posix-cpu-timers.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711
  1. /*
  2. * Implement CPU time clocks for the POSIX clock interface.
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/posix-timers.h>
  6. #include <linux/errno.h>
  7. #include <linux/math64.h>
  8. #include <asm/uaccess.h>
  9. #include <linux/kernel_stat.h>
  10. /*
  11. * Called after updating RLIMIT_CPU to set timer expiration if necessary.
  12. */
  13. void update_rlimit_cpu(unsigned long rlim_new)
  14. {
  15. cputime_t cputime;
  16. cputime = secs_to_cputime(rlim_new);
  17. if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
  18. cputime_gt(current->signal->it_prof_expires, cputime)) {
  19. spin_lock_irq(&current->sighand->siglock);
  20. set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
  21. spin_unlock_irq(&current->sighand->siglock);
  22. }
  23. }
  24. static int check_clock(const clockid_t which_clock)
  25. {
  26. int error = 0;
  27. struct task_struct *p;
  28. const pid_t pid = CPUCLOCK_PID(which_clock);
  29. if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  30. return -EINVAL;
  31. if (pid == 0)
  32. return 0;
  33. read_lock(&tasklist_lock);
  34. p = find_task_by_vpid(pid);
  35. if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  36. same_thread_group(p, current) : thread_group_leader(p))) {
  37. error = -EINVAL;
  38. }
  39. read_unlock(&tasklist_lock);
  40. return error;
  41. }
  42. static inline union cpu_time_count
  43. timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  44. {
  45. union cpu_time_count ret;
  46. ret.sched = 0; /* high half always zero when .cpu used */
  47. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  48. ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  49. } else {
  50. ret.cpu = timespec_to_cputime(tp);
  51. }
  52. return ret;
  53. }
  54. static void sample_to_timespec(const clockid_t which_clock,
  55. union cpu_time_count cpu,
  56. struct timespec *tp)
  57. {
  58. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  59. *tp = ns_to_timespec(cpu.sched);
  60. else
  61. cputime_to_timespec(cpu.cpu, tp);
  62. }
  63. static inline int cpu_time_before(const clockid_t which_clock,
  64. union cpu_time_count now,
  65. union cpu_time_count then)
  66. {
  67. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  68. return now.sched < then.sched;
  69. } else {
  70. return cputime_lt(now.cpu, then.cpu);
  71. }
  72. }
  73. static inline void cpu_time_add(const clockid_t which_clock,
  74. union cpu_time_count *acc,
  75. union cpu_time_count val)
  76. {
  77. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  78. acc->sched += val.sched;
  79. } else {
  80. acc->cpu = cputime_add(acc->cpu, val.cpu);
  81. }
  82. }
  83. static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  84. union cpu_time_count a,
  85. union cpu_time_count b)
  86. {
  87. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  88. a.sched -= b.sched;
  89. } else {
  90. a.cpu = cputime_sub(a.cpu, b.cpu);
  91. }
  92. return a;
  93. }
  94. /*
  95. * Divide and limit the result to res >= 1
  96. *
  97. * This is necessary to prevent signal delivery starvation, when the result of
  98. * the division would be rounded down to 0.
  99. */
  100. static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
  101. {
  102. cputime_t res = cputime_div(time, div);
  103. return max_t(cputime_t, res, 1);
  104. }
  105. /*
  106. * Update expiry time from increment, and increase overrun count,
  107. * given the current clock sample.
  108. */
  109. static void bump_cpu_timer(struct k_itimer *timer,
  110. union cpu_time_count now)
  111. {
  112. int i;
  113. if (timer->it.cpu.incr.sched == 0)
  114. return;
  115. if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
  116. unsigned long long delta, incr;
  117. if (now.sched < timer->it.cpu.expires.sched)
  118. return;
  119. incr = timer->it.cpu.incr.sched;
  120. delta = now.sched + incr - timer->it.cpu.expires.sched;
  121. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  122. for (i = 0; incr < delta - incr; i++)
  123. incr = incr << 1;
  124. for (; i >= 0; incr >>= 1, i--) {
  125. if (delta < incr)
  126. continue;
  127. timer->it.cpu.expires.sched += incr;
  128. timer->it_overrun += 1 << i;
  129. delta -= incr;
  130. }
  131. } else {
  132. cputime_t delta, incr;
  133. if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
  134. return;
  135. incr = timer->it.cpu.incr.cpu;
  136. delta = cputime_sub(cputime_add(now.cpu, incr),
  137. timer->it.cpu.expires.cpu);
  138. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  139. for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
  140. incr = cputime_add(incr, incr);
  141. for (; i >= 0; incr = cputime_halve(incr), i--) {
  142. if (cputime_lt(delta, incr))
  143. continue;
  144. timer->it.cpu.expires.cpu =
  145. cputime_add(timer->it.cpu.expires.cpu, incr);
  146. timer->it_overrun += 1 << i;
  147. delta = cputime_sub(delta, incr);
  148. }
  149. }
  150. }
  151. static inline cputime_t prof_ticks(struct task_struct *p)
  152. {
  153. return cputime_add(p->utime, p->stime);
  154. }
  155. static inline cputime_t virt_ticks(struct task_struct *p)
  156. {
  157. return p->utime;
  158. }
  159. int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
  160. {
  161. int error = check_clock(which_clock);
  162. if (!error) {
  163. tp->tv_sec = 0;
  164. tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  165. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  166. /*
  167. * If sched_clock is using a cycle counter, we
  168. * don't have any idea of its true resolution
  169. * exported, but it is much more than 1s/HZ.
  170. */
  171. tp->tv_nsec = 1;
  172. }
  173. }
  174. return error;
  175. }
  176. int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
  177. {
  178. /*
  179. * You can never reset a CPU clock, but we check for other errors
  180. * in the call before failing with EPERM.
  181. */
  182. int error = check_clock(which_clock);
  183. if (error == 0) {
  184. error = -EPERM;
  185. }
  186. return error;
  187. }
  188. /*
  189. * Sample a per-thread clock for the given task.
  190. */
  191. static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
  192. union cpu_time_count *cpu)
  193. {
  194. switch (CPUCLOCK_WHICH(which_clock)) {
  195. default:
  196. return -EINVAL;
  197. case CPUCLOCK_PROF:
  198. cpu->cpu = prof_ticks(p);
  199. break;
  200. case CPUCLOCK_VIRT:
  201. cpu->cpu = virt_ticks(p);
  202. break;
  203. case CPUCLOCK_SCHED:
  204. cpu->sched = task_sched_runtime(p);
  205. break;
  206. }
  207. return 0;
  208. }
  209. void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
  210. {
  211. struct sighand_struct *sighand;
  212. struct signal_struct *sig;
  213. struct task_struct *t;
  214. *times = INIT_CPUTIME;
  215. rcu_read_lock();
  216. sighand = rcu_dereference(tsk->sighand);
  217. if (!sighand)
  218. goto out;
  219. sig = tsk->signal;
  220. t = tsk;
  221. do {
  222. times->utime = cputime_add(times->utime, t->utime);
  223. times->stime = cputime_add(times->stime, t->stime);
  224. times->sum_exec_runtime += t->se.sum_exec_runtime;
  225. t = next_thread(t);
  226. } while (t != tsk);
  227. times->utime = cputime_add(times->utime, sig->utime);
  228. times->stime = cputime_add(times->stime, sig->stime);
  229. times->sum_exec_runtime += sig->sum_sched_runtime;
  230. out:
  231. rcu_read_unlock();
  232. }
  233. static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
  234. {
  235. if (cputime_gt(b->utime, a->utime))
  236. a->utime = b->utime;
  237. if (cputime_gt(b->stime, a->stime))
  238. a->stime = b->stime;
  239. if (b->sum_exec_runtime > a->sum_exec_runtime)
  240. a->sum_exec_runtime = b->sum_exec_runtime;
  241. }
  242. void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  243. {
  244. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  245. struct task_cputime sum;
  246. unsigned long flags;
  247. spin_lock_irqsave(&cputimer->lock, flags);
  248. if (!cputimer->running) {
  249. cputimer->running = 1;
  250. /*
  251. * The POSIX timer interface allows for absolute time expiry
  252. * values through the TIMER_ABSTIME flag, therefore we have
  253. * to synchronize the timer to the clock every time we start
  254. * it.
  255. */
  256. thread_group_cputime(tsk, &sum);
  257. update_gt_cputime(&cputimer->cputime, &sum);
  258. }
  259. *times = cputimer->cputime;
  260. spin_unlock_irqrestore(&cputimer->lock, flags);
  261. }
  262. /*
  263. * Sample a process (thread group) clock for the given group_leader task.
  264. * Must be called with tasklist_lock held for reading.
  265. */
  266. static int cpu_clock_sample_group(const clockid_t which_clock,
  267. struct task_struct *p,
  268. union cpu_time_count *cpu)
  269. {
  270. struct task_cputime cputime;
  271. switch (CPUCLOCK_WHICH(which_clock)) {
  272. default:
  273. return -EINVAL;
  274. case CPUCLOCK_PROF:
  275. thread_group_cputime(p, &cputime);
  276. cpu->cpu = cputime_add(cputime.utime, cputime.stime);
  277. break;
  278. case CPUCLOCK_VIRT:
  279. thread_group_cputime(p, &cputime);
  280. cpu->cpu = cputime.utime;
  281. break;
  282. case CPUCLOCK_SCHED:
  283. cpu->sched = thread_group_sched_runtime(p);
  284. break;
  285. }
  286. return 0;
  287. }
  288. int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
  289. {
  290. const pid_t pid = CPUCLOCK_PID(which_clock);
  291. int error = -EINVAL;
  292. union cpu_time_count rtn;
  293. if (pid == 0) {
  294. /*
  295. * Special case constant value for our own clocks.
  296. * We don't have to do any lookup to find ourselves.
  297. */
  298. if (CPUCLOCK_PERTHREAD(which_clock)) {
  299. /*
  300. * Sampling just ourselves we can do with no locking.
  301. */
  302. error = cpu_clock_sample(which_clock,
  303. current, &rtn);
  304. } else {
  305. read_lock(&tasklist_lock);
  306. error = cpu_clock_sample_group(which_clock,
  307. current, &rtn);
  308. read_unlock(&tasklist_lock);
  309. }
  310. } else {
  311. /*
  312. * Find the given PID, and validate that the caller
  313. * should be able to see it.
  314. */
  315. struct task_struct *p;
  316. rcu_read_lock();
  317. p = find_task_by_vpid(pid);
  318. if (p) {
  319. if (CPUCLOCK_PERTHREAD(which_clock)) {
  320. if (same_thread_group(p, current)) {
  321. error = cpu_clock_sample(which_clock,
  322. p, &rtn);
  323. }
  324. } else {
  325. read_lock(&tasklist_lock);
  326. if (thread_group_leader(p) && p->signal) {
  327. error =
  328. cpu_clock_sample_group(which_clock,
  329. p, &rtn);
  330. }
  331. read_unlock(&tasklist_lock);
  332. }
  333. }
  334. rcu_read_unlock();
  335. }
  336. if (error)
  337. return error;
  338. sample_to_timespec(which_clock, rtn, tp);
  339. return 0;
  340. }
  341. /*
  342. * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  343. * This is called from sys_timer_create with the new timer already locked.
  344. */
  345. int posix_cpu_timer_create(struct k_itimer *new_timer)
  346. {
  347. int ret = 0;
  348. const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  349. struct task_struct *p;
  350. if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  351. return -EINVAL;
  352. INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  353. new_timer->it.cpu.incr.sched = 0;
  354. new_timer->it.cpu.expires.sched = 0;
  355. read_lock(&tasklist_lock);
  356. if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  357. if (pid == 0) {
  358. p = current;
  359. } else {
  360. p = find_task_by_vpid(pid);
  361. if (p && !same_thread_group(p, current))
  362. p = NULL;
  363. }
  364. } else {
  365. if (pid == 0) {
  366. p = current->group_leader;
  367. } else {
  368. p = find_task_by_vpid(pid);
  369. if (p && !thread_group_leader(p))
  370. p = NULL;
  371. }
  372. }
  373. new_timer->it.cpu.task = p;
  374. if (p) {
  375. get_task_struct(p);
  376. } else {
  377. ret = -EINVAL;
  378. }
  379. read_unlock(&tasklist_lock);
  380. return ret;
  381. }
  382. /*
  383. * Clean up a CPU-clock timer that is about to be destroyed.
  384. * This is called from timer deletion with the timer already locked.
  385. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  386. * and try again. (This happens when the timer is in the middle of firing.)
  387. */
  388. int posix_cpu_timer_del(struct k_itimer *timer)
  389. {
  390. struct task_struct *p = timer->it.cpu.task;
  391. int ret = 0;
  392. if (likely(p != NULL)) {
  393. read_lock(&tasklist_lock);
  394. if (unlikely(p->signal == NULL)) {
  395. /*
  396. * We raced with the reaping of the task.
  397. * The deletion should have cleared us off the list.
  398. */
  399. BUG_ON(!list_empty(&timer->it.cpu.entry));
  400. } else {
  401. spin_lock(&p->sighand->siglock);
  402. if (timer->it.cpu.firing)
  403. ret = TIMER_RETRY;
  404. else
  405. list_del(&timer->it.cpu.entry);
  406. spin_unlock(&p->sighand->siglock);
  407. }
  408. read_unlock(&tasklist_lock);
  409. if (!ret)
  410. put_task_struct(p);
  411. }
  412. return ret;
  413. }
  414. /*
  415. * Clean out CPU timers still ticking when a thread exited. The task
  416. * pointer is cleared, and the expiry time is replaced with the residual
  417. * time for later timer_gettime calls to return.
  418. * This must be called with the siglock held.
  419. */
  420. static void cleanup_timers(struct list_head *head,
  421. cputime_t utime, cputime_t stime,
  422. unsigned long long sum_exec_runtime)
  423. {
  424. struct cpu_timer_list *timer, *next;
  425. cputime_t ptime = cputime_add(utime, stime);
  426. list_for_each_entry_safe(timer, next, head, entry) {
  427. list_del_init(&timer->entry);
  428. if (cputime_lt(timer->expires.cpu, ptime)) {
  429. timer->expires.cpu = cputime_zero;
  430. } else {
  431. timer->expires.cpu = cputime_sub(timer->expires.cpu,
  432. ptime);
  433. }
  434. }
  435. ++head;
  436. list_for_each_entry_safe(timer, next, head, entry) {
  437. list_del_init(&timer->entry);
  438. if (cputime_lt(timer->expires.cpu, utime)) {
  439. timer->expires.cpu = cputime_zero;
  440. } else {
  441. timer->expires.cpu = cputime_sub(timer->expires.cpu,
  442. utime);
  443. }
  444. }
  445. ++head;
  446. list_for_each_entry_safe(timer, next, head, entry) {
  447. list_del_init(&timer->entry);
  448. if (timer->expires.sched < sum_exec_runtime) {
  449. timer->expires.sched = 0;
  450. } else {
  451. timer->expires.sched -= sum_exec_runtime;
  452. }
  453. }
  454. }
  455. /*
  456. * These are both called with the siglock held, when the current thread
  457. * is being reaped. When the final (leader) thread in the group is reaped,
  458. * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  459. */
  460. void posix_cpu_timers_exit(struct task_struct *tsk)
  461. {
  462. cleanup_timers(tsk->cpu_timers,
  463. tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
  464. }
  465. void posix_cpu_timers_exit_group(struct task_struct *tsk)
  466. {
  467. struct task_cputime cputime;
  468. thread_group_cputimer(tsk, &cputime);
  469. cleanup_timers(tsk->signal->cpu_timers,
  470. cputime.utime, cputime.stime, cputime.sum_exec_runtime);
  471. }
  472. static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
  473. {
  474. /*
  475. * That's all for this thread or process.
  476. * We leave our residual in expires to be reported.
  477. */
  478. put_task_struct(timer->it.cpu.task);
  479. timer->it.cpu.task = NULL;
  480. timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
  481. timer->it.cpu.expires,
  482. now);
  483. }
  484. /*
  485. * Insert the timer on the appropriate list before any timers that
  486. * expire later. This must be called with the tasklist_lock held
  487. * for reading, and interrupts disabled.
  488. */
  489. static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
  490. {
  491. struct task_struct *p = timer->it.cpu.task;
  492. struct list_head *head, *listpos;
  493. struct cpu_timer_list *const nt = &timer->it.cpu;
  494. struct cpu_timer_list *next;
  495. unsigned long i;
  496. head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
  497. p->cpu_timers : p->signal->cpu_timers);
  498. head += CPUCLOCK_WHICH(timer->it_clock);
  499. BUG_ON(!irqs_disabled());
  500. spin_lock(&p->sighand->siglock);
  501. listpos = head;
  502. if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
  503. list_for_each_entry(next, head, entry) {
  504. if (next->expires.sched > nt->expires.sched)
  505. break;
  506. listpos = &next->entry;
  507. }
  508. } else {
  509. list_for_each_entry(next, head, entry) {
  510. if (cputime_gt(next->expires.cpu, nt->expires.cpu))
  511. break;
  512. listpos = &next->entry;
  513. }
  514. }
  515. list_add(&nt->entry, listpos);
  516. if (listpos == head) {
  517. /*
  518. * We are the new earliest-expiring timer.
  519. * If we are a thread timer, there can always
  520. * be a process timer telling us to stop earlier.
  521. */
  522. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  523. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  524. default:
  525. BUG();
  526. case CPUCLOCK_PROF:
  527. if (cputime_eq(p->cputime_expires.prof_exp,
  528. cputime_zero) ||
  529. cputime_gt(p->cputime_expires.prof_exp,
  530. nt->expires.cpu))
  531. p->cputime_expires.prof_exp =
  532. nt->expires.cpu;
  533. break;
  534. case CPUCLOCK_VIRT:
  535. if (cputime_eq(p->cputime_expires.virt_exp,
  536. cputime_zero) ||
  537. cputime_gt(p->cputime_expires.virt_exp,
  538. nt->expires.cpu))
  539. p->cputime_expires.virt_exp =
  540. nt->expires.cpu;
  541. break;
  542. case CPUCLOCK_SCHED:
  543. if (p->cputime_expires.sched_exp == 0 ||
  544. p->cputime_expires.sched_exp >
  545. nt->expires.sched)
  546. p->cputime_expires.sched_exp =
  547. nt->expires.sched;
  548. break;
  549. }
  550. } else {
  551. /*
  552. * For a process timer, set the cached expiration time.
  553. */
  554. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  555. default:
  556. BUG();
  557. case CPUCLOCK_VIRT:
  558. if (!cputime_eq(p->signal->it_virt_expires,
  559. cputime_zero) &&
  560. cputime_lt(p->signal->it_virt_expires,
  561. timer->it.cpu.expires.cpu))
  562. break;
  563. p->signal->cputime_expires.virt_exp =
  564. timer->it.cpu.expires.cpu;
  565. break;
  566. case CPUCLOCK_PROF:
  567. if (!cputime_eq(p->signal->it_prof_expires,
  568. cputime_zero) &&
  569. cputime_lt(p->signal->it_prof_expires,
  570. timer->it.cpu.expires.cpu))
  571. break;
  572. i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
  573. if (i != RLIM_INFINITY &&
  574. i <= cputime_to_secs(timer->it.cpu.expires.cpu))
  575. break;
  576. p->signal->cputime_expires.prof_exp =
  577. timer->it.cpu.expires.cpu;
  578. break;
  579. case CPUCLOCK_SCHED:
  580. p->signal->cputime_expires.sched_exp =
  581. timer->it.cpu.expires.sched;
  582. break;
  583. }
  584. }
  585. }
  586. spin_unlock(&p->sighand->siglock);
  587. }
  588. /*
  589. * The timer is locked, fire it and arrange for its reload.
  590. */
  591. static void cpu_timer_fire(struct k_itimer *timer)
  592. {
  593. if (unlikely(timer->sigq == NULL)) {
  594. /*
  595. * This a special case for clock_nanosleep,
  596. * not a normal timer from sys_timer_create.
  597. */
  598. wake_up_process(timer->it_process);
  599. timer->it.cpu.expires.sched = 0;
  600. } else if (timer->it.cpu.incr.sched == 0) {
  601. /*
  602. * One-shot timer. Clear it as soon as it's fired.
  603. */
  604. posix_timer_event(timer, 0);
  605. timer->it.cpu.expires.sched = 0;
  606. } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  607. /*
  608. * The signal did not get queued because the signal
  609. * was ignored, so we won't get any callback to
  610. * reload the timer. But we need to keep it
  611. * ticking in case the signal is deliverable next time.
  612. */
  613. posix_cpu_timer_schedule(timer);
  614. }
  615. }
  616. /*
  617. * Sample a process (thread group) timer for the given group_leader task.
  618. * Must be called with tasklist_lock held for reading.
  619. */
  620. static int cpu_timer_sample_group(const clockid_t which_clock,
  621. struct task_struct *p,
  622. union cpu_time_count *cpu)
  623. {
  624. struct task_cputime cputime;
  625. thread_group_cputimer(p, &cputime);
  626. switch (CPUCLOCK_WHICH(which_clock)) {
  627. default:
  628. return -EINVAL;
  629. case CPUCLOCK_PROF:
  630. cpu->cpu = cputime_add(cputime.utime, cputime.stime);
  631. break;
  632. case CPUCLOCK_VIRT:
  633. cpu->cpu = cputime.utime;
  634. break;
  635. case CPUCLOCK_SCHED:
  636. cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
  637. break;
  638. }
  639. return 0;
  640. }
  641. /*
  642. * Guts of sys_timer_settime for CPU timers.
  643. * This is called with the timer locked and interrupts disabled.
  644. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  645. * and try again. (This happens when the timer is in the middle of firing.)
  646. */
  647. int posix_cpu_timer_set(struct k_itimer *timer, int flags,
  648. struct itimerspec *new, struct itimerspec *old)
  649. {
  650. struct task_struct *p = timer->it.cpu.task;
  651. union cpu_time_count old_expires, new_expires, val;
  652. int ret;
  653. if (unlikely(p == NULL)) {
  654. /*
  655. * Timer refers to a dead task's clock.
  656. */
  657. return -ESRCH;
  658. }
  659. new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
  660. read_lock(&tasklist_lock);
  661. /*
  662. * We need the tasklist_lock to protect against reaping that
  663. * clears p->signal. If p has just been reaped, we can no
  664. * longer get any information about it at all.
  665. */
  666. if (unlikely(p->signal == NULL)) {
  667. read_unlock(&tasklist_lock);
  668. put_task_struct(p);
  669. timer->it.cpu.task = NULL;
  670. return -ESRCH;
  671. }
  672. /*
  673. * Disarm any old timer after extracting its expiry time.
  674. */
  675. BUG_ON(!irqs_disabled());
  676. ret = 0;
  677. spin_lock(&p->sighand->siglock);
  678. old_expires = timer->it.cpu.expires;
  679. if (unlikely(timer->it.cpu.firing)) {
  680. timer->it.cpu.firing = -1;
  681. ret = TIMER_RETRY;
  682. } else
  683. list_del_init(&timer->it.cpu.entry);
  684. spin_unlock(&p->sighand->siglock);
  685. /*
  686. * We need to sample the current value to convert the new
  687. * value from to relative and absolute, and to convert the
  688. * old value from absolute to relative. To set a process
  689. * timer, we need a sample to balance the thread expiry
  690. * times (in arm_timer). With an absolute time, we must
  691. * check if it's already passed. In short, we need a sample.
  692. */
  693. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  694. cpu_clock_sample(timer->it_clock, p, &val);
  695. } else {
  696. cpu_timer_sample_group(timer->it_clock, p, &val);
  697. }
  698. if (old) {
  699. if (old_expires.sched == 0) {
  700. old->it_value.tv_sec = 0;
  701. old->it_value.tv_nsec = 0;
  702. } else {
  703. /*
  704. * Update the timer in case it has
  705. * overrun already. If it has,
  706. * we'll report it as having overrun
  707. * and with the next reloaded timer
  708. * already ticking, though we are
  709. * swallowing that pending
  710. * notification here to install the
  711. * new setting.
  712. */
  713. bump_cpu_timer(timer, val);
  714. if (cpu_time_before(timer->it_clock, val,
  715. timer->it.cpu.expires)) {
  716. old_expires = cpu_time_sub(
  717. timer->it_clock,
  718. timer->it.cpu.expires, val);
  719. sample_to_timespec(timer->it_clock,
  720. old_expires,
  721. &old->it_value);
  722. } else {
  723. old->it_value.tv_nsec = 1;
  724. old->it_value.tv_sec = 0;
  725. }
  726. }
  727. }
  728. if (unlikely(ret)) {
  729. /*
  730. * We are colliding with the timer actually firing.
  731. * Punt after filling in the timer's old value, and
  732. * disable this firing since we are already reporting
  733. * it as an overrun (thanks to bump_cpu_timer above).
  734. */
  735. read_unlock(&tasklist_lock);
  736. goto out;
  737. }
  738. if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
  739. cpu_time_add(timer->it_clock, &new_expires, val);
  740. }
  741. /*
  742. * Install the new expiry time (or zero).
  743. * For a timer with no notification action, we don't actually
  744. * arm the timer (we'll just fake it for timer_gettime).
  745. */
  746. timer->it.cpu.expires = new_expires;
  747. if (new_expires.sched != 0 &&
  748. (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
  749. cpu_time_before(timer->it_clock, val, new_expires)) {
  750. arm_timer(timer, val);
  751. }
  752. read_unlock(&tasklist_lock);
  753. /*
  754. * Install the new reload setting, and
  755. * set up the signal and overrun bookkeeping.
  756. */
  757. timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
  758. &new->it_interval);
  759. /*
  760. * This acts as a modification timestamp for the timer,
  761. * so any automatic reload attempt will punt on seeing
  762. * that we have reset the timer manually.
  763. */
  764. timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  765. ~REQUEUE_PENDING;
  766. timer->it_overrun_last = 0;
  767. timer->it_overrun = -1;
  768. if (new_expires.sched != 0 &&
  769. (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
  770. !cpu_time_before(timer->it_clock, val, new_expires)) {
  771. /*
  772. * The designated time already passed, so we notify
  773. * immediately, even if the thread never runs to
  774. * accumulate more time on this clock.
  775. */
  776. cpu_timer_fire(timer);
  777. }
  778. ret = 0;
  779. out:
  780. if (old) {
  781. sample_to_timespec(timer->it_clock,
  782. timer->it.cpu.incr, &old->it_interval);
  783. }
  784. return ret;
  785. }
  786. void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
  787. {
  788. union cpu_time_count now;
  789. struct task_struct *p = timer->it.cpu.task;
  790. int clear_dead;
  791. /*
  792. * Easy part: convert the reload time.
  793. */
  794. sample_to_timespec(timer->it_clock,
  795. timer->it.cpu.incr, &itp->it_interval);
  796. if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
  797. itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  798. return;
  799. }
  800. if (unlikely(p == NULL)) {
  801. /*
  802. * This task already died and the timer will never fire.
  803. * In this case, expires is actually the dead value.
  804. */
  805. dead:
  806. sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
  807. &itp->it_value);
  808. return;
  809. }
  810. /*
  811. * Sample the clock to take the difference with the expiry time.
  812. */
  813. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  814. cpu_clock_sample(timer->it_clock, p, &now);
  815. clear_dead = p->exit_state;
  816. } else {
  817. read_lock(&tasklist_lock);
  818. if (unlikely(p->signal == NULL)) {
  819. /*
  820. * The process has been reaped.
  821. * We can't even collect a sample any more.
  822. * Call the timer disarmed, nothing else to do.
  823. */
  824. put_task_struct(p);
  825. timer->it.cpu.task = NULL;
  826. timer->it.cpu.expires.sched = 0;
  827. read_unlock(&tasklist_lock);
  828. goto dead;
  829. } else {
  830. cpu_timer_sample_group(timer->it_clock, p, &now);
  831. clear_dead = (unlikely(p->exit_state) &&
  832. thread_group_empty(p));
  833. }
  834. read_unlock(&tasklist_lock);
  835. }
  836. if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  837. if (timer->it.cpu.incr.sched == 0 &&
  838. cpu_time_before(timer->it_clock,
  839. timer->it.cpu.expires, now)) {
  840. /*
  841. * Do-nothing timer expired and has no reload,
  842. * so it's as if it was never set.
  843. */
  844. timer->it.cpu.expires.sched = 0;
  845. itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  846. return;
  847. }
  848. /*
  849. * Account for any expirations and reloads that should
  850. * have happened.
  851. */
  852. bump_cpu_timer(timer, now);
  853. }
  854. if (unlikely(clear_dead)) {
  855. /*
  856. * We've noticed that the thread is dead, but
  857. * not yet reaped. Take this opportunity to
  858. * drop our task ref.
  859. */
  860. clear_dead_task(timer, now);
  861. goto dead;
  862. }
  863. if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
  864. sample_to_timespec(timer->it_clock,
  865. cpu_time_sub(timer->it_clock,
  866. timer->it.cpu.expires, now),
  867. &itp->it_value);
  868. } else {
  869. /*
  870. * The timer should have expired already, but the firing
  871. * hasn't taken place yet. Say it's just about to expire.
  872. */
  873. itp->it_value.tv_nsec = 1;
  874. itp->it_value.tv_sec = 0;
  875. }
  876. }
  877. /*
  878. * Check for any per-thread CPU timers that have fired and move them off
  879. * the tsk->cpu_timers[N] list onto the firing list. Here we update the
  880. * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  881. */
  882. static void check_thread_timers(struct task_struct *tsk,
  883. struct list_head *firing)
  884. {
  885. int maxfire;
  886. struct list_head *timers = tsk->cpu_timers;
  887. struct signal_struct *const sig = tsk->signal;
  888. maxfire = 20;
  889. tsk->cputime_expires.prof_exp = cputime_zero;
  890. while (!list_empty(timers)) {
  891. struct cpu_timer_list *t = list_first_entry(timers,
  892. struct cpu_timer_list,
  893. entry);
  894. if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
  895. tsk->cputime_expires.prof_exp = t->expires.cpu;
  896. break;
  897. }
  898. t->firing = 1;
  899. list_move_tail(&t->entry, firing);
  900. }
  901. ++timers;
  902. maxfire = 20;
  903. tsk->cputime_expires.virt_exp = cputime_zero;
  904. while (!list_empty(timers)) {
  905. struct cpu_timer_list *t = list_first_entry(timers,
  906. struct cpu_timer_list,
  907. entry);
  908. if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
  909. tsk->cputime_expires.virt_exp = t->expires.cpu;
  910. break;
  911. }
  912. t->firing = 1;
  913. list_move_tail(&t->entry, firing);
  914. }
  915. ++timers;
  916. maxfire = 20;
  917. tsk->cputime_expires.sched_exp = 0;
  918. while (!list_empty(timers)) {
  919. struct cpu_timer_list *t = list_first_entry(timers,
  920. struct cpu_timer_list,
  921. entry);
  922. if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
  923. tsk->cputime_expires.sched_exp = t->expires.sched;
  924. break;
  925. }
  926. t->firing = 1;
  927. list_move_tail(&t->entry, firing);
  928. }
  929. /*
  930. * Check for the special case thread timers.
  931. */
  932. if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
  933. unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
  934. unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
  935. if (hard != RLIM_INFINITY &&
  936. tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  937. /*
  938. * At the hard limit, we just die.
  939. * No need to calculate anything else now.
  940. */
  941. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  942. return;
  943. }
  944. if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
  945. /*
  946. * At the soft limit, send a SIGXCPU every second.
  947. */
  948. if (sig->rlim[RLIMIT_RTTIME].rlim_cur
  949. < sig->rlim[RLIMIT_RTTIME].rlim_max) {
  950. sig->rlim[RLIMIT_RTTIME].rlim_cur +=
  951. USEC_PER_SEC;
  952. }
  953. printk(KERN_INFO
  954. "RT Watchdog Timeout: %s[%d]\n",
  955. tsk->comm, task_pid_nr(tsk));
  956. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  957. }
  958. }
  959. }
  960. static void stop_process_timers(struct task_struct *tsk)
  961. {
  962. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  963. unsigned long flags;
  964. if (!cputimer->running)
  965. return;
  966. spin_lock_irqsave(&cputimer->lock, flags);
  967. cputimer->running = 0;
  968. spin_unlock_irqrestore(&cputimer->lock, flags);
  969. }
  970. /*
  971. * Check for any per-thread CPU timers that have fired and move them
  972. * off the tsk->*_timers list onto the firing list. Per-thread timers
  973. * have already been taken off.
  974. */
  975. static void check_process_timers(struct task_struct *tsk,
  976. struct list_head *firing)
  977. {
  978. int maxfire;
  979. struct signal_struct *const sig = tsk->signal;
  980. cputime_t utime, ptime, virt_expires, prof_expires;
  981. unsigned long long sum_sched_runtime, sched_expires;
  982. struct list_head *timers = sig->cpu_timers;
  983. struct task_cputime cputime;
  984. /*
  985. * Don't sample the current process CPU clocks if there are no timers.
  986. */
  987. if (list_empty(&timers[CPUCLOCK_PROF]) &&
  988. cputime_eq(sig->it_prof_expires, cputime_zero) &&
  989. sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
  990. list_empty(&timers[CPUCLOCK_VIRT]) &&
  991. cputime_eq(sig->it_virt_expires, cputime_zero) &&
  992. list_empty(&timers[CPUCLOCK_SCHED])) {
  993. stop_process_timers(tsk);
  994. return;
  995. }
  996. /*
  997. * Collect the current process totals.
  998. */
  999. thread_group_cputimer(tsk, &cputime);
  1000. utime = cputime.utime;
  1001. ptime = cputime_add(utime, cputime.stime);
  1002. sum_sched_runtime = cputime.sum_exec_runtime;
  1003. maxfire = 20;
  1004. prof_expires = cputime_zero;
  1005. while (!list_empty(timers)) {
  1006. struct cpu_timer_list *tl = list_first_entry(timers,
  1007. struct cpu_timer_list,
  1008. entry);
  1009. if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
  1010. prof_expires = tl->expires.cpu;
  1011. break;
  1012. }
  1013. tl->firing = 1;
  1014. list_move_tail(&tl->entry, firing);
  1015. }
  1016. ++timers;
  1017. maxfire = 20;
  1018. virt_expires = cputime_zero;
  1019. while (!list_empty(timers)) {
  1020. struct cpu_timer_list *tl = list_first_entry(timers,
  1021. struct cpu_timer_list,
  1022. entry);
  1023. if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
  1024. virt_expires = tl->expires.cpu;
  1025. break;
  1026. }
  1027. tl->firing = 1;
  1028. list_move_tail(&tl->entry, firing);
  1029. }
  1030. ++timers;
  1031. maxfire = 20;
  1032. sched_expires = 0;
  1033. while (!list_empty(timers)) {
  1034. struct cpu_timer_list *tl = list_first_entry(timers,
  1035. struct cpu_timer_list,
  1036. entry);
  1037. if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
  1038. sched_expires = tl->expires.sched;
  1039. break;
  1040. }
  1041. tl->firing = 1;
  1042. list_move_tail(&tl->entry, firing);
  1043. }
  1044. /*
  1045. * Check for the special case process timers.
  1046. */
  1047. if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
  1048. if (cputime_ge(ptime, sig->it_prof_expires)) {
  1049. /* ITIMER_PROF fires and reloads. */
  1050. sig->it_prof_expires = sig->it_prof_incr;
  1051. if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
  1052. sig->it_prof_expires = cputime_add(
  1053. sig->it_prof_expires, ptime);
  1054. }
  1055. __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
  1056. }
  1057. if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
  1058. (cputime_eq(prof_expires, cputime_zero) ||
  1059. cputime_lt(sig->it_prof_expires, prof_expires))) {
  1060. prof_expires = sig->it_prof_expires;
  1061. }
  1062. }
  1063. if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
  1064. if (cputime_ge(utime, sig->it_virt_expires)) {
  1065. /* ITIMER_VIRTUAL fires and reloads. */
  1066. sig->it_virt_expires = sig->it_virt_incr;
  1067. if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
  1068. sig->it_virt_expires = cputime_add(
  1069. sig->it_virt_expires, utime);
  1070. }
  1071. __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
  1072. }
  1073. if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
  1074. (cputime_eq(virt_expires, cputime_zero) ||
  1075. cputime_lt(sig->it_virt_expires, virt_expires))) {
  1076. virt_expires = sig->it_virt_expires;
  1077. }
  1078. }
  1079. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  1080. unsigned long psecs = cputime_to_secs(ptime);
  1081. cputime_t x;
  1082. if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
  1083. /*
  1084. * At the hard limit, we just die.
  1085. * No need to calculate anything else now.
  1086. */
  1087. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  1088. return;
  1089. }
  1090. if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
  1091. /*
  1092. * At the soft limit, send a SIGXCPU every second.
  1093. */
  1094. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  1095. if (sig->rlim[RLIMIT_CPU].rlim_cur
  1096. < sig->rlim[RLIMIT_CPU].rlim_max) {
  1097. sig->rlim[RLIMIT_CPU].rlim_cur++;
  1098. }
  1099. }
  1100. x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  1101. if (cputime_eq(prof_expires, cputime_zero) ||
  1102. cputime_lt(x, prof_expires)) {
  1103. prof_expires = x;
  1104. }
  1105. }
  1106. if (!cputime_eq(prof_expires, cputime_zero) &&
  1107. (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
  1108. cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
  1109. sig->cputime_expires.prof_exp = prof_expires;
  1110. if (!cputime_eq(virt_expires, cputime_zero) &&
  1111. (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
  1112. cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
  1113. sig->cputime_expires.virt_exp = virt_expires;
  1114. if (sched_expires != 0 &&
  1115. (sig->cputime_expires.sched_exp == 0 ||
  1116. sig->cputime_expires.sched_exp > sched_expires))
  1117. sig->cputime_expires.sched_exp = sched_expires;
  1118. }
  1119. /*
  1120. * This is called from the signal code (via do_schedule_next_timer)
  1121. * when the last timer signal was delivered and we have to reload the timer.
  1122. */
  1123. void posix_cpu_timer_schedule(struct k_itimer *timer)
  1124. {
  1125. struct task_struct *p = timer->it.cpu.task;
  1126. union cpu_time_count now;
  1127. if (unlikely(p == NULL))
  1128. /*
  1129. * The task was cleaned up already, no future firings.
  1130. */
  1131. goto out;
  1132. /*
  1133. * Fetch the current sample and update the timer's expiry time.
  1134. */
  1135. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  1136. cpu_clock_sample(timer->it_clock, p, &now);
  1137. bump_cpu_timer(timer, now);
  1138. if (unlikely(p->exit_state)) {
  1139. clear_dead_task(timer, now);
  1140. goto out;
  1141. }
  1142. read_lock(&tasklist_lock); /* arm_timer needs it. */
  1143. } else {
  1144. read_lock(&tasklist_lock);
  1145. if (unlikely(p->signal == NULL)) {
  1146. /*
  1147. * The process has been reaped.
  1148. * We can't even collect a sample any more.
  1149. */
  1150. put_task_struct(p);
  1151. timer->it.cpu.task = p = NULL;
  1152. timer->it.cpu.expires.sched = 0;
  1153. goto out_unlock;
  1154. } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
  1155. /*
  1156. * We've noticed that the thread is dead, but
  1157. * not yet reaped. Take this opportunity to
  1158. * drop our task ref.
  1159. */
  1160. clear_dead_task(timer, now);
  1161. goto out_unlock;
  1162. }
  1163. cpu_timer_sample_group(timer->it_clock, p, &now);
  1164. bump_cpu_timer(timer, now);
  1165. /* Leave the tasklist_lock locked for the call below. */
  1166. }
  1167. /*
  1168. * Now re-arm for the new expiry time.
  1169. */
  1170. arm_timer(timer, now);
  1171. out_unlock:
  1172. read_unlock(&tasklist_lock);
  1173. out:
  1174. timer->it_overrun_last = timer->it_overrun;
  1175. timer->it_overrun = -1;
  1176. ++timer->it_requeue_pending;
  1177. }
  1178. /**
  1179. * task_cputime_zero - Check a task_cputime struct for all zero fields.
  1180. *
  1181. * @cputime: The struct to compare.
  1182. *
  1183. * Checks @cputime to see if all fields are zero. Returns true if all fields
  1184. * are zero, false if any field is nonzero.
  1185. */
  1186. static inline int task_cputime_zero(const struct task_cputime *cputime)
  1187. {
  1188. if (cputime_eq(cputime->utime, cputime_zero) &&
  1189. cputime_eq(cputime->stime, cputime_zero) &&
  1190. cputime->sum_exec_runtime == 0)
  1191. return 1;
  1192. return 0;
  1193. }
  1194. /**
  1195. * task_cputime_expired - Compare two task_cputime entities.
  1196. *
  1197. * @sample: The task_cputime structure to be checked for expiration.
  1198. * @expires: Expiration times, against which @sample will be checked.
  1199. *
  1200. * Checks @sample against @expires to see if any field of @sample has expired.
  1201. * Returns true if any field of the former is greater than the corresponding
  1202. * field of the latter if the latter field is set. Otherwise returns false.
  1203. */
  1204. static inline int task_cputime_expired(const struct task_cputime *sample,
  1205. const struct task_cputime *expires)
  1206. {
  1207. if (!cputime_eq(expires->utime, cputime_zero) &&
  1208. cputime_ge(sample->utime, expires->utime))
  1209. return 1;
  1210. if (!cputime_eq(expires->stime, cputime_zero) &&
  1211. cputime_ge(cputime_add(sample->utime, sample->stime),
  1212. expires->stime))
  1213. return 1;
  1214. if (expires->sum_exec_runtime != 0 &&
  1215. sample->sum_exec_runtime >= expires->sum_exec_runtime)
  1216. return 1;
  1217. return 0;
  1218. }
  1219. /**
  1220. * fastpath_timer_check - POSIX CPU timers fast path.
  1221. *
  1222. * @tsk: The task (thread) being checked.
  1223. *
  1224. * Check the task and thread group timers. If both are zero (there are no
  1225. * timers set) return false. Otherwise snapshot the task and thread group
  1226. * timers and compare them with the corresponding expiration times. Return
  1227. * true if a timer has expired, else return false.
  1228. */
  1229. static inline int fastpath_timer_check(struct task_struct *tsk)
  1230. {
  1231. struct signal_struct *sig;
  1232. /* tsk == current, ensure it is safe to use ->signal/sighand */
  1233. if (unlikely(tsk->exit_state))
  1234. return 0;
  1235. if (!task_cputime_zero(&tsk->cputime_expires)) {
  1236. struct task_cputime task_sample = {
  1237. .utime = tsk->utime,
  1238. .stime = tsk->stime,
  1239. .sum_exec_runtime = tsk->se.sum_exec_runtime
  1240. };
  1241. if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
  1242. return 1;
  1243. }
  1244. sig = tsk->signal;
  1245. if (!task_cputime_zero(&sig->cputime_expires)) {
  1246. struct task_cputime group_sample;
  1247. thread_group_cputimer(tsk, &group_sample);
  1248. if (task_cputime_expired(&group_sample, &sig->cputime_expires))
  1249. return 1;
  1250. }
  1251. return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
  1252. }
  1253. /*
  1254. * This is called from the timer interrupt handler. The irq handler has
  1255. * already updated our counts. We need to check if any timers fire now.
  1256. * Interrupts are disabled.
  1257. */
  1258. void run_posix_cpu_timers(struct task_struct *tsk)
  1259. {
  1260. LIST_HEAD(firing);
  1261. struct k_itimer *timer, *next;
  1262. BUG_ON(!irqs_disabled());
  1263. /*
  1264. * The fast path checks that there are no expired thread or thread
  1265. * group timers. If that's so, just return.
  1266. */
  1267. if (!fastpath_timer_check(tsk))
  1268. return;
  1269. spin_lock(&tsk->sighand->siglock);
  1270. /*
  1271. * Here we take off tsk->signal->cpu_timers[N] and
  1272. * tsk->cpu_timers[N] all the timers that are firing, and
  1273. * put them on the firing list.
  1274. */
  1275. check_thread_timers(tsk, &firing);
  1276. check_process_timers(tsk, &firing);
  1277. /*
  1278. * We must release these locks before taking any timer's lock.
  1279. * There is a potential race with timer deletion here, as the
  1280. * siglock now protects our private firing list. We have set
  1281. * the firing flag in each timer, so that a deletion attempt
  1282. * that gets the timer lock before we do will give it up and
  1283. * spin until we've taken care of that timer below.
  1284. */
  1285. spin_unlock(&tsk->sighand->siglock);
  1286. /*
  1287. * Now that all the timers on our list have the firing flag,
  1288. * noone will touch their list entries but us. We'll take
  1289. * each timer's lock before clearing its firing flag, so no
  1290. * timer call will interfere.
  1291. */
  1292. list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
  1293. int cpu_firing;
  1294. spin_lock(&timer->it_lock);
  1295. list_del_init(&timer->it.cpu.entry);
  1296. cpu_firing = timer->it.cpu.firing;
  1297. timer->it.cpu.firing = 0;
  1298. /*
  1299. * The firing flag is -1 if we collided with a reset
  1300. * of the timer, which already reported this
  1301. * almost-firing as an overrun. So don't generate an event.
  1302. */
  1303. if (likely(cpu_firing >= 0))
  1304. cpu_timer_fire(timer);
  1305. spin_unlock(&timer->it_lock);
  1306. }
  1307. }
  1308. /*
  1309. * Set one of the process-wide special case CPU timers.
  1310. * The tsk->sighand->siglock must be held by the caller.
  1311. * The *newval argument is relative and we update it to be absolute, *oldval
  1312. * is absolute and we update it to be relative.
  1313. */
  1314. void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
  1315. cputime_t *newval, cputime_t *oldval)
  1316. {
  1317. union cpu_time_count now;
  1318. struct list_head *head;
  1319. BUG_ON(clock_idx == CPUCLOCK_SCHED);
  1320. cpu_timer_sample_group(clock_idx, tsk, &now);
  1321. if (oldval) {
  1322. if (!cputime_eq(*oldval, cputime_zero)) {
  1323. if (cputime_le(*oldval, now.cpu)) {
  1324. /* Just about to fire. */
  1325. *oldval = jiffies_to_cputime(1);
  1326. } else {
  1327. *oldval = cputime_sub(*oldval, now.cpu);
  1328. }
  1329. }
  1330. if (cputime_eq(*newval, cputime_zero))
  1331. return;
  1332. *newval = cputime_add(*newval, now.cpu);
  1333. /*
  1334. * If the RLIMIT_CPU timer will expire before the
  1335. * ITIMER_PROF timer, we have nothing else to do.
  1336. */
  1337. if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
  1338. < cputime_to_secs(*newval))
  1339. return;
  1340. }
  1341. /*
  1342. * Check whether there are any process timers already set to fire
  1343. * before this one. If so, we don't have anything more to do.
  1344. */
  1345. head = &tsk->signal->cpu_timers[clock_idx];
  1346. if (list_empty(head) ||
  1347. cputime_ge(list_first_entry(head,
  1348. struct cpu_timer_list, entry)->expires.cpu,
  1349. *newval)) {
  1350. switch (clock_idx) {
  1351. case CPUCLOCK_PROF:
  1352. tsk->signal->cputime_expires.prof_exp = *newval;
  1353. break;
  1354. case CPUCLOCK_VIRT:
  1355. tsk->signal->cputime_expires.virt_exp = *newval;
  1356. break;
  1357. }
  1358. }
  1359. }
  1360. static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
  1361. struct timespec *rqtp, struct itimerspec *it)
  1362. {
  1363. struct k_itimer timer;
  1364. int error;
  1365. /*
  1366. * Set up a temporary timer and then wait for it to go off.
  1367. */
  1368. memset(&timer, 0, sizeof timer);
  1369. spin_lock_init(&timer.it_lock);
  1370. timer.it_clock = which_clock;
  1371. timer.it_overrun = -1;
  1372. error = posix_cpu_timer_create(&timer);
  1373. timer.it_process = current;
  1374. if (!error) {
  1375. static struct itimerspec zero_it;
  1376. memset(it, 0, sizeof *it);
  1377. it->it_value = *rqtp;
  1378. spin_lock_irq(&timer.it_lock);
  1379. error = posix_cpu_timer_set(&timer, flags, it, NULL);
  1380. if (error) {
  1381. spin_unlock_irq(&timer.it_lock);
  1382. return error;
  1383. }
  1384. while (!signal_pending(current)) {
  1385. if (timer.it.cpu.expires.sched == 0) {
  1386. /*
  1387. * Our timer fired and was reset.
  1388. */
  1389. spin_unlock_irq(&timer.it_lock);
  1390. return 0;
  1391. }
  1392. /*
  1393. * Block until cpu_timer_fire (or a signal) wakes us.
  1394. */
  1395. __set_current_state(TASK_INTERRUPTIBLE);
  1396. spin_unlock_irq(&timer.it_lock);
  1397. schedule();
  1398. spin_lock_irq(&timer.it_lock);
  1399. }
  1400. /*
  1401. * We were interrupted by a signal.
  1402. */
  1403. sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
  1404. posix_cpu_timer_set(&timer, 0, &zero_it, it);
  1405. spin_unlock_irq(&timer.it_lock);
  1406. if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
  1407. /*
  1408. * It actually did fire already.
  1409. */
  1410. return 0;
  1411. }
  1412. error = -ERESTART_RESTARTBLOCK;
  1413. }
  1414. return error;
  1415. }
  1416. int posix_cpu_nsleep(const clockid_t which_clock, int flags,
  1417. struct timespec *rqtp, struct timespec __user *rmtp)
  1418. {
  1419. struct restart_block *restart_block =
  1420. &current_thread_info()->restart_block;
  1421. struct itimerspec it;
  1422. int error;
  1423. /*
  1424. * Diagnose required errors first.
  1425. */
  1426. if (CPUCLOCK_PERTHREAD(which_clock) &&
  1427. (CPUCLOCK_PID(which_clock) == 0 ||
  1428. CPUCLOCK_PID(which_clock) == current->pid))
  1429. return -EINVAL;
  1430. error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
  1431. if (error == -ERESTART_RESTARTBLOCK) {
  1432. if (flags & TIMER_ABSTIME)
  1433. return -ERESTARTNOHAND;
  1434. /*
  1435. * Report back to the user the time still remaining.
  1436. */
  1437. if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1438. return -EFAULT;
  1439. restart_block->fn = posix_cpu_nsleep_restart;
  1440. restart_block->arg0 = which_clock;
  1441. restart_block->arg1 = (unsigned long) rmtp;
  1442. restart_block->arg2 = rqtp->tv_sec;
  1443. restart_block->arg3 = rqtp->tv_nsec;
  1444. }
  1445. return error;
  1446. }
  1447. long posix_cpu_nsleep_restart(struct restart_block *restart_block)
  1448. {
  1449. clockid_t which_clock = restart_block->arg0;
  1450. struct timespec __user *rmtp;
  1451. struct timespec t;
  1452. struct itimerspec it;
  1453. int error;
  1454. rmtp = (struct timespec __user *) restart_block->arg1;
  1455. t.tv_sec = restart_block->arg2;
  1456. t.tv_nsec = restart_block->arg3;
  1457. restart_block->fn = do_no_restart_syscall;
  1458. error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
  1459. if (error == -ERESTART_RESTARTBLOCK) {
  1460. /*
  1461. * Report back to the user the time still remaining.
  1462. */
  1463. if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1464. return -EFAULT;
  1465. restart_block->fn = posix_cpu_nsleep_restart;
  1466. restart_block->arg0 = which_clock;
  1467. restart_block->arg1 = (unsigned long) rmtp;
  1468. restart_block->arg2 = t.tv_sec;
  1469. restart_block->arg3 = t.tv_nsec;
  1470. }
  1471. return error;
  1472. }
  1473. #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
  1474. #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
  1475. static int process_cpu_clock_getres(const clockid_t which_clock,
  1476. struct timespec *tp)
  1477. {
  1478. return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
  1479. }
  1480. static int process_cpu_clock_get(const clockid_t which_clock,
  1481. struct timespec *tp)
  1482. {
  1483. return posix_cpu_clock_get(PROCESS_CLOCK, tp);
  1484. }
  1485. static int process_cpu_timer_create(struct k_itimer *timer)
  1486. {
  1487. timer->it_clock = PROCESS_CLOCK;
  1488. return posix_cpu_timer_create(timer);
  1489. }
  1490. static int process_cpu_nsleep(const clockid_t which_clock, int flags,
  1491. struct timespec *rqtp,
  1492. struct timespec __user *rmtp)
  1493. {
  1494. return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
  1495. }
  1496. static long process_cpu_nsleep_restart(struct restart_block *restart_block)
  1497. {
  1498. return -EINVAL;
  1499. }
  1500. static int thread_cpu_clock_getres(const clockid_t which_clock,
  1501. struct timespec *tp)
  1502. {
  1503. return posix_cpu_clock_getres(THREAD_CLOCK, tp);
  1504. }
  1505. static int thread_cpu_clock_get(const clockid_t which_clock,
  1506. struct timespec *tp)
  1507. {
  1508. return posix_cpu_clock_get(THREAD_CLOCK, tp);
  1509. }
  1510. static int thread_cpu_timer_create(struct k_itimer *timer)
  1511. {
  1512. timer->it_clock = THREAD_CLOCK;
  1513. return posix_cpu_timer_create(timer);
  1514. }
  1515. static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
  1516. struct timespec *rqtp, struct timespec __user *rmtp)
  1517. {
  1518. return -EINVAL;
  1519. }
  1520. static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
  1521. {
  1522. return -EINVAL;
  1523. }
  1524. static __init int init_posix_cpu_timers(void)
  1525. {
  1526. struct k_clock process = {
  1527. .clock_getres = process_cpu_clock_getres,
  1528. .clock_get = process_cpu_clock_get,
  1529. .clock_set = do_posix_clock_nosettime,
  1530. .timer_create = process_cpu_timer_create,
  1531. .nsleep = process_cpu_nsleep,
  1532. .nsleep_restart = process_cpu_nsleep_restart,
  1533. };
  1534. struct k_clock thread = {
  1535. .clock_getres = thread_cpu_clock_getres,
  1536. .clock_get = thread_cpu_clock_get,
  1537. .clock_set = do_posix_clock_nosettime,
  1538. .timer_create = thread_cpu_timer_create,
  1539. .nsleep = thread_cpu_nsleep,
  1540. .nsleep_restart = thread_cpu_nsleep_restart,
  1541. };
  1542. register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
  1543. register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
  1544. return 0;
  1545. }
  1546. __initcall(init_posix_cpu_timers);