memory.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <linux/kallsyms.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/tlb.h>
  56. #include <asm/tlbflush.h>
  57. #include <asm/pgtable.h>
  58. #include "internal.h"
  59. #ifndef CONFIG_NEED_MULTIPLE_NODES
  60. /* use the per-pgdat data instead for discontigmem - mbligh */
  61. unsigned long max_mapnr;
  62. struct page *mem_map;
  63. EXPORT_SYMBOL(max_mapnr);
  64. EXPORT_SYMBOL(mem_map);
  65. #endif
  66. unsigned long num_physpages;
  67. /*
  68. * A number of key systems in x86 including ioremap() rely on the assumption
  69. * that high_memory defines the upper bound on direct map memory, then end
  70. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  71. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  72. * and ZONE_HIGHMEM.
  73. */
  74. void * high_memory;
  75. EXPORT_SYMBOL(num_physpages);
  76. EXPORT_SYMBOL(high_memory);
  77. /*
  78. * Randomize the address space (stacks, mmaps, brk, etc.).
  79. *
  80. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  81. * as ancient (libc5 based) binaries can segfault. )
  82. */
  83. int randomize_va_space __read_mostly =
  84. #ifdef CONFIG_COMPAT_BRK
  85. 1;
  86. #else
  87. 2;
  88. #endif
  89. static int __init disable_randmaps(char *s)
  90. {
  91. randomize_va_space = 0;
  92. return 1;
  93. }
  94. __setup("norandmaps", disable_randmaps);
  95. /*
  96. * If a p?d_bad entry is found while walking page tables, report
  97. * the error, before resetting entry to p?d_none. Usually (but
  98. * very seldom) called out from the p?d_none_or_clear_bad macros.
  99. */
  100. void pgd_clear_bad(pgd_t *pgd)
  101. {
  102. pgd_ERROR(*pgd);
  103. pgd_clear(pgd);
  104. }
  105. void pud_clear_bad(pud_t *pud)
  106. {
  107. pud_ERROR(*pud);
  108. pud_clear(pud);
  109. }
  110. void pmd_clear_bad(pmd_t *pmd)
  111. {
  112. pmd_ERROR(*pmd);
  113. pmd_clear(pmd);
  114. }
  115. /*
  116. * Note: this doesn't free the actual pages themselves. That
  117. * has been handled earlier when unmapping all the memory regions.
  118. */
  119. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  120. unsigned long addr)
  121. {
  122. pgtable_t token = pmd_pgtable(*pmd);
  123. pmd_clear(pmd);
  124. pte_free_tlb(tlb, token, addr);
  125. tlb->mm->nr_ptes--;
  126. }
  127. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  128. unsigned long addr, unsigned long end,
  129. unsigned long floor, unsigned long ceiling)
  130. {
  131. pmd_t *pmd;
  132. unsigned long next;
  133. unsigned long start;
  134. start = addr;
  135. pmd = pmd_offset(pud, addr);
  136. do {
  137. next = pmd_addr_end(addr, end);
  138. if (pmd_none_or_clear_bad(pmd))
  139. continue;
  140. free_pte_range(tlb, pmd, addr);
  141. } while (pmd++, addr = next, addr != end);
  142. start &= PUD_MASK;
  143. if (start < floor)
  144. return;
  145. if (ceiling) {
  146. ceiling &= PUD_MASK;
  147. if (!ceiling)
  148. return;
  149. }
  150. if (end - 1 > ceiling - 1)
  151. return;
  152. pmd = pmd_offset(pud, start);
  153. pud_clear(pud);
  154. pmd_free_tlb(tlb, pmd, start);
  155. }
  156. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  157. unsigned long addr, unsigned long end,
  158. unsigned long floor, unsigned long ceiling)
  159. {
  160. pud_t *pud;
  161. unsigned long next;
  162. unsigned long start;
  163. start = addr;
  164. pud = pud_offset(pgd, addr);
  165. do {
  166. next = pud_addr_end(addr, end);
  167. if (pud_none_or_clear_bad(pud))
  168. continue;
  169. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  170. } while (pud++, addr = next, addr != end);
  171. start &= PGDIR_MASK;
  172. if (start < floor)
  173. return;
  174. if (ceiling) {
  175. ceiling &= PGDIR_MASK;
  176. if (!ceiling)
  177. return;
  178. }
  179. if (end - 1 > ceiling - 1)
  180. return;
  181. pud = pud_offset(pgd, start);
  182. pgd_clear(pgd);
  183. pud_free_tlb(tlb, pud, start);
  184. }
  185. /*
  186. * This function frees user-level page tables of a process.
  187. *
  188. * Must be called with pagetable lock held.
  189. */
  190. void free_pgd_range(struct mmu_gather *tlb,
  191. unsigned long addr, unsigned long end,
  192. unsigned long floor, unsigned long ceiling)
  193. {
  194. pgd_t *pgd;
  195. unsigned long next;
  196. unsigned long start;
  197. /*
  198. * The next few lines have given us lots of grief...
  199. *
  200. * Why are we testing PMD* at this top level? Because often
  201. * there will be no work to do at all, and we'd prefer not to
  202. * go all the way down to the bottom just to discover that.
  203. *
  204. * Why all these "- 1"s? Because 0 represents both the bottom
  205. * of the address space and the top of it (using -1 for the
  206. * top wouldn't help much: the masks would do the wrong thing).
  207. * The rule is that addr 0 and floor 0 refer to the bottom of
  208. * the address space, but end 0 and ceiling 0 refer to the top
  209. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  210. * that end 0 case should be mythical).
  211. *
  212. * Wherever addr is brought up or ceiling brought down, we must
  213. * be careful to reject "the opposite 0" before it confuses the
  214. * subsequent tests. But what about where end is brought down
  215. * by PMD_SIZE below? no, end can't go down to 0 there.
  216. *
  217. * Whereas we round start (addr) and ceiling down, by different
  218. * masks at different levels, in order to test whether a table
  219. * now has no other vmas using it, so can be freed, we don't
  220. * bother to round floor or end up - the tests don't need that.
  221. */
  222. addr &= PMD_MASK;
  223. if (addr < floor) {
  224. addr += PMD_SIZE;
  225. if (!addr)
  226. return;
  227. }
  228. if (ceiling) {
  229. ceiling &= PMD_MASK;
  230. if (!ceiling)
  231. return;
  232. }
  233. if (end - 1 > ceiling - 1)
  234. end -= PMD_SIZE;
  235. if (addr > end - 1)
  236. return;
  237. start = addr;
  238. pgd = pgd_offset(tlb->mm, addr);
  239. do {
  240. next = pgd_addr_end(addr, end);
  241. if (pgd_none_or_clear_bad(pgd))
  242. continue;
  243. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  244. } while (pgd++, addr = next, addr != end);
  245. }
  246. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  247. unsigned long floor, unsigned long ceiling)
  248. {
  249. while (vma) {
  250. struct vm_area_struct *next = vma->vm_next;
  251. unsigned long addr = vma->vm_start;
  252. /*
  253. * Hide vma from rmap and vmtruncate before freeing pgtables
  254. */
  255. anon_vma_unlink(vma);
  256. unlink_file_vma(vma);
  257. if (is_vm_hugetlb_page(vma)) {
  258. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  259. floor, next? next->vm_start: ceiling);
  260. } else {
  261. /*
  262. * Optimization: gather nearby vmas into one call down
  263. */
  264. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  265. && !is_vm_hugetlb_page(next)) {
  266. vma = next;
  267. next = vma->vm_next;
  268. anon_vma_unlink(vma);
  269. unlink_file_vma(vma);
  270. }
  271. free_pgd_range(tlb, addr, vma->vm_end,
  272. floor, next? next->vm_start: ceiling);
  273. }
  274. vma = next;
  275. }
  276. }
  277. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  278. {
  279. pgtable_t new = pte_alloc_one(mm, address);
  280. if (!new)
  281. return -ENOMEM;
  282. /*
  283. * Ensure all pte setup (eg. pte page lock and page clearing) are
  284. * visible before the pte is made visible to other CPUs by being
  285. * put into page tables.
  286. *
  287. * The other side of the story is the pointer chasing in the page
  288. * table walking code (when walking the page table without locking;
  289. * ie. most of the time). Fortunately, these data accesses consist
  290. * of a chain of data-dependent loads, meaning most CPUs (alpha
  291. * being the notable exception) will already guarantee loads are
  292. * seen in-order. See the alpha page table accessors for the
  293. * smp_read_barrier_depends() barriers in page table walking code.
  294. */
  295. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  296. spin_lock(&mm->page_table_lock);
  297. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  298. mm->nr_ptes++;
  299. pmd_populate(mm, pmd, new);
  300. new = NULL;
  301. }
  302. spin_unlock(&mm->page_table_lock);
  303. if (new)
  304. pte_free(mm, new);
  305. return 0;
  306. }
  307. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  308. {
  309. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  310. if (!new)
  311. return -ENOMEM;
  312. smp_wmb(); /* See comment in __pte_alloc */
  313. spin_lock(&init_mm.page_table_lock);
  314. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  315. pmd_populate_kernel(&init_mm, pmd, new);
  316. new = NULL;
  317. }
  318. spin_unlock(&init_mm.page_table_lock);
  319. if (new)
  320. pte_free_kernel(&init_mm, new);
  321. return 0;
  322. }
  323. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  324. {
  325. if (file_rss)
  326. add_mm_counter(mm, file_rss, file_rss);
  327. if (anon_rss)
  328. add_mm_counter(mm, anon_rss, anon_rss);
  329. }
  330. /*
  331. * This function is called to print an error when a bad pte
  332. * is found. For example, we might have a PFN-mapped pte in
  333. * a region that doesn't allow it.
  334. *
  335. * The calling function must still handle the error.
  336. */
  337. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  338. pte_t pte, struct page *page)
  339. {
  340. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  341. pud_t *pud = pud_offset(pgd, addr);
  342. pmd_t *pmd = pmd_offset(pud, addr);
  343. struct address_space *mapping;
  344. pgoff_t index;
  345. static unsigned long resume;
  346. static unsigned long nr_shown;
  347. static unsigned long nr_unshown;
  348. /*
  349. * Allow a burst of 60 reports, then keep quiet for that minute;
  350. * or allow a steady drip of one report per second.
  351. */
  352. if (nr_shown == 60) {
  353. if (time_before(jiffies, resume)) {
  354. nr_unshown++;
  355. return;
  356. }
  357. if (nr_unshown) {
  358. printk(KERN_ALERT
  359. "BUG: Bad page map: %lu messages suppressed\n",
  360. nr_unshown);
  361. nr_unshown = 0;
  362. }
  363. nr_shown = 0;
  364. }
  365. if (nr_shown++ == 0)
  366. resume = jiffies + 60 * HZ;
  367. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  368. index = linear_page_index(vma, addr);
  369. printk(KERN_ALERT
  370. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  371. current->comm,
  372. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  373. if (page) {
  374. printk(KERN_ALERT
  375. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  376. page, (void *)page->flags, page_count(page),
  377. page_mapcount(page), page->mapping, page->index);
  378. }
  379. printk(KERN_ALERT
  380. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  381. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  382. /*
  383. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  384. */
  385. if (vma->vm_ops)
  386. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  387. (unsigned long)vma->vm_ops->fault);
  388. if (vma->vm_file && vma->vm_file->f_op)
  389. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  390. (unsigned long)vma->vm_file->f_op->mmap);
  391. dump_stack();
  392. add_taint(TAINT_BAD_PAGE);
  393. }
  394. static inline int is_cow_mapping(unsigned int flags)
  395. {
  396. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  397. }
  398. /*
  399. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  400. *
  401. * "Special" mappings do not wish to be associated with a "struct page" (either
  402. * it doesn't exist, or it exists but they don't want to touch it). In this
  403. * case, NULL is returned here. "Normal" mappings do have a struct page.
  404. *
  405. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  406. * pte bit, in which case this function is trivial. Secondly, an architecture
  407. * may not have a spare pte bit, which requires a more complicated scheme,
  408. * described below.
  409. *
  410. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  411. * special mapping (even if there are underlying and valid "struct pages").
  412. * COWed pages of a VM_PFNMAP are always normal.
  413. *
  414. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  415. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  416. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  417. * mapping will always honor the rule
  418. *
  419. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  420. *
  421. * And for normal mappings this is false.
  422. *
  423. * This restricts such mappings to be a linear translation from virtual address
  424. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  425. * as the vma is not a COW mapping; in that case, we know that all ptes are
  426. * special (because none can have been COWed).
  427. *
  428. *
  429. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  430. *
  431. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  432. * page" backing, however the difference is that _all_ pages with a struct
  433. * page (that is, those where pfn_valid is true) are refcounted and considered
  434. * normal pages by the VM. The disadvantage is that pages are refcounted
  435. * (which can be slower and simply not an option for some PFNMAP users). The
  436. * advantage is that we don't have to follow the strict linearity rule of
  437. * PFNMAP mappings in order to support COWable mappings.
  438. *
  439. */
  440. #ifdef __HAVE_ARCH_PTE_SPECIAL
  441. # define HAVE_PTE_SPECIAL 1
  442. #else
  443. # define HAVE_PTE_SPECIAL 0
  444. #endif
  445. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  446. pte_t pte)
  447. {
  448. unsigned long pfn = pte_pfn(pte);
  449. if (HAVE_PTE_SPECIAL) {
  450. if (likely(!pte_special(pte)))
  451. goto check_pfn;
  452. if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
  453. print_bad_pte(vma, addr, pte, NULL);
  454. return NULL;
  455. }
  456. /* !HAVE_PTE_SPECIAL case follows: */
  457. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  458. if (vma->vm_flags & VM_MIXEDMAP) {
  459. if (!pfn_valid(pfn))
  460. return NULL;
  461. goto out;
  462. } else {
  463. unsigned long off;
  464. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  465. if (pfn == vma->vm_pgoff + off)
  466. return NULL;
  467. if (!is_cow_mapping(vma->vm_flags))
  468. return NULL;
  469. }
  470. }
  471. check_pfn:
  472. if (unlikely(pfn > highest_memmap_pfn)) {
  473. print_bad_pte(vma, addr, pte, NULL);
  474. return NULL;
  475. }
  476. /*
  477. * NOTE! We still have PageReserved() pages in the page tables.
  478. * eg. VDSO mappings can cause them to exist.
  479. */
  480. out:
  481. return pfn_to_page(pfn);
  482. }
  483. /*
  484. * copy one vm_area from one task to the other. Assumes the page tables
  485. * already present in the new task to be cleared in the whole range
  486. * covered by this vma.
  487. */
  488. static inline void
  489. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  490. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  491. unsigned long addr, int *rss)
  492. {
  493. unsigned long vm_flags = vma->vm_flags;
  494. pte_t pte = *src_pte;
  495. struct page *page;
  496. /* pte contains position in swap or file, so copy. */
  497. if (unlikely(!pte_present(pte))) {
  498. if (!pte_file(pte)) {
  499. swp_entry_t entry = pte_to_swp_entry(pte);
  500. swap_duplicate(entry);
  501. /* make sure dst_mm is on swapoff's mmlist. */
  502. if (unlikely(list_empty(&dst_mm->mmlist))) {
  503. spin_lock(&mmlist_lock);
  504. if (list_empty(&dst_mm->mmlist))
  505. list_add(&dst_mm->mmlist,
  506. &src_mm->mmlist);
  507. spin_unlock(&mmlist_lock);
  508. }
  509. if (is_write_migration_entry(entry) &&
  510. is_cow_mapping(vm_flags)) {
  511. /*
  512. * COW mappings require pages in both parent
  513. * and child to be set to read.
  514. */
  515. make_migration_entry_read(&entry);
  516. pte = swp_entry_to_pte(entry);
  517. set_pte_at(src_mm, addr, src_pte, pte);
  518. }
  519. }
  520. goto out_set_pte;
  521. }
  522. /*
  523. * If it's a COW mapping, write protect it both
  524. * in the parent and the child
  525. */
  526. if (is_cow_mapping(vm_flags)) {
  527. ptep_set_wrprotect(src_mm, addr, src_pte);
  528. pte = pte_wrprotect(pte);
  529. }
  530. /*
  531. * If it's a shared mapping, mark it clean in
  532. * the child
  533. */
  534. if (vm_flags & VM_SHARED)
  535. pte = pte_mkclean(pte);
  536. pte = pte_mkold(pte);
  537. page = vm_normal_page(vma, addr, pte);
  538. if (page) {
  539. get_page(page);
  540. page_dup_rmap(page, vma, addr);
  541. rss[!!PageAnon(page)]++;
  542. }
  543. out_set_pte:
  544. set_pte_at(dst_mm, addr, dst_pte, pte);
  545. }
  546. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  547. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  548. unsigned long addr, unsigned long end)
  549. {
  550. pte_t *src_pte, *dst_pte;
  551. spinlock_t *src_ptl, *dst_ptl;
  552. int progress = 0;
  553. int rss[2];
  554. again:
  555. rss[1] = rss[0] = 0;
  556. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  557. if (!dst_pte)
  558. return -ENOMEM;
  559. src_pte = pte_offset_map_nested(src_pmd, addr);
  560. src_ptl = pte_lockptr(src_mm, src_pmd);
  561. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  562. arch_enter_lazy_mmu_mode();
  563. do {
  564. /*
  565. * We are holding two locks at this point - either of them
  566. * could generate latencies in another task on another CPU.
  567. */
  568. if (progress >= 32) {
  569. progress = 0;
  570. if (need_resched() ||
  571. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  572. break;
  573. }
  574. if (pte_none(*src_pte)) {
  575. progress++;
  576. continue;
  577. }
  578. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  579. progress += 8;
  580. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  581. arch_leave_lazy_mmu_mode();
  582. spin_unlock(src_ptl);
  583. pte_unmap_nested(src_pte - 1);
  584. add_mm_rss(dst_mm, rss[0], rss[1]);
  585. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  586. cond_resched();
  587. if (addr != end)
  588. goto again;
  589. return 0;
  590. }
  591. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  592. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  593. unsigned long addr, unsigned long end)
  594. {
  595. pmd_t *src_pmd, *dst_pmd;
  596. unsigned long next;
  597. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  598. if (!dst_pmd)
  599. return -ENOMEM;
  600. src_pmd = pmd_offset(src_pud, addr);
  601. do {
  602. next = pmd_addr_end(addr, end);
  603. if (pmd_none_or_clear_bad(src_pmd))
  604. continue;
  605. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  606. vma, addr, next))
  607. return -ENOMEM;
  608. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  609. return 0;
  610. }
  611. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  612. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  613. unsigned long addr, unsigned long end)
  614. {
  615. pud_t *src_pud, *dst_pud;
  616. unsigned long next;
  617. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  618. if (!dst_pud)
  619. return -ENOMEM;
  620. src_pud = pud_offset(src_pgd, addr);
  621. do {
  622. next = pud_addr_end(addr, end);
  623. if (pud_none_or_clear_bad(src_pud))
  624. continue;
  625. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  626. vma, addr, next))
  627. return -ENOMEM;
  628. } while (dst_pud++, src_pud++, addr = next, addr != end);
  629. return 0;
  630. }
  631. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  632. struct vm_area_struct *vma)
  633. {
  634. pgd_t *src_pgd, *dst_pgd;
  635. unsigned long next;
  636. unsigned long addr = vma->vm_start;
  637. unsigned long end = vma->vm_end;
  638. int ret;
  639. /*
  640. * Don't copy ptes where a page fault will fill them correctly.
  641. * Fork becomes much lighter when there are big shared or private
  642. * readonly mappings. The tradeoff is that copy_page_range is more
  643. * efficient than faulting.
  644. */
  645. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  646. if (!vma->anon_vma)
  647. return 0;
  648. }
  649. if (is_vm_hugetlb_page(vma))
  650. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  651. if (unlikely(is_pfn_mapping(vma))) {
  652. /*
  653. * We do not free on error cases below as remove_vma
  654. * gets called on error from higher level routine
  655. */
  656. ret = track_pfn_vma_copy(vma);
  657. if (ret)
  658. return ret;
  659. }
  660. /*
  661. * We need to invalidate the secondary MMU mappings only when
  662. * there could be a permission downgrade on the ptes of the
  663. * parent mm. And a permission downgrade will only happen if
  664. * is_cow_mapping() returns true.
  665. */
  666. if (is_cow_mapping(vma->vm_flags))
  667. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  668. ret = 0;
  669. dst_pgd = pgd_offset(dst_mm, addr);
  670. src_pgd = pgd_offset(src_mm, addr);
  671. do {
  672. next = pgd_addr_end(addr, end);
  673. if (pgd_none_or_clear_bad(src_pgd))
  674. continue;
  675. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  676. vma, addr, next))) {
  677. ret = -ENOMEM;
  678. break;
  679. }
  680. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  681. if (is_cow_mapping(vma->vm_flags))
  682. mmu_notifier_invalidate_range_end(src_mm,
  683. vma->vm_start, end);
  684. return ret;
  685. }
  686. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  687. struct vm_area_struct *vma, pmd_t *pmd,
  688. unsigned long addr, unsigned long end,
  689. long *zap_work, struct zap_details *details)
  690. {
  691. struct mm_struct *mm = tlb->mm;
  692. pte_t *pte;
  693. spinlock_t *ptl;
  694. int file_rss = 0;
  695. int anon_rss = 0;
  696. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  697. arch_enter_lazy_mmu_mode();
  698. do {
  699. pte_t ptent = *pte;
  700. if (pte_none(ptent)) {
  701. (*zap_work)--;
  702. continue;
  703. }
  704. (*zap_work) -= PAGE_SIZE;
  705. if (pte_present(ptent)) {
  706. struct page *page;
  707. page = vm_normal_page(vma, addr, ptent);
  708. if (unlikely(details) && page) {
  709. /*
  710. * unmap_shared_mapping_pages() wants to
  711. * invalidate cache without truncating:
  712. * unmap shared but keep private pages.
  713. */
  714. if (details->check_mapping &&
  715. details->check_mapping != page->mapping)
  716. continue;
  717. /*
  718. * Each page->index must be checked when
  719. * invalidating or truncating nonlinear.
  720. */
  721. if (details->nonlinear_vma &&
  722. (page->index < details->first_index ||
  723. page->index > details->last_index))
  724. continue;
  725. }
  726. ptent = ptep_get_and_clear_full(mm, addr, pte,
  727. tlb->fullmm);
  728. tlb_remove_tlb_entry(tlb, pte, addr);
  729. if (unlikely(!page))
  730. continue;
  731. if (unlikely(details) && details->nonlinear_vma
  732. && linear_page_index(details->nonlinear_vma,
  733. addr) != page->index)
  734. set_pte_at(mm, addr, pte,
  735. pgoff_to_pte(page->index));
  736. if (PageAnon(page))
  737. anon_rss--;
  738. else {
  739. if (pte_dirty(ptent))
  740. set_page_dirty(page);
  741. if (pte_young(ptent) &&
  742. likely(!VM_SequentialReadHint(vma)))
  743. mark_page_accessed(page);
  744. file_rss--;
  745. }
  746. page_remove_rmap(page);
  747. if (unlikely(page_mapcount(page) < 0))
  748. print_bad_pte(vma, addr, ptent, page);
  749. tlb_remove_page(tlb, page);
  750. continue;
  751. }
  752. /*
  753. * If details->check_mapping, we leave swap entries;
  754. * if details->nonlinear_vma, we leave file entries.
  755. */
  756. if (unlikely(details))
  757. continue;
  758. if (pte_file(ptent)) {
  759. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  760. print_bad_pte(vma, addr, ptent, NULL);
  761. } else if
  762. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  763. print_bad_pte(vma, addr, ptent, NULL);
  764. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  765. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  766. add_mm_rss(mm, file_rss, anon_rss);
  767. arch_leave_lazy_mmu_mode();
  768. pte_unmap_unlock(pte - 1, ptl);
  769. return addr;
  770. }
  771. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  772. struct vm_area_struct *vma, pud_t *pud,
  773. unsigned long addr, unsigned long end,
  774. long *zap_work, struct zap_details *details)
  775. {
  776. pmd_t *pmd;
  777. unsigned long next;
  778. pmd = pmd_offset(pud, addr);
  779. do {
  780. next = pmd_addr_end(addr, end);
  781. if (pmd_none_or_clear_bad(pmd)) {
  782. (*zap_work)--;
  783. continue;
  784. }
  785. next = zap_pte_range(tlb, vma, pmd, addr, next,
  786. zap_work, details);
  787. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  788. return addr;
  789. }
  790. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  791. struct vm_area_struct *vma, pgd_t *pgd,
  792. unsigned long addr, unsigned long end,
  793. long *zap_work, struct zap_details *details)
  794. {
  795. pud_t *pud;
  796. unsigned long next;
  797. pud = pud_offset(pgd, addr);
  798. do {
  799. next = pud_addr_end(addr, end);
  800. if (pud_none_or_clear_bad(pud)) {
  801. (*zap_work)--;
  802. continue;
  803. }
  804. next = zap_pmd_range(tlb, vma, pud, addr, next,
  805. zap_work, details);
  806. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  807. return addr;
  808. }
  809. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  810. struct vm_area_struct *vma,
  811. unsigned long addr, unsigned long end,
  812. long *zap_work, struct zap_details *details)
  813. {
  814. pgd_t *pgd;
  815. unsigned long next;
  816. if (details && !details->check_mapping && !details->nonlinear_vma)
  817. details = NULL;
  818. BUG_ON(addr >= end);
  819. tlb_start_vma(tlb, vma);
  820. pgd = pgd_offset(vma->vm_mm, addr);
  821. do {
  822. next = pgd_addr_end(addr, end);
  823. if (pgd_none_or_clear_bad(pgd)) {
  824. (*zap_work)--;
  825. continue;
  826. }
  827. next = zap_pud_range(tlb, vma, pgd, addr, next,
  828. zap_work, details);
  829. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  830. tlb_end_vma(tlb, vma);
  831. return addr;
  832. }
  833. #ifdef CONFIG_PREEMPT
  834. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  835. #else
  836. /* No preempt: go for improved straight-line efficiency */
  837. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  838. #endif
  839. /**
  840. * unmap_vmas - unmap a range of memory covered by a list of vma's
  841. * @tlbp: address of the caller's struct mmu_gather
  842. * @vma: the starting vma
  843. * @start_addr: virtual address at which to start unmapping
  844. * @end_addr: virtual address at which to end unmapping
  845. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  846. * @details: details of nonlinear truncation or shared cache invalidation
  847. *
  848. * Returns the end address of the unmapping (restart addr if interrupted).
  849. *
  850. * Unmap all pages in the vma list.
  851. *
  852. * We aim to not hold locks for too long (for scheduling latency reasons).
  853. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  854. * return the ending mmu_gather to the caller.
  855. *
  856. * Only addresses between `start' and `end' will be unmapped.
  857. *
  858. * The VMA list must be sorted in ascending virtual address order.
  859. *
  860. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  861. * range after unmap_vmas() returns. So the only responsibility here is to
  862. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  863. * drops the lock and schedules.
  864. */
  865. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  866. struct vm_area_struct *vma, unsigned long start_addr,
  867. unsigned long end_addr, unsigned long *nr_accounted,
  868. struct zap_details *details)
  869. {
  870. long zap_work = ZAP_BLOCK_SIZE;
  871. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  872. int tlb_start_valid = 0;
  873. unsigned long start = start_addr;
  874. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  875. int fullmm = (*tlbp)->fullmm;
  876. struct mm_struct *mm = vma->vm_mm;
  877. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  878. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  879. unsigned long end;
  880. start = max(vma->vm_start, start_addr);
  881. if (start >= vma->vm_end)
  882. continue;
  883. end = min(vma->vm_end, end_addr);
  884. if (end <= vma->vm_start)
  885. continue;
  886. if (vma->vm_flags & VM_ACCOUNT)
  887. *nr_accounted += (end - start) >> PAGE_SHIFT;
  888. if (unlikely(is_pfn_mapping(vma)))
  889. untrack_pfn_vma(vma, 0, 0);
  890. while (start != end) {
  891. if (!tlb_start_valid) {
  892. tlb_start = start;
  893. tlb_start_valid = 1;
  894. }
  895. if (unlikely(is_vm_hugetlb_page(vma))) {
  896. /*
  897. * It is undesirable to test vma->vm_file as it
  898. * should be non-null for valid hugetlb area.
  899. * However, vm_file will be NULL in the error
  900. * cleanup path of do_mmap_pgoff. When
  901. * hugetlbfs ->mmap method fails,
  902. * do_mmap_pgoff() nullifies vma->vm_file
  903. * before calling this function to clean up.
  904. * Since no pte has actually been setup, it is
  905. * safe to do nothing in this case.
  906. */
  907. if (vma->vm_file) {
  908. unmap_hugepage_range(vma, start, end, NULL);
  909. zap_work -= (end - start) /
  910. pages_per_huge_page(hstate_vma(vma));
  911. }
  912. start = end;
  913. } else
  914. start = unmap_page_range(*tlbp, vma,
  915. start, end, &zap_work, details);
  916. if (zap_work > 0) {
  917. BUG_ON(start != end);
  918. break;
  919. }
  920. tlb_finish_mmu(*tlbp, tlb_start, start);
  921. if (need_resched() ||
  922. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  923. if (i_mmap_lock) {
  924. *tlbp = NULL;
  925. goto out;
  926. }
  927. cond_resched();
  928. }
  929. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  930. tlb_start_valid = 0;
  931. zap_work = ZAP_BLOCK_SIZE;
  932. }
  933. }
  934. out:
  935. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  936. return start; /* which is now the end (or restart) address */
  937. }
  938. /**
  939. * zap_page_range - remove user pages in a given range
  940. * @vma: vm_area_struct holding the applicable pages
  941. * @address: starting address of pages to zap
  942. * @size: number of bytes to zap
  943. * @details: details of nonlinear truncation or shared cache invalidation
  944. */
  945. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  946. unsigned long size, struct zap_details *details)
  947. {
  948. struct mm_struct *mm = vma->vm_mm;
  949. struct mmu_gather *tlb;
  950. unsigned long end = address + size;
  951. unsigned long nr_accounted = 0;
  952. lru_add_drain();
  953. tlb = tlb_gather_mmu(mm, 0);
  954. update_hiwater_rss(mm);
  955. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  956. if (tlb)
  957. tlb_finish_mmu(tlb, address, end);
  958. return end;
  959. }
  960. /**
  961. * zap_vma_ptes - remove ptes mapping the vma
  962. * @vma: vm_area_struct holding ptes to be zapped
  963. * @address: starting address of pages to zap
  964. * @size: number of bytes to zap
  965. *
  966. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  967. *
  968. * The entire address range must be fully contained within the vma.
  969. *
  970. * Returns 0 if successful.
  971. */
  972. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  973. unsigned long size)
  974. {
  975. if (address < vma->vm_start || address + size > vma->vm_end ||
  976. !(vma->vm_flags & VM_PFNMAP))
  977. return -1;
  978. zap_page_range(vma, address, size, NULL);
  979. return 0;
  980. }
  981. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  982. /*
  983. * Do a quick page-table lookup for a single page.
  984. */
  985. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  986. unsigned int flags)
  987. {
  988. pgd_t *pgd;
  989. pud_t *pud;
  990. pmd_t *pmd;
  991. pte_t *ptep, pte;
  992. spinlock_t *ptl;
  993. struct page *page;
  994. struct mm_struct *mm = vma->vm_mm;
  995. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  996. if (!IS_ERR(page)) {
  997. BUG_ON(flags & FOLL_GET);
  998. goto out;
  999. }
  1000. page = NULL;
  1001. pgd = pgd_offset(mm, address);
  1002. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1003. goto no_page_table;
  1004. pud = pud_offset(pgd, address);
  1005. if (pud_none(*pud))
  1006. goto no_page_table;
  1007. if (pud_huge(*pud)) {
  1008. BUG_ON(flags & FOLL_GET);
  1009. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1010. goto out;
  1011. }
  1012. if (unlikely(pud_bad(*pud)))
  1013. goto no_page_table;
  1014. pmd = pmd_offset(pud, address);
  1015. if (pmd_none(*pmd))
  1016. goto no_page_table;
  1017. if (pmd_huge(*pmd)) {
  1018. BUG_ON(flags & FOLL_GET);
  1019. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1020. goto out;
  1021. }
  1022. if (unlikely(pmd_bad(*pmd)))
  1023. goto no_page_table;
  1024. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1025. pte = *ptep;
  1026. if (!pte_present(pte))
  1027. goto no_page;
  1028. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1029. goto unlock;
  1030. page = vm_normal_page(vma, address, pte);
  1031. if (unlikely(!page))
  1032. goto bad_page;
  1033. if (flags & FOLL_GET)
  1034. get_page(page);
  1035. if (flags & FOLL_TOUCH) {
  1036. if ((flags & FOLL_WRITE) &&
  1037. !pte_dirty(pte) && !PageDirty(page))
  1038. set_page_dirty(page);
  1039. /*
  1040. * pte_mkyoung() would be more correct here, but atomic care
  1041. * is needed to avoid losing the dirty bit: it is easier to use
  1042. * mark_page_accessed().
  1043. */
  1044. mark_page_accessed(page);
  1045. }
  1046. unlock:
  1047. pte_unmap_unlock(ptep, ptl);
  1048. out:
  1049. return page;
  1050. bad_page:
  1051. pte_unmap_unlock(ptep, ptl);
  1052. return ERR_PTR(-EFAULT);
  1053. no_page:
  1054. pte_unmap_unlock(ptep, ptl);
  1055. if (!pte_none(pte))
  1056. return page;
  1057. /* Fall through to ZERO_PAGE handling */
  1058. no_page_table:
  1059. /*
  1060. * When core dumping an enormous anonymous area that nobody
  1061. * has touched so far, we don't want to allocate page tables.
  1062. */
  1063. if (flags & FOLL_ANON) {
  1064. page = ZERO_PAGE(0);
  1065. if (flags & FOLL_GET)
  1066. get_page(page);
  1067. BUG_ON(flags & FOLL_WRITE);
  1068. }
  1069. return page;
  1070. }
  1071. /* Can we do the FOLL_ANON optimization? */
  1072. static inline int use_zero_page(struct vm_area_struct *vma)
  1073. {
  1074. /*
  1075. * We don't want to optimize FOLL_ANON for make_pages_present()
  1076. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1077. * we want to get the page from the page tables to make sure
  1078. * that we serialize and update with any other user of that
  1079. * mapping.
  1080. */
  1081. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1082. return 0;
  1083. /*
  1084. * And if we have a fault routine, it's not an anonymous region.
  1085. */
  1086. return !vma->vm_ops || !vma->vm_ops->fault;
  1087. }
  1088. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1089. unsigned long start, int nr_pages, int flags,
  1090. struct page **pages, struct vm_area_struct **vmas)
  1091. {
  1092. int i;
  1093. unsigned int vm_flags = 0;
  1094. int write = !!(flags & GUP_FLAGS_WRITE);
  1095. int force = !!(flags & GUP_FLAGS_FORCE);
  1096. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1097. int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
  1098. if (nr_pages <= 0)
  1099. return 0;
  1100. /*
  1101. * Require read or write permissions.
  1102. * If 'force' is set, we only require the "MAY" flags.
  1103. */
  1104. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1105. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1106. i = 0;
  1107. do {
  1108. struct vm_area_struct *vma;
  1109. unsigned int foll_flags;
  1110. vma = find_extend_vma(mm, start);
  1111. if (!vma && in_gate_area(tsk, start)) {
  1112. unsigned long pg = start & PAGE_MASK;
  1113. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1114. pgd_t *pgd;
  1115. pud_t *pud;
  1116. pmd_t *pmd;
  1117. pte_t *pte;
  1118. /* user gate pages are read-only */
  1119. if (!ignore && write)
  1120. return i ? : -EFAULT;
  1121. if (pg > TASK_SIZE)
  1122. pgd = pgd_offset_k(pg);
  1123. else
  1124. pgd = pgd_offset_gate(mm, pg);
  1125. BUG_ON(pgd_none(*pgd));
  1126. pud = pud_offset(pgd, pg);
  1127. BUG_ON(pud_none(*pud));
  1128. pmd = pmd_offset(pud, pg);
  1129. if (pmd_none(*pmd))
  1130. return i ? : -EFAULT;
  1131. pte = pte_offset_map(pmd, pg);
  1132. if (pte_none(*pte)) {
  1133. pte_unmap(pte);
  1134. return i ? : -EFAULT;
  1135. }
  1136. if (pages) {
  1137. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1138. pages[i] = page;
  1139. if (page)
  1140. get_page(page);
  1141. }
  1142. pte_unmap(pte);
  1143. if (vmas)
  1144. vmas[i] = gate_vma;
  1145. i++;
  1146. start += PAGE_SIZE;
  1147. nr_pages--;
  1148. continue;
  1149. }
  1150. if (!vma ||
  1151. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1152. (!ignore && !(vm_flags & vma->vm_flags)))
  1153. return i ? : -EFAULT;
  1154. if (is_vm_hugetlb_page(vma)) {
  1155. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1156. &start, &nr_pages, i, write);
  1157. continue;
  1158. }
  1159. foll_flags = FOLL_TOUCH;
  1160. if (pages)
  1161. foll_flags |= FOLL_GET;
  1162. if (!write && use_zero_page(vma))
  1163. foll_flags |= FOLL_ANON;
  1164. do {
  1165. struct page *page;
  1166. /*
  1167. * If we have a pending SIGKILL, don't keep faulting
  1168. * pages and potentially allocating memory, unless
  1169. * current is handling munlock--e.g., on exit. In
  1170. * that case, we are not allocating memory. Rather,
  1171. * we're only unlocking already resident/mapped pages.
  1172. */
  1173. if (unlikely(!ignore_sigkill &&
  1174. fatal_signal_pending(current)))
  1175. return i ? i : -ERESTARTSYS;
  1176. if (write)
  1177. foll_flags |= FOLL_WRITE;
  1178. cond_resched();
  1179. while (!(page = follow_page(vma, start, foll_flags))) {
  1180. int ret;
  1181. ret = handle_mm_fault(mm, vma, start,
  1182. (foll_flags & FOLL_WRITE) ?
  1183. FAULT_FLAG_WRITE : 0);
  1184. if (ret & VM_FAULT_ERROR) {
  1185. if (ret & VM_FAULT_OOM)
  1186. return i ? i : -ENOMEM;
  1187. else if (ret & VM_FAULT_SIGBUS)
  1188. return i ? i : -EFAULT;
  1189. BUG();
  1190. }
  1191. if (ret & VM_FAULT_MAJOR)
  1192. tsk->maj_flt++;
  1193. else
  1194. tsk->min_flt++;
  1195. /*
  1196. * The VM_FAULT_WRITE bit tells us that
  1197. * do_wp_page has broken COW when necessary,
  1198. * even if maybe_mkwrite decided not to set
  1199. * pte_write. We can thus safely do subsequent
  1200. * page lookups as if they were reads. But only
  1201. * do so when looping for pte_write is futile:
  1202. * in some cases userspace may also be wanting
  1203. * to write to the gotten user page, which a
  1204. * read fault here might prevent (a readonly
  1205. * page might get reCOWed by userspace write).
  1206. */
  1207. if ((ret & VM_FAULT_WRITE) &&
  1208. !(vma->vm_flags & VM_WRITE))
  1209. foll_flags &= ~FOLL_WRITE;
  1210. cond_resched();
  1211. }
  1212. if (IS_ERR(page))
  1213. return i ? i : PTR_ERR(page);
  1214. if (pages) {
  1215. pages[i] = page;
  1216. flush_anon_page(vma, page, start);
  1217. flush_dcache_page(page);
  1218. }
  1219. if (vmas)
  1220. vmas[i] = vma;
  1221. i++;
  1222. start += PAGE_SIZE;
  1223. nr_pages--;
  1224. } while (nr_pages && start < vma->vm_end);
  1225. } while (nr_pages);
  1226. return i;
  1227. }
  1228. /**
  1229. * get_user_pages() - pin user pages in memory
  1230. * @tsk: task_struct of target task
  1231. * @mm: mm_struct of target mm
  1232. * @start: starting user address
  1233. * @nr_pages: number of pages from start to pin
  1234. * @write: whether pages will be written to by the caller
  1235. * @force: whether to force write access even if user mapping is
  1236. * readonly. This will result in the page being COWed even
  1237. * in MAP_SHARED mappings. You do not want this.
  1238. * @pages: array that receives pointers to the pages pinned.
  1239. * Should be at least nr_pages long. Or NULL, if caller
  1240. * only intends to ensure the pages are faulted in.
  1241. * @vmas: array of pointers to vmas corresponding to each page.
  1242. * Or NULL if the caller does not require them.
  1243. *
  1244. * Returns number of pages pinned. This may be fewer than the number
  1245. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1246. * were pinned, returns -errno. Each page returned must be released
  1247. * with a put_page() call when it is finished with. vmas will only
  1248. * remain valid while mmap_sem is held.
  1249. *
  1250. * Must be called with mmap_sem held for read or write.
  1251. *
  1252. * get_user_pages walks a process's page tables and takes a reference to
  1253. * each struct page that each user address corresponds to at a given
  1254. * instant. That is, it takes the page that would be accessed if a user
  1255. * thread accesses the given user virtual address at that instant.
  1256. *
  1257. * This does not guarantee that the page exists in the user mappings when
  1258. * get_user_pages returns, and there may even be a completely different
  1259. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1260. * and subsequently re faulted). However it does guarantee that the page
  1261. * won't be freed completely. And mostly callers simply care that the page
  1262. * contains data that was valid *at some point in time*. Typically, an IO
  1263. * or similar operation cannot guarantee anything stronger anyway because
  1264. * locks can't be held over the syscall boundary.
  1265. *
  1266. * If write=0, the page must not be written to. If the page is written to,
  1267. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1268. * after the page is finished with, and before put_page is called.
  1269. *
  1270. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1271. * handle on the memory by some means other than accesses via the user virtual
  1272. * addresses. The pages may be submitted for DMA to devices or accessed via
  1273. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1274. * use the correct cache flushing APIs.
  1275. *
  1276. * See also get_user_pages_fast, for performance critical applications.
  1277. */
  1278. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1279. unsigned long start, int nr_pages, int write, int force,
  1280. struct page **pages, struct vm_area_struct **vmas)
  1281. {
  1282. int flags = 0;
  1283. if (write)
  1284. flags |= GUP_FLAGS_WRITE;
  1285. if (force)
  1286. flags |= GUP_FLAGS_FORCE;
  1287. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1288. }
  1289. EXPORT_SYMBOL(get_user_pages);
  1290. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1291. spinlock_t **ptl)
  1292. {
  1293. pgd_t * pgd = pgd_offset(mm, addr);
  1294. pud_t * pud = pud_alloc(mm, pgd, addr);
  1295. if (pud) {
  1296. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1297. if (pmd)
  1298. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1299. }
  1300. return NULL;
  1301. }
  1302. /*
  1303. * This is the old fallback for page remapping.
  1304. *
  1305. * For historical reasons, it only allows reserved pages. Only
  1306. * old drivers should use this, and they needed to mark their
  1307. * pages reserved for the old functions anyway.
  1308. */
  1309. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1310. struct page *page, pgprot_t prot)
  1311. {
  1312. struct mm_struct *mm = vma->vm_mm;
  1313. int retval;
  1314. pte_t *pte;
  1315. spinlock_t *ptl;
  1316. retval = -EINVAL;
  1317. if (PageAnon(page))
  1318. goto out;
  1319. retval = -ENOMEM;
  1320. flush_dcache_page(page);
  1321. pte = get_locked_pte(mm, addr, &ptl);
  1322. if (!pte)
  1323. goto out;
  1324. retval = -EBUSY;
  1325. if (!pte_none(*pte))
  1326. goto out_unlock;
  1327. /* Ok, finally just insert the thing.. */
  1328. get_page(page);
  1329. inc_mm_counter(mm, file_rss);
  1330. page_add_file_rmap(page);
  1331. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1332. retval = 0;
  1333. pte_unmap_unlock(pte, ptl);
  1334. return retval;
  1335. out_unlock:
  1336. pte_unmap_unlock(pte, ptl);
  1337. out:
  1338. return retval;
  1339. }
  1340. /**
  1341. * vm_insert_page - insert single page into user vma
  1342. * @vma: user vma to map to
  1343. * @addr: target user address of this page
  1344. * @page: source kernel page
  1345. *
  1346. * This allows drivers to insert individual pages they've allocated
  1347. * into a user vma.
  1348. *
  1349. * The page has to be a nice clean _individual_ kernel allocation.
  1350. * If you allocate a compound page, you need to have marked it as
  1351. * such (__GFP_COMP), or manually just split the page up yourself
  1352. * (see split_page()).
  1353. *
  1354. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1355. * took an arbitrary page protection parameter. This doesn't allow
  1356. * that. Your vma protection will have to be set up correctly, which
  1357. * means that if you want a shared writable mapping, you'd better
  1358. * ask for a shared writable mapping!
  1359. *
  1360. * The page does not need to be reserved.
  1361. */
  1362. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1363. struct page *page)
  1364. {
  1365. if (addr < vma->vm_start || addr >= vma->vm_end)
  1366. return -EFAULT;
  1367. if (!page_count(page))
  1368. return -EINVAL;
  1369. vma->vm_flags |= VM_INSERTPAGE;
  1370. return insert_page(vma, addr, page, vma->vm_page_prot);
  1371. }
  1372. EXPORT_SYMBOL(vm_insert_page);
  1373. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1374. unsigned long pfn, pgprot_t prot)
  1375. {
  1376. struct mm_struct *mm = vma->vm_mm;
  1377. int retval;
  1378. pte_t *pte, entry;
  1379. spinlock_t *ptl;
  1380. retval = -ENOMEM;
  1381. pte = get_locked_pte(mm, addr, &ptl);
  1382. if (!pte)
  1383. goto out;
  1384. retval = -EBUSY;
  1385. if (!pte_none(*pte))
  1386. goto out_unlock;
  1387. /* Ok, finally just insert the thing.. */
  1388. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1389. set_pte_at(mm, addr, pte, entry);
  1390. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1391. retval = 0;
  1392. out_unlock:
  1393. pte_unmap_unlock(pte, ptl);
  1394. out:
  1395. return retval;
  1396. }
  1397. /**
  1398. * vm_insert_pfn - insert single pfn into user vma
  1399. * @vma: user vma to map to
  1400. * @addr: target user address of this page
  1401. * @pfn: source kernel pfn
  1402. *
  1403. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1404. * they've allocated into a user vma. Same comments apply.
  1405. *
  1406. * This function should only be called from a vm_ops->fault handler, and
  1407. * in that case the handler should return NULL.
  1408. *
  1409. * vma cannot be a COW mapping.
  1410. *
  1411. * As this is called only for pages that do not currently exist, we
  1412. * do not need to flush old virtual caches or the TLB.
  1413. */
  1414. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1415. unsigned long pfn)
  1416. {
  1417. int ret;
  1418. pgprot_t pgprot = vma->vm_page_prot;
  1419. /*
  1420. * Technically, architectures with pte_special can avoid all these
  1421. * restrictions (same for remap_pfn_range). However we would like
  1422. * consistency in testing and feature parity among all, so we should
  1423. * try to keep these invariants in place for everybody.
  1424. */
  1425. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1426. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1427. (VM_PFNMAP|VM_MIXEDMAP));
  1428. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1429. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1430. if (addr < vma->vm_start || addr >= vma->vm_end)
  1431. return -EFAULT;
  1432. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1433. return -EINVAL;
  1434. ret = insert_pfn(vma, addr, pfn, pgprot);
  1435. if (ret)
  1436. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1437. return ret;
  1438. }
  1439. EXPORT_SYMBOL(vm_insert_pfn);
  1440. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1441. unsigned long pfn)
  1442. {
  1443. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1444. if (addr < vma->vm_start || addr >= vma->vm_end)
  1445. return -EFAULT;
  1446. /*
  1447. * If we don't have pte special, then we have to use the pfn_valid()
  1448. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1449. * refcount the page if pfn_valid is true (hence insert_page rather
  1450. * than insert_pfn).
  1451. */
  1452. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1453. struct page *page;
  1454. page = pfn_to_page(pfn);
  1455. return insert_page(vma, addr, page, vma->vm_page_prot);
  1456. }
  1457. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1458. }
  1459. EXPORT_SYMBOL(vm_insert_mixed);
  1460. /*
  1461. * maps a range of physical memory into the requested pages. the old
  1462. * mappings are removed. any references to nonexistent pages results
  1463. * in null mappings (currently treated as "copy-on-access")
  1464. */
  1465. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1466. unsigned long addr, unsigned long end,
  1467. unsigned long pfn, pgprot_t prot)
  1468. {
  1469. pte_t *pte;
  1470. spinlock_t *ptl;
  1471. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1472. if (!pte)
  1473. return -ENOMEM;
  1474. arch_enter_lazy_mmu_mode();
  1475. do {
  1476. BUG_ON(!pte_none(*pte));
  1477. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1478. pfn++;
  1479. } while (pte++, addr += PAGE_SIZE, addr != end);
  1480. arch_leave_lazy_mmu_mode();
  1481. pte_unmap_unlock(pte - 1, ptl);
  1482. return 0;
  1483. }
  1484. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1485. unsigned long addr, unsigned long end,
  1486. unsigned long pfn, pgprot_t prot)
  1487. {
  1488. pmd_t *pmd;
  1489. unsigned long next;
  1490. pfn -= addr >> PAGE_SHIFT;
  1491. pmd = pmd_alloc(mm, pud, addr);
  1492. if (!pmd)
  1493. return -ENOMEM;
  1494. do {
  1495. next = pmd_addr_end(addr, end);
  1496. if (remap_pte_range(mm, pmd, addr, next,
  1497. pfn + (addr >> PAGE_SHIFT), prot))
  1498. return -ENOMEM;
  1499. } while (pmd++, addr = next, addr != end);
  1500. return 0;
  1501. }
  1502. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1503. unsigned long addr, unsigned long end,
  1504. unsigned long pfn, pgprot_t prot)
  1505. {
  1506. pud_t *pud;
  1507. unsigned long next;
  1508. pfn -= addr >> PAGE_SHIFT;
  1509. pud = pud_alloc(mm, pgd, addr);
  1510. if (!pud)
  1511. return -ENOMEM;
  1512. do {
  1513. next = pud_addr_end(addr, end);
  1514. if (remap_pmd_range(mm, pud, addr, next,
  1515. pfn + (addr >> PAGE_SHIFT), prot))
  1516. return -ENOMEM;
  1517. } while (pud++, addr = next, addr != end);
  1518. return 0;
  1519. }
  1520. /**
  1521. * remap_pfn_range - remap kernel memory to userspace
  1522. * @vma: user vma to map to
  1523. * @addr: target user address to start at
  1524. * @pfn: physical address of kernel memory
  1525. * @size: size of map area
  1526. * @prot: page protection flags for this mapping
  1527. *
  1528. * Note: this is only safe if the mm semaphore is held when called.
  1529. */
  1530. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1531. unsigned long pfn, unsigned long size, pgprot_t prot)
  1532. {
  1533. pgd_t *pgd;
  1534. unsigned long next;
  1535. unsigned long end = addr + PAGE_ALIGN(size);
  1536. struct mm_struct *mm = vma->vm_mm;
  1537. int err;
  1538. /*
  1539. * Physically remapped pages are special. Tell the
  1540. * rest of the world about it:
  1541. * VM_IO tells people not to look at these pages
  1542. * (accesses can have side effects).
  1543. * VM_RESERVED is specified all over the place, because
  1544. * in 2.4 it kept swapout's vma scan off this vma; but
  1545. * in 2.6 the LRU scan won't even find its pages, so this
  1546. * flag means no more than count its pages in reserved_vm,
  1547. * and omit it from core dump, even when VM_IO turned off.
  1548. * VM_PFNMAP tells the core MM that the base pages are just
  1549. * raw PFN mappings, and do not have a "struct page" associated
  1550. * with them.
  1551. *
  1552. * There's a horrible special case to handle copy-on-write
  1553. * behaviour that some programs depend on. We mark the "original"
  1554. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1555. */
  1556. if (addr == vma->vm_start && end == vma->vm_end) {
  1557. vma->vm_pgoff = pfn;
  1558. vma->vm_flags |= VM_PFN_AT_MMAP;
  1559. } else if (is_cow_mapping(vma->vm_flags))
  1560. return -EINVAL;
  1561. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1562. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1563. if (err) {
  1564. /*
  1565. * To indicate that track_pfn related cleanup is not
  1566. * needed from higher level routine calling unmap_vmas
  1567. */
  1568. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1569. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1570. return -EINVAL;
  1571. }
  1572. BUG_ON(addr >= end);
  1573. pfn -= addr >> PAGE_SHIFT;
  1574. pgd = pgd_offset(mm, addr);
  1575. flush_cache_range(vma, addr, end);
  1576. do {
  1577. next = pgd_addr_end(addr, end);
  1578. err = remap_pud_range(mm, pgd, addr, next,
  1579. pfn + (addr >> PAGE_SHIFT), prot);
  1580. if (err)
  1581. break;
  1582. } while (pgd++, addr = next, addr != end);
  1583. if (err)
  1584. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1585. return err;
  1586. }
  1587. EXPORT_SYMBOL(remap_pfn_range);
  1588. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1589. unsigned long addr, unsigned long end,
  1590. pte_fn_t fn, void *data)
  1591. {
  1592. pte_t *pte;
  1593. int err;
  1594. pgtable_t token;
  1595. spinlock_t *uninitialized_var(ptl);
  1596. pte = (mm == &init_mm) ?
  1597. pte_alloc_kernel(pmd, addr) :
  1598. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1599. if (!pte)
  1600. return -ENOMEM;
  1601. BUG_ON(pmd_huge(*pmd));
  1602. arch_enter_lazy_mmu_mode();
  1603. token = pmd_pgtable(*pmd);
  1604. do {
  1605. err = fn(pte, token, addr, data);
  1606. if (err)
  1607. break;
  1608. } while (pte++, addr += PAGE_SIZE, addr != end);
  1609. arch_leave_lazy_mmu_mode();
  1610. if (mm != &init_mm)
  1611. pte_unmap_unlock(pte-1, ptl);
  1612. return err;
  1613. }
  1614. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1615. unsigned long addr, unsigned long end,
  1616. pte_fn_t fn, void *data)
  1617. {
  1618. pmd_t *pmd;
  1619. unsigned long next;
  1620. int err;
  1621. BUG_ON(pud_huge(*pud));
  1622. pmd = pmd_alloc(mm, pud, addr);
  1623. if (!pmd)
  1624. return -ENOMEM;
  1625. do {
  1626. next = pmd_addr_end(addr, end);
  1627. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1628. if (err)
  1629. break;
  1630. } while (pmd++, addr = next, addr != end);
  1631. return err;
  1632. }
  1633. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1634. unsigned long addr, unsigned long end,
  1635. pte_fn_t fn, void *data)
  1636. {
  1637. pud_t *pud;
  1638. unsigned long next;
  1639. int err;
  1640. pud = pud_alloc(mm, pgd, addr);
  1641. if (!pud)
  1642. return -ENOMEM;
  1643. do {
  1644. next = pud_addr_end(addr, end);
  1645. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1646. if (err)
  1647. break;
  1648. } while (pud++, addr = next, addr != end);
  1649. return err;
  1650. }
  1651. /*
  1652. * Scan a region of virtual memory, filling in page tables as necessary
  1653. * and calling a provided function on each leaf page table.
  1654. */
  1655. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1656. unsigned long size, pte_fn_t fn, void *data)
  1657. {
  1658. pgd_t *pgd;
  1659. unsigned long next;
  1660. unsigned long start = addr, end = addr + size;
  1661. int err;
  1662. BUG_ON(addr >= end);
  1663. mmu_notifier_invalidate_range_start(mm, start, end);
  1664. pgd = pgd_offset(mm, addr);
  1665. do {
  1666. next = pgd_addr_end(addr, end);
  1667. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1668. if (err)
  1669. break;
  1670. } while (pgd++, addr = next, addr != end);
  1671. mmu_notifier_invalidate_range_end(mm, start, end);
  1672. return err;
  1673. }
  1674. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1675. /*
  1676. * handle_pte_fault chooses page fault handler according to an entry
  1677. * which was read non-atomically. Before making any commitment, on
  1678. * those architectures or configurations (e.g. i386 with PAE) which
  1679. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1680. * must check under lock before unmapping the pte and proceeding
  1681. * (but do_wp_page is only called after already making such a check;
  1682. * and do_anonymous_page and do_no_page can safely check later on).
  1683. */
  1684. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1685. pte_t *page_table, pte_t orig_pte)
  1686. {
  1687. int same = 1;
  1688. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1689. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1690. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1691. spin_lock(ptl);
  1692. same = pte_same(*page_table, orig_pte);
  1693. spin_unlock(ptl);
  1694. }
  1695. #endif
  1696. pte_unmap(page_table);
  1697. return same;
  1698. }
  1699. /*
  1700. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1701. * servicing faults for write access. In the normal case, do always want
  1702. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1703. * that do not have writing enabled, when used by access_process_vm.
  1704. */
  1705. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1706. {
  1707. if (likely(vma->vm_flags & VM_WRITE))
  1708. pte = pte_mkwrite(pte);
  1709. return pte;
  1710. }
  1711. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1712. {
  1713. /*
  1714. * If the source page was a PFN mapping, we don't have
  1715. * a "struct page" for it. We do a best-effort copy by
  1716. * just copying from the original user address. If that
  1717. * fails, we just zero-fill it. Live with it.
  1718. */
  1719. if (unlikely(!src)) {
  1720. void *kaddr = kmap_atomic(dst, KM_USER0);
  1721. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1722. /*
  1723. * This really shouldn't fail, because the page is there
  1724. * in the page tables. But it might just be unreadable,
  1725. * in which case we just give up and fill the result with
  1726. * zeroes.
  1727. */
  1728. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1729. memset(kaddr, 0, PAGE_SIZE);
  1730. kunmap_atomic(kaddr, KM_USER0);
  1731. flush_dcache_page(dst);
  1732. } else
  1733. copy_user_highpage(dst, src, va, vma);
  1734. }
  1735. /*
  1736. * This routine handles present pages, when users try to write
  1737. * to a shared page. It is done by copying the page to a new address
  1738. * and decrementing the shared-page counter for the old page.
  1739. *
  1740. * Note that this routine assumes that the protection checks have been
  1741. * done by the caller (the low-level page fault routine in most cases).
  1742. * Thus we can safely just mark it writable once we've done any necessary
  1743. * COW.
  1744. *
  1745. * We also mark the page dirty at this point even though the page will
  1746. * change only once the write actually happens. This avoids a few races,
  1747. * and potentially makes it more efficient.
  1748. *
  1749. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1750. * but allow concurrent faults), with pte both mapped and locked.
  1751. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1752. */
  1753. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1754. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1755. spinlock_t *ptl, pte_t orig_pte)
  1756. {
  1757. struct page *old_page, *new_page;
  1758. pte_t entry;
  1759. int reuse = 0, ret = 0;
  1760. int page_mkwrite = 0;
  1761. struct page *dirty_page = NULL;
  1762. old_page = vm_normal_page(vma, address, orig_pte);
  1763. if (!old_page) {
  1764. /*
  1765. * VM_MIXEDMAP !pfn_valid() case
  1766. *
  1767. * We should not cow pages in a shared writeable mapping.
  1768. * Just mark the pages writable as we can't do any dirty
  1769. * accounting on raw pfn maps.
  1770. */
  1771. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1772. (VM_WRITE|VM_SHARED))
  1773. goto reuse;
  1774. goto gotten;
  1775. }
  1776. /*
  1777. * Take out anonymous pages first, anonymous shared vmas are
  1778. * not dirty accountable.
  1779. */
  1780. if (PageAnon(old_page)) {
  1781. if (!trylock_page(old_page)) {
  1782. page_cache_get(old_page);
  1783. pte_unmap_unlock(page_table, ptl);
  1784. lock_page(old_page);
  1785. page_table = pte_offset_map_lock(mm, pmd, address,
  1786. &ptl);
  1787. if (!pte_same(*page_table, orig_pte)) {
  1788. unlock_page(old_page);
  1789. page_cache_release(old_page);
  1790. goto unlock;
  1791. }
  1792. page_cache_release(old_page);
  1793. }
  1794. reuse = reuse_swap_page(old_page);
  1795. unlock_page(old_page);
  1796. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1797. (VM_WRITE|VM_SHARED))) {
  1798. /*
  1799. * Only catch write-faults on shared writable pages,
  1800. * read-only shared pages can get COWed by
  1801. * get_user_pages(.write=1, .force=1).
  1802. */
  1803. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1804. struct vm_fault vmf;
  1805. int tmp;
  1806. vmf.virtual_address = (void __user *)(address &
  1807. PAGE_MASK);
  1808. vmf.pgoff = old_page->index;
  1809. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1810. vmf.page = old_page;
  1811. /*
  1812. * Notify the address space that the page is about to
  1813. * become writable so that it can prohibit this or wait
  1814. * for the page to get into an appropriate state.
  1815. *
  1816. * We do this without the lock held, so that it can
  1817. * sleep if it needs to.
  1818. */
  1819. page_cache_get(old_page);
  1820. pte_unmap_unlock(page_table, ptl);
  1821. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1822. if (unlikely(tmp &
  1823. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1824. ret = tmp;
  1825. goto unwritable_page;
  1826. }
  1827. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1828. lock_page(old_page);
  1829. if (!old_page->mapping) {
  1830. ret = 0; /* retry the fault */
  1831. unlock_page(old_page);
  1832. goto unwritable_page;
  1833. }
  1834. } else
  1835. VM_BUG_ON(!PageLocked(old_page));
  1836. /*
  1837. * Since we dropped the lock we need to revalidate
  1838. * the PTE as someone else may have changed it. If
  1839. * they did, we just return, as we can count on the
  1840. * MMU to tell us if they didn't also make it writable.
  1841. */
  1842. page_table = pte_offset_map_lock(mm, pmd, address,
  1843. &ptl);
  1844. if (!pte_same(*page_table, orig_pte)) {
  1845. unlock_page(old_page);
  1846. page_cache_release(old_page);
  1847. goto unlock;
  1848. }
  1849. page_mkwrite = 1;
  1850. }
  1851. dirty_page = old_page;
  1852. get_page(dirty_page);
  1853. reuse = 1;
  1854. }
  1855. if (reuse) {
  1856. reuse:
  1857. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1858. entry = pte_mkyoung(orig_pte);
  1859. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1860. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1861. update_mmu_cache(vma, address, entry);
  1862. ret |= VM_FAULT_WRITE;
  1863. goto unlock;
  1864. }
  1865. /*
  1866. * Ok, we need to copy. Oh, well..
  1867. */
  1868. page_cache_get(old_page);
  1869. gotten:
  1870. pte_unmap_unlock(page_table, ptl);
  1871. if (unlikely(anon_vma_prepare(vma)))
  1872. goto oom;
  1873. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1874. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1875. if (!new_page)
  1876. goto oom;
  1877. /*
  1878. * Don't let another task, with possibly unlocked vma,
  1879. * keep the mlocked page.
  1880. */
  1881. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1882. lock_page(old_page); /* for LRU manipulation */
  1883. clear_page_mlock(old_page);
  1884. unlock_page(old_page);
  1885. }
  1886. cow_user_page(new_page, old_page, address, vma);
  1887. __SetPageUptodate(new_page);
  1888. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1889. goto oom_free_new;
  1890. /*
  1891. * Re-check the pte - we dropped the lock
  1892. */
  1893. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1894. if (likely(pte_same(*page_table, orig_pte))) {
  1895. if (old_page) {
  1896. if (!PageAnon(old_page)) {
  1897. dec_mm_counter(mm, file_rss);
  1898. inc_mm_counter(mm, anon_rss);
  1899. }
  1900. } else
  1901. inc_mm_counter(mm, anon_rss);
  1902. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1903. entry = mk_pte(new_page, vma->vm_page_prot);
  1904. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1905. /*
  1906. * Clear the pte entry and flush it first, before updating the
  1907. * pte with the new entry. This will avoid a race condition
  1908. * seen in the presence of one thread doing SMC and another
  1909. * thread doing COW.
  1910. */
  1911. ptep_clear_flush_notify(vma, address, page_table);
  1912. page_add_new_anon_rmap(new_page, vma, address);
  1913. set_pte_at(mm, address, page_table, entry);
  1914. update_mmu_cache(vma, address, entry);
  1915. if (old_page) {
  1916. /*
  1917. * Only after switching the pte to the new page may
  1918. * we remove the mapcount here. Otherwise another
  1919. * process may come and find the rmap count decremented
  1920. * before the pte is switched to the new page, and
  1921. * "reuse" the old page writing into it while our pte
  1922. * here still points into it and can be read by other
  1923. * threads.
  1924. *
  1925. * The critical issue is to order this
  1926. * page_remove_rmap with the ptp_clear_flush above.
  1927. * Those stores are ordered by (if nothing else,)
  1928. * the barrier present in the atomic_add_negative
  1929. * in page_remove_rmap.
  1930. *
  1931. * Then the TLB flush in ptep_clear_flush ensures that
  1932. * no process can access the old page before the
  1933. * decremented mapcount is visible. And the old page
  1934. * cannot be reused until after the decremented
  1935. * mapcount is visible. So transitively, TLBs to
  1936. * old page will be flushed before it can be reused.
  1937. */
  1938. page_remove_rmap(old_page);
  1939. }
  1940. /* Free the old page.. */
  1941. new_page = old_page;
  1942. ret |= VM_FAULT_WRITE;
  1943. } else
  1944. mem_cgroup_uncharge_page(new_page);
  1945. if (new_page)
  1946. page_cache_release(new_page);
  1947. if (old_page)
  1948. page_cache_release(old_page);
  1949. unlock:
  1950. pte_unmap_unlock(page_table, ptl);
  1951. if (dirty_page) {
  1952. /*
  1953. * Yes, Virginia, this is actually required to prevent a race
  1954. * with clear_page_dirty_for_io() from clearing the page dirty
  1955. * bit after it clear all dirty ptes, but before a racing
  1956. * do_wp_page installs a dirty pte.
  1957. *
  1958. * do_no_page is protected similarly.
  1959. */
  1960. if (!page_mkwrite) {
  1961. wait_on_page_locked(dirty_page);
  1962. set_page_dirty_balance(dirty_page, page_mkwrite);
  1963. }
  1964. put_page(dirty_page);
  1965. if (page_mkwrite) {
  1966. struct address_space *mapping = dirty_page->mapping;
  1967. set_page_dirty(dirty_page);
  1968. unlock_page(dirty_page);
  1969. page_cache_release(dirty_page);
  1970. if (mapping) {
  1971. /*
  1972. * Some device drivers do not set page.mapping
  1973. * but still dirty their pages
  1974. */
  1975. balance_dirty_pages_ratelimited(mapping);
  1976. }
  1977. }
  1978. /* file_update_time outside page_lock */
  1979. if (vma->vm_file)
  1980. file_update_time(vma->vm_file);
  1981. }
  1982. return ret;
  1983. oom_free_new:
  1984. page_cache_release(new_page);
  1985. oom:
  1986. if (old_page) {
  1987. if (page_mkwrite) {
  1988. unlock_page(old_page);
  1989. page_cache_release(old_page);
  1990. }
  1991. page_cache_release(old_page);
  1992. }
  1993. return VM_FAULT_OOM;
  1994. unwritable_page:
  1995. page_cache_release(old_page);
  1996. return ret;
  1997. }
  1998. /*
  1999. * Helper functions for unmap_mapping_range().
  2000. *
  2001. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2002. *
  2003. * We have to restart searching the prio_tree whenever we drop the lock,
  2004. * since the iterator is only valid while the lock is held, and anyway
  2005. * a later vma might be split and reinserted earlier while lock dropped.
  2006. *
  2007. * The list of nonlinear vmas could be handled more efficiently, using
  2008. * a placeholder, but handle it in the same way until a need is shown.
  2009. * It is important to search the prio_tree before nonlinear list: a vma
  2010. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2011. * while the lock is dropped; but never shifted from list to prio_tree.
  2012. *
  2013. * In order to make forward progress despite restarting the search,
  2014. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2015. * quickly skip it next time around. Since the prio_tree search only
  2016. * shows us those vmas affected by unmapping the range in question, we
  2017. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2018. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2019. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2020. * i_mmap_lock.
  2021. *
  2022. * In order to make forward progress despite repeatedly restarting some
  2023. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2024. * and restart from that address when we reach that vma again. It might
  2025. * have been split or merged, shrunk or extended, but never shifted: so
  2026. * restart_addr remains valid so long as it remains in the vma's range.
  2027. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2028. * values so we can save vma's restart_addr in its truncate_count field.
  2029. */
  2030. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2031. static void reset_vma_truncate_counts(struct address_space *mapping)
  2032. {
  2033. struct vm_area_struct *vma;
  2034. struct prio_tree_iter iter;
  2035. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2036. vma->vm_truncate_count = 0;
  2037. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2038. vma->vm_truncate_count = 0;
  2039. }
  2040. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2041. unsigned long start_addr, unsigned long end_addr,
  2042. struct zap_details *details)
  2043. {
  2044. unsigned long restart_addr;
  2045. int need_break;
  2046. /*
  2047. * files that support invalidating or truncating portions of the
  2048. * file from under mmaped areas must have their ->fault function
  2049. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2050. * This provides synchronisation against concurrent unmapping here.
  2051. */
  2052. again:
  2053. restart_addr = vma->vm_truncate_count;
  2054. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2055. start_addr = restart_addr;
  2056. if (start_addr >= end_addr) {
  2057. /* Top of vma has been split off since last time */
  2058. vma->vm_truncate_count = details->truncate_count;
  2059. return 0;
  2060. }
  2061. }
  2062. restart_addr = zap_page_range(vma, start_addr,
  2063. end_addr - start_addr, details);
  2064. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2065. if (restart_addr >= end_addr) {
  2066. /* We have now completed this vma: mark it so */
  2067. vma->vm_truncate_count = details->truncate_count;
  2068. if (!need_break)
  2069. return 0;
  2070. } else {
  2071. /* Note restart_addr in vma's truncate_count field */
  2072. vma->vm_truncate_count = restart_addr;
  2073. if (!need_break)
  2074. goto again;
  2075. }
  2076. spin_unlock(details->i_mmap_lock);
  2077. cond_resched();
  2078. spin_lock(details->i_mmap_lock);
  2079. return -EINTR;
  2080. }
  2081. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2082. struct zap_details *details)
  2083. {
  2084. struct vm_area_struct *vma;
  2085. struct prio_tree_iter iter;
  2086. pgoff_t vba, vea, zba, zea;
  2087. restart:
  2088. vma_prio_tree_foreach(vma, &iter, root,
  2089. details->first_index, details->last_index) {
  2090. /* Skip quickly over those we have already dealt with */
  2091. if (vma->vm_truncate_count == details->truncate_count)
  2092. continue;
  2093. vba = vma->vm_pgoff;
  2094. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2095. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2096. zba = details->first_index;
  2097. if (zba < vba)
  2098. zba = vba;
  2099. zea = details->last_index;
  2100. if (zea > vea)
  2101. zea = vea;
  2102. if (unmap_mapping_range_vma(vma,
  2103. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2104. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2105. details) < 0)
  2106. goto restart;
  2107. }
  2108. }
  2109. static inline void unmap_mapping_range_list(struct list_head *head,
  2110. struct zap_details *details)
  2111. {
  2112. struct vm_area_struct *vma;
  2113. /*
  2114. * In nonlinear VMAs there is no correspondence between virtual address
  2115. * offset and file offset. So we must perform an exhaustive search
  2116. * across *all* the pages in each nonlinear VMA, not just the pages
  2117. * whose virtual address lies outside the file truncation point.
  2118. */
  2119. restart:
  2120. list_for_each_entry(vma, head, shared.vm_set.list) {
  2121. /* Skip quickly over those we have already dealt with */
  2122. if (vma->vm_truncate_count == details->truncate_count)
  2123. continue;
  2124. details->nonlinear_vma = vma;
  2125. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2126. vma->vm_end, details) < 0)
  2127. goto restart;
  2128. }
  2129. }
  2130. /**
  2131. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2132. * @mapping: the address space containing mmaps to be unmapped.
  2133. * @holebegin: byte in first page to unmap, relative to the start of
  2134. * the underlying file. This will be rounded down to a PAGE_SIZE
  2135. * boundary. Note that this is different from vmtruncate(), which
  2136. * must keep the partial page. In contrast, we must get rid of
  2137. * partial pages.
  2138. * @holelen: size of prospective hole in bytes. This will be rounded
  2139. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2140. * end of the file.
  2141. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2142. * but 0 when invalidating pagecache, don't throw away private data.
  2143. */
  2144. void unmap_mapping_range(struct address_space *mapping,
  2145. loff_t const holebegin, loff_t const holelen, int even_cows)
  2146. {
  2147. struct zap_details details;
  2148. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2149. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2150. /* Check for overflow. */
  2151. if (sizeof(holelen) > sizeof(hlen)) {
  2152. long long holeend =
  2153. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2154. if (holeend & ~(long long)ULONG_MAX)
  2155. hlen = ULONG_MAX - hba + 1;
  2156. }
  2157. details.check_mapping = even_cows? NULL: mapping;
  2158. details.nonlinear_vma = NULL;
  2159. details.first_index = hba;
  2160. details.last_index = hba + hlen - 1;
  2161. if (details.last_index < details.first_index)
  2162. details.last_index = ULONG_MAX;
  2163. details.i_mmap_lock = &mapping->i_mmap_lock;
  2164. spin_lock(&mapping->i_mmap_lock);
  2165. /* Protect against endless unmapping loops */
  2166. mapping->truncate_count++;
  2167. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2168. if (mapping->truncate_count == 0)
  2169. reset_vma_truncate_counts(mapping);
  2170. mapping->truncate_count++;
  2171. }
  2172. details.truncate_count = mapping->truncate_count;
  2173. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2174. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2175. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2176. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2177. spin_unlock(&mapping->i_mmap_lock);
  2178. }
  2179. EXPORT_SYMBOL(unmap_mapping_range);
  2180. /**
  2181. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2182. * @inode: inode of the file used
  2183. * @offset: file offset to start truncating
  2184. *
  2185. * NOTE! We have to be ready to update the memory sharing
  2186. * between the file and the memory map for a potential last
  2187. * incomplete page. Ugly, but necessary.
  2188. */
  2189. int vmtruncate(struct inode * inode, loff_t offset)
  2190. {
  2191. if (inode->i_size < offset) {
  2192. unsigned long limit;
  2193. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2194. if (limit != RLIM_INFINITY && offset > limit)
  2195. goto out_sig;
  2196. if (offset > inode->i_sb->s_maxbytes)
  2197. goto out_big;
  2198. i_size_write(inode, offset);
  2199. } else {
  2200. struct address_space *mapping = inode->i_mapping;
  2201. /*
  2202. * truncation of in-use swapfiles is disallowed - it would
  2203. * cause subsequent swapout to scribble on the now-freed
  2204. * blocks.
  2205. */
  2206. if (IS_SWAPFILE(inode))
  2207. return -ETXTBSY;
  2208. i_size_write(inode, offset);
  2209. /*
  2210. * unmap_mapping_range is called twice, first simply for
  2211. * efficiency so that truncate_inode_pages does fewer
  2212. * single-page unmaps. However after this first call, and
  2213. * before truncate_inode_pages finishes, it is possible for
  2214. * private pages to be COWed, which remain after
  2215. * truncate_inode_pages finishes, hence the second
  2216. * unmap_mapping_range call must be made for correctness.
  2217. */
  2218. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2219. truncate_inode_pages(mapping, offset);
  2220. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2221. }
  2222. if (inode->i_op->truncate)
  2223. inode->i_op->truncate(inode);
  2224. return 0;
  2225. out_sig:
  2226. send_sig(SIGXFSZ, current, 0);
  2227. out_big:
  2228. return -EFBIG;
  2229. }
  2230. EXPORT_SYMBOL(vmtruncate);
  2231. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2232. {
  2233. struct address_space *mapping = inode->i_mapping;
  2234. /*
  2235. * If the underlying filesystem is not going to provide
  2236. * a way to truncate a range of blocks (punch a hole) -
  2237. * we should return failure right now.
  2238. */
  2239. if (!inode->i_op->truncate_range)
  2240. return -ENOSYS;
  2241. mutex_lock(&inode->i_mutex);
  2242. down_write(&inode->i_alloc_sem);
  2243. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2244. truncate_inode_pages_range(mapping, offset, end);
  2245. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2246. inode->i_op->truncate_range(inode, offset, end);
  2247. up_write(&inode->i_alloc_sem);
  2248. mutex_unlock(&inode->i_mutex);
  2249. return 0;
  2250. }
  2251. /*
  2252. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2253. * but allow concurrent faults), and pte mapped but not yet locked.
  2254. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2255. */
  2256. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2257. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2258. unsigned int flags, pte_t orig_pte)
  2259. {
  2260. spinlock_t *ptl;
  2261. struct page *page;
  2262. swp_entry_t entry;
  2263. pte_t pte;
  2264. struct mem_cgroup *ptr = NULL;
  2265. int ret = 0;
  2266. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2267. goto out;
  2268. entry = pte_to_swp_entry(orig_pte);
  2269. if (is_migration_entry(entry)) {
  2270. migration_entry_wait(mm, pmd, address);
  2271. goto out;
  2272. }
  2273. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2274. page = lookup_swap_cache(entry);
  2275. if (!page) {
  2276. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2277. page = swapin_readahead(entry,
  2278. GFP_HIGHUSER_MOVABLE, vma, address);
  2279. if (!page) {
  2280. /*
  2281. * Back out if somebody else faulted in this pte
  2282. * while we released the pte lock.
  2283. */
  2284. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2285. if (likely(pte_same(*page_table, orig_pte)))
  2286. ret = VM_FAULT_OOM;
  2287. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2288. goto unlock;
  2289. }
  2290. /* Had to read the page from swap area: Major fault */
  2291. ret = VM_FAULT_MAJOR;
  2292. count_vm_event(PGMAJFAULT);
  2293. }
  2294. lock_page(page);
  2295. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2296. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2297. ret = VM_FAULT_OOM;
  2298. goto out_page;
  2299. }
  2300. /*
  2301. * Back out if somebody else already faulted in this pte.
  2302. */
  2303. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2304. if (unlikely(!pte_same(*page_table, orig_pte)))
  2305. goto out_nomap;
  2306. if (unlikely(!PageUptodate(page))) {
  2307. ret = VM_FAULT_SIGBUS;
  2308. goto out_nomap;
  2309. }
  2310. /*
  2311. * The page isn't present yet, go ahead with the fault.
  2312. *
  2313. * Be careful about the sequence of operations here.
  2314. * To get its accounting right, reuse_swap_page() must be called
  2315. * while the page is counted on swap but not yet in mapcount i.e.
  2316. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2317. * must be called after the swap_free(), or it will never succeed.
  2318. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2319. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2320. * in page->private. In this case, a record in swap_cgroup is silently
  2321. * discarded at swap_free().
  2322. */
  2323. inc_mm_counter(mm, anon_rss);
  2324. pte = mk_pte(page, vma->vm_page_prot);
  2325. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2326. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2327. flags &= ~FAULT_FLAG_WRITE;
  2328. }
  2329. flush_icache_page(vma, page);
  2330. set_pte_at(mm, address, page_table, pte);
  2331. page_add_anon_rmap(page, vma, address);
  2332. /* It's better to call commit-charge after rmap is established */
  2333. mem_cgroup_commit_charge_swapin(page, ptr);
  2334. swap_free(entry);
  2335. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2336. try_to_free_swap(page);
  2337. unlock_page(page);
  2338. if (flags & FAULT_FLAG_WRITE) {
  2339. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2340. if (ret & VM_FAULT_ERROR)
  2341. ret &= VM_FAULT_ERROR;
  2342. goto out;
  2343. }
  2344. /* No need to invalidate - it was non-present before */
  2345. update_mmu_cache(vma, address, pte);
  2346. unlock:
  2347. pte_unmap_unlock(page_table, ptl);
  2348. out:
  2349. return ret;
  2350. out_nomap:
  2351. mem_cgroup_cancel_charge_swapin(ptr);
  2352. pte_unmap_unlock(page_table, ptl);
  2353. out_page:
  2354. unlock_page(page);
  2355. page_cache_release(page);
  2356. return ret;
  2357. }
  2358. /*
  2359. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2360. * but allow concurrent faults), and pte mapped but not yet locked.
  2361. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2362. */
  2363. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2364. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2365. unsigned int flags)
  2366. {
  2367. struct page *page;
  2368. spinlock_t *ptl;
  2369. pte_t entry;
  2370. /* Allocate our own private page. */
  2371. pte_unmap(page_table);
  2372. if (unlikely(anon_vma_prepare(vma)))
  2373. goto oom;
  2374. page = alloc_zeroed_user_highpage_movable(vma, address);
  2375. if (!page)
  2376. goto oom;
  2377. __SetPageUptodate(page);
  2378. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2379. goto oom_free_page;
  2380. entry = mk_pte(page, vma->vm_page_prot);
  2381. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2382. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2383. if (!pte_none(*page_table))
  2384. goto release;
  2385. inc_mm_counter(mm, anon_rss);
  2386. page_add_new_anon_rmap(page, vma, address);
  2387. set_pte_at(mm, address, page_table, entry);
  2388. /* No need to invalidate - it was non-present before */
  2389. update_mmu_cache(vma, address, entry);
  2390. unlock:
  2391. pte_unmap_unlock(page_table, ptl);
  2392. return 0;
  2393. release:
  2394. mem_cgroup_uncharge_page(page);
  2395. page_cache_release(page);
  2396. goto unlock;
  2397. oom_free_page:
  2398. page_cache_release(page);
  2399. oom:
  2400. return VM_FAULT_OOM;
  2401. }
  2402. /*
  2403. * __do_fault() tries to create a new page mapping. It aggressively
  2404. * tries to share with existing pages, but makes a separate copy if
  2405. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2406. * the next page fault.
  2407. *
  2408. * As this is called only for pages that do not currently exist, we
  2409. * do not need to flush old virtual caches or the TLB.
  2410. *
  2411. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2412. * but allow concurrent faults), and pte neither mapped nor locked.
  2413. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2414. */
  2415. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2416. unsigned long address, pmd_t *pmd,
  2417. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2418. {
  2419. pte_t *page_table;
  2420. spinlock_t *ptl;
  2421. struct page *page;
  2422. pte_t entry;
  2423. int anon = 0;
  2424. int charged = 0;
  2425. struct page *dirty_page = NULL;
  2426. struct vm_fault vmf;
  2427. int ret;
  2428. int page_mkwrite = 0;
  2429. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2430. vmf.pgoff = pgoff;
  2431. vmf.flags = flags;
  2432. vmf.page = NULL;
  2433. ret = vma->vm_ops->fault(vma, &vmf);
  2434. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2435. return ret;
  2436. /*
  2437. * For consistency in subsequent calls, make the faulted page always
  2438. * locked.
  2439. */
  2440. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2441. lock_page(vmf.page);
  2442. else
  2443. VM_BUG_ON(!PageLocked(vmf.page));
  2444. /*
  2445. * Should we do an early C-O-W break?
  2446. */
  2447. page = vmf.page;
  2448. if (flags & FAULT_FLAG_WRITE) {
  2449. if (!(vma->vm_flags & VM_SHARED)) {
  2450. anon = 1;
  2451. if (unlikely(anon_vma_prepare(vma))) {
  2452. ret = VM_FAULT_OOM;
  2453. goto out;
  2454. }
  2455. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2456. vma, address);
  2457. if (!page) {
  2458. ret = VM_FAULT_OOM;
  2459. goto out;
  2460. }
  2461. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2462. ret = VM_FAULT_OOM;
  2463. page_cache_release(page);
  2464. goto out;
  2465. }
  2466. charged = 1;
  2467. /*
  2468. * Don't let another task, with possibly unlocked vma,
  2469. * keep the mlocked page.
  2470. */
  2471. if (vma->vm_flags & VM_LOCKED)
  2472. clear_page_mlock(vmf.page);
  2473. copy_user_highpage(page, vmf.page, address, vma);
  2474. __SetPageUptodate(page);
  2475. } else {
  2476. /*
  2477. * If the page will be shareable, see if the backing
  2478. * address space wants to know that the page is about
  2479. * to become writable
  2480. */
  2481. if (vma->vm_ops->page_mkwrite) {
  2482. int tmp;
  2483. unlock_page(page);
  2484. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2485. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2486. if (unlikely(tmp &
  2487. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2488. ret = tmp;
  2489. goto unwritable_page;
  2490. }
  2491. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2492. lock_page(page);
  2493. if (!page->mapping) {
  2494. ret = 0; /* retry the fault */
  2495. unlock_page(page);
  2496. goto unwritable_page;
  2497. }
  2498. } else
  2499. VM_BUG_ON(!PageLocked(page));
  2500. page_mkwrite = 1;
  2501. }
  2502. }
  2503. }
  2504. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2505. /*
  2506. * This silly early PAGE_DIRTY setting removes a race
  2507. * due to the bad i386 page protection. But it's valid
  2508. * for other architectures too.
  2509. *
  2510. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2511. * an exclusive copy of the page, or this is a shared mapping,
  2512. * so we can make it writable and dirty to avoid having to
  2513. * handle that later.
  2514. */
  2515. /* Only go through if we didn't race with anybody else... */
  2516. if (likely(pte_same(*page_table, orig_pte))) {
  2517. flush_icache_page(vma, page);
  2518. entry = mk_pte(page, vma->vm_page_prot);
  2519. if (flags & FAULT_FLAG_WRITE)
  2520. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2521. if (anon) {
  2522. inc_mm_counter(mm, anon_rss);
  2523. page_add_new_anon_rmap(page, vma, address);
  2524. } else {
  2525. inc_mm_counter(mm, file_rss);
  2526. page_add_file_rmap(page);
  2527. if (flags & FAULT_FLAG_WRITE) {
  2528. dirty_page = page;
  2529. get_page(dirty_page);
  2530. }
  2531. }
  2532. set_pte_at(mm, address, page_table, entry);
  2533. /* no need to invalidate: a not-present page won't be cached */
  2534. update_mmu_cache(vma, address, entry);
  2535. } else {
  2536. if (charged)
  2537. mem_cgroup_uncharge_page(page);
  2538. if (anon)
  2539. page_cache_release(page);
  2540. else
  2541. anon = 1; /* no anon but release faulted_page */
  2542. }
  2543. pte_unmap_unlock(page_table, ptl);
  2544. out:
  2545. if (dirty_page) {
  2546. struct address_space *mapping = page->mapping;
  2547. if (set_page_dirty(dirty_page))
  2548. page_mkwrite = 1;
  2549. unlock_page(dirty_page);
  2550. put_page(dirty_page);
  2551. if (page_mkwrite && mapping) {
  2552. /*
  2553. * Some device drivers do not set page.mapping but still
  2554. * dirty their pages
  2555. */
  2556. balance_dirty_pages_ratelimited(mapping);
  2557. }
  2558. /* file_update_time outside page_lock */
  2559. if (vma->vm_file)
  2560. file_update_time(vma->vm_file);
  2561. } else {
  2562. unlock_page(vmf.page);
  2563. if (anon)
  2564. page_cache_release(vmf.page);
  2565. }
  2566. return ret;
  2567. unwritable_page:
  2568. page_cache_release(page);
  2569. return ret;
  2570. }
  2571. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2572. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2573. unsigned int flags, pte_t orig_pte)
  2574. {
  2575. pgoff_t pgoff = (((address & PAGE_MASK)
  2576. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2577. pte_unmap(page_table);
  2578. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2579. }
  2580. /*
  2581. * Fault of a previously existing named mapping. Repopulate the pte
  2582. * from the encoded file_pte if possible. This enables swappable
  2583. * nonlinear vmas.
  2584. *
  2585. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2586. * but allow concurrent faults), and pte mapped but not yet locked.
  2587. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2588. */
  2589. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2590. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2591. unsigned int flags, pte_t orig_pte)
  2592. {
  2593. pgoff_t pgoff;
  2594. flags |= FAULT_FLAG_NONLINEAR;
  2595. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2596. return 0;
  2597. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2598. /*
  2599. * Page table corrupted: show pte and kill process.
  2600. */
  2601. print_bad_pte(vma, address, orig_pte, NULL);
  2602. return VM_FAULT_OOM;
  2603. }
  2604. pgoff = pte_to_pgoff(orig_pte);
  2605. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2606. }
  2607. /*
  2608. * These routines also need to handle stuff like marking pages dirty
  2609. * and/or accessed for architectures that don't do it in hardware (most
  2610. * RISC architectures). The early dirtying is also good on the i386.
  2611. *
  2612. * There is also a hook called "update_mmu_cache()" that architectures
  2613. * with external mmu caches can use to update those (ie the Sparc or
  2614. * PowerPC hashed page tables that act as extended TLBs).
  2615. *
  2616. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2617. * but allow concurrent faults), and pte mapped but not yet locked.
  2618. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2619. */
  2620. static inline int handle_pte_fault(struct mm_struct *mm,
  2621. struct vm_area_struct *vma, unsigned long address,
  2622. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2623. {
  2624. pte_t entry;
  2625. spinlock_t *ptl;
  2626. entry = *pte;
  2627. if (!pte_present(entry)) {
  2628. if (pte_none(entry)) {
  2629. if (vma->vm_ops) {
  2630. if (likely(vma->vm_ops->fault))
  2631. return do_linear_fault(mm, vma, address,
  2632. pte, pmd, flags, entry);
  2633. }
  2634. return do_anonymous_page(mm, vma, address,
  2635. pte, pmd, flags);
  2636. }
  2637. if (pte_file(entry))
  2638. return do_nonlinear_fault(mm, vma, address,
  2639. pte, pmd, flags, entry);
  2640. return do_swap_page(mm, vma, address,
  2641. pte, pmd, flags, entry);
  2642. }
  2643. ptl = pte_lockptr(mm, pmd);
  2644. spin_lock(ptl);
  2645. if (unlikely(!pte_same(*pte, entry)))
  2646. goto unlock;
  2647. if (flags & FAULT_FLAG_WRITE) {
  2648. if (!pte_write(entry))
  2649. return do_wp_page(mm, vma, address,
  2650. pte, pmd, ptl, entry);
  2651. entry = pte_mkdirty(entry);
  2652. }
  2653. entry = pte_mkyoung(entry);
  2654. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2655. update_mmu_cache(vma, address, entry);
  2656. } else {
  2657. /*
  2658. * This is needed only for protection faults but the arch code
  2659. * is not yet telling us if this is a protection fault or not.
  2660. * This still avoids useless tlb flushes for .text page faults
  2661. * with threads.
  2662. */
  2663. if (flags & FAULT_FLAG_WRITE)
  2664. flush_tlb_page(vma, address);
  2665. }
  2666. unlock:
  2667. pte_unmap_unlock(pte, ptl);
  2668. return 0;
  2669. }
  2670. /*
  2671. * By the time we get here, we already hold the mm semaphore
  2672. */
  2673. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2674. unsigned long address, unsigned int flags)
  2675. {
  2676. pgd_t *pgd;
  2677. pud_t *pud;
  2678. pmd_t *pmd;
  2679. pte_t *pte;
  2680. __set_current_state(TASK_RUNNING);
  2681. count_vm_event(PGFAULT);
  2682. if (unlikely(is_vm_hugetlb_page(vma)))
  2683. return hugetlb_fault(mm, vma, address, flags);
  2684. pgd = pgd_offset(mm, address);
  2685. pud = pud_alloc(mm, pgd, address);
  2686. if (!pud)
  2687. return VM_FAULT_OOM;
  2688. pmd = pmd_alloc(mm, pud, address);
  2689. if (!pmd)
  2690. return VM_FAULT_OOM;
  2691. pte = pte_alloc_map(mm, pmd, address);
  2692. if (!pte)
  2693. return VM_FAULT_OOM;
  2694. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2695. }
  2696. #ifndef __PAGETABLE_PUD_FOLDED
  2697. /*
  2698. * Allocate page upper directory.
  2699. * We've already handled the fast-path in-line.
  2700. */
  2701. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2702. {
  2703. pud_t *new = pud_alloc_one(mm, address);
  2704. if (!new)
  2705. return -ENOMEM;
  2706. smp_wmb(); /* See comment in __pte_alloc */
  2707. spin_lock(&mm->page_table_lock);
  2708. if (pgd_present(*pgd)) /* Another has populated it */
  2709. pud_free(mm, new);
  2710. else
  2711. pgd_populate(mm, pgd, new);
  2712. spin_unlock(&mm->page_table_lock);
  2713. return 0;
  2714. }
  2715. #endif /* __PAGETABLE_PUD_FOLDED */
  2716. #ifndef __PAGETABLE_PMD_FOLDED
  2717. /*
  2718. * Allocate page middle directory.
  2719. * We've already handled the fast-path in-line.
  2720. */
  2721. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2722. {
  2723. pmd_t *new = pmd_alloc_one(mm, address);
  2724. if (!new)
  2725. return -ENOMEM;
  2726. smp_wmb(); /* See comment in __pte_alloc */
  2727. spin_lock(&mm->page_table_lock);
  2728. #ifndef __ARCH_HAS_4LEVEL_HACK
  2729. if (pud_present(*pud)) /* Another has populated it */
  2730. pmd_free(mm, new);
  2731. else
  2732. pud_populate(mm, pud, new);
  2733. #else
  2734. if (pgd_present(*pud)) /* Another has populated it */
  2735. pmd_free(mm, new);
  2736. else
  2737. pgd_populate(mm, pud, new);
  2738. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2739. spin_unlock(&mm->page_table_lock);
  2740. return 0;
  2741. }
  2742. #endif /* __PAGETABLE_PMD_FOLDED */
  2743. int make_pages_present(unsigned long addr, unsigned long end)
  2744. {
  2745. int ret, len, write;
  2746. struct vm_area_struct * vma;
  2747. vma = find_vma(current->mm, addr);
  2748. if (!vma)
  2749. return -ENOMEM;
  2750. write = (vma->vm_flags & VM_WRITE) != 0;
  2751. BUG_ON(addr >= end);
  2752. BUG_ON(end > vma->vm_end);
  2753. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2754. ret = get_user_pages(current, current->mm, addr,
  2755. len, write, 0, NULL, NULL);
  2756. if (ret < 0)
  2757. return ret;
  2758. return ret == len ? 0 : -EFAULT;
  2759. }
  2760. #if !defined(__HAVE_ARCH_GATE_AREA)
  2761. #if defined(AT_SYSINFO_EHDR)
  2762. static struct vm_area_struct gate_vma;
  2763. static int __init gate_vma_init(void)
  2764. {
  2765. gate_vma.vm_mm = NULL;
  2766. gate_vma.vm_start = FIXADDR_USER_START;
  2767. gate_vma.vm_end = FIXADDR_USER_END;
  2768. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2769. gate_vma.vm_page_prot = __P101;
  2770. /*
  2771. * Make sure the vDSO gets into every core dump.
  2772. * Dumping its contents makes post-mortem fully interpretable later
  2773. * without matching up the same kernel and hardware config to see
  2774. * what PC values meant.
  2775. */
  2776. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2777. return 0;
  2778. }
  2779. __initcall(gate_vma_init);
  2780. #endif
  2781. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2782. {
  2783. #ifdef AT_SYSINFO_EHDR
  2784. return &gate_vma;
  2785. #else
  2786. return NULL;
  2787. #endif
  2788. }
  2789. int in_gate_area_no_task(unsigned long addr)
  2790. {
  2791. #ifdef AT_SYSINFO_EHDR
  2792. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2793. return 1;
  2794. #endif
  2795. return 0;
  2796. }
  2797. #endif /* __HAVE_ARCH_GATE_AREA */
  2798. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2799. pte_t **ptepp, spinlock_t **ptlp)
  2800. {
  2801. pgd_t *pgd;
  2802. pud_t *pud;
  2803. pmd_t *pmd;
  2804. pte_t *ptep;
  2805. pgd = pgd_offset(mm, address);
  2806. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2807. goto out;
  2808. pud = pud_offset(pgd, address);
  2809. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2810. goto out;
  2811. pmd = pmd_offset(pud, address);
  2812. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2813. goto out;
  2814. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2815. if (pmd_huge(*pmd))
  2816. goto out;
  2817. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2818. if (!ptep)
  2819. goto out;
  2820. if (!pte_present(*ptep))
  2821. goto unlock;
  2822. *ptepp = ptep;
  2823. return 0;
  2824. unlock:
  2825. pte_unmap_unlock(ptep, *ptlp);
  2826. out:
  2827. return -EINVAL;
  2828. }
  2829. /**
  2830. * follow_pfn - look up PFN at a user virtual address
  2831. * @vma: memory mapping
  2832. * @address: user virtual address
  2833. * @pfn: location to store found PFN
  2834. *
  2835. * Only IO mappings and raw PFN mappings are allowed.
  2836. *
  2837. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2838. */
  2839. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2840. unsigned long *pfn)
  2841. {
  2842. int ret = -EINVAL;
  2843. spinlock_t *ptl;
  2844. pte_t *ptep;
  2845. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2846. return ret;
  2847. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2848. if (ret)
  2849. return ret;
  2850. *pfn = pte_pfn(*ptep);
  2851. pte_unmap_unlock(ptep, ptl);
  2852. return 0;
  2853. }
  2854. EXPORT_SYMBOL(follow_pfn);
  2855. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2856. int follow_phys(struct vm_area_struct *vma,
  2857. unsigned long address, unsigned int flags,
  2858. unsigned long *prot, resource_size_t *phys)
  2859. {
  2860. int ret = -EINVAL;
  2861. pte_t *ptep, pte;
  2862. spinlock_t *ptl;
  2863. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2864. goto out;
  2865. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2866. goto out;
  2867. pte = *ptep;
  2868. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2869. goto unlock;
  2870. *prot = pgprot_val(pte_pgprot(pte));
  2871. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2872. ret = 0;
  2873. unlock:
  2874. pte_unmap_unlock(ptep, ptl);
  2875. out:
  2876. return ret;
  2877. }
  2878. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2879. void *buf, int len, int write)
  2880. {
  2881. resource_size_t phys_addr;
  2882. unsigned long prot = 0;
  2883. void __iomem *maddr;
  2884. int offset = addr & (PAGE_SIZE-1);
  2885. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2886. return -EINVAL;
  2887. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2888. if (write)
  2889. memcpy_toio(maddr + offset, buf, len);
  2890. else
  2891. memcpy_fromio(buf, maddr + offset, len);
  2892. iounmap(maddr);
  2893. return len;
  2894. }
  2895. #endif
  2896. /*
  2897. * Access another process' address space.
  2898. * Source/target buffer must be kernel space,
  2899. * Do not walk the page table directly, use get_user_pages
  2900. */
  2901. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2902. {
  2903. struct mm_struct *mm;
  2904. struct vm_area_struct *vma;
  2905. void *old_buf = buf;
  2906. mm = get_task_mm(tsk);
  2907. if (!mm)
  2908. return 0;
  2909. down_read(&mm->mmap_sem);
  2910. /* ignore errors, just check how much was successfully transferred */
  2911. while (len) {
  2912. int bytes, ret, offset;
  2913. void *maddr;
  2914. struct page *page = NULL;
  2915. ret = get_user_pages(tsk, mm, addr, 1,
  2916. write, 1, &page, &vma);
  2917. if (ret <= 0) {
  2918. /*
  2919. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2920. * we can access using slightly different code.
  2921. */
  2922. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2923. vma = find_vma(mm, addr);
  2924. if (!vma)
  2925. break;
  2926. if (vma->vm_ops && vma->vm_ops->access)
  2927. ret = vma->vm_ops->access(vma, addr, buf,
  2928. len, write);
  2929. if (ret <= 0)
  2930. #endif
  2931. break;
  2932. bytes = ret;
  2933. } else {
  2934. bytes = len;
  2935. offset = addr & (PAGE_SIZE-1);
  2936. if (bytes > PAGE_SIZE-offset)
  2937. bytes = PAGE_SIZE-offset;
  2938. maddr = kmap(page);
  2939. if (write) {
  2940. copy_to_user_page(vma, page, addr,
  2941. maddr + offset, buf, bytes);
  2942. set_page_dirty_lock(page);
  2943. } else {
  2944. copy_from_user_page(vma, page, addr,
  2945. buf, maddr + offset, bytes);
  2946. }
  2947. kunmap(page);
  2948. page_cache_release(page);
  2949. }
  2950. len -= bytes;
  2951. buf += bytes;
  2952. addr += bytes;
  2953. }
  2954. up_read(&mm->mmap_sem);
  2955. mmput(mm);
  2956. return buf - old_buf;
  2957. }
  2958. /*
  2959. * Print the name of a VMA.
  2960. */
  2961. void print_vma_addr(char *prefix, unsigned long ip)
  2962. {
  2963. struct mm_struct *mm = current->mm;
  2964. struct vm_area_struct *vma;
  2965. /*
  2966. * Do not print if we are in atomic
  2967. * contexts (in exception stacks, etc.):
  2968. */
  2969. if (preempt_count())
  2970. return;
  2971. down_read(&mm->mmap_sem);
  2972. vma = find_vma(mm, ip);
  2973. if (vma && vma->vm_file) {
  2974. struct file *f = vma->vm_file;
  2975. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2976. if (buf) {
  2977. char *p, *s;
  2978. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2979. if (IS_ERR(p))
  2980. p = "?";
  2981. s = strrchr(p, '/');
  2982. if (s)
  2983. p = s+1;
  2984. printk("%s%s[%lx+%lx]", prefix, p,
  2985. vma->vm_start,
  2986. vma->vm_end - vma->vm_start);
  2987. free_page((unsigned long)buf);
  2988. }
  2989. }
  2990. up_read(&current->mm->mmap_sem);
  2991. }
  2992. #ifdef CONFIG_PROVE_LOCKING
  2993. void might_fault(void)
  2994. {
  2995. /*
  2996. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  2997. * holding the mmap_sem, this is safe because kernel memory doesn't
  2998. * get paged out, therefore we'll never actually fault, and the
  2999. * below annotations will generate false positives.
  3000. */
  3001. if (segment_eq(get_fs(), KERNEL_DS))
  3002. return;
  3003. might_sleep();
  3004. /*
  3005. * it would be nicer only to annotate paths which are not under
  3006. * pagefault_disable, however that requires a larger audit and
  3007. * providing helpers like get_user_atomic.
  3008. */
  3009. if (!in_atomic() && current->mm)
  3010. might_lock_read(&current->mm->mmap_sem);
  3011. }
  3012. EXPORT_SYMBOL(might_fault);
  3013. #endif