lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/lmb.h>
  16. #define LMB_ALLOC_ANYWHERE 0
  17. struct lmb lmb;
  18. static int lmb_debug;
  19. static int __init early_lmb(char *p)
  20. {
  21. if (p && strstr(p, "debug"))
  22. lmb_debug = 1;
  23. return 0;
  24. }
  25. early_param("lmb", early_lmb);
  26. static void lmb_dump(struct lmb_region *region, char *name)
  27. {
  28. unsigned long long base, size;
  29. int i;
  30. pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
  31. for (i = 0; i < region->cnt; i++) {
  32. base = region->region[i].base;
  33. size = region->region[i].size;
  34. pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
  35. name, i, base, base + size - 1, size);
  36. }
  37. }
  38. void lmb_dump_all(void)
  39. {
  40. if (!lmb_debug)
  41. return;
  42. pr_info("LMB configuration:\n");
  43. pr_info(" rmo_size = 0x%llx\n", (unsigned long long)lmb.rmo_size);
  44. pr_info(" memory.size = 0x%llx\n", (unsigned long long)lmb.memory.size);
  45. lmb_dump(&lmb.memory, "memory");
  46. lmb_dump(&lmb.reserved, "reserved");
  47. }
  48. static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
  49. u64 size2)
  50. {
  51. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  52. }
  53. static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
  54. {
  55. if (base2 == base1 + size1)
  56. return 1;
  57. else if (base1 == base2 + size2)
  58. return -1;
  59. return 0;
  60. }
  61. static long lmb_regions_adjacent(struct lmb_region *rgn,
  62. unsigned long r1, unsigned long r2)
  63. {
  64. u64 base1 = rgn->region[r1].base;
  65. u64 size1 = rgn->region[r1].size;
  66. u64 base2 = rgn->region[r2].base;
  67. u64 size2 = rgn->region[r2].size;
  68. return lmb_addrs_adjacent(base1, size1, base2, size2);
  69. }
  70. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  71. {
  72. unsigned long i;
  73. for (i = r; i < rgn->cnt - 1; i++) {
  74. rgn->region[i].base = rgn->region[i + 1].base;
  75. rgn->region[i].size = rgn->region[i + 1].size;
  76. }
  77. rgn->cnt--;
  78. }
  79. /* Assumption: base addr of region 1 < base addr of region 2 */
  80. static void lmb_coalesce_regions(struct lmb_region *rgn,
  81. unsigned long r1, unsigned long r2)
  82. {
  83. rgn->region[r1].size += rgn->region[r2].size;
  84. lmb_remove_region(rgn, r2);
  85. }
  86. void __init lmb_init(void)
  87. {
  88. /* Create a dummy zero size LMB which will get coalesced away later.
  89. * This simplifies the lmb_add() code below...
  90. */
  91. lmb.memory.region[0].base = 0;
  92. lmb.memory.region[0].size = 0;
  93. lmb.memory.cnt = 1;
  94. /* Ditto. */
  95. lmb.reserved.region[0].base = 0;
  96. lmb.reserved.region[0].size = 0;
  97. lmb.reserved.cnt = 1;
  98. }
  99. void __init lmb_analyze(void)
  100. {
  101. int i;
  102. lmb.memory.size = 0;
  103. for (i = 0; i < lmb.memory.cnt; i++)
  104. lmb.memory.size += lmb.memory.region[i].size;
  105. }
  106. static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
  107. {
  108. unsigned long coalesced = 0;
  109. long adjacent, i;
  110. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  111. rgn->region[0].base = base;
  112. rgn->region[0].size = size;
  113. return 0;
  114. }
  115. /* First try and coalesce this LMB with another. */
  116. for (i = 0; i < rgn->cnt; i++) {
  117. u64 rgnbase = rgn->region[i].base;
  118. u64 rgnsize = rgn->region[i].size;
  119. if ((rgnbase == base) && (rgnsize == size))
  120. /* Already have this region, so we're done */
  121. return 0;
  122. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  123. if (adjacent > 0) {
  124. rgn->region[i].base -= size;
  125. rgn->region[i].size += size;
  126. coalesced++;
  127. break;
  128. } else if (adjacent < 0) {
  129. rgn->region[i].size += size;
  130. coalesced++;
  131. break;
  132. }
  133. }
  134. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
  135. lmb_coalesce_regions(rgn, i, i+1);
  136. coalesced++;
  137. }
  138. if (coalesced)
  139. return coalesced;
  140. if (rgn->cnt >= MAX_LMB_REGIONS)
  141. return -1;
  142. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  143. for (i = rgn->cnt - 1; i >= 0; i--) {
  144. if (base < rgn->region[i].base) {
  145. rgn->region[i+1].base = rgn->region[i].base;
  146. rgn->region[i+1].size = rgn->region[i].size;
  147. } else {
  148. rgn->region[i+1].base = base;
  149. rgn->region[i+1].size = size;
  150. break;
  151. }
  152. }
  153. if (base < rgn->region[0].base) {
  154. rgn->region[0].base = base;
  155. rgn->region[0].size = size;
  156. }
  157. rgn->cnt++;
  158. return 0;
  159. }
  160. long lmb_add(u64 base, u64 size)
  161. {
  162. struct lmb_region *_rgn = &lmb.memory;
  163. /* On pSeries LPAR systems, the first LMB is our RMO region. */
  164. if (base == 0)
  165. lmb.rmo_size = size;
  166. return lmb_add_region(_rgn, base, size);
  167. }
  168. long lmb_remove(u64 base, u64 size)
  169. {
  170. struct lmb_region *rgn = &(lmb.memory);
  171. u64 rgnbegin, rgnend;
  172. u64 end = base + size;
  173. int i;
  174. rgnbegin = rgnend = 0; /* supress gcc warnings */
  175. /* Find the region where (base, size) belongs to */
  176. for (i=0; i < rgn->cnt; i++) {
  177. rgnbegin = rgn->region[i].base;
  178. rgnend = rgnbegin + rgn->region[i].size;
  179. if ((rgnbegin <= base) && (end <= rgnend))
  180. break;
  181. }
  182. /* Didn't find the region */
  183. if (i == rgn->cnt)
  184. return -1;
  185. /* Check to see if we are removing entire region */
  186. if ((rgnbegin == base) && (rgnend == end)) {
  187. lmb_remove_region(rgn, i);
  188. return 0;
  189. }
  190. /* Check to see if region is matching at the front */
  191. if (rgnbegin == base) {
  192. rgn->region[i].base = end;
  193. rgn->region[i].size -= size;
  194. return 0;
  195. }
  196. /* Check to see if the region is matching at the end */
  197. if (rgnend == end) {
  198. rgn->region[i].size -= size;
  199. return 0;
  200. }
  201. /*
  202. * We need to split the entry - adjust the current one to the
  203. * beginging of the hole and add the region after hole.
  204. */
  205. rgn->region[i].size = base - rgn->region[i].base;
  206. return lmb_add_region(rgn, end, rgnend - end);
  207. }
  208. long __init lmb_reserve(u64 base, u64 size)
  209. {
  210. struct lmb_region *_rgn = &lmb.reserved;
  211. BUG_ON(0 == size);
  212. return lmb_add_region(_rgn, base, size);
  213. }
  214. long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
  215. {
  216. unsigned long i;
  217. for (i = 0; i < rgn->cnt; i++) {
  218. u64 rgnbase = rgn->region[i].base;
  219. u64 rgnsize = rgn->region[i].size;
  220. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  221. break;
  222. }
  223. return (i < rgn->cnt) ? i : -1;
  224. }
  225. static u64 lmb_align_down(u64 addr, u64 size)
  226. {
  227. return addr & ~(size - 1);
  228. }
  229. static u64 lmb_align_up(u64 addr, u64 size)
  230. {
  231. return (addr + (size - 1)) & ~(size - 1);
  232. }
  233. static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
  234. u64 size, u64 align)
  235. {
  236. u64 base, res_base;
  237. long j;
  238. base = lmb_align_down((end - size), align);
  239. while (start <= base) {
  240. j = lmb_overlaps_region(&lmb.reserved, base, size);
  241. if (j < 0) {
  242. /* this area isn't reserved, take it */
  243. if (lmb_add_region(&lmb.reserved, base, size) < 0)
  244. base = ~(u64)0;
  245. return base;
  246. }
  247. res_base = lmb.reserved.region[j].base;
  248. if (res_base < size)
  249. break;
  250. base = lmb_align_down(res_base - size, align);
  251. }
  252. return ~(u64)0;
  253. }
  254. static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
  255. u64 (*nid_range)(u64, u64, int *),
  256. u64 size, u64 align, int nid)
  257. {
  258. u64 start, end;
  259. start = mp->base;
  260. end = start + mp->size;
  261. start = lmb_align_up(start, align);
  262. while (start < end) {
  263. u64 this_end;
  264. int this_nid;
  265. this_end = nid_range(start, end, &this_nid);
  266. if (this_nid == nid) {
  267. u64 ret = lmb_alloc_nid_unreserved(start, this_end,
  268. size, align);
  269. if (ret != ~(u64)0)
  270. return ret;
  271. }
  272. start = this_end;
  273. }
  274. return ~(u64)0;
  275. }
  276. u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
  277. u64 (*nid_range)(u64 start, u64 end, int *nid))
  278. {
  279. struct lmb_region *mem = &lmb.memory;
  280. int i;
  281. BUG_ON(0 == size);
  282. size = lmb_align_up(size, align);
  283. for (i = 0; i < mem->cnt; i++) {
  284. u64 ret = lmb_alloc_nid_region(&mem->region[i],
  285. nid_range,
  286. size, align, nid);
  287. if (ret != ~(u64)0)
  288. return ret;
  289. }
  290. return lmb_alloc(size, align);
  291. }
  292. u64 __init lmb_alloc(u64 size, u64 align)
  293. {
  294. return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
  295. }
  296. u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  297. {
  298. u64 alloc;
  299. alloc = __lmb_alloc_base(size, align, max_addr);
  300. if (alloc == 0)
  301. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  302. (unsigned long long) size, (unsigned long long) max_addr);
  303. return alloc;
  304. }
  305. u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  306. {
  307. long i, j;
  308. u64 base = 0;
  309. u64 res_base;
  310. BUG_ON(0 == size);
  311. size = lmb_align_up(size, align);
  312. /* On some platforms, make sure we allocate lowmem */
  313. /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
  314. if (max_addr == LMB_ALLOC_ANYWHERE)
  315. max_addr = LMB_REAL_LIMIT;
  316. for (i = lmb.memory.cnt - 1; i >= 0; i--) {
  317. u64 lmbbase = lmb.memory.region[i].base;
  318. u64 lmbsize = lmb.memory.region[i].size;
  319. if (lmbsize < size)
  320. continue;
  321. if (max_addr == LMB_ALLOC_ANYWHERE)
  322. base = lmb_align_down(lmbbase + lmbsize - size, align);
  323. else if (lmbbase < max_addr) {
  324. base = min(lmbbase + lmbsize, max_addr);
  325. base = lmb_align_down(base - size, align);
  326. } else
  327. continue;
  328. while (base && lmbbase <= base) {
  329. j = lmb_overlaps_region(&lmb.reserved, base, size);
  330. if (j < 0) {
  331. /* this area isn't reserved, take it */
  332. if (lmb_add_region(&lmb.reserved, base, size) < 0)
  333. return 0;
  334. return base;
  335. }
  336. res_base = lmb.reserved.region[j].base;
  337. if (res_base < size)
  338. break;
  339. base = lmb_align_down(res_base - size, align);
  340. }
  341. }
  342. return 0;
  343. }
  344. /* You must call lmb_analyze() before this. */
  345. u64 __init lmb_phys_mem_size(void)
  346. {
  347. return lmb.memory.size;
  348. }
  349. u64 __init lmb_end_of_DRAM(void)
  350. {
  351. int idx = lmb.memory.cnt - 1;
  352. return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
  353. }
  354. /* You must call lmb_analyze() after this. */
  355. void __init lmb_enforce_memory_limit(u64 memory_limit)
  356. {
  357. unsigned long i;
  358. u64 limit;
  359. struct lmb_property *p;
  360. if (!memory_limit)
  361. return;
  362. /* Truncate the lmb regions to satisfy the memory limit. */
  363. limit = memory_limit;
  364. for (i = 0; i < lmb.memory.cnt; i++) {
  365. if (limit > lmb.memory.region[i].size) {
  366. limit -= lmb.memory.region[i].size;
  367. continue;
  368. }
  369. lmb.memory.region[i].size = limit;
  370. lmb.memory.cnt = i + 1;
  371. break;
  372. }
  373. if (lmb.memory.region[0].size < lmb.rmo_size)
  374. lmb.rmo_size = lmb.memory.region[0].size;
  375. memory_limit = lmb_end_of_DRAM();
  376. /* And truncate any reserves above the limit also. */
  377. for (i = 0; i < lmb.reserved.cnt; i++) {
  378. p = &lmb.reserved.region[i];
  379. if (p->base > memory_limit)
  380. p->size = 0;
  381. else if ((p->base + p->size) > memory_limit)
  382. p->size = memory_limit - p->base;
  383. if (p->size == 0) {
  384. lmb_remove_region(&lmb.reserved, i);
  385. i--;
  386. }
  387. }
  388. }
  389. int __init lmb_is_reserved(u64 addr)
  390. {
  391. int i;
  392. for (i = 0; i < lmb.reserved.cnt; i++) {
  393. u64 upper = lmb.reserved.region[i].base +
  394. lmb.reserved.region[i].size - 1;
  395. if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
  396. return 1;
  397. }
  398. return 0;
  399. }
  400. /*
  401. * Given a <base, len>, find which memory regions belong to this range.
  402. * Adjust the request and return a contiguous chunk.
  403. */
  404. int lmb_find(struct lmb_property *res)
  405. {
  406. int i;
  407. u64 rstart, rend;
  408. rstart = res->base;
  409. rend = rstart + res->size - 1;
  410. for (i = 0; i < lmb.memory.cnt; i++) {
  411. u64 start = lmb.memory.region[i].base;
  412. u64 end = start + lmb.memory.region[i].size - 1;
  413. if (start > rend)
  414. return -1;
  415. if ((end >= rstart) && (start < rend)) {
  416. /* adjust the request */
  417. if (rstart < start)
  418. rstart = start;
  419. if (rend > end)
  420. rend = end;
  421. res->base = rstart;
  422. res->size = rend - rstart + 1;
  423. return 0;
  424. }
  425. }
  426. return -1;
  427. }