483. for_each_migratetype_order(order, t) {
  2484. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2485. zone->free_area[order].nr_free = 0;
  2486. }
  2487. }
  2488. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2489. #define memmap_init(size, nid, zone, start_pfn) \
  2490. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2491. #endif
  2492. static int zone_batchsize(struct zone *zone)
  2493. {
  2494. #ifdef CONFIG_MMU
  2495. int batch;
  2496. /*
  2497. * The per-cpu-pages pools are set to around 1000th of the
  2498. * size of the zone. But no more than 1/2 of a meg.
  2499. *
  2500. * OK, so we don't know how big the cache is. So guess.
  2501. */
  2502. batch = zone->present_pages / 1024;
  2503. if (batch * PAGE_SIZE > 512 * 1024)
  2504. batch = (512 * 1024) / PAGE_SIZE;
  2505. batch /= 4; /* We effectively *= 4 below */
  2506. if (batch < 1)
  2507. batch = 1;
  2508. /*
  2509. * Clamp the batch to a 2^n - 1 value. Having a power
  2510. * of 2 value was found to be more likely to have
  2511. * suboptimal cache aliasing properties in some cases.
  2512. *
  2513. * For example if 2 tasks are alternately allocating
  2514. * batches of pages, one task can end up with a lot
  2515. * of pages of one half of the possible page colors
  2516. * and the other with pages of the other colors.
  2517. */
  2518. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2519. return batch;
  2520. #else
  2521. /* The deferral and batching of frees should be suppressed under NOMMU
  2522. * conditions.
  2523. *
  2524. * The problem is that NOMMU needs to be able to allocate large chunks
  2525. * of contiguous memory as there's no hardware page translation to
  2526. * assemble apparent contiguous memory from discontiguous pages.
  2527. *
  2528. * Queueing large contiguous runs of pages for batching, however,
  2529. * causes the pages to actually be freed in smaller chunks. As there
  2530. * can be a significant delay between the individual batches being
  2531. * recycled, this leads to the once large chunks of space being
  2532. * fragmented and becoming unavailable for high-order allocations.
  2533. */
  2534. return 0;
  2535. #endif
  2536. }
  2537. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2538. {
  2539. struct per_cpu_pages *pcp;
  2540. memset(p, 0, sizeof(*p));
  2541. pcp = &p->pcp;
  2542. pcp->count = 0;
  2543. pcp->high = 6 * batch;
  2544. pcp->batch = max(1UL, 1 * batch);
  2545. INIT_LIST_HEAD(&pcp->list);
  2546. }
  2547. /*
  2548. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2549. * to the value high for the pageset p.
  2550. */
  2551. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2552. unsigned long high)
  2553. {
  2554. struct per_cpu_pages *pcp;
  2555. pcp = &p->pcp;
  2556. pcp->high = high;
  2557. pcp->batch = max(1UL, high/4);
  2558. if ((high/4) > (PAGE_SHIFT * 8))
  2559. pcp->batch = PAGE_SHIFT * 8;
  2560. }
  2561. #ifdef CONFIG_NUMA
  2562. /*
  2563. * Boot pageset table. One per cpu which is going to be used for all
  2564. * zones and all nodes. The parameters will be set in such a way
  2565. * that an item put on a list will immediately be handed over to
  2566. * the buddy list. This is safe since pageset manipulation is done
  2567. * with interrupts disabled.
  2568. *
  2569. * Some NUMA counter updates may also be caught by the boot pagesets.
  2570. *
  2571. * The boot_pagesets must be kept even after bootup is complete for
  2572. * unused processors and/or zones. They do play a role for bootstrapping
  2573. * hotplugged processors.
  2574. *
  2575. * zoneinfo_show() and maybe other functions do
  2576. * not check if the processor is online before following the pageset pointer.
  2577. * Other parts of the kernel may not check if the zone is available.
  2578. */
  2579. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2580. /*
  2581. * Dynamically allocate memory for the
  2582. * per cpu pageset array in struct zone.
  2583. */
  2584. static int __cpuinit process_zones(int cpu)
  2585. {
  2586. struct zone *zone, *dzone;
  2587. int node = cpu_to_node(cpu);
  2588. node_set_state(node, N_CPU); /* this node has a cpu */
  2589. for_each_populated_zone(zone) {
  2590. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2591. GFP_KERNEL, node);
  2592. if (!zone_pcp(zone, cpu))
  2593. goto bad;
  2594. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2595. if (percpu_pagelist_fraction)
  2596. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2597. (zone->present_pages / percpu_pagelist_fraction));
  2598. }
  2599. return 0;
  2600. bad:
  2601. for_each_zone(dzone) {
  2602. if (!populated_zone(dzone))
  2603. continue;
  2604. if (dzone == zone)
  2605. break;
  2606. kfree(zone_pcp(dzone, cpu));
  2607. zone_pcp(dzone, cpu) = &boot_pageset[cpu];
  2608. }
  2609. return -ENOMEM;
  2610. }
  2611. static inline void free_zone_pagesets(int cpu)
  2612. {
  2613. struct zone *zone;
  2614. for_each_zone(zone) {
  2615. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2616. /* Free per_cpu_pageset if it is slab allocated */
  2617. if (pset != &boot_pageset[cpu])
  2618. kfree(pset);
  2619. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2620. }
  2621. }
  2622. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2623. unsigned long action,
  2624. void *hcpu)
  2625. {
  2626. int cpu = (long)hcpu;
  2627. int ret = NOTIFY_OK;
  2628. switch (action) {
  2629. case CPU_UP_PREPARE:
  2630. case CPU_UP_PREPARE_FROZEN:
  2631. if (process_zones(cpu))
  2632. ret = NOTIFY_BAD;
  2633. break;
  2634. case CPU_UP_CANCELED:
  2635. case CPU_UP_CANCELED_FROZEN:
  2636. case CPU_DEAD:
  2637. case CPU_DEAD_FROZEN:
  2638. free_zone_pagesets(cpu);
  2639. break;
  2640. default:
  2641. break;
  2642. }
  2643. return ret;
  2644. }
  2645. static struct notifier_block __cpuinitdata pageset_notifier =
  2646. { &pageset_cpuup_callback, NULL, 0 };
  2647. void __init setup_per_cpu_pageset(void)
  2648. {
  2649. int err;
  2650. /* Initialize per_cpu_pageset for cpu 0.
  2651. * A cpuup callback will do this for every cpu
  2652. * as it comes online
  2653. */
  2654. err = process_zones(smp_processor_id());
  2655. BUG_ON(err);
  2656. register_cpu_notifier(&pageset_notifier);
  2657. }
  2658. #endif
  2659. static noinline __init_refok
  2660. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2661. {
  2662. int i;
  2663. struct pglist_data *pgdat = zone->zone_pgdat;
  2664. size_t alloc_size;
  2665. /*
  2666. * The per-page waitqueue mechanism uses hashed waitqueues
  2667. * per zone.
  2668. */
  2669. zone->wait_table_hash_nr_entries =
  2670. wait_table_hash_nr_entries(zone_size_pages);
  2671. zone->wait_table_bits =
  2672. wait_table_bits(zone->wait_table_hash_nr_entries);
  2673. alloc_size = zone->wait_table_hash_nr_entries
  2674. * sizeof(wait_queue_head_t);
  2675. if (!slab_is_available()) {
  2676. zone->wait_table = (wait_queue_head_t *)
  2677. alloc_bootmem_node(pgdat, alloc_size);
  2678. } else {
  2679. /*
  2680. * This case means that a zone whose size was 0 gets new memory
  2681. * via memory hot-add.
  2682. * But it may be the case that a new node was hot-added. In
  2683. * this case vmalloc() will not be able to use this new node's
  2684. * memory - this wait_table must be initialized to use this new
  2685. * node itself as well.
  2686. * To use this new node's memory, further consideration will be
  2687. * necessary.
  2688. */
  2689. zone->wait_table = vmalloc(alloc_size);
  2690. }
  2691. if (!zone->wait_table)
  2692. return -ENOMEM;
  2693. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2694. init_waitqueue_head(zone->wait_table + i);
  2695. return 0;
  2696. }
  2697. static __meminit void zone_pcp_init(struct zone *zone)
  2698. {
  2699. int cpu;
  2700. unsigned long batch = zone_batchsize(zone);
  2701. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2702. #ifdef CONFIG_NUMA
  2703. /* Early boot. Slab allocator not functional yet */
  2704. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2705. setup_pageset(&boot_pageset[cpu],0);
  2706. #else
  2707. setup_pageset(zone_pcp(zone,cpu), batch);
  2708. #endif
  2709. }
  2710. if (zone->present_pages)
  2711. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2712. zone->name, zone->present_pages, batch);
  2713. }
  2714. __meminit int init_currently_empty_zone(struct zone *zone,
  2715. unsigned long zone_start_pfn,
  2716. unsigned long size,
  2717. enum memmap_context context)
  2718. {
  2719. struct pglist_data *pgdat = zone->zone_pgdat;
  2720. int ret;
  2721. ret = zone_wait_table_init(zone, size);
  2722. if (ret)
  2723. return ret;
  2724. pgdat->nr_zones = zone_idx(zone) + 1;
  2725. zone->zone_start_pfn = zone_start_pfn;
  2726. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2727. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2728. pgdat->node_id,
  2729. (unsigned long)zone_idx(zone),
  2730. zone_start_pfn, (zone_start_pfn + size));
  2731. zone_init_free_lists(zone);
  2732. return 0;
  2733. }
  2734. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2735. /*
  2736. * Basic iterator support. Return the first range of PFNs for a node
  2737. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2738. */
  2739. static int __meminit first_active_region_index_in_nid(int nid)
  2740. {
  2741. int i;
  2742. for (i = 0; i < nr_nodemap_entries; i++)
  2743. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2744. return i;
  2745. return -1;
  2746. }
  2747. /*
  2748. * Basic iterator support. Return the next active range of PFNs for a node
  2749. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2750. */
  2751. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2752. {
  2753. for (index = index + 1; index < nr_nodemap_entries; index++)
  2754. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2755. return index;
  2756. return -1;
  2757. }
  2758. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2759. /*
  2760. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2761. * Architectures may implement their own version but if add_active_range()
  2762. * was used and there are no special requirements, this is a convenient
  2763. * alternative
  2764. */
  2765. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2766. {
  2767. int i;
  2768. for (i = 0; i < nr_nodemap_entries; i++) {
  2769. unsigned long start_pfn = early_node_map[i].start_pfn;
  2770. unsigned long end_pfn = early_node_map[i].end_pfn;
  2771. if (start_pfn <= pfn && pfn < end_pfn)
  2772. return early_node_map[i].nid;
  2773. }
  2774. /* This is a memory hole */
  2775. return -1;
  2776. }
  2777. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2778. int __meminit early_pfn_to_nid(unsigned long pfn)
  2779. {
  2780. int nid;
  2781. nid = __early_pfn_to_nid(pfn);
  2782. if (nid >= 0)
  2783. return nid;
  2784. /* just returns 0 */
  2785. return 0;
  2786. }
  2787. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2788. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2789. {
  2790. int nid;
  2791. nid = __early_pfn_to_nid(pfn);
  2792. if (nid >= 0 && nid != node)
  2793. return false;
  2794. return true;
  2795. }
  2796. #endif
  2797. /* Basic iterator support to walk early_node_map[] */
  2798. #define for_each_active_range_index_in_nid(i, nid) \
  2799. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2800. i = next_active_region_index_in_nid(i, nid))
  2801. /**
  2802. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2803. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2804. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2805. *
  2806. * If an architecture guarantees that all ranges registered with
  2807. * add_active_ranges() contain no holes and may be freed, this
  2808. * this function may be used instead of calling free_bootmem() manually.
  2809. */
  2810. void __init free_bootmem_with_active_regions(int nid,
  2811. unsigned long max_low_pfn)
  2812. {
  2813. int i;
  2814. for_each_active_range_index_in_nid(i, nid) {
  2815. unsigned long size_pages = 0;
  2816. unsigned long end_pfn = early_node_map[i].end_pfn;
  2817. if (early_node_map[i].start_pfn >= max_low_pfn)
  2818. continue;
  2819. if (end_pfn > max_low_pfn)
  2820. end_pfn = max_low_pfn;
  2821. size_pages = end_pfn - early_node_map[i].start_pfn;
  2822. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2823. PFN_PHYS(early_node_map[i].start_pfn),
  2824. size_pages << PAGE_SHIFT);
  2825. }
  2826. }
  2827. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2828. {
  2829. int i;
  2830. int ret;
  2831. for_each_active_range_index_in_nid(i, nid) {
  2832. ret = work_fn(early_node_map[i].start_pfn,
  2833. early_node_map[i].end_pfn, data);
  2834. if (ret)
  2835. break;
  2836. }
  2837. }
  2838. /**
  2839. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2840. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2841. *
  2842. * If an architecture guarantees that all ranges registered with
  2843. * add_active_ranges() contain no holes and may be freed, this
  2844. * function may be used instead of calling memory_present() manually.
  2845. */
  2846. void __init sparse_memory_present_with_active_regions(int nid)
  2847. {
  2848. int i;
  2849. for_each_active_range_index_in_nid(i, nid)
  2850. memory_present(early_node_map[i].nid,
  2851. early_node_map[i].start_pfn,
  2852. early_node_map[i].end_pfn);
  2853. }
  2854. /**
  2855. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2856. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2857. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2858. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2859. *
  2860. * It returns the start and end page frame of a node based on information
  2861. * provided by an arch calling add_active_range(). If called for a node
  2862. * with no available memory, a warning is printed and the start and end
  2863. * PFNs will be 0.
  2864. */
  2865. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2866. unsigned long *start_pfn, unsigned long *end_pfn)
  2867. {
  2868. int i;
  2869. *start_pfn = -1UL;
  2870. *end_pfn = 0;
  2871. for_each_active_range_index_in_nid(i, nid) {
  2872. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2873. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2874. }
  2875. if (*start_pfn == -1UL)
  2876. *start_pfn = 0;
  2877. }
  2878. /*
  2879. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2880. * assumption is made that zones within a node are ordered in monotonic
  2881. * increasing memory addresses so that the "highest" populated zone is used
  2882. */
  2883. static void __init find_usable_zone_for_movable(void)
  2884. {
  2885. int zone_index;
  2886. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2887. if (zone_index == ZONE_MOVABLE)
  2888. continue;
  2889. if (arch_zone_highest_possible_pfn[zone_index] >
  2890. arch_zone_lowest_possible_pfn[zone_index])
  2891. break;
  2892. }
  2893. VM_BUG_ON(zone_index == -1);
  2894. movable_zone = zone_index;
  2895. }
  2896. /*
  2897. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2898. * because it is sized independant of architecture. Unlike the other zones,
  2899. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2900. * in each node depending on the size of each node and how evenly kernelcore
  2901. * is distributed. This helper function adjusts the zone ranges
  2902. * provided by the architecture for a given node by using the end of the
  2903. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2904. * zones within a node are in order of monotonic increases memory addresses
  2905. */
  2906. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2907. unsigned long zone_type,
  2908. unsigned long node_start_pfn,
  2909. unsigned long node_end_pfn,
  2910. unsigned long *zone_start_pfn,
  2911. unsigned long *zone_end_pfn)
  2912. {
  2913. /* Only adjust if ZONE_MOVABLE is on this node */
  2914. if (zone_movable_pfn[nid]) {
  2915. /* Size ZONE_MOVABLE */
  2916. if (zone_type == ZONE_MOVABLE) {
  2917. *zone_start_pfn = zone_movable_pfn[nid];
  2918. *zone_end_pfn = min(node_end_pfn,
  2919. arch_zone_highest_possible_pfn[movable_zone]);
  2920. /* Adjust for ZONE_MOVABLE starting within this range */
  2921. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2922. *zone_end_pfn > zone_movable_pfn[nid]) {
  2923. *zone_end_pfn = zone_movable_pfn[nid];
  2924. /* Check if this whole range is within ZONE_MOVABLE */
  2925. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2926. *zone_start_pfn = *zone_end_pfn;
  2927. }
  2928. }
  2929. /*
  2930. * Return the number of pages a zone spans in a node, including holes
  2931. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2932. */
  2933. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2934. unsigned long zone_type,
  2935. unsigned long *ignored)
  2936. {
  2937. unsigned long node_start_pfn, node_end_pfn;
  2938. unsigned long zone_start_pfn, zone_end_pfn;
  2939. /* Get the start and end of the node and zone */
  2940. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2941. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2942. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2943. adjust_zone_range_for_zone_movable(nid, zone_type,
  2944. node_start_pfn, node_end_pfn,
  2945. &zone_start_pfn, &zone_end_pfn);
  2946. /* Check that this node has pages within the zone's required range */
  2947. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2948. return 0;
  2949. /* Move the zone boundaries inside the node if necessary */
  2950. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2951. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2952. /* Return the spanned pages */
  2953. return zone_end_pfn - zone_start_pfn;
  2954. }
  2955. /*
  2956. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2957. * then all holes in the requested range will be accounted for.
  2958. */
  2959. static unsigned long __meminit __absent_pages_in_range(int nid,
  2960. unsigned long range_start_pfn,
  2961. unsigned long range_end_pfn)
  2962. {
  2963. int i = 0;
  2964. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2965. unsigned long start_pfn;
  2966. /* Find the end_pfn of the first active range of pfns in the node */
  2967. i = first_active_region_index_in_nid(nid);
  2968. if (i == -1)
  2969. return 0;
  2970. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2971. /* Account for ranges before physical memory on this node */
  2972. if (early_node_map[i].start_pfn > range_start_pfn)
  2973. hole_pages = prev_end_pfn - range_start_pfn;
  2974. /* Find all holes for the zone within the node */
  2975. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2976. /* No need to continue if prev_end_pfn is outside the zone */
  2977. if (prev_end_pfn >= range_end_pfn)
  2978. break;
  2979. /* Make sure the end of the zone is not within the hole */
  2980. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2981. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2982. /* Update the hole size cound and move on */
  2983. if (start_pfn > range_start_pfn) {
  2984. BUG_ON(prev_end_pfn > start_pfn);
  2985. hole_pages += start_pfn - prev_end_pfn;
  2986. }
  2987. prev_end_pfn = early_node_map[i].end_pfn;
  2988. }
  2989. /* Account for ranges past physical memory on this node */
  2990. if (range_end_pfn > prev_end_pfn)
  2991. hole_pages += range_end_pfn -
  2992. max(range_start_pfn, prev_end_pfn);
  2993. return hole_pages;
  2994. }
  2995. /**
  2996. * absent_pages_in_range - Return number of page frames in holes within a range
  2997. * @start_pfn: The start PFN to start searching for holes
  2998. * @end_pfn: The end PFN to stop searching for holes
  2999. *
  3000. * It returns the number of pages frames in memory holes within a range.
  3001. */
  3002. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3003. unsigned long end_pfn)
  3004. {
  3005. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3006. }
  3007. /* Return the number of page frames in holes in a zone on a node */
  3008. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3009. unsigned long zone_type,
  3010. unsigned long *ignored)
  3011. {
  3012. unsigned long node_start_pfn, node_end_pfn;
  3013. unsigned long zone_start_pfn, zone_end_pfn;
  3014. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3015. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3016. node_start_pfn);
  3017. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3018. node_end_pfn);
  3019. adjust_zone_range_for_zone_movable(nid, zone_type,
  3020. node_start_pfn, node_end_pfn,
  3021. &zone_start_pfn, &zone_end_pfn);
  3022. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3023. }
  3024. #else
  3025. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3026. unsigned long zone_type,
  3027. unsigned long *zones_size)
  3028. {
  3029. return zones_size[zone_type];
  3030. }
  3031. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3032. unsigned long zone_type,
  3033. unsigned long *zholes_size)
  3034. {
  3035. if (!zholes_size)
  3036. return 0;
  3037. return zholes_size[zone_type];
  3038. }
  3039. #endif
  3040. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3041. unsigned long *zones_size, unsigned long *zholes_size)
  3042. {
  3043. unsigned long realtotalpages, totalpages = 0;
  3044. enum zone_type i;
  3045. for (i = 0; i < MAX_NR_ZONES; i++)
  3046. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3047. zones_size);
  3048. pgdat->node_spanned_pages = totalpages;
  3049. realtotalpages = totalpages;
  3050. for (i = 0; i < MAX_NR_ZONES; i++)
  3051. realtotalpages -=
  3052. zone_absent_pages_in_node(pgdat->node_id, i,
  3053. zholes_size);
  3054. pgdat->node_present_pages = realtotalpages;
  3055. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3056. realtotalpages);
  3057. }
  3058. #ifndef CONFIG_SPARSEMEM
  3059. /*
  3060. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3061. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3062. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3063. * round what is now in bits to nearest long in bits, then return it in
  3064. * bytes.
  3065. */
  3066. static unsigned long __init usemap_size(unsigned long zonesize)
  3067. {
  3068. unsigned long usemapsize;
  3069. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3070. usemapsize = usemapsize >> pageblock_order;
  3071. usemapsize *= NR_PAGEBLOCK_BITS;
  3072. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3073. return usemapsize / 8;
  3074. }
  3075. static void __init setup_usemap(struct pglist_data *pgdat,
  3076. struct zone *zone, unsigned long zonesize)
  3077. {
  3078. unsigned long usemapsize = usemap_size(zonesize);
  3079. zone->pageblock_flags = NULL;
  3080. if (usemapsize)
  3081. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3082. }
  3083. #else
  3084. static void inline setup_usemap(struct pglist_data *pgdat,
  3085. struct zone *zone, unsigned long zonesize) {}
  3086. #endif /* CONFIG_SPARSEMEM */
  3087. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3088. /* Return a sensible default order for the pageblock size. */
  3089. static inline int pageblock_default_order(void)
  3090. {
  3091. if (HPAGE_SHIFT > PAGE_SHIFT)
  3092. return HUGETLB_PAGE_ORDER;
  3093. return MAX_ORDER-1;
  3094. }
  3095. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3096. static inline void __init set_pageblock_order(unsigned int order)
  3097. {
  3098. /* Check that pageblock_nr_pages has not already been setup */
  3099. if (pageblock_order)
  3100. return;
  3101. /*
  3102. * Assume the largest contiguous order of interest is a huge page.
  3103. * This value may be variable depending on boot parameters on IA64
  3104. */
  3105. pageblock_order = order;
  3106. }
  3107. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3108. /*
  3109. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3110. * and pageblock_default_order() are unused as pageblock_order is set
  3111. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3112. * pageblock_order based on the kernel config
  3113. */
  3114. static inline int pageblock_default_order(unsigned int order)
  3115. {
  3116. return MAX_ORDER-1;
  3117. }
  3118. #define set_pageblock_order(x) do {} while (0)
  3119. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3120. /*
  3121. * Set up the zone data structures:
  3122. * - mark all pages reserved
  3123. * - mark all memory queues empty
  3124. * - clear the memory bitmaps
  3125. */
  3126. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3127. unsigned long *zones_size, unsigned long *zholes_size)
  3128. {
  3129. enum zone_type j;
  3130. int nid = pgdat->node_id;
  3131. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3132. int ret;
  3133. pgdat_resize_init(pgdat);
  3134. pgdat->nr_zones = 0;
  3135. init_waitqueue_head(&pgdat->kswapd_wait);
  3136. pgdat->kswapd_max_order = 0;
  3137. pgdat_page_cgroup_init(pgdat);
  3138. for (j = 0; j < MAX_NR_ZONES; j++) {
  3139. struct zone *zone = pgdat->node_zones + j;
  3140. unsigned long size, realsize, memmap_pages;
  3141. enum lru_list l;
  3142. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3143. realsize = size - zone_absent_pages_in_node(nid, j,
  3144. zholes_size);
  3145. /*
  3146. * Adjust realsize so that it accounts for how much memory
  3147. * is used by this zone for memmap. This affects the watermark
  3148. * and per-cpu initialisations
  3149. */
  3150. memmap_pages =
  3151. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3152. if (realsize >= memmap_pages) {
  3153. realsize -= memmap_pages;
  3154. if (memmap_pages)
  3155. printk(KERN_DEBUG
  3156. " %s zone: %lu pages used for memmap\n",
  3157. zone_names[j], memmap_pages);
  3158. } else
  3159. printk(KERN_WARNING
  3160. " %s zone: %lu pages exceeds realsize %lu\n",
  3161. zone_names[j], memmap_pages, realsize);
  3162. /* Account for reserved pages */
  3163. if (j == 0 && realsize > dma_reserve) {
  3164. realsize -= dma_reserve;
  3165. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3166. zone_names[0], dma_reserve);
  3167. }
  3168. if (!is_highmem_idx(j))
  3169. nr_kernel_pages += realsize;
  3170. nr_all_pages += realsize;
  3171. zone->spanned_pages = size;
  3172. zone->present_pages = realsize;
  3173. #ifdef CONFIG_NUMA
  3174. zone->node = nid;
  3175. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3176. / 100;
  3177. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3178. #endif
  3179. zone->name = zone_names[j];
  3180. spin_lock_init(&zone->lock);
  3181. spin_lock_init(&zone->lru_lock);
  3182. zone_seqlock_init(zone);
  3183. zone->zone_pgdat = pgdat;
  3184. zone->prev_priority = DEF_PRIORITY;
  3185. zone_pcp_init(zone);
  3186. for_each_lru(l) {
  3187. INIT_LIST_HEAD(&zone->lru[l].list);
  3188. zone->lru[l].nr_saved_scan = 0;
  3189. }
  3190. zone->reclaim_stat.recent_rotated[0] = 0;
  3191. zone->reclaim_stat.recent_rotated[1] = 0;
  3192. zone->reclaim_stat.recent_scanned[0] = 0;
  3193. zone->reclaim_stat.recent_scanned[1] = 0;
  3194. zap_zone_vm_stats(zone);
  3195. zone->flags = 0;
  3196. if (!size)
  3197. continue;
  3198. set_pageblock_order(pageblock_default_order());
  3199. setup_usemap(pgdat, zone, size);
  3200. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3201. size, MEMMAP_EARLY);
  3202. BUG_ON(ret);
  3203. memmap_init(size, nid, j, zone_start_pfn);
  3204. zone_start_pfn += size;
  3205. }
  3206. }
  3207. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3208. {
  3209. /* Skip empty nodes */
  3210. if (!pgdat->node_spanned_pages)
  3211. return;
  3212. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3213. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3214. if (!pgdat->node_mem_map) {
  3215. unsigned long size, start, end;
  3216. struct page *map;
  3217. /*
  3218. * The zone's endpoints aren't required to be MAX_ORDER
  3219. * aligned but the node_mem_map endpoints must be in order
  3220. * for the buddy allocator to function correctly.
  3221. */
  3222. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3223. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3224. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3225. size = (end - start) * sizeof(struct page);
  3226. map = alloc_remap(pgdat->node_id, size);
  3227. if (!map)
  3228. map = alloc_bootmem_node(pgdat, size);
  3229. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3230. }
  3231. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3232. /*
  3233. * With no DISCONTIG, the global mem_map is just set as node 0's
  3234. */
  3235. if (pgdat == NODE_DATA(0)) {
  3236. mem_map = NODE_DATA(0)->node_mem_map;
  3237. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3238. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3239. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3240. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3241. }
  3242. #endif
  3243. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3244. }
  3245. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3246. unsigned long node_start_pfn, unsigned long *zholes_size)
  3247. {
  3248. pg_data_t *pgdat = NODE_DATA(nid);
  3249. pgdat->node_id = nid;
  3250. pgdat->node_start_pfn = node_start_pfn;
  3251. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3252. alloc_node_mem_map(pgdat);
  3253. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3254. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3255. nid, (unsigned long)pgdat,
  3256. (unsigned long)pgdat->node_mem_map);
  3257. #endif
  3258. free_area_init_core(pgdat, zones_size, zholes_size);
  3259. }
  3260. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3261. #if MAX_NUMNODES > 1
  3262. /*
  3263. * Figure out the number of possible node ids.
  3264. */
  3265. static void __init setup_nr_node_ids(void)
  3266. {
  3267. unsigned int node;
  3268. unsigned int highest = 0;
  3269. for_each_node_mask(node, node_possible_map)
  3270. highest = node;
  3271. nr_node_ids = highest + 1;
  3272. }
  3273. #else
  3274. static inline void setup_nr_node_ids(void)
  3275. {
  3276. }
  3277. #endif
  3278. /**
  3279. * add_active_range - Register a range of PFNs backed by physical memory
  3280. * @nid: The node ID the range resides on
  3281. * @start_pfn: The start PFN of the available physical memory
  3282. * @end_pfn: The end PFN of the available physical memory
  3283. *
  3284. * These ranges are stored in an early_node_map[] and later used by
  3285. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3286. * range spans a memory hole, it is up to the architecture to ensure
  3287. * the memory is not freed by the bootmem allocator. If possible
  3288. * the range being registered will be merged with existing ranges.
  3289. */
  3290. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3291. unsigned long end_pfn)
  3292. {
  3293. int i;
  3294. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3295. "Entering add_active_range(%d, %#lx, %#lx) "
  3296. "%d entries of %d used\n",
  3297. nid, start_pfn, end_pfn,
  3298. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3299. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3300. /* Merge with existing active regions if possible */
  3301. for (i = 0; i < nr_nodemap_entries; i++) {
  3302. if (early_node_map[i].nid != nid)
  3303. continue;
  3304. /* Skip if an existing region covers this new one */
  3305. if (start_pfn >= early_node_map[i].start_pfn &&
  3306. end_pfn <= early_node_map[i].end_pfn)
  3307. return;
  3308. /* Merge forward if suitable */
  3309. if (start_pfn <= early_node_map[i].end_pfn &&
  3310. end_pfn > early_node_map[i].end_pfn) {
  3311. early_node_map[i].end_pfn = end_pfn;
  3312. return;
  3313. }
  3314. /* Merge backward if suitable */
  3315. if (start_pfn < early_node_map[i].end_pfn &&
  3316. end_pfn >= early_node_map[i].start_pfn) {
  3317. early_node_map[i].start_pfn = start_pfn;
  3318. return;
  3319. }
  3320. }
  3321. /* Check that early_node_map is large enough */
  3322. if (i >= MAX_ACTIVE_REGIONS) {
  3323. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3324. MAX_ACTIVE_REGIONS);
  3325. return;
  3326. }
  3327. early_node_map[i].nid = nid;
  3328. early_node_map[i].start_pfn = start_pfn;
  3329. early_node_map[i].end_pfn = end_pfn;
  3330. nr_nodemap_entries = i + 1;
  3331. }
  3332. /**
  3333. * remove_active_range - Shrink an existing registered range of PFNs
  3334. * @nid: The node id the range is on that should be shrunk
  3335. * @start_pfn: The new PFN of the range
  3336. * @end_pfn: The new PFN of the range
  3337. *
  3338. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3339. * The map is kept near the end physical page range that has already been
  3340. * registered. This function allows an arch to shrink an existing registered
  3341. * range.
  3342. */
  3343. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3344. unsigned long end_pfn)
  3345. {
  3346. int i, j;
  3347. int removed = 0;
  3348. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3349. nid, start_pfn, end_pfn);
  3350. /* Find the old active region end and shrink */
  3351. for_each_active_range_index_in_nid(i, nid) {
  3352. if (early_node_map[i].start_pfn >= start_pfn &&
  3353. early_node_map[i].end_pfn <= end_pfn) {
  3354. /* clear it */
  3355. early_node_map[i].start_pfn = 0;
  3356. early_node_map[i].end_pfn = 0;
  3357. removed = 1;
  3358. continue;
  3359. }
  3360. if (early_node_map[i].start_pfn < start_pfn &&
  3361. early_node_map[i].end_pfn > start_pfn) {
  3362. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3363. early_node_map[i].end_pfn = start_pfn;
  3364. if (temp_end_pfn > end_pfn)
  3365. add_active_range(nid, end_pfn, temp_end_pfn);
  3366. continue;
  3367. }
  3368. if (early_node_map[i].start_pfn >= start_pfn &&
  3369. early_node_map[i].end_pfn > end_pfn &&
  3370. early_node_map[i].start_pfn < end_pfn) {
  3371. early_node_map[i].start_pfn = end_pfn;
  3372. continue;
  3373. }
  3374. }
  3375. if (!removed)
  3376. return;
  3377. /* remove the blank ones */
  3378. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3379. if (early_node_map[i].nid != nid)
  3380. continue;
  3381. if (early_node_map[i].end_pfn)
  3382. continue;
  3383. /* we found it, get rid of it */
  3384. for (j = i; j < nr_nodemap_entries - 1; j++)
  3385. memcpy(&early_node_map[j], &early_node_map[j+1],
  3386. sizeof(early_node_map[j]));
  3387. j = nr_nodemap_entries - 1;
  3388. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3389. nr_nodemap_entries--;
  3390. }
  3391. }
  3392. /**
  3393. * remove_all_active_ranges - Remove all currently registered regions
  3394. *
  3395. * During discovery, it may be found that a table like SRAT is invalid
  3396. * and an alternative discovery method must be used. This function removes
  3397. * all currently registered regions.
  3398. */
  3399. void __init remove_all_active_ranges(void)
  3400. {
  3401. memset(early_node_map, 0, sizeof(early_node_map));
  3402. nr_nodemap_entries = 0;
  3403. }
  3404. /* Compare two active node_active_regions */
  3405. static int __init cmp_node_active_region(const void *a, const void *b)
  3406. {
  3407. struct node_active_region *arange = (struct node_active_region *)a;
  3408. struct node_active_region *brange = (struct node_active_region *)b;
  3409. /* Done this way to avoid overflows */
  3410. if (arange->start_pfn > brange->start_pfn)
  3411. return 1;
  3412. if (arange->start_pfn < brange->start_pfn)
  3413. return -1;
  3414. return 0;
  3415. }
  3416. /* sort the node_map by start_pfn */
  3417. static void __init sort_node_map(void)
  3418. {
  3419. sort(early_node_map, (size_t)nr_nodemap_entries,
  3420. sizeof(struct node_active_region),
  3421. cmp_node_active_region, NULL);
  3422. }
  3423. /* Find the lowest pfn for a node */
  3424. static unsigned long __init find_min_pfn_for_node(int nid)
  3425. {
  3426. int i;
  3427. unsigned long min_pfn = ULONG_MAX;
  3428. /* Assuming a sorted map, the first range found has the starting pfn */
  3429. for_each_active_range_index_in_nid(i, nid)
  3430. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3431. if (min_pfn == ULONG_MAX) {
  3432. printk(KERN_WARNING
  3433. "Could not find start_pfn for node %d\n", nid);
  3434. return 0;
  3435. }
  3436. return min_pfn;
  3437. }
  3438. /**
  3439. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3440. *
  3441. * It returns the minimum PFN based on information provided via
  3442. * add_active_range().
  3443. */
  3444. unsigned long __init find_min_pfn_with_active_regions(void)
  3445. {
  3446. return find_min_pfn_for_node(MAX_NUMNODES);
  3447. }
  3448. /*
  3449. * early_calculate_totalpages()
  3450. * Sum pages in active regions for movable zone.
  3451. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3452. */
  3453. static unsigned long __init early_calculate_totalpages(void)
  3454. {
  3455. int i;
  3456. unsigned long totalpages = 0;
  3457. for (i = 0; i < nr_nodemap_entries; i++) {
  3458. unsigned long pages = early_node_map[i].end_pfn -
  3459. early_node_map[i].start_pfn;
  3460. totalpages += pages;
  3461. if (pages)
  3462. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3463. }
  3464. return totalpages;
  3465. }
  3466. /*
  3467. * Find the PFN the Movable zone begins in each node. Kernel memory
  3468. * is spread evenly between nodes as long as the nodes have enough
  3469. * memory. When they don't, some nodes will have more kernelcore than
  3470. * others
  3471. */
  3472. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3473. {
  3474. int i, nid;
  3475. unsigned long usable_startpfn;
  3476. unsigned long kernelcore_node, kernelcore_remaining;
  3477. /* save the state before borrow the nodemask */
  3478. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3479. unsigned long totalpages = early_calculate_totalpages();
  3480. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3481. /*
  3482. * If movablecore was specified, calculate what size of
  3483. * kernelcore that corresponds so that memory usable for
  3484. * any allocation type is evenly spread. If both kernelcore
  3485. * and movablecore are specified, then the value of kernelcore
  3486. * will be used for required_kernelcore if it's greater than
  3487. * what movablecore would have allowed.
  3488. */
  3489. if (required_movablecore) {
  3490. unsigned long corepages;
  3491. /*
  3492. * Round-up so that ZONE_MOVABLE is at least as large as what
  3493. * was requested by the user
  3494. */
  3495. required_movablecore =
  3496. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3497. corepages = totalpages - required_movablecore;
  3498. required_kernelcore = max(required_kernelcore, corepages);
  3499. }
  3500. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3501. if (!required_kernelcore)
  3502. goto out;
  3503. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3504. find_usable_zone_for_movable();
  3505. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3506. restart:
  3507. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3508. kernelcore_node = required_kernelcore / usable_nodes;
  3509. for_each_node_state(nid, N_HIGH_MEMORY) {
  3510. /*
  3511. * Recalculate kernelcore_node if the division per node
  3512. * now exceeds what is necessary to satisfy the requested
  3513. * amount of memory for the kernel
  3514. */
  3515. if (required_kernelcore < kernelcore_node)
  3516. kernelcore_node = required_kernelcore / usable_nodes;
  3517. /*
  3518. * As the map is walked, we track how much memory is usable
  3519. * by the kernel using kernelcore_remaining. When it is
  3520. * 0, the rest of the node is usable by ZONE_MOVABLE
  3521. */
  3522. kernelcore_remaining = kernelcore_node;
  3523. /* Go through each range of PFNs within this node */
  3524. for_each_active_range_index_in_nid(i, nid) {
  3525. unsigned long start_pfn, end_pfn;
  3526. unsigned long size_pages;
  3527. start_pfn = max(early_node_map[i].start_pfn,
  3528. zone_movable_pfn[nid]);
  3529. end_pfn = early_node_map[i].end_pfn;
  3530. if (start_pfn >= end_pfn)
  3531. continue;
  3532. /* Account for what is only usable for kernelcore */
  3533. if (start_pfn < usable_startpfn) {
  3534. unsigned long kernel_pages;
  3535. kernel_pages = min(end_pfn, usable_startpfn)
  3536. - start_pfn;
  3537. kernelcore_remaining -= min(kernel_pages,
  3538. kernelcore_remaining);
  3539. required_kernelcore -= min(kernel_pages,
  3540. required_kernelcore);
  3541. /* Continue if range is now fully accounted */
  3542. if (end_pfn <= usable_startpfn) {
  3543. /*
  3544. * Push zone_movable_pfn to the end so
  3545. * that if we have to rebalance
  3546. * kernelcore across nodes, we will
  3547. * not double account here
  3548. */
  3549. zone_movable_pfn[nid] = end_pfn;
  3550. continue;
  3551. }
  3552. start_pfn = usable_startpfn;
  3553. }
  3554. /*
  3555. * The usable PFN range for ZONE_MOVABLE is from
  3556. * start_pfn->end_pfn. Calculate size_pages as the
  3557. * number of pages used as kernelcore
  3558. */
  3559. size_pages = end_pfn - start_pfn;
  3560. if (size_pages > kernelcore_remaining)
  3561. size_pages = kernelcore_remaining;
  3562. zone_movable_pfn[nid] = start_pfn + size_pages;
  3563. /*
  3564. * Some kernelcore has been met, update counts and
  3565. * break if the kernelcore for this node has been
  3566. * satisified
  3567. */
  3568. required_kernelcore -= min(required_kernelcore,
  3569. size_pages);
  3570. kernelcore_remaining -= size_pages;
  3571. if (!kernelcore_remaining)
  3572. break;
  3573. }
  3574. }
  3575. /*
  3576. * If there is still required_kernelcore, we do another pass with one
  3577. * less node in the count. This will push zone_movable_pfn[nid] further
  3578. * along on the nodes that still have memory until kernelcore is
  3579. * satisified
  3580. */
  3581. usable_nodes--;
  3582. if (usable_nodes && required_kernelcore > usable_nodes)
  3583. goto restart;
  3584. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3585. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3586. zone_movable_pfn[nid] =
  3587. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3588. out:
  3589. /* restore the node_state */
  3590. node_states[N_HIGH_MEMORY] = saved_node_state;
  3591. }
  3592. /* Any regular memory on that node ? */
  3593. static void check_for_regular_memory(pg_data_t *pgdat)
  3594. {
  3595. #ifdef CONFIG_HIGHMEM
  3596. enum zone_type zone_type;
  3597. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3598. struct zone *zone = &pgdat->node_zones[zone_type];
  3599. if (zone->present_pages)
  3600. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3601. }
  3602. #endif
  3603. }
  3604. /**
  3605. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3606. * @max_zone_pfn: an array of max PFNs for each zone
  3607. *
  3608. * This will call free_area_init_node() for each active node in the system.
  3609. * Using the page ranges provided by add_active_range(), the size of each
  3610. * zone in each node and their holes is calculated. If the maximum PFN
  3611. * between two adjacent zones match, it is assumed that the zone is empty.
  3612. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3613. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3614. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3615. * at arch_max_dma_pfn.
  3616. */
  3617. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3618. {
  3619. unsigned long nid;
  3620. int i;
  3621. /* Sort early_node_map as initialisation assumes it is sorted */
  3622. sort_node_map();
  3623. /* Record where the zone boundaries are */
  3624. memset(arch_zone_lowest_possible_pfn, 0,
  3625. sizeof(arch_zone_lowest_possible_pfn));
  3626. memset(arch_zone_highest_possible_pfn, 0,
  3627. sizeof(arch_zone_highest_possible_pfn));
  3628. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3629. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3630. for (i = 1; i < MAX_NR_ZONES; i++) {
  3631. if (i == ZONE_MOVABLE)
  3632. continue;
  3633. arch_zone_lowest_possible_pfn[i] =
  3634. arch_zone_highest_possible_pfn[i-1];
  3635. arch_zone_highest_possible_pfn[i] =
  3636. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3637. }
  3638. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3639. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3640. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3641. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3642. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3643. /* Print out the zone ranges */
  3644. printk("Zone PFN ranges:\n");
  3645. for (i = 0; i < MAX_NR_ZONES; i++) {
  3646. if (i == ZONE_MOVABLE)
  3647. continue;
  3648. printk(" %-8s %0#10lx -> %0#10lx\n",
  3649. zone_names[i],
  3650. arch_zone_lowest_possible_pfn[i],
  3651. arch_zone_highest_possible_pfn[i]);
  3652. }
  3653. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3654. printk("Movable zone start PFN for each node\n");
  3655. for (i = 0; i < MAX_NUMNODES; i++) {
  3656. if (zone_movable_pfn[i])
  3657. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3658. }
  3659. /* Print out the early_node_map[] */
  3660. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3661. for (i = 0; i < nr_nodemap_entries; i++)
  3662. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3663. early_node_map[i].start_pfn,
  3664. early_node_map[i].end_pfn);
  3665. /* Initialise every node */
  3666. mminit_verify_pageflags_layout();
  3667. setup_nr_node_ids();
  3668. for_each_online_node(nid) {
  3669. pg_data_t *pgdat = NODE_DATA(nid);
  3670. free_area_init_node(nid, NULL,
  3671. find_min_pfn_for_node(nid), NULL);
  3672. /* Any memory on that node */
  3673. if (pgdat->node_present_pages)
  3674. node_set_state(nid, N_HIGH_MEMORY);
  3675. check_for_regular_memory(pgdat);
  3676. }
  3677. }
  3678. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3679. {
  3680. unsigned long long coremem;
  3681. if (!p)
  3682. return -EINVAL;
  3683. coremem = memparse(p, &p);
  3684. *core = coremem >> PAGE_SHIFT;
  3685. /* Paranoid check that UL is enough for the coremem value */
  3686. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3687. return 0;
  3688. }
  3689. /*
  3690. * kernelcore=size sets the amount of memory for use for allocations that
  3691. * cannot be reclaimed or migrated.
  3692. */
  3693. static int __init cmdline_parse_kernelcore(char *p)
  3694. {
  3695. return cmdline_parse_core(p, &required_kernelcore);
  3696. }
  3697. /*
  3698. * movablecore=size sets the amount of memory for use for allocations that
  3699. * can be reclaimed or migrated.
  3700. */
  3701. static int __init cmdline_parse_movablecore(char *p)
  3702. {
  3703. return cmdline_parse_core(p, &required_movablecore);
  3704. }
  3705. early_param("kernelcore", cmdline_parse_kernelcore);
  3706. early_param("movablecore", cmdline_parse_movablecore);
  3707. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3708. /**
  3709. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3710. * @new_dma_reserve: The number of pages to mark reserved
  3711. *
  3712. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3713. * In the DMA zone, a significant percentage may be consumed by kernel image
  3714. * and other unfreeable allocations which can skew the watermarks badly. This
  3715. * function may optionally be used to account for unfreeable pages in the
  3716. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3717. * smaller per-cpu batchsize.
  3718. */
  3719. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3720. {
  3721. dma_reserve = new_dma_reserve;
  3722. }
  3723. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3724. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3725. EXPORT_SYMBOL(contig_page_data);
  3726. #endif
  3727. void __init free_area_init(unsigned long *zones_size)
  3728. {
  3729. free_area_init_node(0, zones_size,
  3730. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3731. }
  3732. static int page_alloc_cpu_notify(struct notifier_block *self,
  3733. unsigned long action, void *hcpu)
  3734. {
  3735. int cpu = (unsigned long)hcpu;
  3736. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3737. drain_pages(cpu);
  3738. /*
  3739. * Spill the event counters of the dead processor
  3740. * into the current processors event counters.
  3741. * This artificially elevates the count of the current
  3742. * processor.
  3743. */
  3744. vm_events_fold_cpu(cpu);
  3745. /*
  3746. * Zero the differential counters of the dead processor
  3747. * so that the vm statistics are consistent.
  3748. *
  3749. * This is only okay since the processor is dead and cannot
  3750. * race with what we are doing.
  3751. */
  3752. refresh_cpu_vm_stats(cpu);
  3753. }
  3754. return NOTIFY_OK;
  3755. }
  3756. void __init page_alloc_init(void)
  3757. {
  3758. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3759. }
  3760. /*
  3761. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3762. * or min_free_kbytes changes.
  3763. */
  3764. static void calculate_totalreserve_pages(void)
  3765. {
  3766. struct pglist_data *pgdat;
  3767. unsigned long reserve_pages = 0;
  3768. enum zone_type i, j;
  3769. for_each_online_pgdat(pgdat) {
  3770. for (i = 0; i < MAX_NR_ZONES; i++) {
  3771. struct zone *zone = pgdat->node_zones + i;
  3772. unsigned long max = 0;
  3773. /* Find valid and maximum lowmem_reserve in the zone */
  3774. for (j = i; j < MAX_NR_ZONES; j++) {
  3775. if (zone->lowmem_reserve[j] > max)
  3776. max = zone->lowmem_reserve[j];
  3777. }
  3778. /* we treat the high watermark as reserved pages. */
  3779. max += high_wmark_pages(zone);
  3780. if (max > zone->present_pages)
  3781. max = zone->present_pages;
  3782. reserve_pages += max;
  3783. }
  3784. }
  3785. totalreserve_pages = reserve_pages;
  3786. }
  3787. /*
  3788. * setup_per_zone_lowmem_reserve - called whenever
  3789. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3790. * has a correct pages reserved value, so an adequate number of
  3791. * pages are left in the zone after a successful __alloc_pages().
  3792. */
  3793. static void setup_per_zone_lowmem_reserve(void)
  3794. {
  3795. struct pglist_data *pgdat;
  3796. enum zone_type j, idx;
  3797. for_each_online_pgdat(pgdat) {
  3798. for (j = 0; j < MAX_NR_ZONES; j++) {
  3799. struct zone *zone = pgdat->node_zones + j;
  3800. unsigned long present_pages = zone->present_pages;
  3801. zone->lowmem_reserve[j] = 0;
  3802. idx = j;
  3803. while (idx) {
  3804. struct zone *lower_zone;
  3805. idx--;
  3806. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3807. sysctl_lowmem_reserve_ratio[idx] = 1;
  3808. lower_zone = pgdat->node_zones + idx;
  3809. lower_zone->lowmem_reserve[j] = present_pages /
  3810. sysctl_lowmem_reserve_ratio[idx];
  3811. present_pages += lower_zone->present_pages;
  3812. }
  3813. }
  3814. }
  3815. /* update totalreserve_pages */
  3816. calculate_totalreserve_pages();
  3817. }
  3818. /**
  3819. * setup_per_zone_wmarks - called when min_free_kbytes changes
  3820. * or when memory is hot-{added|removed}
  3821. *
  3822. * Ensures that the watermark[min,low,high] values for each zone are set
  3823. * correctly with respect to min_free_kbytes.
  3824. */
  3825. void setup_per_zone_wmarks(void)
  3826. {
  3827. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3828. unsigned long lowmem_pages = 0;
  3829. struct zone *zone;
  3830. unsigned long flags;
  3831. /* Calculate total number of !ZONE_HIGHMEM pages */
  3832. for_each_zone(zone) {
  3833. if (!is_highmem(zone))
  3834. lowmem_pages += zone->present_pages;
  3835. }
  3836. for_each_zone(zone) {
  3837. u64 tmp;
  3838. spin_lock_irqsave(&zone->lock, flags);
  3839. tmp = (u64)pages_min * zone->present_pages;
  3840. do_div(tmp, lowmem_pages);
  3841. if (is_highmem(zone)) {
  3842. /*
  3843. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3844. * need highmem pages, so cap pages_min to a small
  3845. * value here.
  3846. *
  3847. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3848. * deltas controls asynch page reclaim, and so should
  3849. * not be capped for highmem.
  3850. */
  3851. int min_pages;
  3852. min_pages = zone->present_pages / 1024;
  3853. if (min_pages < SWAP_CLUSTER_MAX)
  3854. min_pages = SWAP_CLUSTER_MAX;
  3855. if (min_pages > 128)
  3856. min_pages = 128;
  3857. zone->watermark[WMARK_MIN] = min_pages;
  3858. } else {
  3859. /*
  3860. * If it's a lowmem zone, reserve a number of pages
  3861. * proportionate to the zone's size.
  3862. */
  3863. zone->watermark[WMARK_MIN] = tmp;
  3864. }
  3865. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3866. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3867. setup_zone_migrate_reserve(zone);
  3868. spin_unlock_irqrestore(&zone->lock, flags);
  3869. }
  3870. /* update totalreserve_pages */
  3871. calculate_totalreserve_pages();
  3872. }
  3873. /**
  3874. * The inactive anon list should be small enough that the VM never has to
  3875. * do too much work, but large enough that each inactive page has a chance
  3876. * to be referenced again before it is swapped out.
  3877. *
  3878. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3879. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3880. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3881. * the anonymous pages are kept on the inactive list.
  3882. *
  3883. * total target max
  3884. * memory ratio inactive anon
  3885. * -------------------------------------
  3886. * 10MB 1 5MB
  3887. * 100MB 1 50MB
  3888. * 1GB 3 250MB
  3889. * 10GB 10 0.9GB
  3890. * 100GB 31 3GB
  3891. * 1TB 101 10GB
  3892. * 10TB 320 32GB
  3893. */
  3894. void calculate_zone_inactive_ratio(struct zone *zone)
  3895. {
  3896. unsigned int gb, ratio;
  3897. /* Zone size in gigabytes */
  3898. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3899. if (gb)
  3900. ratio = int_sqrt(10 * gb);
  3901. else
  3902. ratio = 1;
  3903. zone->inactive_ratio = ratio;
  3904. }
  3905. static void __init setup_per_zone_inactive_ratio(void)
  3906. {
  3907. struct zone *zone;
  3908. for_each_zone(zone)
  3909. calculate_zone_inactive_ratio(zone);
  3910. }
  3911. /*
  3912. * Initialise min_free_kbytes.
  3913. *
  3914. * For small machines we want it small (128k min). For large machines
  3915. * we want it large (64MB max). But it is not linear, because network
  3916. * bandwidth does not increase linearly with machine size. We use
  3917. *
  3918. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3919. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3920. *
  3921. * which yields
  3922. *
  3923. * 16MB: 512k
  3924. * 32MB: 724k
  3925. * 64MB: 1024k
  3926. * 128MB: 1448k
  3927. * 256MB: 2048k
  3928. * 512MB: 2896k
  3929. * 1024MB: 4096k
  3930. * 2048MB: 5792k
  3931. * 4096MB: 8192k
  3932. * 8192MB: 11584k
  3933. * 16384MB: 16384k
  3934. */
  3935. static int __init init_per_zone_wmark_min(void)
  3936. {
  3937. unsigned long lowmem_kbytes;
  3938. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3939. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3940. if (min_free_kbytes < 128)
  3941. min_free_kbytes = 128;
  3942. if (min_free_kbytes > 65536)
  3943. min_free_kbytes = 65536;
  3944. setup_per_zone_wmarks();
  3945. setup_per_zone_lowmem_reserve();
  3946. setup_per_zone_inactive_ratio();
  3947. return 0;
  3948. }
  3949. module_init(init_per_zone_wmark_min)
  3950. /*
  3951. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3952. * that we can call two helper functions whenever min_free_kbytes
  3953. * changes.
  3954. */
  3955. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3956. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3957. {
  3958. proc_dointvec(table, write, file, buffer, length, ppos);
  3959. if (write)
  3960. setup_per_zone_wmarks();
  3961. return 0;
  3962. }
  3963. #ifdef CONFIG_NUMA
  3964. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3965. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3966. {
  3967. struct zone *zone;
  3968. int rc;
  3969. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3970. if (rc)
  3971. return rc;
  3972. for_each_zone(zone)
  3973. zone->min_unmapped_pages = (zone->present_pages *
  3974. sysctl_min_unmapped_ratio) / 100;
  3975. return 0;
  3976. }
  3977. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3978. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3979. {
  3980. struct zone *zone;
  3981. int rc;
  3982. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3983. if (rc)
  3984. return rc;
  3985. for_each_zone(zone)
  3986. zone->min_slab_pages = (zone->present_pages *
  3987. sysctl_min_slab_ratio) / 100;
  3988. return 0;
  3989. }
  3990. #endif
  3991. /*
  3992. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3993. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3994. * whenever sysctl_lowmem_reserve_ratio changes.
  3995. *
  3996. * The reserve ratio obviously has absolutely no relation with the
  3997. * minimum watermarks. The lowmem reserve ratio can only make sense
  3998. * if in function of the boot time zone sizes.
  3999. */
  4000. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4001. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4002. {
  4003. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4004. setup_per_zone_lowmem_reserve();
  4005. return 0;
  4006. }
  4007. /*
  4008. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4009. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4010. * can have before it gets flushed back to buddy allocator.
  4011. */
  4012. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4013. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4014. {
  4015. struct zone *zone;
  4016. unsigned int cpu;
  4017. int ret;
  4018. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4019. if (!write || (ret == -EINVAL))
  4020. return ret;
  4021. for_each_populated_zone(zone) {
  4022. for_each_online_cpu(cpu) {
  4023. unsigned long high;
  4024. high = zone->present_pages / percpu_pagelist_fraction;
  4025. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  4026. }
  4027. }
  4028. return 0;
  4029. }
  4030. int hashdist = HASHDIST_DEFAULT;
  4031. #ifdef CONFIG_NUMA
  4032. static int __init set_hashdist(char *str)
  4033. {
  4034. if (!str)
  4035. return 0;
  4036. hashdist = simple_strtoul(str, &str, 0);
  4037. return 1;
  4038. }
  4039. __setup("hashdist=", set_hashdist);
  4040. #endif
  4041. /*
  4042. * allocate a large system hash table from bootmem
  4043. * - it is assumed that the hash table must contain an exact power-of-2
  4044. * quantity of entries
  4045. * - limit is the number of hash buckets, not the total allocation size
  4046. */
  4047. void *__init alloc_large_system_hash(const char *tablename,
  4048. unsigned long bucketsize,
  4049. unsigned long numentries,
  4050. int scale,
  4051. int flags,
  4052. unsigned int *_hash_shift,
  4053. unsigned int *_hash_mask,
  4054. unsigned long limit)
  4055. {
  4056. unsigned long long max = limit;
  4057. unsigned long log2qty, size;
  4058. void *table = NULL;
  4059. /* allow the kernel cmdline to have a say */
  4060. if (!numentries) {
  4061. /* round applicable memory size up to nearest megabyte */
  4062. numentries = nr_kernel_pages;
  4063. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4064. numentries >>= 20 - PAGE_SHIFT;
  4065. numentries <<= 20 - PAGE_SHIFT;
  4066. /* limit to 1 bucket per 2^scale bytes of low memory */
  4067. if (scale > PAGE_SHIFT)
  4068. numentries >>= (scale - PAGE_SHIFT);
  4069. else
  4070. numentries <<= (PAGE_SHIFT - scale);
  4071. /* Make sure we've got at least a 0-order allocation.. */
  4072. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4073. numentries = PAGE_SIZE / bucketsize;
  4074. }
  4075. numentries = roundup_pow_of_two(numentries);
  4076. /* limit allocation size to 1/16 total memory by default */
  4077. if (max == 0) {
  4078. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4079. do_div(max, bucketsize);
  4080. }
  4081. if (numentries > max)
  4082. numentries = max;
  4083. log2qty = ilog2(numentries);
  4084. do {
  4085. size = bucketsize << log2qty;
  4086. if (flags & HASH_EARLY)
  4087. table = alloc_bootmem_nopanic(size);
  4088. else if (hashdist)
  4089. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4090. else {
  4091. /*
  4092. * If bucketsize is not a power-of-two, we may free
  4093. * some pages at the end of hash table which
  4094. * alloc_pages_exact() automatically does
  4095. */
  4096. if (get_order(size) < MAX_ORDER) {
  4097. table = alloc_pages_exact(size, GFP_ATOMIC);
  4098. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4099. }
  4100. }
  4101. } while (!table && size > PAGE_SIZE && --log2qty);
  4102. if (!table)
  4103. panic("Failed to allocate %s hash table\n", tablename);
  4104. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4105. tablename,
  4106. (1U << log2qty),
  4107. ilog2(size) - PAGE_SHIFT,
  4108. size);
  4109. if (_hash_shift)
  4110. *_hash_shift = log2qty;
  4111. if (_hash_mask)
  4112. *_hash_mask = (1 << log2qty) - 1;
  4113. return table;
  4114. }
  4115. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4116. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4117. unsigned long pfn)
  4118. {
  4119. #ifdef CONFIG_SPARSEMEM
  4120. return __pfn_to_section(pfn)->pageblock_flags;
  4121. #else
  4122. return zone->pageblock_flags;
  4123. #endif /* CONFIG_SPARSEMEM */
  4124. }
  4125. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4126. {
  4127. #ifdef CONFIG_SPARSEMEM
  4128. pfn &= (PAGES_PER_SECTION-1);
  4129. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4130. #else
  4131. pfn = pfn - zone->zone_start_pfn;
  4132. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4133. #endif /* CONFIG_SPARSEMEM */
  4134. }
  4135. /**
  4136. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4137. * @page: The page within the block of interest
  4138. * @start_bitidx: The first bit of interest to retrieve
  4139. * @end_bitidx: The last bit of interest
  4140. * returns pageblock_bits flags
  4141. */
  4142. unsigned long get_pageblock_flags_group(struct page *page,
  4143. int start_bitidx, int end_bitidx)
  4144. {
  4145. struct zone *zone;
  4146. unsigned long *bitmap;
  4147. unsigned long pfn, bitidx;
  4148. unsigned long flags = 0;
  4149. unsigned long value = 1;
  4150. zone = page_zone(page);
  4151. pfn = page_to_pfn(page);
  4152. bitmap = get_pageblock_bitmap(zone, pfn);
  4153. bitidx = pfn_to_bitidx(zone, pfn);
  4154. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4155. if (test_bit(bitidx + start_bitidx, bitmap))
  4156. flags |= value;
  4157. return flags;
  4158. }
  4159. /**
  4160. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4161. * @page: The page within the block of interest
  4162. * @start_bitidx: The first bit of interest
  4163. * @end_bitidx: The last bit of interest
  4164. * @flags: The flags to set
  4165. */
  4166. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4167. int start_bitidx, int end_bitidx)
  4168. {
  4169. struct zone *zone;
  4170. unsigned long *bitmap;
  4171. unsigned long pfn, bitidx;
  4172. unsigned long value = 1;
  4173. zone = page_zone(page);
  4174. pfn = page_to_pfn(page);
  4175. bitmap = get_pageblock_bitmap(zone, pfn);
  4176. bitidx = pfn_to_bitidx(zone, pfn);
  4177. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4178. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4179. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4180. if (flags & value)
  4181. __set_bit(bitidx + start_bitidx, bitmap);
  4182. else
  4183. __clear_bit(bitidx + start_bitidx, bitmap);
  4184. }
  4185. /*
  4186. * This is designed as sub function...plz see page_isolation.c also.
  4187. * set/clear page block's type to be ISOLATE.
  4188. * page allocater never alloc memory from ISOLATE block.
  4189. */
  4190. int set_migratetype_isolate(struct page *page)
  4191. {
  4192. struct zone *zone;
  4193. unsigned long flags;
  4194. int ret = -EBUSY;
  4195. zone = page_zone(page);
  4196. spin_lock_irqsave(&zone->lock, flags);
  4197. /*
  4198. * In future, more migrate types will be able to be isolation target.
  4199. */
  4200. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4201. goto out;
  4202. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4203. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4204. ret = 0;
  4205. out:
  4206. spin_unlock_irqrestore(&zone->lock, flags);
  4207. if (!ret)
  4208. drain_all_pages();
  4209. return ret;
  4210. }
  4211. void unset_migratetype_isolate(struct page *page)
  4212. {
  4213. struct zone *zone;
  4214. unsigned long flags;
  4215. zone = page_zone(page);
  4216. spin_lock_irqsave(&zone->lock, flags);
  4217. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4218. goto out;
  4219. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4220. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4221. out:
  4222. spin_unlock_irqrestore(&zone->lock, flags);
  4223. }
  4224. #ifdef CONFIG_MEMORY_HOTREMOVE
  4225. /*
  4226. * All pages in the range must be isolated before calling this.
  4227. */
  4228. void
  4229. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4230. {
  4231. struct page *page;
  4232. struct zone *zone;
  4233. int order, i;
  4234. unsigned long pfn;
  4235. unsigned long flags;
  4236. /* find the first valid pfn */
  4237. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4238. if (pfn_valid(pfn))
  4239. break;
  4240. if (pfn == end_pfn)
  4241. return;
  4242. zone = page_zone(pfn_to_page(pfn));
  4243. spin_lock_irqsave(&zone->lock, flags);
  4244. pfn = start_pfn;
  4245. while (pfn < end_pfn) {
  4246. if (!pfn_valid(pfn)) {
  4247. pfn++;
  4248. continue;
  4249. }
  4250. page = pfn_to_page(pfn);
  4251. BUG_ON(page_count(page));
  4252. BUG_ON(!PageBuddy(page));
  4253. order = page_order(page);
  4254. #ifdef CONFIG_DEBUG_VM
  4255. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4256. pfn, 1 << order, end_pfn);
  4257. #endif
  4258. list_del(&page->lru);
  4259. rmv_page_order(page);
  4260. zone->free_area[order].nr_free--;
  4261. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4262. - (1UL << order));
  4263. for (i = 0; i < (1 << order); i++)
  4264. SetPageReserved((page+i));
  4265. pfn += (1 << order);
  4266. }
  4267. spin_unlock_irqrestore(&zone->lock, flags);
  4268. }
  4269. #endif