posix-timers.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * linux/kernel/posix-timers.c
  3. *
  4. *
  5. * 2002-10-15 Posix Clocks & timers
  6. * by George Anzinger george@mvista.com
  7. *
  8. * Copyright (C) 2002 2003 by MontaVista Software.
  9. *
  10. * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11. * Copyright (C) 2004 Boris Hu
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or (at
  16. * your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful, but
  19. * WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * General Public License for more details.
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  27. */
  28. /* These are all the functions necessary to implement
  29. * POSIX clocks & timers
  30. */
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/slab.h>
  34. #include <linux/time.h>
  35. #include <linux/mutex.h>
  36. #include <asm/uaccess.h>
  37. #include <linux/list.h>
  38. #include <linux/init.h>
  39. #include <linux/compiler.h>
  40. #include <linux/idr.h>
  41. #include <linux/posix-timers.h>
  42. #include <linux/syscalls.h>
  43. #include <linux/wait.h>
  44. #include <linux/workqueue.h>
  45. #include <linux/module.h>
  46. /*
  47. * Management arrays for POSIX timers. Timers are kept in slab memory
  48. * Timer ids are allocated by an external routine that keeps track of the
  49. * id and the timer. The external interface is:
  50. *
  51. * void *idr_find(struct idr *idp, int id); to find timer_id <id>
  52. * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
  53. * related it to <ptr>
  54. * void idr_remove(struct idr *idp, int id); to release <id>
  55. * void idr_init(struct idr *idp); to initialize <idp>
  56. * which we supply.
  57. * The idr_get_new *may* call slab for more memory so it must not be
  58. * called under a spin lock. Likewise idr_remore may release memory
  59. * (but it may be ok to do this under a lock...).
  60. * idr_find is just a memory look up and is quite fast. A -1 return
  61. * indicates that the requested id does not exist.
  62. */
  63. /*
  64. * Lets keep our timers in a slab cache :-)
  65. */
  66. static struct kmem_cache *posix_timers_cache;
  67. static struct idr posix_timers_id;
  68. static DEFINE_SPINLOCK(idr_lock);
  69. /*
  70. * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  71. * SIGEV values. Here we put out an error if this assumption fails.
  72. */
  73. #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  74. ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  75. #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  76. #endif
  77. /*
  78. * The timer ID is turned into a timer address by idr_find().
  79. * Verifying a valid ID consists of:
  80. *
  81. * a) checking that idr_find() returns other than -1.
  82. * b) checking that the timer id matches the one in the timer itself.
  83. * c) that the timer owner is in the callers thread group.
  84. */
  85. /*
  86. * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  87. * to implement others. This structure defines the various
  88. * clocks and allows the possibility of adding others. We
  89. * provide an interface to add clocks to the table and expect
  90. * the "arch" code to add at least one clock that is high
  91. * resolution. Here we define the standard CLOCK_REALTIME as a
  92. * 1/HZ resolution clock.
  93. *
  94. * RESOLUTION: Clock resolution is used to round up timer and interval
  95. * times, NOT to report clock times, which are reported with as
  96. * much resolution as the system can muster. In some cases this
  97. * resolution may depend on the underlying clock hardware and
  98. * may not be quantifiable until run time, and only then is the
  99. * necessary code is written. The standard says we should say
  100. * something about this issue in the documentation...
  101. *
  102. * FUNCTIONS: The CLOCKs structure defines possible functions to handle
  103. * various clock functions. For clocks that use the standard
  104. * system timer code these entries should be NULL. This will
  105. * allow dispatch without the overhead of indirect function
  106. * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
  107. * must supply functions here, even if the function just returns
  108. * ENOSYS. The standard POSIX timer management code assumes the
  109. * following: 1.) The k_itimer struct (sched.h) is used for the
  110. * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
  111. * fields are not modified by timer code.
  112. *
  113. * At this time all functions EXCEPT clock_nanosleep can be
  114. * redirected by the CLOCKS structure. Clock_nanosleep is in
  115. * there, but the code ignores it.
  116. *
  117. * Permissions: It is assumed that the clock_settime() function defined
  118. * for each clock will take care of permission checks. Some
  119. * clocks may be set able by any user (i.e. local process
  120. * clocks) others not. Currently the only set able clock we
  121. * have is CLOCK_REALTIME and its high res counter part, both of
  122. * which we beg off on and pass to do_sys_settimeofday().
  123. */
  124. static struct k_clock posix_clocks[MAX_CLOCKS];
  125. /*
  126. * These ones are defined below.
  127. */
  128. static int common_nsleep(const clockid_t, int flags, struct timespec *t,
  129. struct timespec __user *rmtp);
  130. static void common_timer_get(struct k_itimer *, struct itimerspec *);
  131. static int common_timer_set(struct k_itimer *, int,
  132. struct itimerspec *, struct itimerspec *);
  133. static int common_timer_del(struct k_itimer *timer);
  134. static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
  135. static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
  136. static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
  137. {
  138. spin_unlock_irqrestore(&timr->it_lock, flags);
  139. }
  140. /*
  141. * Call the k_clock hook function if non-null, or the default function.
  142. */
  143. #define CLOCK_DISPATCH(clock, call, arglist) \
  144. ((clock) < 0 ? posix_cpu_##call arglist : \
  145. (posix_clocks[clock].call != NULL \
  146. ? (*posix_clocks[clock].call) arglist : common_##call arglist))
  147. /*
  148. * Default clock hook functions when the struct k_clock passed
  149. * to register_posix_clock leaves a function pointer null.
  150. *
  151. * The function common_CALL is the default implementation for
  152. * the function pointer CALL in struct k_clock.
  153. */
  154. static inline int common_clock_getres(const clockid_t which_clock,
  155. struct timespec *tp)
  156. {
  157. tp->tv_sec = 0;
  158. tp->tv_nsec = posix_clocks[which_clock].res;
  159. return 0;
  160. }
  161. /*
  162. * Get real time for posix timers
  163. */
  164. static int common_clock_get(clockid_t which_clock, struct timespec *tp)
  165. {
  166. ktime_get_real_ts(tp);
  167. return 0;
  168. }
  169. static inline int common_clock_set(const clockid_t which_clock,
  170. struct timespec *tp)
  171. {
  172. return do_sys_settimeofday(tp, NULL);
  173. }
  174. static int common_timer_create(struct k_itimer *new_timer)
  175. {
  176. hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
  177. return 0;
  178. }
  179. static int no_timer_create(struct k_itimer *new_timer)
  180. {
  181. return -EOPNOTSUPP;
  182. }
  183. /*
  184. * Return nonzero if we know a priori this clockid_t value is bogus.
  185. */
  186. static inline int invalid_clockid(const clockid_t which_clock)
  187. {
  188. if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
  189. return 0;
  190. if ((unsigned) which_clock >= MAX_CLOCKS)
  191. return 1;
  192. if (posix_clocks[which_clock].clock_getres != NULL)
  193. return 0;
  194. if (posix_clocks[which_clock].res != 0)
  195. return 0;
  196. return 1;
  197. }
  198. /*
  199. * Get monotonic time for posix timers
  200. */
  201. static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
  202. {
  203. ktime_get_ts(tp);
  204. return 0;
  205. }
  206. /*
  207. * Get monotonic time for posix timers
  208. */
  209. static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
  210. {
  211. getrawmonotonic(tp);
  212. return 0;
  213. }
  214. /*
  215. * Initialize everything, well, just everything in Posix clocks/timers ;)
  216. */
  217. static __init int init_posix_timers(void)
  218. {
  219. struct k_clock clock_realtime = {
  220. .clock_getres = hrtimer_get_res,
  221. };
  222. struct k_clock clock_monotonic = {
  223. .clock_getres = hrtimer_get_res,
  224. .clock_get = posix_ktime_get_ts,
  225. .clock_set = do_posix_clock_nosettime,
  226. };
  227. struct k_clock clock_monotonic_raw = {
  228. .clock_getres = hrtimer_get_res,
  229. .clock_get = posix_get_monotonic_raw,
  230. .clock_set = do_posix_clock_nosettime,
  231. .timer_create = no_timer_create,
  232. };
  233. register_posix_clock(CLOCK_REALTIME, &clock_realtime);
  234. register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
  235. register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
  236. posix_timers_cache = kmem_cache_create("posix_timers_cache",
  237. sizeof (struct k_itimer), 0, SLAB_PANIC,
  238. NULL);
  239. idr_init(&posix_timers_id);
  240. return 0;
  241. }
  242. __initcall(init_posix_timers);
  243. static void schedule_next_timer(struct k_itimer *timr)
  244. {
  245. struct hrtimer *timer = &timr->it.real.timer;
  246. if (timr->it.real.interval.tv64 == 0)
  247. return;
  248. timr->it_overrun += (unsigned int) hrtimer_forward(timer,
  249. timer->base->get_time(),
  250. timr->it.real.interval);
  251. timr->it_overrun_last = timr->it_overrun;
  252. timr->it_overrun = -1;
  253. ++timr->it_requeue_pending;
  254. hrtimer_restart(timer);
  255. }
  256. /*
  257. * This function is exported for use by the signal deliver code. It is
  258. * called just prior to the info block being released and passes that
  259. * block to us. It's function is to update the overrun entry AND to
  260. * restart the timer. It should only be called if the timer is to be
  261. * restarted (i.e. we have flagged this in the sys_private entry of the
  262. * info block).
  263. *
  264. * To protect aginst the timer going away while the interrupt is queued,
  265. * we require that the it_requeue_pending flag be set.
  266. */
  267. void do_schedule_next_timer(struct siginfo *info)
  268. {
  269. struct k_itimer *timr;
  270. unsigned long flags;
  271. timr = lock_timer(info->si_tid, &flags);
  272. if (timr && timr->it_requeue_pending == info->si_sys_private) {
  273. if (timr->it_clock < 0)
  274. posix_cpu_timer_schedule(timr);
  275. else
  276. schedule_next_timer(timr);
  277. info->si_overrun += timr->it_overrun_last;
  278. }
  279. if (timr)
  280. unlock_timer(timr, flags);
  281. }
  282. int posix_timer_event(struct k_itimer *timr, int si_private)
  283. {
  284. struct task_struct *task;
  285. int shared, ret = -1;
  286. /*
  287. * FIXME: if ->sigq is queued we can race with
  288. * dequeue_signal()->do_schedule_next_timer().
  289. *
  290. * If dequeue_signal() sees the "right" value of
  291. * si_sys_private it calls do_schedule_next_timer().
  292. * We re-queue ->sigq and drop ->it_lock().
  293. * do_schedule_next_timer() locks the timer
  294. * and re-schedules it while ->sigq is pending.
  295. * Not really bad, but not that we want.
  296. */
  297. timr->sigq->info.si_sys_private = si_private;
  298. rcu_read_lock();
  299. task = pid_task(timr->it_pid, PIDTYPE_PID);
  300. if (task) {
  301. shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
  302. ret = send_sigqueue(timr->sigq, task, shared);
  303. }
  304. rcu_read_unlock();
  305. /* If we failed to send the signal the timer stops. */
  306. return ret > 0;
  307. }
  308. EXPORT_SYMBOL_GPL(posix_timer_event);
  309. /*
  310. * This function gets called when a POSIX.1b interval timer expires. It
  311. * is used as a callback from the kernel internal timer. The
  312. * run_timer_list code ALWAYS calls with interrupts on.
  313. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
  314. */
  315. static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
  316. {
  317. struct k_itimer *timr;
  318. unsigned long flags;
  319. int si_private = 0;
  320. enum hrtimer_restart ret = HRTIMER_NORESTART;
  321. timr = container_of(timer, struct k_itimer, it.real.timer);
  322. spin_lock_irqsave(&timr->it_lock, flags);
  323. if (timr->it.real.interval.tv64 != 0)
  324. si_private = ++timr->it_requeue_pending;
  325. if (posix_timer_event(timr, si_private)) {
  326. /*
  327. * signal was not sent because of sig_ignor
  328. * we will not get a call back to restart it AND
  329. * it should be restarted.
  330. */
  331. if (timr->it.real.interval.tv64 != 0) {
  332. ktime_t now = hrtimer_cb_get_time(timer);
  333. /*
  334. * FIXME: What we really want, is to stop this
  335. * timer completely and restart it in case the
  336. * SIG_IGN is removed. This is a non trivial
  337. * change which involves sighand locking
  338. * (sigh !), which we don't want to do late in
  339. * the release cycle.
  340. *
  341. * For now we just let timers with an interval
  342. * less than a jiffie expire every jiffie to
  343. * avoid softirq starvation in case of SIG_IGN
  344. * and a very small interval, which would put
  345. * the timer right back on the softirq pending
  346. * list. By moving now ahead of time we trick
  347. * hrtimer_forward() to expire the timer
  348. * later, while we still maintain the overrun
  349. * accuracy, but have some inconsistency in
  350. * the timer_gettime() case. This is at least
  351. * better than a starved softirq. A more
  352. * complex fix which solves also another related
  353. * inconsistency is already in the pipeline.
  354. */
  355. #ifdef CONFIG_HIGH_RES_TIMERS
  356. {
  357. ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
  358. if (timr->it.real.interval.tv64 < kj.tv64)
  359. now = ktime_add(now, kj);
  360. }
  361. #endif
  362. timr->it_overrun += (unsigned int)
  363. hrtimer_forward(timer, now,
  364. timr->it.real.interval);
  365. ret = HRTIMER_RESTART;
  366. ++timr->it_requeue_pending;
  367. }
  368. }
  369. unlock_timer(timr, flags);
  370. return ret;
  371. }
  372. static struct pid *good_sigevent(sigevent_t * event)
  373. {
  374. struct task_struct *rtn = current->group_leader;
  375. if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
  376. (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
  377. !same_thread_group(rtn, current) ||
  378. (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
  379. return NULL;
  380. if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
  381. ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
  382. return NULL;
  383. return task_pid(rtn);
  384. }
  385. void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
  386. {
  387. if ((unsigned) clock_id >= MAX_CLOCKS) {
  388. printk("POSIX clock register failed for clock_id %d\n",
  389. clock_id);
  390. return;
  391. }
  392. posix_clocks[clock_id] = *new_clock;
  393. }
  394. EXPORT_SYMBOL_GPL(register_posix_clock);
  395. static struct k_itimer * alloc_posix_timer(void)
  396. {
  397. struct k_itimer *tmr;
  398. tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
  399. if (!tmr)
  400. return tmr;
  401. if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
  402. kmem_cache_free(posix_timers_cache, tmr);
  403. return NULL;
  404. }
  405. memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
  406. return tmr;
  407. }
  408. #define IT_ID_SET 1
  409. #define IT_ID_NOT_SET 0
  410. static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
  411. {
  412. if (it_id_set) {
  413. unsigned long flags;
  414. spin_lock_irqsave(&idr_lock, flags);
  415. idr_remove(&posix_timers_id, tmr->it_id);
  416. spin_unlock_irqrestore(&idr_lock, flags);
  417. }
  418. put_pid(tmr->it_pid);
  419. sigqueue_free(tmr->sigq);
  420. kmem_cache_free(posix_timers_cache, tmr);
  421. }
  422. /* Create a POSIX.1b interval timer. */
  423. SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
  424. struct sigevent __user *, timer_event_spec,
  425. timer_t __user *, created_timer_id)
  426. {
  427. struct k_itimer *new_timer;
  428. int error, new_timer_id;
  429. sigevent_t event;
  430. int it_id_set = IT_ID_NOT_SET;
  431. if (invalid_clockid(which_clock))
  432. return -EINVAL;
  433. new_timer = alloc_posix_timer();
  434. if (unlikely(!new_timer))
  435. return -EAGAIN;
  436. spin_lock_init(&new_timer->it_lock);
  437. retry:
  438. if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
  439. error = -EAGAIN;
  440. goto out;
  441. }
  442. spin_lock_irq(&idr_lock);
  443. error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
  444. spin_unlock_irq(&idr_lock);
  445. if (error) {
  446. if (error == -EAGAIN)
  447. goto retry;
  448. /*
  449. * Weird looking, but we return EAGAIN if the IDR is
  450. * full (proper POSIX return value for this)
  451. */
  452. error = -EAGAIN;
  453. goto out;
  454. }
  455. it_id_set = IT_ID_SET;
  456. new_timer->it_id = (timer_t) new_timer_id;
  457. new_timer->it_clock = which_clock;
  458. new_timer->it_overrun = -1;
  459. error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
  460. if (error)
  461. goto out;
  462. /*
  463. * return the timer_id now. The next step is hard to
  464. * back out if there is an error.
  465. */
  466. if (copy_to_user(created_timer_id,
  467. &new_timer_id, sizeof (new_timer_id))) {
  468. error = -EFAULT;
  469. goto out;
  470. }
  471. if (timer_event_spec) {
  472. if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
  473. error = -EFAULT;
  474. goto out;
  475. }
  476. rcu_read_lock();
  477. new_timer->it_pid = get_pid(good_sigevent(&event));
  478. rcu_read_unlock();
  479. if (!new_timer->it_pid) {
  480. error = -EINVAL;
  481. goto out;
  482. }
  483. } else {
  484. event.sigev_notify = SIGEV_SIGNAL;
  485. event.sigev_signo = SIGALRM;
  486. event.sigev_value.sival_int = new_timer->it_id;
  487. new_timer->it_pid = get_pid(task_tgid(current));
  488. }
  489. new_timer->it_sigev_notify = event.sigev_notify;
  490. new_timer->sigq->info.si_signo = event.sigev_signo;
  491. new_timer->sigq->info.si_value = event.sigev_value;
  492. new_timer->sigq->info.si_tid = new_timer->it_id;
  493. new_timer->sigq->info.si_code = SI_TIMER;
  494. spin_lock_irq(&current->sighand->siglock);
  495. new_timer->it_signal = current->signal;
  496. list_add(&new_timer->list, &current->signal->posix_timers);
  497. spin_unlock_irq(&current->sighand->siglock);
  498. return 0;
  499. /*
  500. * In the case of the timer belonging to another task, after
  501. * the task is unlocked, the timer is owned by the other task
  502. * and may cease to exist at any time. Don't use or modify
  503. * new_timer after the unlock call.
  504. */
  505. out:
  506. release_posix_timer(new_timer, it_id_set);
  507. return error;
  508. }
  509. /*
  510. * Locking issues: We need to protect the result of the id look up until
  511. * we get the timer locked down so it is not deleted under us. The
  512. * removal is done under the idr spinlock so we use that here to bridge
  513. * the find to the timer lock. To avoid a dead lock, the timer id MUST
  514. * be release with out holding the timer lock.
  515. */
  516. static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
  517. {
  518. struct k_itimer *timr;
  519. /*
  520. * Watch out here. We do a irqsave on the idr_lock and pass the
  521. * flags part over to the timer lock. Must not let interrupts in
  522. * while we are moving the lock.
  523. */
  524. spin_lock_irqsave(&idr_lock, *flags);
  525. timr = idr_find(&posix_timers_id, (int)timer_id);
  526. if (timr) {
  527. spin_lock(&timr->it_lock);
  528. if (timr->it_signal == current->signal) {
  529. spin_unlock(&idr_lock);
  530. return timr;
  531. }
  532. spin_unlock(&timr->it_lock);
  533. }
  534. spin_unlock_irqrestore(&idr_lock, *flags);
  535. return NULL;
  536. }
  537. /*
  538. * Get the time remaining on a POSIX.1b interval timer. This function
  539. * is ALWAYS called with spin_lock_irq on the timer, thus it must not
  540. * mess with irq.
  541. *
  542. * We have a couple of messes to clean up here. First there is the case
  543. * of a timer that has a requeue pending. These timers should appear to
  544. * be in the timer list with an expiry as if we were to requeue them
  545. * now.
  546. *
  547. * The second issue is the SIGEV_NONE timer which may be active but is
  548. * not really ever put in the timer list (to save system resources).
  549. * This timer may be expired, and if so, we will do it here. Otherwise
  550. * it is the same as a requeue pending timer WRT to what we should
  551. * report.
  552. */
  553. static void
  554. common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  555. {
  556. ktime_t now, remaining, iv;
  557. struct hrtimer *timer = &timr->it.real.timer;
  558. memset(cur_setting, 0, sizeof(struct itimerspec));
  559. iv = timr->it.real.interval;
  560. /* interval timer ? */
  561. if (iv.tv64)
  562. cur_setting->it_interval = ktime_to_timespec(iv);
  563. else if (!hrtimer_active(timer) &&
  564. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  565. return;
  566. now = timer->base->get_time();
  567. /*
  568. * When a requeue is pending or this is a SIGEV_NONE
  569. * timer move the expiry time forward by intervals, so
  570. * expiry is > now.
  571. */
  572. if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
  573. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
  574. timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
  575. remaining = ktime_sub(hrtimer_get_expires(timer), now);
  576. /* Return 0 only, when the timer is expired and not pending */
  577. if (remaining.tv64 <= 0) {
  578. /*
  579. * A single shot SIGEV_NONE timer must return 0, when
  580. * it is expired !
  581. */
  582. if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  583. cur_setting->it_value.tv_nsec = 1;
  584. } else
  585. cur_setting->it_value = ktime_to_timespec(remaining);
  586. }
  587. /* Get the time remaining on a POSIX.1b interval timer. */
  588. SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
  589. struct itimerspec __user *, setting)
  590. {
  591. struct k_itimer *timr;
  592. struct itimerspec cur_setting;
  593. unsigned long flags;
  594. timr = lock_timer(timer_id, &flags);
  595. if (!timr)
  596. return -EINVAL;
  597. CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
  598. unlock_timer(timr, flags);
  599. if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
  600. return -EFAULT;
  601. return 0;
  602. }
  603. /*
  604. * Get the number of overruns of a POSIX.1b interval timer. This is to
  605. * be the overrun of the timer last delivered. At the same time we are
  606. * accumulating overruns on the next timer. The overrun is frozen when
  607. * the signal is delivered, either at the notify time (if the info block
  608. * is not queued) or at the actual delivery time (as we are informed by
  609. * the call back to do_schedule_next_timer(). So all we need to do is
  610. * to pick up the frozen overrun.
  611. */
  612. SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
  613. {
  614. struct k_itimer *timr;
  615. int overrun;
  616. unsigned long flags;
  617. timr = lock_timer(timer_id, &flags);
  618. if (!timr)
  619. return -EINVAL;
  620. overrun = timr->it_overrun_last;
  621. unlock_timer(timr, flags);
  622. return overrun;
  623. }
  624. /* Set a POSIX.1b interval timer. */
  625. /* timr->it_lock is taken. */
  626. static int
  627. common_timer_set(struct k_itimer *timr, int flags,
  628. struct itimerspec *new_setting, struct itimerspec *old_setting)
  629. {
  630. struct hrtimer *timer = &timr->it.real.timer;
  631. enum hrtimer_mode mode;
  632. if (old_setting)
  633. common_timer_get(timr, old_setting);
  634. /* disable the timer */
  635. timr->it.real.interval.tv64 = 0;
  636. /*
  637. * careful here. If smp we could be in the "fire" routine which will
  638. * be spinning as we hold the lock. But this is ONLY an SMP issue.
  639. */
  640. if (hrtimer_try_to_cancel(timer) < 0)
  641. return TIMER_RETRY;
  642. timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
  643. ~REQUEUE_PENDING;
  644. timr->it_overrun_last = 0;
  645. /* switch off the timer when it_value is zero */
  646. if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
  647. return 0;
  648. mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
  649. hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
  650. timr->it.real.timer.function = posix_timer_fn;
  651. hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
  652. /* Convert interval */
  653. timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
  654. /* SIGEV_NONE timers are not queued ! See common_timer_get */
  655. if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
  656. /* Setup correct expiry time for relative timers */
  657. if (mode == HRTIMER_MODE_REL) {
  658. hrtimer_add_expires(timer, timer->base->get_time());
  659. }
  660. return 0;
  661. }
  662. hrtimer_start_expires(timer, mode);
  663. return 0;
  664. }
  665. /* Set a POSIX.1b interval timer */
  666. SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
  667. const struct itimerspec __user *, new_setting,
  668. struct itimerspec __user *, old_setting)
  669. {
  670. struct k_itimer *timr;
  671. struct itimerspec new_spec, old_spec;
  672. int error = 0;
  673. unsigned long flag;
  674. struct itimerspec *rtn = old_setting ? &old_spec : NULL;
  675. if (!new_setting)
  676. return -EINVAL;
  677. if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
  678. return -EFAULT;
  679. if (!timespec_valid(&new_spec.it_interval) ||
  680. !timespec_valid(&new_spec.it_value))
  681. return -EINVAL;
  682. retry:
  683. timr = lock_timer(timer_id, &flag);
  684. if (!timr)
  685. return -EINVAL;
  686. error = CLOCK_DISPATCH(timr->it_clock, timer_set,
  687. (timr, flags, &new_spec, rtn));
  688. unlock_timer(timr, flag);
  689. if (error == TIMER_RETRY) {
  690. rtn = NULL; // We already got the old time...
  691. goto retry;
  692. }
  693. if (old_setting && !error &&
  694. copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
  695. error = -EFAULT;
  696. return error;
  697. }
  698. static inline int common_timer_del(struct k_itimer *timer)
  699. {
  700. timer->it.real.interval.tv64 = 0;
  701. if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
  702. return TIMER_RETRY;
  703. return 0;
  704. }
  705. static inline int timer_delete_hook(struct k_itimer *timer)
  706. {
  707. return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
  708. }
  709. /* Delete a POSIX.1b interval timer. */
  710. SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
  711. {
  712. struct k_itimer *timer;
  713. unsigned long flags;
  714. retry_delete:
  715. timer = lock_timer(timer_id, &flags);
  716. if (!timer)
  717. return -EINVAL;
  718. if (timer_delete_hook(timer) == TIMER_RETRY) {
  719. unlock_timer(timer, flags);
  720. goto retry_delete;
  721. }
  722. spin_lock(&current->sighand->siglock);
  723. list_del(&timer->list);
  724. spin_unlock(&current->sighand->siglock);
  725. /*
  726. * This keeps any tasks waiting on the spin lock from thinking
  727. * they got something (see the lock code above).
  728. */
  729. timer->it_signal = NULL;
  730. unlock_timer(timer, flags);
  731. release_posix_timer(timer, IT_ID_SET);
  732. return 0;
  733. }
  734. /*
  735. * return timer owned by the process, used by exit_itimers
  736. */
  737. static void itimer_delete(struct k_itimer *timer)
  738. {
  739. unsigned long flags;
  740. retry_delete:
  741. spin_lock_irqsave(&timer->it_lock, flags);
  742. if (timer_delete_hook(timer) == TIMER_RETRY) {
  743. unlock_timer(timer, flags);
  744. goto retry_delete;
  745. }
  746. list_del(&timer->list);
  747. /*
  748. * This keeps any tasks waiting on the spin lock from thinking
  749. * they got something (see the lock code above).
  750. */
  751. timer->it_signal = NULL;
  752. unlock_timer(timer, flags);
  753. release_posix_timer(timer, IT_ID_SET);
  754. }
  755. /*
  756. * This is called by do_exit or de_thread, only when there are no more
  757. * references to the shared signal_struct.
  758. */
  759. void exit_itimers(struct signal_struct *sig)
  760. {
  761. struct k_itimer *tmr;
  762. while (!list_empty(&sig->posix_timers)) {
  763. tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
  764. itimer_delete(tmr);
  765. }
  766. }
  767. /* Not available / possible... functions */
  768. int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
  769. {
  770. return -EINVAL;
  771. }
  772. EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
  773. int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
  774. struct timespec *t, struct timespec __user *r)
  775. {
  776. #ifndef ENOTSUP
  777. return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
  778. #else /* parisc does define it separately. */
  779. return -ENOTSUP;
  780. #endif
  781. }
  782. EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
  783. SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
  784. const struct timespec __user *, tp)
  785. {
  786. struct timespec new_tp;
  787. if (invalid_clockid(which_clock))
  788. return -EINVAL;
  789. if (copy_from_user(&new_tp, tp, sizeof (*tp)))
  790. return -EFAULT;
  791. return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
  792. }
  793. SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
  794. struct timespec __user *,tp)
  795. {
  796. struct timespec kernel_tp;
  797. int error;
  798. if (invalid_clockid(which_clock))
  799. return -EINVAL;
  800. error = CLOCK_DISPATCH(which_clock, clock_get,
  801. (which_clock, &kernel_tp));
  802. if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
  803. error = -EFAULT;
  804. return error;
  805. }
  806. SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
  807. struct timespec __user *, tp)
  808. {
  809. struct timespec rtn_tp;
  810. int error;
  811. if (invalid_clockid(which_clock))
  812. return -EINVAL;
  813. error = CLOCK_DISPATCH(which_clock, clock_getres,
  814. (which_clock, &rtn_tp));
  815. if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
  816. error = -EFAULT;
  817. }
  818. return error;
  819. }
  820. /*
  821. * nanosleep for monotonic and realtime clocks
  822. */
  823. static int common_nsleep(const clockid_t which_clock, int flags,
  824. struct timespec *tsave, struct timespec __user *rmtp)
  825. {
  826. return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
  827. HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
  828. which_clock);
  829. }
  830. SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
  831. const struct timespec __user *, rqtp,
  832. struct timespec __user *, rmtp)
  833. {
  834. struct timespec t;
  835. if (invalid_clockid(which_clock))
  836. return -EINVAL;
  837. if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
  838. return -EFAULT;
  839. if (!timespec_valid(&t))
  840. return -EINVAL;
  841. return CLOCK_DISPATCH(which_clock, nsleep,
  842. (which_clock, flags, &t, rmtp));
  843. }
  844. /*
  845. * nanosleep_restart for monotonic and realtime clocks
  846. */
  847. static int common_nsleep_restart(struct restart_block *restart_block)
  848. {
  849. return hrtimer_nanosleep_restart(restart_block);
  850. }
  851. /*
  852. * This will restart clock_nanosleep. This is required only by
  853. * compat_clock_nanosleep_restart for now.
  854. */
  855. long
  856. clock_nanosleep_restart(struct restart_block *restart_block)
  857. {
  858. clockid_t which_clock = restart_block->arg0;
  859. return CLOCK_DISPATCH(which_clock, nsleep_restart,
  860. (restart_block));
  861. }